
Jukka Suomela
Helsinki Institute for Information Technology HIIT

University of Helsinki

Wireless Networks and Mobile Computing
Carleton University

26–27 April 2011

www.hiit.fi/jukka.suomela/tut-2011

Local Algorithms:
Past, Present, Future

http://www.hiit.fi/jukka.suomela/tut-2011
http://www.hiit.fi/jukka.suomela/tut-2011


About This Tutorial

• Two parts:
• Part A, Tuesday 11:00–12:30

• Part B, Wednesday 11:00–12:30

• www.iki.fi/suo/tut
• Slides, additional material, further reading

2

http://www.iki.fi/suo/tut
http://www.iki.fi/suo/tut


Background

3



Setting

• Graphs

4



Setting

• Graphs

• Algorithms for
graph problems

• Independent sets

5



Setting

• Graphs

• Algorithms for
graph problems

• Independent sets,
matchings

6



Setting

• Graphs

• Algorithms for
graph problems

• Independent sets,
matchings,
vertex covers

7



Setting

• Graphs

• Algorithms for
graph problems

• Independent sets,
matchings,
vertex covers,
dominating sets

8



Setting

• Graphs

• Algorithms for
graph problems

• Independent sets,
matchings,
vertex covers,
dominating sets,
edge dominating sets

9



Setting

• Graphs

• Algorithms for
graph problems

• Independent sets,
matchings,
vertex covers,
dominating sets,
edge dominating sets,
graph colourings

10



Setting

• Graphs

• Algorithms for
graph problems

• Independent sets,
matchings,
vertex covers,
dominating sets,
edge dominating sets,
graph colourings, …

11



Local Algorithms

• Local neighbourhood:
nodes at distance r

• Here r = O(1),
independent of
number of nodes

• Shortest-path distance,
number of edges

12



Local Algorithms

• Local algorithm:
each node operates
based on its local
neighbourhood only

• Output is a function
of local neighbourhood

13



Local Algorithms

• Same neighbourhood,
same output

14



Local Algorithms

• Equivalently:
• Constant-time

distributed algorithm

• Time = number
of synchronous
communication
rounds

15



Advantages

• Fast and scalable distributed algorithm
• By definition…

• Fault-tolerant and robust
• Changes in input (or network structure):

only local changes in output

• We can quickly recover from any failures

• But do these exist?

16



Past

17



Bad News

• Long history of very strong negative results
• Linial (1992)

• Naor & Stockmeyer (1995)

• Czygrinow, Hańćkowiak & Wawrzyniak (2008)

• Lenzen & Wattenhofer (2008)

• using, e.g., results that date back to Ramsey (1930)

18



Bad News

• Even if your graph is a cycle…

19



Bad News

• Even if your graph is a cycle…

• And even if you have
unique node identifiers…

20

19
3012

5

72

4

18

34

2 68

77

15

19



Bad News

• Even if your graph is a cycle…

• And even if you have
unique node identifiers…

• And orientation…

21

19
3012

5

72

4

18

34

2 68

77

15

19



Bad News

• Even if your graph is a cycle…

• And even if you have
unique node identifiers…

• And orientation…

• Then no matter which
local algorithm you use,
there is a “bad input”

22

19
3012

5

72

4

18

34

2 68

77

15

19



Bad News

• “Bad input”:
• Almost all nodes will

produce the same output

• Graph colouring
not possible

• You can find only trivial
independent sets,
matchings, vertex covers,
dominating sets, …

23

19
3012

5

72

4

18

34

2 68

77

15

19



Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• Focus on oriented cycles

• A maps 5-tuples of
identifiers to local outputs

• A(15, 72, 5, 12, 30) = …

24

19
3012

5

72

4

18

34

2 68

77

15

19



Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• Set of identifiers: I = {1, 2, …, N}

• Let X = {a, b, c, d, e} ⊆ I,
a < b < c < d < e

• Define the colour C(X) of X:
C(X) = A(a, b, c, d, e)

25

?
ed

c

b

?

?

?

? ?

?

a

?



Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• Set of identifiers: I = {1, 2, …, N}

• Let X = {a, b, c, d, e} ⊆ I,
a < b < c < d < e

• Define the colour C(X) of X:
C(X) = A(a, b, c, d, e)

• We will colour all 5-subsets of I

26

?
ed

c

b

?

