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About This Tutorial

• Two parts:
• Part A, Tuesday 11:00–12:30

• Part B, Wednesday 11:00–12:30

• www.iki.fi/suo/tut
• Slides, additional material, further reading
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Background
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Setting

• Graphs
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Setting

• Graphs

• Algorithms for
graph problems

• Independent sets
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matchings
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Setting

• Graphs

• Algorithms for
graph problems

• Independent sets,
matchings,
vertex covers,
dominating sets,
edge dominating sets,
graph colourings, …
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Local Algorithms

• Local neighbourhood:
nodes at distance r

• Here r = O(1),
independent of
number of nodes

• Shortest-path distance,
number of edges
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Local Algorithms

• Local algorithm:
each node operates
based on its local
neighbourhood only

• Output is a function
of local neighbourhood
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Local Algorithms

• Same neighbourhood,
same output
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Local Algorithms

• Equivalently:
• Constant-time

distributed algorithm

• Time = number
of synchronous
communication
rounds
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Advantages

• Fast and scalable distributed algorithm
• By definition…

• Fault-tolerant and robust
• Changes in input (or network structure):

only local changes in output

• We can quickly recover from any failures

• But do these exist?
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Past
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Bad News

• Long history of very strong negative results
• Linial (1992)

• Naor & Stockmeyer (1995)

• Czygrinow, Hańćkowiak & Wawrzyniak (2008)

• Lenzen & Wattenhofer (2008)

• using, e.g., results that date back to Ramsey (1930)
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Bad News

• Even if your graph is a cycle…
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Bad News

• Even if your graph is a cycle…

• And even if you have
unique node identifiers…
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Bad News

• Even if your graph is a cycle…

• And even if you have
unique node identifiers…

• And orientation…
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Bad News

• Even if your graph is a cycle…

• And even if you have
unique node identifiers…

• And orientation…

• Then no matter which
local algorithm you use,
there is a “bad input”
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Bad News

• “Bad input”:
• Almost all nodes will

produce the same output

• Graph colouring
not possible

• You can find only trivial
independent sets,
matchings, vertex covers,
dominating sets, …
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Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• Focus on oriented cycles

• A maps 5-tuples of
identifiers to local outputs

• A(15, 72, 5, 12, 30) = …
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Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• Set of identifiers: I = {1, 2, …, N}

• Let X = {a, b, c, d, e} ⊆ I,
a < b < c < d < e

• Define the colour C(X) of X:
C(X) = A(a, b, c, d, e)

25

?
ed

c

b

?

?

?

? ?

?

a

?



Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• Set of identifiers: I = {1, 2, …, N}

• Let X = {a, b, c, d, e} ⊆ I,
a < b < c < d < e

• Define the colour C(X) of X:
C(X) = A(a, b, c, d, e)

• We will colour all 5-subsets of I
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Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• Set of identifiers: I = {1, 2, …, N},
colouring C(X) of 5-subsets

• Ramsey: if N is large enough,
there exists a large
monochromatic subset M ⊆ I

• All 5-subsets X ⊆ M have
the same colour C(X)
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Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• Assume that M = {a, b, c, d, e, f}
is a monochromatic subset,
a < b < c < d < e < f

• C({a, b, c, d, e}) =
C({b, c, d, e, f})

• A(a, b, c, d, e) = A(b, c, d, e, f)
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Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• We have found a “bad input”:
nodes with identifiers c and d
are adjacent and they produce
the same output

• We already proved that
A cannot produce
a valid graph colouring!
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Bad News

• Example: A is a local algorithm with r = 2,
outputs from {1, 2, …, k}

• We can apply the same idea
for any value of r

• And we can “boost”
the argument and show
that almost all nodes will
produce the same output
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Bad News

• For
• any local algorithm A that finds an independent set,

• any constant ε > 0, and

• sufficiently large n,

we can choose unique identifiers
in an n-cycle so that A outputs
an independent set with only εn nodes
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Bad News

• For
• any local algorithm A that finds a vertex cover,

• any constant ε > 0, and

• sufficiently large n,

we can choose unique identifiers
in an n-cycle so that A outputs
a vertex cover with at least (1 − ε)n nodes
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Dealing with Bad News

