CAPACITY OF WIRELESS NETWORKS

Anil Kumar S. Vullikanti

Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute and Department of Computer Science, Virginia Tech

イロト イヨト イヨト イヨト

Joint work with

- Deepti Chafekar (Nokia Research)
- David Levin (University of Maryland, College Park)
- Madhav Marathe (Virginia Tech)
- Guanhong Pei (Virginia Tech)
- Aravind Srinivasan (University of Maryland, College Park)
- Srinivasan Parthasarathy (IBM T.J. Watson Research Center)

イロト イヨト イヨト ・ヨ

- V.S. Anil Kumar, M. Marathe, S. Parthasarathy. Cross-layer Capacity Estimation and Throughput Maximization in Wireless Networks, Springer Handbook on Algorithms for Next Generation Networks, pp. 67-98, 2009.
- V.S. Anil Kumar, M. V. Marathe, S. Parthasarathy and A. Srinivasan. Algorithmic Aspects of Capacity in Wireless Networks, *ACM SIGMETRICS*, pp. 133-144, 33(1), 2005.
- V.S. Anil Kumar, M. Marathe, S. Parthasarathy and A. Srinivasan. End-to-end packet scheduling in ad hoc networks, ACM Symposium on Discrete Algorithms (SODA), pp. 1021-1030, 2004.
- D. Chafekar, V.S. Anil Kumar, M. Marathe, S. Parthasarathy and A. Srinivasan. Approximating the Capacity of Wireless Networks with SINR constraints, *27th IEEE International Conference on Computer Communications (INFOCOM)*, pp. 1166-1174, 2008.
- D. Chafekar, D. Levin, S. Parthasarathy, V.S. Anil Kumar, M. Marathe and A. Srinivasan. On the capacity of asynchronous random-access wireless networks. *27th IEEE International Conference on Computer Communications (INFOCOM)*, pp. 1148-1156, 2008.
- D. Chafekar, V.S. Anil Kumar, M. Marathe, S. Parthasarathy and A. Srinivasan. Cross-Layer Latency Minimization in Wireless Networks with SINR Constraints, *The ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc)*, pp. 110-119, 2007.
- B. Han, V.S. Anil Kumar, M. Marathe, S. Parthasarathy and A. Srinivasan. Distributed Strategies for Channel Allocation and Scheduling in Software-Defined Radio Networks, *Proc. of the 28th IEEE Conference on Computer Communications (INFOCOM)*, Phoenix, April 21-24, pp. 1521-1529, 2009.
- G. Pei, V.S. Anil Kumar, S. Parthasarathy and A. Srinivasan. Approximation algorithms for throughput maximization in wireless networks with delay constraints, *IEEE Conference on Computer Communications (INFOCOM)*, 2011 (9 pages).

FUNDAMENTAL QUESTION

Max total rate of communication possible between a set of pairs $(s_i, t_i), i = 1, ..., k$, in a given wireless network G(V, E)? Involves choosing:

- Route for each connection and rate of arrivals
- Schedule which determines the edges to transmit at each time, and channels and power level
- Objectives: maximize total throughput
- Additional constraints: average delay, total power, fairness

イロト イポト イヨト イヨト

PROTOCOL STACK BASICS

3

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Physical layer abstraction: model broadcast region of a node as a disk (omnidirectional) or sector (directional)

Distance-2 Matching model [Balakrishnan et al., 2004] $N(e) = \{e' : dist(e, e') \le 1\}$: interfering edges Tx-model [Yi et al., 2007] Transmissions Tx_1 and Tx_2 are simultaneously possible if and only if $d(Tx_1, Tx_2) \ge (1 + \Delta)(r_1 + r_2)$

・ロト ・回ト ・ヨト ・ヨト

Other models based on node/edge independent sets

SINR model: Pairs (v_i, v'_i) communicate using power level P_i , i = 1, 2, ... if and only if:

$$\frac{\frac{P_i}{d(v_i,v_i')^{\alpha}}}{N + \sum_{j \neq i} \frac{P_j}{d(v_j,v_1')^{\alpha}}} \geq \beta$$

- β : gain (depends on antenna)
- N: ambient noise
- Joint physical+ MAC abstraction

イロト イヨト イヨト イヨト

FEASIBLE SCHEDULES AND LINK RATES

- \bullet Assumption: synchronous time slots of uniform length τ
- Schedule S specifies the time slots when packets move on links: X(e, t) = 1 if packet moves on edge e in time slot t
- S is feasible if: $\forall t, X(e, t) = X(e', t) = 1 \Rightarrow e, e'$ do not interfere
- Link utilization vector, \bar{x} , corresponding to S is defined as

$$\forall e : x(e) = \lim_{T \to \infty} \frac{\sum_{t \leq T} X(e, t)}{T}$$

• Flow rate vector, \overline{f} , corresponding to $\mathcal S$ is defined as

$$\forall e: f(e) = x(e) \cdot cap(e),$$

where cap(e) is the capacity of edge e.

DEFINITION

A rate vector \overline{f} is feasible if it has a corresponding feasible/stable schedule S that achieves rate \overline{f} and is able to schedule all the packets in bounded time.

ANIL VULLIKANTI (VIRGINIA TECH)

◆□>
◆□>
●

Setting

- Set V of n nodes in the plane
- Radius vector r = (r(v))
- Directed graph G(V, r)
- k source destination pairs: (s₁, t₁),...,(s_k, t_k)

Objective: Find feasible flow vector \overline{f} such that

- There is a feasible schedule *S* corresponding to *f*
- $\sum_{i=1}^{k} f_i$ is maximized, where f_i is the total flow out of s_i

イロト イヨト イヨト

• Additional QoS constraints: delays/fairness/total power.

- Part I: Capacity of random networks
- Part II: Arbitrary networks: LP framework
- Part III: Dynamic control for network stability
- Open questions

1

イロト イヨト イヨト イヨト

- Basic setting, problem formulation
- Summary of related work
- Upper bound result: $O(\frac{1}{\sqrt{n}})$ scaling
- Lower bound: $\Omega(\frac{1}{\sqrt{n \log n}})$ scaling
- Extensions:
 - Directional antennas
 - Mobility and delays
 - Multi-channel multi-radio networks
 - Hybrid networks

イロト イボト イヨト イヨト 二座

- Summary of related work
- LP based cross-layer formulation of the end-to-end capacity of wireless networks
 - $\bullet\,$ Deriving linear necessary and sufficient constraints in a variety of models: O(1) approximation
 - Inductive ordering to deal with non-uniform power levels: O(1) approximation
- $O(\log n)$ approximation for Physical interference model based on SINR constraints
- O(1) approximation for random access networks with uniform power levels
- O(1) approximation for networks with adaptive channel/power allocation
- Logarithmic bounds on average end-to-end delays
- PTAS for computing maximum throughput capacity

- Background: arrival processes, queuing
- Backpressure algorithm and its analysis
- Approximate version of backpressure algorithm
- Random access approach
- Summary of related research

3

イロト イヨト イヨト イヨト

Part I: capacity of random networks

(ロ) (四) (E) (E) (E) (E)

- Basic setting, problem formulation
- Summary of related work
- Upper bound result: $O(\frac{1}{\sqrt{n}})$ scaling
- Lower bound: $\Omega(\frac{1}{\sqrt{n \log n}})$ scaling
- Extensions:
 - Directional antennas
 - Mobility and delays
 - Multi-channel multi-radio networks
 - Hybrid networks

イロト イボト イヨト イヨト 二座

- n nodes distributed uniformly at random in the unit square
- Solution Each node has transmission range $r = \Theta(\sqrt{\frac{\log n}{n}})$.
- n connections, with each node being a source for a connection, destination chosen randomly (let s_i, t_i denote source and destination for connection i).
- Each connection has to support rate $\lambda(n)$
- Each link has capacity W
- Transport rate of connection i: connection throughput × distance between s_i and t_i (bit-meters/sec)

BASIC QUESTION

How does the expected per-connection throughput which can be supported by a random network evolve as $n \to \infty$?