?

?

? ?

?

a

?



Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• Set of identifiers: I = {1, 2, …, N},
colouring C(X) of 5-subsets

• Ramsey: if N is large enough,
there exists a large
monochromatic subset M ⊆ I

• All 5-subsets X ⊆ M have
the same colour C(X)

27

?
ed

c

b

?

?

?

? ?

?

a

?



Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• Assume that M = {a, b, c, d, e, f}
is a monochromatic subset,
a < b < c < d < e < f

• C({a, b, c, d, e}) =
C({b, c, d, e, f})

• A(a, b, c, d, e) = A(b, c, d, e, f)

28

f
ed

c

b

?

?

?

? ?

?

a

?



Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• We have found a “bad input”:
nodes with identifiers c and d
are adjacent and they produce
the same output

• We already proved that
A cannot produce
a valid graph colouring!

29

f
ed

c

b

?

?

?

? ?

?

a

?



Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• We can apply the same idea
for any value of r

• And we can “boost”
the argument and show
that almost all nodes will
produce the same output

30

f
ed

c

b

?

?

?

? ?

?

a

?



Bad News

• For
• any local algorithm A that finds an independent set,

• any constant ε > 0, and

• sufficiently large n,

we can choose unique identifiers
in an n-cycle so that A outputs
an independent set with only εn nodes

31



Bad News

• For
• any local algorithm A that finds a vertex cover,

• any constant ε > 0, and

• sufficiently large n,

we can choose unique identifiers
in an n-cycle so that A outputs
a vertex cover with at least (1 − ε)n nodes

32



Dealing with Bad News

• Three traditional escapes:
• Randomised algorithms

• Geometric information

• “Almost local” algorithms

33



Dealing with Bad News

• Three traditional escapes:
• Randomised algorithms

• Geometric information

• “Almost local” algorithms

34



Randomised Algorithms

• Nodes can roll dice

35



Randomised Algorithms

• Nodes can roll dice or toss coins

36



Randomised Algorithms

• Nodes can roll dice or toss coins

• We cannot guarantee that we find
a good solution

• Worst case: all coin tosses equal, no new information

• But we can find a good solution
with high probability or in expectation

37



Randomised Algorithms

• Example: finding an independent set I
• Each node v picks

uniformly at random
X(v) = ⚀, ⚁, ⚂, ⚃, ⚄, ⚅

38

⚃
⚀⚁

⚅
⚂

⚀
⚁

⚂

⚄ ⚄
⚂

⚃

⚂



Randomised Algorithms

• Example: finding an independent set I
• Each node v picks

uniformly at random
X(v) = ⚀, ⚁, ⚂, ⚃, ⚄, ⚅

• Node v joins I if X(v) is
(strict) local maximum

39

⚃
⚀⚁

⚅
⚂

⚀
⚁

⚂

⚄ ⚄
⚂

⚃

⚂



Randomised Algorithms

• Example: finding an independent set I
• Each node v picks

uniformly at random
X(v) = ⚀, ⚁, ⚂, ⚃, ⚄, ⚅

• Node v joins I if X(v) is
(strict) local maximum

• By construction,
I is an independent set

40

⚃
⚀⚁

⚅
⚂

⚀
⚁

⚂

⚄ ⚄
⚂

⚃

⚂



Randomised Algorithms

• Example: finding an independent set I
• Each node v picks

uniformly at random
X(v) = ⚀, ⚁, ⚂, ⚃, ⚄, ⚅

• Node v joins I if X(v) is
(strict) local maximum

• Expected size of I
is reasonably large

41

⚃
⚀⚁

⚅
⚂

⚀
⚁

⚂

⚄ ⚄
⚂

⚃

⚂



Randomised Algorithms

• Example: finding an independent set I
• A local randomised

algorithm can find
a large independent set

• Approximation algorithm
(in expectation)

• However, we cannot find
maximum independent set or
maximal independent set

42

⚃
⚀⚁

⚅
⚂

⚀
⚁

⚂

⚄ ⚄
⚂

⚃

⚂



Dealing with Bad News

• Three traditional escapes:
• Randomised algorithms

• Geometric information

• “Almost local” algorithms

43



Geometric Graphs

• Assume that nodes are
points in the plane

• Assume “reasonable”
embedding

44



Geometric Graphs

• Assume that nodes are
points in the plane

• Assume “reasonable”
embedding

• Civilised graph

45



Geometric Graphs

• Assume that nodes are
points in the plane

• Assume “reasonable”
embedding

• Civilised graph:
edges not too long…

46

no!



