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Formulating the capacity of wireless networks

Fundamental Question

Max total rate of communication
possible between a set of pairs
(si , ti), i = 1, . . . , k , in a given
wireless network G(V ,E)?

Involves choosing:

Route for each connection and rate
of arrivals

Schedule which determines the
edges to transmit at each time, and
channels and power level

Objectives: maximize total
throughput

Additional constraints: average
delay, total power, fairness
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Protocol stack basics
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Modeling Physical and MAC layers

Physical layer abstraction: model broadcast region of a node as a disk (omnidirectional)
or sector (directional)

Distance-2 Matching model [Balakrishnan
et al., 2004]
N(e) = {e′ : dist(e, e′) ≤ 1}: interfering
edges

Tx-model [Yi et al., 2007]
Transmissions Tx1 and Tx2 are si-
multaneously possible if and only if
d(Tx1,Tx2) ≥ (1 + ∆)(r1 + r2)

Other models based on node/edge independent sets
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Other interference models

SINR model: Pairs (vi , v
′
i ) communi-

cate using power level Pi , i = 1, 2, . . .
if and only if:

Pi
d(vi ,v

′
i
)α

N +
P

j �=i

Pj

d(vj ,v
′
1)α

≥ β

β: gain (depends on antenna)

N: ambient noise

Joint physical+ MAC
abstraction
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Feasible Schedules and link rates

Assumption: synchronous time slots of uniform length τ

Schedule S specifies the time slots when packets move on links: X (e, t) = 1 if
packet moves on edge e in time slot t

S is feasible if: ∀t, X (e, t) = X (e′, t) = 1 ⇒ e, e′ do not interfere

Link utilization vector, x̄ , corresponding to S is defined as

∀e : x(e) = lim
T→∞

P
t≤T X (e, t)

T

Flow rate vector, f̄ , corresponding to S is defined as

∀e : f (e) = x(e) · cap(e),

where cap(e) is the capacity of edge e.

Definition

A rate vector f̄ is feasible if it has a corresponding feasible/stable schedule S that
achieves rate f̄ and is able to schedule all the packets in bounded time.
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Capacity - a combinatorial formulation

Setting

Set V of n nodes in the plane

Radius vector r = (r(v))

Directed graph G(V , r)

k source destination pairs:
(s1, t1), . . . , (sk , tk)

Objective: Find feasible flow vector f̄ such
that

There is a feasible schedule S
corresponding to f̄Pk

i=1 fi is maximized, where fi is the
total flow out of si

Additional QoS constraints:
delays/fairness/total power.
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Factors influencing capacity
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Outline for this tutorial

Part I: Capacity of random networks

Part II: Arbitrary networks: LP framework

Part III: Dynamic control for network stability

Open questions
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Outline for Part I

Basic setting, problem formulation

Summary of related work

Upper bound result: O( 1√
n
) scaling

Lower bound: Ω( 1√
n log n

) scaling

Extensions:
Directional antennas
Mobility and delays
Multi-channel multi-radio networks
Hybrid networks
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Outline for Part II

Summary of related work

LP based cross-layer formulation of the end-to-end capacity of wireless networks
Deriving linear necessary and sufficient constraints in a variety of models: O(1)
approximation
Inductive ordering to deal with non-uniform power levels: O(1) approximation

O(log n) approximation for Physical interference model based on SINR constraints

O(1) approximation for random access networks with uniform power levels

O(1) approximation for networks with adaptive channel/power allocation

Logarithmic bounds on average end-to-end delays

PTAS for computing maximum throughput capacity
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Outline for Part III

Background: arrival processes, queuing

Backpressure algorithm and its analysis

Approximate version of backpressure algorithm

Random access approach

Summary of related research
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Part I: capacity of random networks

Anil Vullikanti (Virginia Tech) Capacity of Wireless Networks 15 / 100



Outline for Part I

Basic setting, problem formulation

Summary of related work

Upper bound result: O( 1√
n
) scaling

Lower bound: Ω( 1√
n log n

) scaling

Extensions:
Directional antennas
Mobility and delays
Multi-channel multi-radio networks
Hybrid networks
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Basic setting

1 n nodes distributed uniformly at random in the unit square

2 Each node has transmission range r = Θ(
q

log n
n ).

3 n connections, with each node being a source for a connection, destination chosen
randomly (let si , ti denote source and destination for connection i).

4 Each connection has to support rate λ(n)

5 Each link has capacity W

6 Transport rate of connection i : connection throughput × distance between si and ti
(bit-meters/sec)

Basic Question

How does the expected per-connection throughput which can be supported by a random
network evolve as n → ∞?
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Related work: capacity of random geometric networks

Initial results: Capacity scaling of Θ(
p

n/ log n) bit-meters/sec in protocol model of
interference [Gupta-Kumar, 2001], simplifications by [Kulkarni-Vishwanatan, 2004],
...