• Three traditional escapes:
• Randomised algorithms

• Geometric information

• “Almost local” algorithms
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Dealing with Bad News

• Three traditional escapes:
• Randomised algorithms

• Geometric information

• “Almost local” algorithms
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Randomised Algorithms

• Nodes can roll dice
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Randomised Algorithms

• Nodes can roll dice or toss coins
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Randomised Algorithms

• Nodes can roll dice or toss coins

• We cannot guarantee that we find
a good solution

• Worst case: all coin tosses equal, no new information

• But we can find a good solution
with high probability or in expectation
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Randomised Algorithms

• Example: finding an independent set I
• Each node v picks

uniformly at random
X(v) = ⚀, ⚁, ⚂, ⚃, ⚄, ⚅
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Randomised Algorithms

• Example: finding an independent set I
• Each node v picks

uniformly at random
X(v) = ⚀, ⚁, ⚂, ⚃, ⚄, ⚅

• Node v joins I if X(v) is
(strict) local maximum
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Randomised Algorithms

• Example: finding an independent set I
• Each node v picks

uniformly at random
X(v) = ⚀, ⚁, ⚂, ⚃, ⚄, ⚅

• Node v joins I if X(v) is
(strict) local maximum

• By construction,
I is an independent set
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Randomised Algorithms

• Example: finding an independent set I
• Each node v picks

uniformly at random
X(v) = ⚀, ⚁, ⚂, ⚃, ⚄, ⚅

• Node v joins I if X(v) is
(strict) local maximum

• Expected size of I
is reasonably large
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Randomised Algorithms

• Example: finding an independent set I
• A local randomised

algorithm can find
a large independent set

• Approximation algorithm
(in expectation)

• However, we cannot find
maximum independent set or
maximal independent set
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Dealing with Bad News

• Three traditional escapes:
• Randomised algorithms

• Geometric information

• “Almost local” algorithms
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Geometric Graphs

• Assume that nodes are
points in the plane

• Assume “reasonable”
embedding
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Geometric Graphs

• Assume that nodes are
points in the plane

• Assume “reasonable”
embedding

• Civilised graph

45



Geometric Graphs

• Assume that nodes are
points in the plane

• Assume “reasonable”
embedding

• Civilised graph:
edges not too long…
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Geometric Graphs

• Assume that nodes are
points in the plane

• Assume “reasonable”
embedding

• Civilised graph:
edges not too long,
nodes not in too dense
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Geometric Graphs

• Assume that nodes are
points in the plane

• Assume “reasonable”
embedding

• Civilised graph

• Unit disk graph

• Quasi unit disk graph…
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Geometric Graphs

• Exploit coordinates
• a simple approach:

divide-and-conquer

• e.g., partition the plane
in rectangular tiles
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Geometric Graphs

• Exploit coordinates
• each tile defines

a constant-size
subproblem

• solve the subproblem
locally within each tile
(in parallel for all tiles)
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Geometric Graphs

• Exploit coordinates
• each tile defines

a constant-size
subproblem

• solve the subproblem
locally within each tile

• merge the solutions
of the subproblems
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Geometric Graphs

• Graph colouring:
• f = 3-colouring of tiles

• all edges are short

• there is no edge
that joins e.g.
a blue tile and
another blue tile
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Geometric Graphs

• Graph colouring:
• f = 3-colouring of tiles

• g = k-colouring that
is valid inside each tile

• can be solved
by brute force
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Geometric Graphs

• Graph colouring:
• f = 3-colouring of tiles

• g = k-colouring that
is valid inside each tile

• Output: (f, g)

• Valid 3k-colouring!
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Geometric Graphs

• Simple local
algorithms:

• maximal matchings,
independent sets, …

• approximation
algorithms for
vertex covers,
dominating sets,
colourings, …
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Dealing with Bad News

• Three traditional escapes:
• Randomised algorithms

• Geometric information

• “Almost local” algorithms
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Almost Local Algorithms

• We cannot find non-trivial solutions
in a cycle in O(1) rounds

• But we can do it in O(log* n) rounds!
• log* n = iterated logarithm

• 0 ≤ log* n ≤ 7 for all real-world values of n

• Good enough?
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Almost Local Algorithms