- Initial results: Capacity scaling of Θ(√n/log n) bit-meters/sec in protocol model of interference [Gupta-Kumar, 2001], simplifications by [Kulkarni-Vishwanatan, 2004],
- Extensions to other interference models: Capacity of Θ(√n) in SINR/Physical model of interference [Agarwal-Kumar, 2004]
- Extensions for different physical layer technologies: improvements using Directional antennas [Peraki, Servetto, 2003], [Yi, et al., 2003], multi-channel and multi-radio (MCMR)/cognitive networks [Kyanasur et al., 2006], [Bhandari et al., 2007]
- Hybrid networks: some intermediate nodes with higher bandwidth: improved capacity of $\Omega(\sqrt{n})$ hybrid nodes are added [Liu, Liu, Towsley, 2003], [Negi, Rajeswaran]
- Impact of mobility [Grossglauser, Tse], [Bansal, Liu]
- Impact of delays: [El Gamal et al., 2004]

[Gupta, Kumar]: tighter upper bound of $\lambda(n) = O(\frac{1}{\sqrt{n \log n}})$ (discussed in Part II)

Theorem (YI et al., 2003)

Expected per-connection throughput is $O(\frac{1}{\sqrt{n}})$.

Proof sketch

- \bullet Let \overline{L} denote the average distance between the source and destination of a connection
- Each connection has rate of $\lambda \Rightarrow$ transport capacity of $n\lambda \overline{L}$ per second.
- Consider the b^{th} bit, where $1 \le b \le \lambda nT$. Suppose it moves from its source to its destination in a sequence of h(b) hops, where the h^{th} hop covers a distance of r_b^h units. We have:

$$\sum_{b=1}^{\lambda nT} \sum_{h=1}^{h(b)} r_b^h = \lambda n T \overline{L}$$

$$s \xrightarrow{r_b^2 h(b)=4} t$$

イロト イロト イヨト イヨト 二日

PROOF OF UPPER BOUND (CONTINUED)

Let indicator $\Gamma(h, b, s)$ be 1 if the h^{th}

- hop of bit b occurs during slot s. We have
- Summing over all slots over the *T*-second period:

$$\sum_{b=1}^{\lambda nT} \sum_{h=1}^{h(b)} \Gamma(h, b, s) \leq \frac{Wn}{2}$$

$$H \doteq \sum_{b=1}^{\lambda nT} h(b) \le \frac{WTn}{2}$$

Because of Tx-model of interference, disks of radius $(1 + \Delta)$ times the lengths of hops centered at the transmitters are disjoint.

 $\sum_{b=1}^{\lambda_n T} \sum_{h=1}^{h(b)} \Gamma(h,b,s) \pi (1{+}\Delta)^2 (r_b^h)^2 \leq W$

$$\begin{split} \sum_{b=1}^{\lambda nT} \sum_{h=1}^{h(b)} \pi (1+\Delta)^2 (r_b^h)^2 &\leq WT \\ \Rightarrow \sum_{b=1}^{\lambda nT} \sum_{h=1}^{h(b)} \frac{1}{H} (r_b^h)^2 &\leq \frac{WT}{\pi (1+\Delta)^2 H} \\ \left(\sum_{b=1}^{\lambda nT} \sum_{h=1}^{h(b)} \frac{1}{H} (r_b^h) \right)^2 &\leq \sum_{b=1}^{\lambda nT} \sum_{h=1}^{h(b)} \frac{1}{H} (r_b^h)^2 (\text{ convexity}) \\ \Rightarrow \sum_{b=1}^{\lambda nT} \sum_{h=1}^{h(b)} \frac{1}{H} (r_b^h) &\leq \sqrt{\frac{WT}{\pi (1+\Delta)^2} \cdot H} \end{split}$$

$$\lambda n T \overline{L} \leq \sqrt{\frac{WTH}{\pi (1 + \Delta)^2}}$$

$$\Rightarrow \lambda n \overline{L} \leq \frac{1}{\sqrt{2\pi}} \frac{1}{(1 + \Delta)} W \sqrt{n} \text{ bit-meters / second}$$

$$\Rightarrow \lambda = O(\frac{1}{\sqrt{n}})$$

Tighter upper bound using cuts and flows (discussed later)

THEOREM (KULKARNI ET AL., 2004)

Expected per-connection throughput is $\Omega(\frac{1}{\sqrt{n \log n}})$.

Proof strategy: reduction to permutation routing.

	•.	•••		•	
•••		·:··	••••		· ·
÷	÷	··	•	•.•	•.'
•	·.:	· ·	·. · .	· · ·	•
· · ·	•••	÷	•••	• •	
· ·	۰.	• :		: .	
					K s_

- Grid formed by horizontal and vertical lines uniformly spaced s_n apart: $\frac{1}{s_n^2}$ squarelets of area s_n^2 .
- Orowding factor: maximum number of nodes in any squarelet

うせん 一川 (山下)(山下)(山下)(山下)

$\textcircled{0} \ \ell \times \ell \text{ lattice of processors}$

- Each processor can communicate with its adjacent vertical and horizontal neighbors in a single slot simultaneously (with one *packet* being a unit of communication with any neighbor during a slot).
- Solution Each processor is the source and destination of exactly k packets.
- The $k \times k$ permutation routing problem: routing all the $k\ell^2$ packets to their destinations.

LEMMA (KAUFFMAN ET AL., 1994, KUNDE, 1993)

 $k \times k$ permutation routing in a $\ell \times \ell$ mesh can be performed deterministically in $\frac{k\ell}{2} + o(k\ell)$ steps with maximum queue size at each processor equal to k.

- Map nodes in each specific squarelet onto a particular processor (\(\ell = \frac{1}{s_n}\)).
- Each node has *m* packets and set $k = mc_n$. Map to permutation routing on lattice.
- Equivalence class for each squarelet s: squarelets whose vertical and horizontal separation from s is an integral multiple of K squarelets:
 - K depends on Δ .
 - **●** Transmissions only within squarelet, or to neighboring squarelets \Rightarrow for any transmission on e = (u, v), $d(u, v) \le \sqrt{5s_n}$.
 - **③** Minimum distance between two transmitters in the same equivalence class is $(K 2)s_n$.
 - By interference condition: $(K-2)s_n > 2(1+\Delta)\sqrt{5}s_n$, or $K > 4 + 2\sqrt{5}\Delta$. Thus, we could set $K = 5 + \lceil 2\sqrt{5}\Delta \rceil$.
 - Number of equivalence classes $= K^2$ (a fixed constant dependent only on Δ).

<ロト <回ト < 三ト < 三ト -

- Construct schedule for packets on mesh. Each processor in the mesh can transmit and receive up to four packets in the same slot.
- Serialize transmissions of the processors not in the same equivalence class:
 - Expands the total number of steps in the mesh routing algorithm by a factor of K^2 (# of equivalence classes).
 - Serialize the transmissions of a single processor: increases the total number of steps in the mesh routing by a further factor of 4.
- *m* packets from all nodes reach in time $4K^2 \frac{k\ell}{2} = \Theta(\frac{K^2 m c_n}{s_n})$

LEMMA

Assuming each squarelet has at least one node, the per-connection throughput for a network with squarelet size s_n and crowding factor c_n is $\Omega(\frac{s_n}{c_n})$.

• Set
$$s_n = \sqrt{\frac{3 \log n}{n}}$$

- With high probability, no squarelet is empty (union bound)
- $c_n \leq 3e \log n$ (Chernoff bound).

<ロト < 四ト < 注ト < 注ト - 注

EXTENSIONS: DIRECTIONAL ANTENNAS

Transmission beamwidth: α Reception beamwidth: β

LEMMA (YI ET AL., 2007)

The expected per-connection throughput in random networks with directed antennas with transmission and reception beamwidth α and β , respectively is:

$$\lambda(n) = \begin{cases} \frac{cW}{\frac{2\pi}{\alpha}} \frac{cW}{(1+\Delta)^2 \sqrt{n \log n}}, \\ \frac{2\pi}{\alpha} \frac{cW}{(1+\Delta)^2 \sqrt{n \log n}}, \\ \frac{2\pi}{\beta} \frac{cW}{(1+\Delta)^2 \sqrt{n \log n}}, \\ \frac{4\pi^2}{\alpha\beta} \frac{cW}{(1+\Delta)^2 \sqrt{n \log n}} \end{cases}$$

Omni Tx, Omni Rv Dir Tx, Omni Rv Omni Tx, Dir Rv Dir Tx, Dir Rv

イロト イヨト イヨト イヨト

- End-to-end delay D(n): average delay between packet arrival at source and delivery at destination
- v(n): speed of a node
- T(n): expected per-node throughput

Delay-throughput tradeoffs

How does T(n) vary with D(n) and v(n)?