Extensions to other interference models: Capacity of Θ(
√

n) in SINR/Physical
model of interference [Agarwal-Kumar, 2004]

Extensions for different physical layer technologies: improvements using Directional
antennas [Peraki, Servetto, 2003], [Yi, et al., 2003], multi-channel and multi-radio
(MCMR)/cognitive networks [Kyanasur et al., 2006], [Bhandari et al., 2007]

Hybrid networks: some intermediate nodes with higher bandwidth: improved
capacity of Ω(

√
n) hybrid nodes are added [Liu, Liu, Towsley, 2003], [Negi,

Rajeswaran]

Impact of mobility [Grossglauser, Tse], [Bansal, Liu]

Impact of delays: [El Gamal et al., 2004]
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Upper bound

[Gupta, Kumar]: tighter upper bound of λ(n) = O( 1√
n log n

) (discussed in Part II)

Theorem (Yi et al., 2003)

Expected per-connection throughput is O( 1√
n
).

Proof sketch

Let L denote the average distance between the source and destination of a
connection

Each connection has rate of λ ⇒ transport capacity of nλL per second.

Consider the bth bit, where 1 ≤ b ≤ λnT . Suppose it moves from its source to its
destination in a sequence of h(b) hops, where the hth hop covers a distance of rh

b

units. We have:
λnTX
b=1

h(b)X
h=1

rh
b = λnTL
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Proof of upper bound (continued)

Let indicator Γ(h,b, s) be 1 if the hth

hop of bit b occurs during slot s. We
have

λnTX
b=1

h(b)X
h=1

Γ(h, b, s) ≤ Wn

2

Summing over all slots over the T -
second period: H

.
=

λnTX
b=1

h(b) ≤ WTn

2

Because of Tx-model of interference,
disks of radius (1 + ∆) times the
lengths of hops centered at the trans-
mitters are disjoint.

λnTX
b=1

h(b)X
h=1

Γ(h, b, s)π(1+∆)2(rh
b )2 ≤ W
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Proof of upper bound (continued)

λnTX
b=1

h(b)X
h=1

π(1 + ∆)2(rh
b )2 ≤ WT

⇒
λnTX
b=1

h(b)X
h=1

1

H
(rh

b )2 ≤ WT

π(1 + ∆)2H0
@λnTX

b=1

h(b)X
h=1

1

H
(rh

b )

1
A

2

≤
λnTX
b=1

h(b)X
h=1

1

H
(rh

b )2( convexity)

⇒
λnTX
b=1

h(b)X
h=1

1

H
(rh

b ) ≤
s

WT

π(1 + ∆)2
· H
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Proof of upper bound (continued)

λnTL ≤
s

WTH

π(1 + ∆)2

⇒ λnL ≤ 1√
2π

1

(1 + ∆)
W

√
n bit-meters / second

⇒ λ = O(
1√
n

)

Tighter upper bound using cuts and flows (discussed later)
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Lower bound

Theorem (Kulkarni et al., 2004)

Expected per-connection throughput is Ω( 1√
n log n

).

Proof strategy: reduction to permutation routing.
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Step 1: partition into grid

1 Grid formed by horizontal and vertical lines uniformly spaced sn apart: 1
s2
n

squarelets

of area s2
n .

2 Crowding factor: maximum number of nodes in any squarelet
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Reduction to permutation routing

1 �× � lattice of processors

2 Each processor can communicate with its adjacent vertical and horizontal neighbors
in a single slot simultaneously (with one packet being a unit of communication with
any neighbor during a slot).

3 Each processor is the source and destination of exactly k packets.

4 The k × k permutation routing problem: routing all the k�2 packets to their
destinations.

Lemma (Kauffman et al., 1994, Kunde, 1993)

k × k permutation routing in a �× � mesh can be performed deterministically in
k�
2

+ o(k�) steps with maximum queue size at each processor equal to k.
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Step II: Reduction to permutation routing

1 Map nodes in each specific squarelet onto a particular
processor (� = 1

sn
).

2 Each node has m packets and set k = mcn. Map to
permutation routing on lattice.

3 Equivalence class for each squarelet s: squarelets
whose vertical and horizontal separation from s is an
integral multiple of K squarelets:

1 K depends on ∆.
2 Transmissions only within squarelet, or to neighboring

squarelets ⇒ for any transmission on e = (u, v),

d(u, v) ≤ √
5sn.

3 Minimum distance between two transmitters in the
same equivalence class is (K − 2)sn.

4 By interference condition:
(K − 2)sn > 2(1 + ∆)

√
5sn, or K > 4 + 2

√
5∆.