• Main tool: colour reduction
• Cole & Vishkin (1986)

• Goldberg, Plotkin & Shannon (1988)

• Bit manipulation trick:
• From k colours to O(log k) colours in one step

• Initially poly(n) colours: unique identifiers

• Iterate O(log* n) times until O(1) colours
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Almost Local Algorithms
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Almost Local Algorithms
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Almost Local Algorithms
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Almost Local Algorithms
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Almost Local Algorithms
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Almost Local Algorithms
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Almost Local Algorithms
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Almost Local Algorithms
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Almost Local Algorithms
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Almost Local Algorithms
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Almost Local Algorithms

69

• Graph colouring in O(log* n) rounds
• Paths or cycles, 3-colouring

• Generalisations:
• Trees, bounded-degree graphs, …

• Graphs of maximum degree ∆:
(∆+1)-colouring in O(∆ + log* n) rounds



Almost Local Algorithms
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• Graph colouring in O(log* n) rounds

• Many applications:
• Maximal independent set:

first try to add nodes of colour 0 (in parallel),
then try to add nodes of colour 1 (in parallel), …

• Maximal matching

• Greedy algorithm for dominating sets



Almost Local Algorithms
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• Graph colouring in O(log* n) rounds

• Many applications

• Fast, but not strictly local
• And inherently depends on the existence of

small, unique, numerical identifiers



Past: Summary

• Bad news:
• Cannot break symmetry in cycles

• Three traditional escapes:
• Randomised algorithms

• Geometric information

• “Almost local” algorithms
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Present
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Dealing with Bad News

• You cannot break symmetry in cycles…

• Which problems do not require
symmetry breaking in cycles?
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Tractable Problems

• Linear programs (LPs)
• Many resource-allocation

problems can be modelled
as LPs

• If the input is symmetric,
a trivial solution is
an optimal solution!

• Only non-symmetric
inputs are challenging…
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Tractable Problems

• Linear programs (LPs)
• Approximation scheme for

packing and covering LPs

• Local algorithm

• Kuhn, Moscibroda &
Wattenhofer (2006)
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Tractable Problems

• Vertex covers
• 2-approximation is the best that we can find

with centralised polynomial-time algorithms

• Nobody knows how to find
1.9999-approximation efficiently

• Hence if we could find a 2-approximation
with local algorithms, it would be amazing!
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Tractable Problems

• Vertex covers
• 2-approximation does not

require symmetry breaking

• In a regular graph, trivial
solution (all nodes) is
2-approximation

• Again, only non-symmetric
inputs are challenging…
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Tractable Problems

• Vertex covers
• 2-approximation of vertex cover

in bounded-degree graphs

• Local algorithm

• Åstrand & Suomela (2010)
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Tractable Problems

• Vertex covers
• 2-approximation of vertex cover

in bounded-degree graphs

• Local algorithm

• A bit complicated…

• Let’s have a look at
a simpler local algorithm:
3-approximation of vertex cover
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Vertex Cover

A simple local algorithm:
3-approximation of minimum vertex cover
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Vertex Cover

Construct a virtual graph:
two copies of each node; edges across
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Vertex Cover

The virtual graph is 2-coloured:
all edges are from white to black
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Vertex Cover

The virtual graph is 2-coloured –
therefore we can find a maximal matching!
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Vertex Cover

White nodes send proposals to their
black neighbours
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Vertex Cover

Black nodes accept one of the proposals
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Vertex Cover

White nodes send proposals to another
black neighbour if they were rejected
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Vertex Cover

Again, black nodes accept one proposal –
unless they were already matched
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Vertex Cover

Continue until all white nodes are matched –
or they are rejected by all black neighbours
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Vertex Cover

End result: a maximal matching
in the virtual graph
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Vertex Cover

Take all original nodes that were matched –
3-approximation of minimum vertex cover!
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Present: Summary

• You cannot break symmetry in cycles…

• But we can study problems
that do not require symmetry breaking!