Geometric Graphs

• Assume that nodes are
points in the plane

• Assume “reasonable”
embedding

• Civilised graph:
edges not too long,
nodes not in too dense

47

no!



Geometric Graphs

• Assume that nodes are
points in the plane

• Assume “reasonable”
embedding

• Civilised graph

• Unit disk graph

• Quasi unit disk graph…

48



Geometric Graphs

• Exploit coordinates
• a simple approach:

divide-and-conquer

• e.g., partition the plane
in rectangular tiles

49



Geometric Graphs

• Exploit coordinates
• each tile defines

a constant-size
subproblem

• solve the subproblem
locally within each tile
(in parallel for all tiles)

50



Geometric Graphs

• Exploit coordinates
• each tile defines

a constant-size
subproblem

• solve the subproblem
locally within each tile

• merge the solutions
of the subproblems

51



Geometric Graphs

• Graph colouring:
• f = 3-colouring of tiles

• all edges are short

• there is no edge
that joins e.g.
a blue tile and
another blue tile

52



Geometric Graphs

• Graph colouring:
• f = 3-colouring of tiles

• g = k-colouring that
is valid inside each tile

• can be solved
by brute force

53



Geometric Graphs

• Graph colouring:
• f = 3-colouring of tiles

• g = k-colouring that
is valid inside each tile

• Output: (f, g)

• Valid 3k-colouring!

54



Geometric Graphs

• Simple local
algorithms:

• maximal matchings,
independent sets, …

• approximation
algorithms for
vertex covers,
dominating sets,
colourings, …

55



Dealing with Bad News

• Three traditional escapes:
• Randomised algorithms

• Geometric information

• “Almost local” algorithms

56



Almost Local Algorithms

• We cannot find non-trivial solutions
in a cycle in O(1) rounds

• But we can do it in O(log* n) rounds!
• log* n = iterated logarithm

• 0 ≤ log* n ≤ 7 for all real-world values of n

• Good enough?

57



Almost Local Algorithms

• Main tool: colour reduction
• Cole & Vishkin (1986)

• Goldberg, Plotkin & Shannon (1988)

• Bit manipulation trick:
• From k colours to O(log k) colours in one step

• Initially poly(n) colours: unique identifiers

• Iterate O(log* n) times until O(1) colours

58



Almost Local Algorithms

59

13573
102913348

9252

3108

7491

3139

5443

3427

15683

9315

15715

7523 Initial colouring



Almost Local Algorithms

60

13573
102913348

9252

3108

7491

3139

5443

3427

15683

9315

15715

7523
110001000011

11110101000011

Key idea: inspect
the binary encodings
of old colours



Almost Local Algorithms

61

13573
102913348

9252

3108

7491

3139

5443

3427

15683

9315

15715

7523
110001000011

11110101000011

Bit number 8 differs

(8, 1)10001



Almost Local Algorithms

62

13573
102913348

9252

3108

7491

3139

5443

3427

15683

9315

15715

7523

1110101000011

110001000011

11110101000011

Bit number 8 differs

(8, 0)

(8, 1)

10000

10001



Almost Local Algorithms

63

13573
102913348

9252

3108

7491

3139

5443

3427

15683

9315

15715

7523

1110101000011

110001000011

1010101000011

11110101000011

(11, 1)

Bit number 11 differs

(8, 0)

(8, 1)

10111

10000

10001



Almost Local Algorithms

64

13573
102913348

9252

3108

7491

3139

5443

3427

15683

9315

15715

7523

17125
22

0 23

16

3

1716

17

25
A proper colouring!



Almost Local Algorithms

65

17
125

22

0

23

16

3

…

17

16

17

25

17125
22

0 23

16

3

1716

17

25
Update colours…



Almost Local Algorithms

66

17
125

22

0

23

16

3

…

17

16

17

25 After one round



Almost Local Algorithms

67

9
61

3

0

5

0

3

…

1

0

1

… After two rounds



Almost Local Algorithms

68

1
02

1

0

2

0

3

…

1

…

1

… After three rounds



Almost Local Algorithms

69

• Graph colouring in O(log* n) rounds
• Paths or cycles, 3-colouring

• Generalisations:
• Trees, bounded-degree graphs, …

• Graphs of maximum degree ∆:
(∆+1)-colouring in O(∆ + log* n) rounds



Almost Local Algorithms

70

• Graph colouring in O(log* n) rounds

• Many applications:
• Maximal independent set:

first try to add nodes of colour 0 (in parallel),
then try to add nodes of colour 1 (in parallel), …