イロト イヨト イヨト イヨト

THEOREM (EL GAMAL ET AL., 2004) In a mobile network with average delay D(n) and per-connection throughput T(n), we have • $D(n) = \Theta(nT(n))$ for $T(n) = O(1/\sqrt{n \log n})$ • $D(n) = O(\sqrt{n}/v(n))$ when

Several unrealistic assumptions, e.g., arbitrarily large packets and buffering

 $T(n) = \Theta(1)$

<ロト <回ト < 三ト < 三ト

EXTENSIONS: HYBRID NETWORKS

- *n* nodes distributed randomly, each choosing a random destination
- *m* hybrid base stations distributed randomly
- hybrid nodes are all connected by high capacity wired links

Theorem (Liu et al., 2003)

In a hybrid network with n nodes and m base stations, the per-connection throughput $\lambda(m, n)$ satisfies:

$$\lambda(m,n) = \begin{cases} \Theta(\sqrt{\frac{1}{n \log n}}W) & \text{if } m = O(\sqrt{\frac{n}{\log n}})\\ \Theta(\frac{mW}{n}) & \text{if } m = \omega(\sqrt{\frac{n}{\log n}}) \end{cases}$$

イロト イヨト イヨト

Part II: approximating the capacity of arbitrary networks

Small sample of results...

- Formulation of rate region using LPs and conflict graphs: [Hajek, Sasaki, 1988], [Jain et al., 2003], [Kodialam and Nandagopal, 2003],...
- Constant factor approximation of the capacity under primary interference [Kodialam and Nandagopal, 2003]
- Constant factor approximation of the capacity for uniform power levels in disk graph models: [Lin, Schroff, 2005], [Kumar et al, 2005], [Kar, Sarkar, Chaporkar, 2005]
- Local multi-commodity flow algorithms [Awerbuch-Leighton, 1993]
- Stability based on Max-weight matching policy [Tassiulas-Ephrimedes, 1993]
- Convex programming methods for capacity [Low et al.]

FEASIBLE SCHEDULES AND LINK RATES (RECAP)

- \bullet Assumption: synchronous time slots of uniform length τ
- Schedule S specifies the time slots when packets move on links: X(e, t) = 1 if packet moves on edge e in time slot t
- S is feasible if: $\forall t, X(e,t) = X(e',t) = 1 \Rightarrow e, e'$ do not interfere
- Link utilization vector, \bar{x} , corresponding to ${\cal S}$ is defined as

$$\forall e : x(e) = \lim_{T \to \infty} \frac{\sum_{t \le T} X(e, t)}{T}$$

• Flow rate vector, \overline{f} , corresponding to S is defined as

$$\forall e: f(e) = x(e) \cdot cap(e),$$

where cap(e) is the capacity of edge e.

DEFINITION

A rate vector \overline{f} is feasible if it has a corresponding feasible/stable schedule S that achieves rate \overline{f} and is able to schedule all the packets in bounded time.

ANIL VULLIKANTI (VIRGINIA TECH)

・ロト ・ 四ト ・ ヨト ・ ヨ

• The flow vector \vec{f} with $f_1 = 2/8$, $f_2 = 1/8$ corresponds to periodic schedule S, and is feasible

イロト イヨト イヨト
EXAMPLE

 $f_1 = f_2 = 1/5$ for this schedule

Goal: Given a network, and source-destination pairs, find a feasible flow vector \vec{f} with high total throughput

3

- Define suitable interference set $\hat{N}(e)$ for each link e
- Construct LP $\mathcal{P}(\lambda)$ with flow constraints, and congestion constraints of the form

$$x(e) + \sum_{e' \in \hat{N}(e)} x(e') \leq \lambda,$$

for each e

- Prove that P(c₁) gives necessary conditions any feasible solution f, x satisfies the constraints of P(c₁)
- Prove that $\mathcal{P}(c_2)$ gives sufficient conditions corresponding to any feasible solution \vec{f}, \vec{x} of $\mathcal{P}(c_2)$, we can construct a schedule S that corresponds to \vec{f}, \vec{x}

イロト イロト イヨト イヨト 二日

- Linearization of joint physical and MAC constraints: upper bounds on the rate region expressed by weaker linear constraints
- Scheduling based on inductive ordering: packets on edge e scheduled after those on edges in $N_{\geq}(e)$ lower bounds on the optimum

For any edge e:

$$x(e) = \lim_{T \to \infty} \sum_{t \le T} X(e, t) / T$$

Capacity Constraint: One packet per edge $\Rightarrow X(e_i, t) \le 1$ $\Rightarrow x(e_i) \le 1$ Primary Interference: For any node, at most one incident edge is used at a time $\Rightarrow \forall t : X(e_1, t) + X(e_2, t) + X(e_3, t) \le 1$ $\Rightarrow x(e_1) + x(e_2) + x(e_3) \le 1$

Objective: $\max \sum_{i} f_i$ Subject to:

$$\forall i, f_i = \sum_{e = (s_i, v)} f(e)$$

$$(\mathcal{P}(\lambda)) - \sum_{e = (v, s_i)} f(e)$$

$$\forall e, x(e) = f(e)/cap(e)$$

$$\forall v, \sum_{e \in \mathcal{N}(v)} x(e) \leq \lambda (C)$$

$$\forall e, f(e) \geq 0$$

Observation Any feasible link utilization vector \bar{x} is a feasible solution to $\mathcal{P}(1)$.

LEMMA (KODIALAM AND NANDAGOPAL, 2003)

Any solution to the program $\mathcal{P}(2/3)$ can be scheduled feasibly.

THEOREM (KODIALAM AND NANDAGOPAL, 2003)

The optimum solution to the program $\mathcal{P}(2/3)$ gives a 2/3-approximation to the total throughput capacity, under primary interference constraints.

イロト イヨト イヨト

EFFECTS OF SECONDARY INTERFERENCE

 $X(e, t) = 1 \Rightarrow X(e_i, t) = 0, \forall e_i$ $X(e, t) = 0 \Rightarrow \text{ all edges } e_i \text{ can}$ simultaneously transmit \Rightarrow non-linear constraints $\begin{array}{l} \text{Linearization} \\ X(e,t) + \sum_{i=1}^{6} X(e_i,t) \leq 6 \\ \Rightarrow x(e) + \sum_{i=1}^{6} x(e_i) \leq 6 \end{array}$

LEMMA

Any feasible utilization vector \bar{x} satisfies the congestion constraints: $\forall e = (u, v), x(e) + \sum_{e' \in N(e)} x(e') \le \lambda.$

$$N(e) = \{e' = (u', v') : u' \in N(u) \cup N(v)\}.$$

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃⇒

Objective: $\max \sum_{i} f_i$ Subject to:

$$\forall i, f_i = \sum_{e = (s_i, v)} f(e) - \sum_{e = (v, s_i)} f(e)$$

$$\forall e, x(e) = f(e) / cap(e)$$

$$\forall e, x(e) + \sum_{e' \in N(e)} x(e') \leq \lambda \text{ (Congestion Constraints)}$$

$$\forall e, f(e) \geq 0$$

LEMMA

The constraints of program $\mathcal{P}_{uniform}(\lambda)$ are necessary for some constant λ : every feasible utilization vector \bar{x} is a feasible solution to the program $\mathcal{P}_{uniform}(\lambda)$.

Lemma

The optimum solution to the program $\mathcal{P}_{uniform}(1)$ can be scheduled feasibly.

The solution \bar{x} to $\mathcal{P}_{uniform}(1)$ can be scheduled using a periodic greedy schedule.

Theorem

Program $\mathcal{P}_{uniform}(1)$ gives an O(1)-approximation to the total throughput capacity of a wireless network with uniform power levels.