• Linear programs: local approximation schemes

• Vertex covers: local 2-approximation algorithm

• Edge dominating sets: local approximation algorithm

• …
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Future
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Dealing with Bad News

• Let’s have a fresh look at the lower bounds!
• Exactly what was proved?
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Lower Bounds

• Only trivial solutions in cycles

• Assumption:
constant-size output

• Each node outputs
constant number of bits

• Innocuous?
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Output Size

• Vertex cover, independent set,
dominating set, cut: 1 bit per node

• Matching, edge dominating set,
edge cover: 1 bit per edge

• In a cycle, this is O(1) bits per node
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Output Size

• Graph colouring:
• O(1) colours should be enough in a cycle

• Hence O(1) bits per node is enough to
encode the solution

• Linear programs:
• For a near-optimal solution, we can use

finite-precision rational numbers
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Output Size

• Natural problems seem to have
constant-size output

• Hence the negative results apply
• Unique identifiers do not help in cycles

• We can only produce trivial solutions in cycles

• We can only solve problems that
do not require symmetry-breaking
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Output Size

• Natural problems seem to have
constant-size output

• Hence the negative results apply

• Did we miss anything?
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Scheduling Problems

• Neighbours not working simultaneously,
everyone must get 3 units of work done
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Scheduling Problems

• Time is continuous, we can use
a more fine-grained schedule if it helps
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Scheduling Problems

• Time is continuous, we can use
a more fine-grained schedule if it helps

• A good solution does not necessarily
have a constant-size description

• Existing lower bounds do not apply
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Scheduling Problems

• Time is continuous, we can use
a more fine-grained schedule if it helps

• A good solution does not necessarily
have a constant-size description

• Existing lower bounds do not apply

• Proof artefact? Uninteresting technicality?
Just derive a bit stronger negative result?
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Scheduling Problems

• Time is continuous, we can use
a more fine-grained schedule if it helps

• A good solution does not necessarily
have a constant-size description

• Existing lower bounds do not apply

• Proof artefact? Uninteresting technicality?
Just derive a bit stronger negative result?

• Wrong! There is a local approximation algorithm!
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Scheduling Problems

• Local approximation algorithms
• Scheduling problems:

fractional graph colouring,
fractional domatic partition, …

• First example of a local algorithm that
actually requires unique numerical identifiers

• Hasemann, Hirvonen, Rybicki & Suomela
(work in progress)
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More New Directions

• Deterministic local algorithm
• cf. deterministic Turing machine – class P

• Randomised local algorithm
• cf. probabilistic Turing machine – class BPP, etc.

• Nondeterministic local algorithm
• cf. nondeterministic Turing machine – class NP
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Decision Problems

• Back to very basics: decision problems
• Is this graph bipartite? Acyclic? Hamiltonian? 

Eulerian? Connected? 3-colourable? Symmetric?

• Decision problems form the foundation
of classical complexity theory…
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Decision Problems

• Decision problems in distributed setting:
• yes-instance: all nodes happy

• no-instance: at least one node raises alarm

• Few decision problems can be solved
with deterministic local algorithms

• But now we have a very natural extension…
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Decision Problems

• Nondeterministic local algorithms
• Yes-instances have a compact certificate

that can be verified with a local algorithm

• “locally checkable proof”

• Cf. class NP:
• Yes-instances have a compact certificate

that can be verified in P
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Locally Checkable Proofs

• Key question: what is the size of the proof?
• How many bits per node are needed?

• For example, it is easy to show that a graph is
bipartite: just give a 2-colouring, 1 bit per node

• How do you prove that a graph is not bipartite?
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Locally Checkable Proofs

• Key question: what is the size of the proof?
• How many bits per node are needed?

• For example, it is easy to show that a graph is
bipartite: just give a 2-colouring, 1 bit per node

• How do you prove that a graph is not bipartite?

• Find an odd cycle, and prove that it exists

• O(log n) bits is enough, Ω(log n) bits necessary
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Locally Checkable Proofs

• Natural hierarchy of proof complexities:
• 2-colourable graphs: Θ(1) bits per node

• Non-2-colourable graphs: Θ(log n) bits per node

• Non-3-colourable graphs: poly(n) bits per node

• Göös & Suomela (2011)
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Summary

• Local algorithms

• Strong lower bounds
• Nevertheless,

a lot of progress!

• Latest hot topics
• Scheduling problems

• Nondeterministic models
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