Thus, we could set K = 5 + �2√5∆�.
5 Number of equivalence classes = K2 (a fixed

constant dependent only on ∆).
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Step II: Reduction to permutation routing (contd.)

1 Construct schedule for packets on mesh. Each processor in the mesh can transmit
and receive up to four packets in the same slot.

2 Serialize transmissions of the processors not in the same equivalence class:
1 Expands the total number of steps in the mesh routing algorithm by a factor of K2 (#

of equivalence classes).
2 Serialize the transmissions of a single processor: increases the total number of steps in

the mesh routing by a further factor of 4.

3 m packets from all nodes reach in time 4K 2 k�
2

= Θ(K2mcn
sn

)

Lemma

Assuming each squarelet has at least one node, the per-connection throughput for a
network with squarelet size sn and crowding factor cn is Ω( sn

cn
).
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Step II: Reduction to permutation routing (contd.)

1 Set sn =
q

3 log n
n

2 With high probability, no squarelet is empty (union bound)

3 cn ≤ 3e log n (Chernoff bound).
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Extensions: directional antennas

α
β

Transmission beamwidth: α
Reception beamwidth: β

Lemma (Yi et al., 2007)

The expected per-connection throughput in random
networks with directed antennas with transmission and
reception beamwidth α and β, respectively is:

λ(n) =

8>>>><
>>>>:

cW
(1+∆)2

√
n log n

, Omni Tx, Omni Rv
2π
α

cW
(1+∆)2

√
n log n

, Dir Tx, Omni Rv
2π
β

cW
(1+∆)2

√
n log n

, Omni Tx, Dir Rv

4π2

αβ
cW

(1+∆)2
√

n log n
, Dir Tx, Dir Rv
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Extensions: delays and mobility

End-to-end delay D(n): average delay between packet arrival at source and delivery
at destination

v(n): speed of a node

T (n): expected per-node throughput

Delay-throughput tradeoffs

How does T (n) vary with D(n) and v(n)?
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Delay-throughput tradeoffs in mobile networks

Theorem (El Gamal et al., 2004)

In a mobile network with average delay
D(n) and per-connection throughput T (n),
we have

D(n) = Θ(nT (n)) for
T (n) = O(1/

√
n log n)

D(n) = O(
√

n/v(n)) when
T (n) = Θ(1)

Several unrealistic assumptions, e.g., arbitrarily large packets and buffering
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Extensions: hybrid networks

n nodes distributed randomly, each choosing a
random destination

m hybrid base stations distributed randomly

hybrid nodes are all connected by high
capacity wired links

Theorem (Liu et al., 2003)

In a hybrid network with n nodes and m base stations, the per-connection throughput
λ(m, n) satisfies:

λ(m, n) =

8<
:

Θ(
q

1
n log nW ) if m = O(

q
n

log n )

Θ(mW
n ) if m = ω(

q
n

log n )
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Part II: approximating the capacity of arbitrary

networks
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Related work: algorithms for computing capacity

Small sample of results...

Formulation of rate region using LPs and conflict graphs: [Hajek, Sasaki, 1988],
[Jain et al., 2003], [Kodialam and Nandagopal, 2003],...

Constant factor approximation of the capacity under primary interference [Kodialam
and Nandagopal, 2003]

Constant factor approximation of the capacity for uniform power levels in disk graph
models: [Lin, Schroff, 2005], [Kumar et al, 2005], [Kar, Sarkar, Chaporkar, 2005]

Local multi-commodity flow algorithms [Awerbuch-Leighton, 1993]

Stability based on Max-weight matching policy [Tassiulas-Ephrimedes, 1993]

Convex programming methods for capacity [Low et al.]
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Feasible Schedules and link rates (recap)

Assumption: synchronous time slots of uniform length τ

Schedule S specifies the time slots when packets move on links: X (e, t) = 1 if
packet moves on edge e in time slot t

S is feasible if: ∀t, X (e, t) = X (e′, t) = 1 ⇒ e, e′ do not interfere

Link utilization vector, x̄ , corresponding to S is defined as

∀e : x(e) = lim
T→∞

P
t≤T X (e, t)

T

Flow rate vector, f̄ , corresponding to S is defined as

∀e : f (e) = x(e) · cap(e),

where cap(e) is the capacity of edge e.