イロト イヨト イヨト

NON-UNIFORM POWER LEVELS: PROBLEM WITH $\mathcal{P}_{uniform}(1)$

 $X(e, t) + \sum_{i} X(e_{i}, t)$ could be large $\Rightarrow x(e) + \sum_{e' \in N(e)} x(e') \leq 1$ could be highly suboptimal

イロト イヨト イヨト イヨト

Large number of edges *e_i* can transmit simultaneously

Idea: Inductive ordering - ignore "small" edges in the constraint For e = (u, v), define $r(e) = \max\{r(u), r(v)\}$ $N_{\geq}(e) = \{e' \in N(e) : r(e') \geq r(e)\}$

LEMMA

$$\forall e, t, X(e, t) + \sum_{e' \in N_{>}(e)} X(e', t) \leq \lambda$$
, for a constant λ .

Objective: $\max \sum_{i} f_i$ Subject to:

$$\forall i, f_i = \sum_{e = (s_i, v)} f(e) - \sum_{e = (v, s_i)} f(e)$$

$$\forall e, x(e) = f(e) / cap(e)$$

$$\forall e, x(e) + \sum_{e' \in N_{\geq}(e)} x(e') \leq \lambda \text{ (Congestion Constraints)}$$

$$\forall e, f(e) \geq 0$$

<ロト <回ト < 注ト < 注ト = 注

There is a constant λ such that the constraints $\forall e, x(e) + \sum_{e' \in N_{\geq}(e)} x(e') \leq \lambda$ are necessary: every feasible vector \bar{x} is a feasible solution to program $\mathcal{P}_{non-uniform}(\lambda)$.

Lemma

The constraints $\forall e, x(e) + \sum_{e' \in N_{\geq}(e)} x(e') \leq 1$ are sufficient: the solution to $\mathcal{P}_{non-uniform}(1)$ can be scheduled feasibly.

THEOREM

The program $\mathcal{P}_{non-uniform}(1)$ gives an O(1)-approximation to the total throughput capacity under non-uniform power levels.

・ロト ・回ト ・ヨト ・ヨト

For any edge e and any D-2 matching E', $|E' \cap N_{\geq}(e)| \leq \lambda$

- $e \in E' \Rightarrow |E' \cap N_{\geq}(e)| = 1$
- $\textcircled{\ } \textbf{Let} \ e \not\in E'$
 - Suppose

$$e_1 = (u_1, v_1), e_2 = (u_2, v_2) \in E' \cap N_{\geq}(e)$$

- $u_1, v_1 \not\in D(u_2) \cup D(v_2)$
- $D(u) \cup D(v)$ can be partitioned into disjoint regions of area $\pi r(e)^2/\lambda$
- Let n(e) = # packets sent on e in time T

•
$$\forall e, n(e) + \sum_{e' \in N_{\geq}(e)} n(e') \leq \lambda T$$

• Set $x(e) = n(e)/T$

< ∃⇒

Lemma

The constraints $\forall e, x(e) + \sum_{e' \in N_{\geq}(e)} x(e') \leq 1$ are sufficient: the solution to $\mathcal{P}_{non-uniform}(1)$ can be scheduled feasibly.

Objective: Need to show existence of stable schedule that can send all packets Different approaches:

- Periodic scheduling: stable, not necessarily polynomial time, in general
- Randomized scheme: stable, centralized
- Random access scheduling: completely local
 - Lose a factor of $\frac{1}{e}$ for synchronous random access
 - **②** Lose a factor of $O(\frac{1}{\gamma})$, where γ is the ratio of the maximum transmission duration to the minimum transmission duration
- Distributed collision free scheduling: based on access hash functions

(日) (四) (三) (三) (三) (三)

Step I: Choosing time slots

- Choose W s.t. S(e) = Wx(e) integral for each e
- Order edges so that $r(e_1) \ge \ldots \ge r(e_m)$
- (Inductive Scheduling) Choose time slots S(e) for edges in this order:
 For edge e_i choose any Wx(e_i) slots from the set {1,..., W} \ (∪<sub>j≤i-1, e_j∈N_≥(e_i)S(e_j))
 </sub>

Step II: Periodic scheduling

• For each packet, move one edge in W steps

▲口 > ▲圖 > ▲ 臣 > ▲ 臣 > ― 臣

EXAMPLE

- *W* = 7
- Need $W_x(e) = 1$ slot for all links other than (3,5); $W_x(3,5) = 2$
- Assign slots: $S(1,2) = \{1\}$, $S(2,3) = \{2\}$, $S(3,4) = \{3\}$, $S(3,5) = \{4,5\}$,...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Consider the utilization vector:

$$2/8 \int_{s_1}^{1/8} \int_{3/8}^{s_2 4} \frac{t_2 5 6}{t_1 5 6} t_1 s_1 \int_{3/8}^{2/8} \frac{t_2 2}{t_2 2/8} \frac{t_2 2}{t_1 2/8} \frac{t_2$$

- W = 8. Assign slots $\{1, \ldots, 8\}$
- Consider an ordering with link (3,5) in the end
- Suppose greedy assigns: $S(1,2) = \{1,2\}$, $S(2,3) = \{3,4\}$, $S(3,4) = \{5\}$, $S(5,6) = \{1,2\}$, $S(6,7) = \{3,4\}$
- Not enough free slots for (3,5)

For each edge ei,

$$|\{1,\ldots,W\}\setminus (\cup_{j\leq i-1,e_j\in N_>(e_i)}S(e_j))|\geq W_X(e_i)$$

Proof.

If not,

$$W_{X}(e_i) + \sum_{j \leq i-1, e_j \in N_{\geq}(e_i)} W_{X}(e_j) > W$$

which violates the congestion constraint in $\mathcal{P}_{non-uniform}(1)$.

 \Rightarrow $S(e) = W \cdot x(e)$ slots can be allocated for each edge e

3

- Schedule is valid since N() is symmetric:
 - Suppose $e \in N(e'), e' \in N(e), r(e') \ge r(e) \Rightarrow e' \in N_{\ge}(e)$
 - Suppose e' is scheduled at time t. Then, $t \in S(e')$. Since $e' \in N_{\geq}(e)$, slot t is not assigned to edge e
- Schedule is stable (constant bit rate): in a frame of length W, number of packets required to flow through e is x(e)W, and exactly this many slots are assigned for this edge.
- Lyapunov technique for proving stability for stochastic arrivals

・ロト ・回ト ・ヨト ・ヨト

Objective: $\max \sum_{i} f_i$ Subject to:

$$\begin{array}{rcl} \forall i, & f_i & = & \sum_{e = (s_i, v)} f(e) - \sum_{e = (v, s_i)} f(e) \\ \forall e, & x(e) & = & f(e)/cap(e) \\ \forall v, x(e) + \sum_{e' \in N_{\geq}(e)} x(e') & \leq & 1 \\ \forall e, & f(e) & \geq & 0 \\ \forall i, j, & f_i & \leq & f_j/\gamma \quad \text{Fairness constraints} \end{array}$$

Fairness:

- $\gamma = 1 \Rightarrow$ completely fair
- $\gamma = 0 \Rightarrow$ throughput maximization

- Same approximation ratio holds
- Can quantify the relationship between fairness and capacity

<ロト <回ト < 三ト < 三ト

EXTENSIONS: SINR MODEL

SINR model: If pairs (v_1, v_1') , (v_2, v_2') , ... communicate

$$\frac{\frac{P_1}{d(v_1, v_1')^{\alpha}}}{N + \sum_{i>1} \frac{P_i}{d(v_i, v_1')^{\alpha}}} \ge \beta$$

- $\forall e : N(e) = E$
- $\forall e = (u, v) : N_{\geq}(e) = \{e' = (u', v') : \ell(e') \ge \max\{\ell(e), a \cdot d(u, u')\}$
- Assumptions: Power levels for all links are fixed, For each edge *e*, *cap*(*e*) is fixed under an additive white Gaussian noise assumption

<ロト <回ト < 注ト < 注ト = 注

 $\Delta = \mathsf{max}_e\{\ell(e)\}/\operatorname{min}_{e'}\{\ell(e')\}$

LEMMA

The program $\mathcal{P}_{non-uniform}(\lambda)$ gives necessary conditions for a constant λ , while the program $\mathcal{P}_{non-uniform}(1/\log \Delta)$ gives sufficient conditions.