• Maximal matching

• Greedy algorithm for dominating sets



Almost Local Algorithms

71

• Graph colouring in O(log* n) rounds

• Many applications

• Fast, but not strictly local
• And inherently depends on the existence of

small, unique, numerical identifiers



Past: Summary

• Bad news:
• Cannot break symmetry in cycles

• Three traditional escapes:
• Randomised algorithms

• Geometric information

• “Almost local” algorithms

72



Present

73

!
!!

!

!

!

!

!

! !

!

!

!



Dealing with Bad News

• You cannot break symmetry in cycles…

• Which problems do not require
symmetry breaking in cycles?

74



Tractable Problems

• Linear programs (LPs)
• Many resource-allocation

problems can be modelled
as LPs

• If the input is symmetric,
a trivial solution is
an optimal solution!

• Only non-symmetric
inputs are challenging…

75

!
!!

!

!

!

!

!

! !

!

!

!



Tractable Problems

• Linear programs (LPs)
• Approximation scheme for

packing and covering LPs

• Local algorithm

• Kuhn, Moscibroda &
Wattenhofer (2006)

76

!
!!

!

!

!

!

!

! !

!

!

!



Tractable Problems

• Vertex covers
• 2-approximation is the best that we can find

with centralised polynomial-time algorithms

• Nobody knows how to find
1.9999-approximation efficiently

• Hence if we could find a 2-approximation
with local algorithms, it would be amazing!

77



Tractable Problems

• Vertex covers
• 2-approximation does not

require symmetry breaking

• In a regular graph, trivial
solution (all nodes) is
2-approximation

• Again, only non-symmetric
inputs are challenging…

78



Tractable Problems

• Vertex covers
• 2-approximation of vertex cover

in bounded-degree graphs

• Local algorithm

• Åstrand & Suomela (2010)

79



Tractable Problems

• Vertex covers
• 2-approximation of vertex cover

in bounded-degree graphs

• Local algorithm

• A bit complicated…

• Let’s have a look at
a simpler local algorithm:
3-approximation of vertex cover

80



Vertex Cover

A simple local algorithm:
3-approximation of minimum vertex cover

81



Vertex Cover

Construct a virtual graph:
two copies of each node; edges across

82



Vertex Cover

The virtual graph is 2-coloured:
all edges are from white to black

83



Vertex Cover

The virtual graph is 2-coloured –
therefore we can find a maximal matching!

84



Vertex Cover

White nodes send proposals to their
black neighbours

85



Vertex Cover

Black nodes accept one of the proposals

86



Vertex Cover

White nodes send proposals to another
black neighbour if they were rejected

87



Vertex Cover

Again, black nodes accept one proposal –
unless they were already matched

88



Vertex Cover

Continue until all white nodes are matched –
or they are rejected by all black neighbours

89



Vertex Cover

End result: a maximal matching
in the virtual graph

90



Vertex Cover

Take all original nodes that were matched –
3-approximation of minimum vertex cover!

91



Present: Summary

• You cannot break symmetry in cycles…

• But we can study problems
that do not require symmetry breaking!

• Linear programs: local approximation schemes

• Vertex covers: local 2-approximation algorithm

• Edge dominating sets: local approximation algorithm

• …

92



Future

93



Dealing with Bad News

• Let’s have a fresh look at the lower bounds!
• Exactly what was proved?

94



Lower Bounds

• Only trivial solutions in cycles

• Assumption:
constant-size output

• Each node outputs
constant number of bits

• Innocuous?