- Setting: S has to determine which edges e to use at time t, and what power level to use
- Capacity of link e at power level p

$${\it cap}(e,p) = W \log_2(1 + rac{p}{d(u,v)^lpha} N_0 W)$$

3

- Setting: S has to determine which edges e to use at time t, and what power level to use
- Capacity of link e at power level p

$${\it cap}(e,p) = W \log_2(1 + rac{p}{d(u,v)^lpha {\it N}_0 W})$$

- J = set of possible choices of power levels; need not be finite
- Define $\mathcal{T}(J) = \{(e, p) \in E \times J\}$
- Define $N(e, p) = \{(e' = (u', v'), p') : e' \in V^2, p' \in J, d(u, u') \le (1 + \Delta)(range(p) + range(p'))\}$
- Define $N_{\geq}(e, p) = \{(e' = (u', v'), p') \in N(e, p) : p' \ge p\}$

$$\max \sum_{i} f_{i} \qquad \text{s.t.:}$$

$$\forall i, \quad f_{i} = \sum_{\substack{(e=(s_{i},v),p)\in\mathcal{T} \\ (e,p)\in\mathcal{T}}} f(e,p) \quad - \quad \sum_{\substack{(e=(v,s_{i}),p)\in\mathcal{T} \\ (e,p)\in\mathcal{T}}} f(e,p)} f(e,p)$$

$$\forall (e,p)\in\mathcal{T}, x(e,p) + \sum_{\substack{(e',p')\in\mathcal{N}_{\geq}(e,p) \\ (e,p)\in\mathcal{T}}} x(e,p) \quad \leq \quad \lambda$$

$$\forall i, \forall u \neq s_{i}, t_{i} \sum_{\substack{e\in\mathcal{N}_{out}(u) \\ e\in\mathcal{N}_{out}(u)}} f(e,p) \quad = \quad \sum_{\substack{e\in\mathcal{N}_{in}(u) \\ e\in\mathcal{N}_{in}(u)}} f(e,p)$$

$$\sum_{\substack{(e,p)\in\mathcal{T}}} x(e,p) \cdot p \quad \leq \quad B$$

B = total bound on power usage

Any feasible rate vector and power assignment must satisfy the constraints of $\mathcal{P}(c)$ for a constant c. Further, any solution to $\mathcal{P}(1)$ is feasible.

<ロト <回ト < 三ト < 三ト

Any feasible rate vector and power assignment must satisfy the constraints of $\mathcal{P}(c)$ for a constant c. Further, any solution to $\mathcal{P}(1)$ is feasible.

Assumption: $|J| \leq poly(n) \Rightarrow |\mathcal{P}_{pctm}|$ is polynomial sized.

<ロト <回ト < 三ト < 三ト

- Let $p_{max} = \max\{p \in J\}$ and $p_{min} = \min\{p' \in J\}$
- Assumption: $p_{max}/p_{min} \le poly(n)$
- $J' = \{p_{min}, (1 + \epsilon)p_{min}, \dots, p_{max}\}$

The program $\mathcal{P}_{pctm}(1)$ defined using set J' (instead of set J) gives a constant factor approximation to throughput capacity under a given bound on total power consumption.

- Node v attempts to transmit on link
 e = (v, w) only if no neighbor of v is currently transmitting
- If channel free, v transmits on e with probability $\tau(e)$

- T_{id}: idle slot length
- $T_{xmit}(\ell)$: length of transmission on link ℓ
- *N*_{pri}(*l*): links within primary interference of *l*
- $N_{sec}(\ell) = N(\ell) \setminus N_{pri}(\ell)$
- Probability of accessing the link ℓ : $\tau(\ell) = 1 - e^{-x(\ell)}$

Let \bar{x} be a feasible solution to the program $\mathcal{P}(1)$. Then, $\frac{1}{e}\bar{x}$ can be achieved by synchronous random access scheduling.

Proof:

Choose $\tau(\ell) = 1 - e^{-x(\ell)/\lambda}$, for each ℓ . Probability of collision free transmission on edge ℓ :

$$egin{array}{rll} \eta(\ell) &=& \displaystyle \Pi_{\ell'\in l(\ell)}(1- au(\ell')) \ &=& e^{\sum_{\ell'\in l(\ell)}-x(\ell')} \ &\geq& e^{x(\ell)-1} \end{array}$$

イロト イヨト イヨト

Successful flow through $\ell = cap(\ell) \cdot \tau(\ell) \cdot \eta(\ell)$ $\geq cap(\ell) \cdot (1 - e^{-x(\ell)}) \cdot e^{x(\ell)-1}$ $= cap(\ell) \cdot (e^{x(\ell)-1} - e^{-1})$ $\geq cap(\ell) \cdot \left(\frac{1 + x(\ell)}{e} - \frac{1}{e}\right)$ $= \frac{f(\ell)}{e}$ $\Rightarrow \frac{1}{e}\overline{f}$ is stable

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

RANDOM ACCESS SCHEDULING IN AN ASYNCHRONOUS NETWORK

collision at c if $b \rightarrow a$ transmission starts in this window

- T_{id} : idle slot length
- $T_{xmit}(\ell)$: transmission duration on ℓ

•
$$\gamma = \frac{\max_{\ell} T_{xmit}(\ell)}{\min_{\ell'} T_{xmit}(\ell')}$$

 Δ: max #simultaneous transmissions possible in N(ℓ) (interference degree)

THEOREM

Let \vec{x} be a feasible solution to $\mathcal{P}(1)$. The random access protocol with channel access probability

$$\tau(\ell) = 1 - e^{-rac{x(\ell)}{\Delta(\ell)} \cdot rac{\mathcal{T}_{id}}{\mathcal{T}_{xmit}(\ell)(1+\gamma)}}$$

イロト イヨト イヨト イヨト

achieves a link utilization of $ec{h} \geq rac{1}{e(\gamma+1)\Delta}ec{x}.$

Random access is more competitive when the packet sizes on links are non-uniform, and are proportional to the link capacity

 ℓ_1 and ℓ_2 : hidden interfering links $c(\ell_1)=6$ Mbps, $c(\ell_2)=24$ Mbps packet size on ℓ_1 : 500 Bytes packet size on ℓ_2 varied from 500 Bytes to 2000 Bytes

LIMITS ON THE COMPETITIVE RATIO OF ASYNCHRONOUS RANDOM ACCESS SCHEDULING

 $\begin{aligned} \forall i \geq 1, \ \ell_i \in hidden(\ell_0) \\ \forall i \geq 1, \ \ell_0 \in hidden(\ell_i) \\ \text{Assume } T_{xmit}(\ell_i) = T_{xmit} = a_1 T_{id} \\ \text{and } T_{xmit}(\ell_0) = \gamma T_{xmit} \end{aligned}$

 $ec{f} = \langle 1/2, \dots, 1/2
angle$ is feasible for greedy scheduling

LEMMA

 $\lambda \vec{f}$ is feasible for random access scheduling only if $\lambda \leq c \frac{\log \Delta \gamma}{\Delta \gamma}$

New formulation to approximate the throughput capacity of an asynchronous random access network within an $O(\Delta)$ -factor:

THEOREM (NECESSARY CONDITIONS)

 \vec{x} is feasible for asynchronous random access protocol only if:

$$orall \ell: x(\ell) + \sum_{\ell' \in exposed(\ell)} x(\ell') + \sum_{\ell' \in hidden(\ell)} x(\ell') \cdot (1 + rac{T_{xmit}(\ell) - T_{id}}{T_{xmit}(\ell')}) \leq \Delta$$

THEOREM (SUFFICIENT CONDITIONS)

 \vec{x} is feasible for asynchronous random access protocol if:

$$orall \ell: x(\ell) + \sum_{\ell' \in exposed(\ell)} x(\ell') + \sum_{\ell' \in hidden(\ell)} x(\ell') \cdot (1 + rac{T_{xmit}(\ell) - T_{id}}{T_{xmit}(\ell')}) \leq rac{1}{e}$$

イロト イヨト イヨト

- Graph G = (V, E)
- For each node u ∈ V, Radios(u): set of wireless interfaces associated with it.
- Set Ψ of channels available
- Schedule + channel assignment: at each time t, choose links e = (u, v)which will transmit, which radio interfaces to use at u, v and which channel to use

- Induced Radio Network $\mathcal{G} = (\mathcal{V}, \mathcal{L})$: \mathcal{V} is the set $\cup_u Radios(u)$ and $\mathcal{L} = \bigcup_{e=(u,v)\in E} Radios(u) \times Radios(v)$
- For link $\ell = (\rho, \rho')$, $parent(\ell) = (u, v)$ if $\rho \in Radios(u)$ and $\rho' \in Radios(v)$

イロト イヨト イヨト イヨト

• Consider set $\mathcal{T} = \{(\ell, \psi) : \ell \in \mathcal{L}, \psi \in \Psi\}$ For link $\ell = (\rho, \rho')$ in induced radio network $\mathcal{G} = (\mathcal{V}, \mathcal{L})$:

• $Pri(\ell) = \{\ell' \text{ sharing a radio with } \ell\}$

•
$$Pri_{\succ}(\ell) = \{\ell' \in Pri(\ell) : parent(\ell') \succ parent(\ell)\}$$

- $Sec(\ell) = \{\ell' : parent(\ell') \in Pri(parent(\ell))\} \cup \{\ell' : parent(\ell') \in Sec(parent(\ell))\}$
- $Sec_{\succ}(\ell) = \{\ell' \in Succ(\ell) : parent(\ell') \succ parent(\ell)\}$

THEOREM

Flow constraints with the following congestion constraints are necessary for any feasible flow+utilization vector:

$$\begin{aligned} x(\ell,\psi) + \sum_{\rho \in \Psi \setminus \{\psi\}} x(\ell,\rho) + \sum_{\chi \in \Psi} \sum_{f \in Pri_{\succ}(\ell)} x(f,\chi) \\ + \sum_{g \in Sec_{\succ}(\ell)} x(g,\psi) \leq \lambda + 2 \end{aligned}$$

(日) (同) (E) (E) (E)

THEOREM

The rate vector satisfying the following conditions can be scheduled feasibly:

$$\begin{aligned} \forall (\ell, \psi), \ \mathsf{x}(\ell, \psi) + \sum_{\rho \in \Psi \setminus \{\psi\}} \mathsf{x}(\ell, \rho) + \sum_{\chi \in \Psi} \sum_{f \in \mathit{Pri}(\ell)} \mathsf{x}(f, \chi) \\ + \sum_{g \in \mathit{Sec}(\ell)} \mathsf{x}(g, \psi) \leq \frac{1}{e} - \epsilon \end{aligned}$$

ANIL VULLIKANTI (VIRGINIA TECH)

< □ > < □ > < □ > < Ξ > < Ξ >

• Need access-hash function $H(\ell, \psi, t)$ such that:

$$egin{aligned} \mathcal{H}(\ell,\psi,t) = \left\{ egin{aligned} 1 & ext{with probability } 1-e^{-e\cdot x(\ell,\psi)} \ 0 & ext{with probability } e^{-e\cdot x(\ell,\psi)} \end{aligned}
ight. \end{aligned}$$

- Key Property: Value of H(.,.,) fixed no matter who invokes it with the same arguments
- Also known as random oracles in Cryptography
- SHA-1 works well in practice

Executed by each radio ρ :

- $\forall \ell \text{ incident on } \rho \text{: compute } H(\ell, \psi, t), \text{ for each } \psi, t.$
- **②** Randomly pick a pair (ℓ, ψ) s.t. $H(\ell, \psi, t) = 1$
 - if no such pair exists, sleep during time t
- If selected link $\ell \in \mathcal{L}_{out}(\rho)$, then schedule an outgoing transmission across ℓ on channel ψ at time t
- if selected link $\ell \in \mathcal{L}_{in}(\rho)$, then tune to channel ψ and await an incoming transmission across ℓ on channel ψ at time t

Goal: choose flow vector \vec{f} so that:

- $\sum_{i} f_i$ is maximized
- For each session i such that $f_i > 0$, average delay for each packet is at most D

Our Result

Careful choice of paths plus random access scheduling to get joint bounds on throughput and delays.

イロト イヨト イヨト

• Choose flow \vec{f} that maximizes $\sum_{i} f_i$ subject to:

$$\begin{aligned} \forall i, \ \sum_{p \in P(i)} f(p) cost(p) &\leq Df_i \\ \forall (e, i), \ x(e, i) &= \sum_{p \in P(i): \ e \in p} f(p) / cap(e) \\ \forall e, \ \sum_i x(e, i) + \sum_{e' \in N(e)} \sum_i x(e', i) &\leq 1 \end{aligned}$$

- (Filter) Drop flows on paths longer than 2D for each i
- (Round) Choose a subset S of sessions and a path p_i for each $i \in S$ by iterative rounding
- (Choose flows) Choose flow $f(p_i) = K \log \log D / \log D$

THEOREM

The flow vector \vec{f} along with random access scheduling ensures that $\sum_i f_i = \Omega(OPT \cdot \log \log D / \log D)$, and at least (1 - 1/n)-fraction of the packets for each session i are delivered within a delay of $O(D \cdot (\log D / \log \log D) \cdot \log n)$.

- Adaptive channel switching delays can be incorporated into the framework in terms of cost(p) to quantify the throughput gains of adaptive channel switching
- Similar tradeoffs for adaptive power switching

・ロト ・四ト ・ヨト ・ヨト

- Define suitable interference set $\hat{N}(e)$ for each link e
- Construct LP $\mathcal{P}(\lambda)$ with flow constraints, and congestion constraints of the form

$$x(e) + \sum_{e' \in \hat{N}(e)} x(e') \leq \lambda,$$

for each e

- Prove that P(c₁) gives necessary conditions any feasible solution f, x satisfies the constraints of P(c₁)
- Prove that $\mathcal{P}(c_2)$ gives sufficient conditions corresponding to any feasible solution \vec{f}, \vec{x} of $\mathcal{P}(c_2)$, we can construct a schedule S that corresponds to \vec{f}, \vec{x}

イロト イロト イヨト イヨト 二日

- Two techniques for cross-layer formulation of the end-to-end capacity of wireless networks
 - Linearization of interference constraints
 - Inductive ordering to deal with non-uniform power levels
- Framework extends to a number of models, constraints and objective functions

Part III: Dynamic control for network stability

3

- Background: arrival processes, queuing
- Backpressure algorithm and its analysis
- Approximate version of backpressure algorithm
- Random access approach
- Summary of related research

3

"Arrivals at all sources are well-behaved"

▲ロト ▲御 ト ▲臣 ト ▲臣 ト 二臣

"Arrivals at all sources are well-behaved"

- Let $A^i(t)$ be the exogenous arrival process for connection *i* with rate λ_i
- An arrival process $A^i(t)$ is admissible with rate λ_i if
 - The time averaged expected arrival rate satisfies:

$$\lim_{t\to\infty}\frac{1}{t}\sum_{\tau=0}^{t-1}E[A^i(\tau)]=\lambda$$

- Let H(t) represent the history until time t There exists A_{\max} such that $E[(A^i(t))^2 | H(t)] \le A_{\max}^2$ for t.
- For any $\delta > 0$, there exists an interval size T, possibly dependent on δ , such that for any initial time t_0 :

$$E\left[\frac{1}{T}\sum_{k=0}^{T-1}A^{i}(t_{0}+k)|H(t_{0})\right] \leq \lambda + \delta$$

Other models: adversarial arrivals

- Each node v maintains queues for each link (v, w) and each connection i
- Assume unbounded buffer sizes no packet drops because of buffer overflows
- Let $U_v^i(t)$ denote the queue at node v for connection i at time t; let $\mathbf{U}(t) = \langle U_v^i(t) \rangle$
- $\mu_{(u,v)}^i(t) \le c(u,v)$: data rate allocated to commodity *i* during slot *t* across the link (u,v) by the network controller.

- $I \subset E$ is a conflict free subset if for every $e, e' \in I$, e and e' are conflict-free.
- Let ${\mathcal I}$ denote the set of all possible conflict-free subsets $I \subset E$
- Let $\mu(I)$ denote the vector of transmission rates for each $e \in I$.