95

19
3012

5

72

4

18

34

2 68

77

15

19



Output Size

• Vertex cover, independent set,
dominating set, cut: 1 bit per node

• Matching, edge dominating set,
edge cover: 1 bit per edge

• In a cycle, this is O(1) bits per node

96



Output Size

• Graph colouring:
• O(1) colours should be enough in a cycle

• Hence O(1) bits per node is enough to
encode the solution

• Linear programs:
• For a near-optimal solution, we can use

finite-precision rational numbers

97



Output Size

• Natural problems seem to have
constant-size output

• Hence the negative results apply
• Unique identifiers do not help in cycles

• We can only produce trivial solutions in cycles

• We can only solve problems that
do not require symmetry-breaking

98



Output Size

• Natural problems seem to have
constant-size output

• Hence the negative results apply

• Did we miss anything?

99



Scheduling Problems

• Neighbours not working simultaneously,
everyone must get 3 units of work done

100

time: 0 1 2 3 4 5 6 7
node 1:
node 2:
node 3:
node 4:
node 5:
node 6:



Scheduling Problems

• Time is continuous, we can use
a more fine-grained schedule if it helps

101

time: 00 11 22 33 44 55 66 7
node 1:
node 2:
node 3:
node 4:
node 5:
node 6:



Scheduling Problems

• Time is continuous, we can use
a more fine-grained schedule if it helps

• A good solution does not necessarily
have a constant-size description

• Existing lower bounds do not apply

102



Scheduling Problems

• Time is continuous, we can use
a more fine-grained schedule if it helps

• A good solution does not necessarily
have a constant-size description

• Existing lower bounds do not apply

• Proof artefact? Uninteresting technicality?
Just derive a bit stronger negative result?

103



Scheduling Problems

• Time is continuous, we can use
a more fine-grained schedule if it helps

• A good solution does not necessarily
have a constant-size description

• Existing lower bounds do not apply

• Proof artefact? Uninteresting technicality?
Just derive a bit stronger negative result?

• Wrong! There is a local approximation algorithm!

104



Scheduling Problems

• Local approximation algorithms
• Scheduling problems:

fractional graph colouring,
fractional domatic partition, …

• First example of a local algorithm that
actually requires unique numerical identifiers

• Hasemann, Hirvonen, Rybicki & Suomela
(work in progress)

105



More New Directions

• Deterministic local algorithm
• cf. deterministic Turing machine – class P

• Randomised local algorithm
• cf. probabilistic Turing machine – class BPP, etc.

• Nondeterministic local algorithm
• cf. nondeterministic Turing machine – class NP

106



Decision Problems

• Back to very basics: decision problems
• Is this graph bipartite? Acyclic? Hamiltonian? 

Eulerian? Connected? 3-colourable? Symmetric?

• Decision problems form the foundation
of classical complexity theory…

107



Decision Problems

• Decision problems in distributed setting:
• yes-instance: all nodes happy

• no-instance: at least one node raises alarm

• Few decision problems can be solved
with deterministic local algorithms

• But now we have a very natural extension…

108



Decision Problems

• Nondeterministic local algorithms
• Yes-instances have a compact certificate

that can be verified with a local algorithm

• “locally checkable proof”

• Cf. class NP:
• Yes-instances have a compact certificate

that can be verified in P

109



Locally Checkable Proofs

• Key question: what is the size of the proof?
• How many bits per node are needed?

• For example, it is easy to show that a graph is
bipartite: just give a 2-colouring, 1 bit per node

• How do you prove that a graph is not bipartite?

110



Locally Checkable Proofs

• Key question: what is the size of the proof?
• How many bits per node are needed?

• For example, it is easy to show that a graph is
bipartite: just give a 2-colouring, 1 bit per node

• How do you prove that a graph is not bipartite?

• Find an odd cycle, and prove that it exists

• O(log n) bits is enough, Ω(log n) bits necessary

111



Locally Checkable Proofs

• Natural hierarchy of proof complexities:
• 2-colourable graphs: Θ(1) bits per node

• Non-2-colourable graphs: Θ(log n) bits per node

• Non-3-colourable graphs: poly(n) bits per node

• Göös & Suomela (2011)

112



Summary

• Local algorithms

• Strong lower bounds
• Nevertheless,

a lot of progress!

• Latest hot topics
• Scheduling problems

• Nondeterministic models

113



www.iki.fi/suo/tut

http://www.iki.fi/suo/tut
http://www.iki.fi/suo/tut