Let

$$\Gamma \doteq Conv(\{\vec{\mu}(I) \mid I \in \mathcal{I}\})$$

denote the convex hull of all transmission-rate matrices

- Let $\inf_{v,\mu}(t) = \sum_{(w,v)\in E} \mu^i_{(w,v)}(t)$ denote the flow of commodity *i* into node *v* for policy μ at time *t*
- Let $\operatorname{outflow}_{v,\mu}^{i}(t) = \sum_{(v,w)\in E} \mu_{(v,w)}^{i}(t)$ denote the flow of commodity i out of node v for policy μ at time t
- Let $\operatorname{netflow}_{v,\mu}^{i}(t) = \operatorname{outflow}_{v,\mu}^{i}(t) \operatorname{inflow}_{v,\mu}^{i}(t)$ denote the total flow of commodity i out of node v for policy μ at time t

(日)

- Assume primary interference: edges with common end-point conflict
- Two connections (s_1, t_1) and (s_2, t_2)
- $\Gamma = \{ \alpha I_1 + \beta I_2 : \alpha + \beta \leq 1 \}$

0	2/3	0	0	1
0	0	1/3	0	
0	0	0	2/3	
0	0	0	0	

• Traffic matrix corresponding to $\mu = \frac{2}{3}l_1 + \frac{1}{3}l_2$

<ロ> (四) (四) (三) (三) (三) (三)

• $\operatorname{inflow}_{2,\mu}^1(t) = \mu_{(1,2)}^1 = 2/3$

Theorem (Grigoriadis et al., 2006)

The connection rate vector $\langle \lambda_i \rangle$ is within the network-layer capacity region Λ if and only if there exists a randomized network control algorithm that makes valid $\mu_{(u,v)}^i(t)$ decisions, and yields:

$$\begin{aligned} &\forall i, \; \mathbf{E}[\textit{netflow}_{s_i,\mu}^{i}(t)] = \lambda_i \\ &\forall i, \; \forall w \notin \{s_i, t_i\}, \; \mathbf{E}[\textit{netflow}_{w,\mu}^{i}(t)] = 0 \end{aligned}$$

At each time t

- For each link (v, w): let $i = i^*$ be the commodity with maximum differential backlog $\Delta U_v^i U_w^i$
- For each link (v, w), define weight(v, w) to be the maximum differential backlog
- Choose independent set *I* with maximum weight $wt(I) = \sum_{e \in I} wt(e)$
- Schedule all links in I simultaneously, and send as much as possible

イロト イヨト イヨト ・ ヨトー

EXAMPLE

- Assume primary interference: edges with common end-point conflict
- Two connections (s_1, t_1) and (s_2, t_2)
- $\Gamma = \{ \alpha I_1 + \beta I_2 : \alpha + \beta \leq 1 \}$

- $\Delta U^{1}_{(1,2)} = 5$, $\Delta U^{2}_{(1,2)} = -35$ $\Rightarrow i^{*}_{(1,2)} = 1$, $W^{*}_{(1,2)} = 5$
- $\Delta U^1_{(2,3)} = 15, \ \Delta U^2_{(2,3)} = 5$ $\Rightarrow i^*_{(2,3)} = 1, \ W^*_{(2,3)} = 15$
- $\Delta U^{1}_{(3,4)} = 0, \ \Delta U^{2}_{(3,4)} = 30$ $\Rightarrow i^{*}_{(3,4)} = 2, \ W^{*}_{(3,4)} = 30$
- $wt(l_1) = 5 + 30 = 35$, $wt(l_2) = 15$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

At each time t

- For each link (v, w): let $i^*_{(v,w)}(t)$ denote the connection which maximizes the differential backlog $W^*_{(v,w)}(t) = U^{i^*_{(v,w)}(t)}_{v}(t) U^{i^*_{(v,w)}(t)}_{w}(t).$
- Choose conflict-free link set $I^* \in \mathcal{I}$ which maximizes $\sum_{(u,v)\in I^*} W^*_{(u,v)}(t) \cdot c(u,v)$
- The network controlled chooses links $e = (u, v) \in I^*$ and connection $i^*_{(u,v)}(t)$ if $W^*_{(u,v)}(t) > 0$ (if there is not enough backlogged data, i.e., $U^{i^*}_{(u,v)}(t)(t) < c(u, v)$ use dummy bits)

- Consider any valid resource allocation policy that assigns a rate of μ˜ⁱ_(u,v)(t) to commodity i across link (u, v) at time t.
- Let $\mu^i_{(u,v)}(t)$ denote the corresponding values for the dynamic backpressure algorithm.
- By construction:

$$egin{aligned} &\sum_{(u,v)}\sum_{i} ilde{\mu}^{i}_{(u,v)}(t)[U^{i}_{u}(t)-U^{i}_{v}(t)] &\leq &\sum_{(u,v)}\sum_{i} ilde{\mu}^{i}_{(u,v)}(t)W^{*}_{(u,v)}(t) \ &\leq &\sum_{(u,v)}W^{*}_{(u,v)}(t)\cdot\mu(u,v) \end{aligned}$$

Analysis (continued)

Rearranging the terms:

" \sum_{v} of queue-size at $v \cdot$ netflow $(v) = \sum_{e} flow(e) \cdot backlog(e)$ "

イロト イボト イヨト イヨト 二座

Analysis (continued)

Rearranging the terms:

" \sum_{v} of queue-size at $v \cdot$ netflow $(v) = \sum_{e} \mathsf{flow}(e) \cdot \mathsf{backlog}(e)$ "

$$\begin{split} \sum_{i} \sum_{v} U_{v}^{i}(t) \cdot [\sum_{w} \mu_{(v,w)}^{i}(t) & - \sum_{u} \mu_{(u,v)}^{i}(t)] \\ &= \sum_{(u,v)} \sum_{i} \mu_{(u,v)}^{i}(t) [U_{u}^{i}(t) - U_{v}^{i}(t)] \end{split}$$

LEMMA (PROPERTY)

If $\tilde{\mu}_{(u,v)}^{i}(t)$ denotes any resource allocation policy, and $\mu_{(u,v)}^{i}(t)$ denotes the resource allocation for the Backpressure scheme, we have:

$$\begin{split} \sum_{v} \sum_{i} U_{v}^{i}(t) [\sum_{w} \tilde{\mu}_{(v,w)}^{i}(t) & - \sum_{u} \tilde{\mu}_{(u,v)}^{i}(t)] \\ & \leq \sum_{v} \sum_{i} U_{v}^{i}(t) \left[\sum_{w} \mu_{(v,w)}^{i}(t) - \sum_{u} \mu_{(u,v)}^{i}(t) \right] \end{split}$$

イロト イヨト イヨト

Define:

$$L(U(t)) = \sum_i \sum_{\nu} (U^i_{\nu}(t))^2$$

THEOREM (GRIGORIADIS ET AL., 2006)

If there exist constants B > 0 and $\epsilon > 0$ such that for all slots t:

$$\mathbf{E}[L(U(t+1)) - L(U(t)) \mid U(t)] \le B - \epsilon \sum_{v} \sum_{i} U_v^i(t)$$
(1)

then, the network is strongly stable.

THEOREM

Let $\vec{\lambda}$ denote the vector of arrival rates; if there exists an $\epsilon > 0$ such that $\vec{\lambda} + \vec{\epsilon} \in \Lambda$ (where $\vec{\epsilon}$ is the vector such that $\epsilon_i = 0$ if $\lambda_i = 0$, and $\epsilon_i = \epsilon$ otherwise), then the dynamic backpressure algorithm stably services the arrivals.

• If $V, U, \mu, A \geq 0$ and $V \leq \max\{U - \mu, 0\} + A$, then,

$$V^2 \le U^2 + \mu^2 + A^2 - 2U(\mu - A)$$

• Since $U_{v}^{i}(t+1) \leq \max\{U_{v}^{i}(t) - \sum_{e=(v,w)} \mu_{e}^{i}(t), 0\} + \sum_{i} A^{i}(t) + \sum_{e=(u,v)} \mu_{e}^{i}(t)$, we have:

$$egin{split} U^i_
u(t+1)^2 &\leq U^i_
u(t)^2 + ig(\sum_w \mu^i_{(
u,w)}(t)ig)^2 + ig(A^i_
u(t) + \sum_u \mu^i_{(u,
u)}(t)ig)^2 - 2U^i_
u(t) \cdot ig(\sum_w \mu^i_{(
u,w)}(t) - A^i_
u(t) - \sum_u \mu^i_{(u,
u)}(t)ig) \end{split}$$

イロト イロト イヨト イヨト 二日

Analysis (continued)

Summing over all indices (v, i) and since $\sum_j z_j^2 \leq (\sum_j z_j)^2$, if $z_j \geq 0$,

$$\begin{array}{ll} L(U(t+1)) - L(U(t)) &\leq & 2BN - 2\sum_{v}\sum_{i}U_{v}^{i}(t) \cdot \\ & \left(\sum_{w}\mu_{(v,w)}^{i}(t) - A_{v}^{i}(t) - \sum_{u}\mu_{(u,v)}^{i}(t)\right), \end{array}$$

where $B \doteq \frac{1}{2N} \cdot \sum_{v} [(\max_{w} \mu(v, w))^2 + (\max_{i} A^i + \max_{u} \mu(u, v))^2].$

$$\Rightarrow \mathbf{E}[L(U(t+1)) - L(U(t)) \mid U(t)] \leq 2BN + 2 \cdot \sum_{i} U^{i}_{s_{i}}(t) \cdot \mathbf{E}[A^{i}_{s_{i}}(t) \mid U(t)] - 2\mathbf{E}[\sum_{v} \sum_{i} U^{i}_{v}(t) \cdot \left(\sum_{w} \mu^{i}_{(v,w)}(t) - \sum_{(u,v)} \mu_{(u,v)}(t)\right) \mid U(t)]$$

<ロト < 四ト < 注ト < 注ト - 注

Simple algebra: "expected change in potential \leq constant +2 $\cdot \sum_{i} U_{s_i}^{i}(t)$ expected-arrival at $s_i - 2 \sum_{v} E[U_{v}^{i}(t) \text{ netflow}(v)]$ "

(日)
 (日)

Simple algebra: "expected change in potential
$$\leq$$
 constant
+2 $\cdot \sum_{i} U_{s_{i}}^{i}(t)$ expected-arrival at $s_{i} - 2 \sum_{v} E[U_{v}^{i}(t) \text{ netflow}(v)]$ "
 $\Rightarrow \mathbf{E}[L(U(t+1)) - L(U(t)) \mid U(t)] \leq 2BN + 2 \cdot \sum_{i} U_{s_{i}}^{i}(t) \cdot \mathbf{E}[A_{s_{i}}^{i}(t) \mid U(t)] - 2\mathbf{E}[\sum_{v} \sum_{i} U_{v}^{i}(t) \cdot (\sum_{w} \mu_{(v,w)}^{i}(t) - \sum_{(u,v)} \mu_{(u,v)}(t)) \mid U(t)]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

ANALYSIS (CONTINUED)

- By definition of arrival process: $\mathbf{E}[A_{s_i}^i(t) \mid U(t)] = \lambda_i$ for all commodities *i*.
- For optimal allocation vector μ̃:
 - $\forall i$, **E**[total flow out of s_i for $\tilde{\mu}] = \lambda_i + \epsilon_i$
 - $\forall i$, **E**[total flow out of v for $\tilde{\mu}$] = 0, for all $v \neq s_i, t_i$
- Backpressure algorithm maximizes $\mathbf{E}[\sum_{v} \sum_{i} U_{v}^{i}(t) \cdot \left(\sum_{w} \mu_{(v,w)}^{i}(t) - \sum_{(u,v)} \mu_{(u,v)}(t)\right) \mid U(t)] \quad \text{at each step } t$ $\Rightarrow \mathbf{E}[\sum_{v} \sum_{i} U_{v}^{i}(t) \cdot \left(\sum_{w} \mu_{(v,w)}^{i}(t) - \sum_{(u,v)} \mu_{(u,v)}(t)\right) \mid U(t)] \quad \geq \quad \sum_{i} U_{s_{i}}^{i}(t)(\lambda_{i} + \epsilon_{i})$ $\Rightarrow \mathbf{E}[L(U(t+1)) - L(U(t)) \mid U(t)] \quad \leq \quad 2BN - 2\sum_{i} U_{s_{i}}^{i}(t)\epsilon_{i},$

which implies stability of backpressure algorithm with arrival rates $\vec{\lambda}$ if $\vec{\lambda} + \vec{\epsilon}$ is stable.

APPROXIMATE MAX-WEIGHT INDEPENDENT SET

- Finding max-weight independent set is NP-complete in most interference models
- Approximating the max-weight independent set within a γ -factor implies γ -factor approximation of the rate region, $\gamma > 1$:
 - Suppose $\gamma \vec{\lambda} \in \Gamma$, and λ_i is the arrival rate for connection *i*
 - In earlier analysis: Σ_i Uⁱ_{si}(t) ⋅ E[Aⁱ_{si}(t) | U(t)] = Σ_i λ_i Uⁱ_{si}(t)
 For any policy μ̃, approximate backpressure implies:

$$egin{aligned} &\sum_{(u,v)}\sum_{i} ilde{\mu}^{i}_{(u,v)}(t)[U^{i}_{u}(t)-U^{i}_{v}(t)] &\leq &\sum_{(u,v)}\sum_{i} ilde{\mu}^{i}_{(u,v)}(t)W^{*}_{(u,v)}(t) \ &\leq &\gamma\sum_{(u,v)}W^{*}_{(u,v)}(t)\cdot\mu(u,v) \end{aligned}$$

<ロト <回ト < 三ト < 三ト -

- Finding max-weight independent set is NP-complete in most interference models
- Approximating the max-weight independent set within a γ -factor implies γ -factor approximation of the rate region, $\gamma > 1$:
 - Suppose $\gamma \vec{\lambda} \in \Gamma$, and λ_i is the arrival rate for connection *i*
 - In earlier analysis: Σ_i Uⁱ_{si}(t) ⋅ E[Aⁱ_{si}(t) | U(t)] = Σ_i λ_i Uⁱ_{si}(t)
 For any policy μ̃, approximate backpressure implies:

$$\begin{split} \sum_{(u,v)} \sum_{i} \tilde{\mu}^{i}_{(u,v)}(t) [U^{i}_{u}(t) - U^{i}_{v}(t)] &\leq \sum_{(u,v)} \sum_{i} \tilde{\mu}^{i}_{(u,v)}(t) W^{*}_{(u,v)}(t) \\ &\leq \gamma \sum_{(u,v)} W^{*}_{(u,v)}(t) \cdot \mu(u,v) \end{split}$$

Rearranging terms:

$$\begin{split} \frac{1}{\gamma} \sum_{\mathbf{v}} \sum_{i} U_{\mathbf{v}}^{i}(t) [\sum_{w} \tilde{\mu}_{(\mathbf{v},w)}^{i}(t) & - \sum_{u} \tilde{\mu}_{(u,v)}^{i}(t)] \\ & \leq \sum_{v} \sum_{i} U_{v}^{i}(t) \left[\sum_{w} \mu_{(v,w)}^{i}(t) - \sum_{u} \mu_{(u,v)}^{i}(t) \right] \end{split}$$

Implies stability condition for approximate backpressure

・ロト ・回ト ・ヨト ・ヨト

Approximation algorithm for one-hop weighted link scheduling problem \Rightarrow approximation algorithm for end-to-end throughput capacity in general interference models.

- Greedy scheduling gives O(1)-factor approximation to max-weight scheduling in many models
- Limitations:
 - \bullet Does not immediately give us a way to compute the approximate rate vector $\vec{\lambda}$ need additional characterization
 - Convergence time not necessarily polynomial time

・ロト ・回ト ・ヨト ・ヨト

- SINR models
- Distributed algorithms
- Delay-throughput tradeoffs
- Incorporating specific protocols for different layers
- Power constraints
- Adaptive channel switching, cognitive networks
- New paradigms: Cooperative networking, Physical layer advances, information theoretic bounds

・ロト ・回ト ・ヨト ・ヨト

Thank You

-12