Definition

A rate vector f̄ is feasible if it has a corresponding feasible/stable schedule S that
achieves rate f̄ and is able to schedule all the packets in bounded time.
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Example

The flow vector �f with
f1 = 2/8, f2 = 1/8 corresponds
to periodic schedule S , and is
feasible

Anil Vullikanti (Virginia Tech) Capacity of Wireless Networks 36 / 100



Example

f1 = f2 = 1/5 for this schedule

Goal: Given a network, and source-destination pairs, find a feasible flow vector �f with
high total throughput
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General strategy

Define suitable interference set N̂(e) for each link e

Construct LP P(λ) with flow constraints, and congestion constraints of the form

x(e) +
X

e′∈N̂(e)

x(e′) ≤ λ,

for each e

Prove that P(c1) gives necessary conditions – any feasible solution �f ,�x satisfies the
constraints of P(c1)

Prove that P(c2) gives sufficient conditions – corresponding to any feasible solution
�f ,�x of P(c2), we can construct a schedule S that corresponds to �f ,�x
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Summary: techniques used

1 Linearization of joint physical and MAC constraints: upper bounds on the rate
region expressed by weaker linear constraints

2 Scheduling based on inductive ordering: packets on edge e scheduled after those on
edges in N≥(e) - lower bounds on the optimum
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Characterizing the Rate Region

e1

e2

e3

For any edge e:
x(e) = limT→∞

P
t≤T X (e, t)/T

Capacity Constraint: One
packet per edge
⇒ X (ei , t) ≤ 1
⇒ x(ei ) ≤ 1

Primary Interference: For any node, at most
one incident edge is used at a time
⇒ ∀t : X (e1, t) + X (e2, t) + X (e3, t) ≤ 1
⇒ x(e1) + x(e2) + x(e3) ≤ 1
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Throughput capacity under Primary Interference

Objective: max
P

i fi Subject to:

∀i , fi =
X

e=(si ,v)

f (e)

(P(λ)) −
X

e=(v,si )

f (e)

∀e, x(e) = f (e)/cap(e)

∀v ,
X

e∈N(v)

x(e) ≤ λ (C)

∀e, f (e) ≥ 0

Observation Any feasible link utilization
vector x̄ is a feasible solution to P(1).

Lemma (Kodialam and

Nandagopal, 2003)

Any solution to the program P(2/3) can
be scheduled feasibly.

Theorem (Kodialam and

Nandagopal, 2003)

The optimum solution to the program
P(2/3) gives a 2/3-approximation to
the total throughput capacity, under
primary interference constraints.
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Effects of Secondary Interference

e1 e

e2

e3

e4

e5

e6

X (e, t) = 1 ⇒ X (ei , t) = 0, ∀ei

X (e, t) = 0 ⇒ all edges ei can
simultaneously transmit
⇒ non-linear constraints

Linearization
X (e, t) +

P6
i=1 X (ei , t) ≤ 6

⇒ x(e) +
P6

i=1 x(ei ) ≤ 6

Lemma

Any feasible utilization vector x̄ satisfies the
congestion constraints:
∀e = (u, v), x(e) +

P
e′∈N(e) x(e′) ≤ λ.

N(e) = {e′ = (u′, v ′) : u′ ∈ N(u) ∪ N(v)}.
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Formulation Puniform(λ): uniform disks

Objective: max
P

i fi Subject to:

∀i , fi =
X

e=(si ,v)

f (e) −
X

e=(v,si )

f (e)

∀e, x(e) = f (e)/cap(e)

∀e, x(e) +
X

e′∈N(e)

x(e′) ≤ λ (Congestion Constraints)

∀e, f (e) ≥ 0

Lemma

The constraints of program Puniform(λ) are necessary for some constant λ: every feasible
utilization vector x̄ is a feasible solution to the program Puniform(λ).
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Capacity under Uniform Power Levels

Lemma

The optimum solution to the program Puniform(1) can be scheduled feasibly.

The solution x̄ to Puniform(1) can be scheduled using a periodic greedy schedule.

Theorem

Program Puniform(1) gives an O(1)-approximation to the total throughput capacity of a
wireless network with uniform power levels.
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Non-uniform power levels: problem with Puniform(1)

Large number of edges ei can
transmit simultaneously

X (e, t) +
P

i X (ei , t) could be large
⇒ x(e) +

P
e′∈N(e) x(e′) ≤ 1 could be highly

suboptimal
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Non-uniform power levels

Idea: Inductive ordering - ignore “small” edges in the constraint
For e = (u, v), define r(e) = max{r(u), r(v)}
N≥(e) = {e′ ∈ N(e) : r(e′) ≥ r(e)}

Lemma

∀e, t, X (e, t) +
P

e′∈N≥(e) X (e′, t) ≤ λ, for a constant λ.
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Non-uniform power levels: Formulation Pnon−uniform(λ)

Objective: max
P

i fi
Subject to:

∀i , fi =
X

e=(si ,v)

f (e) −
X

e=(v,si )

f (e)

∀e, x(e) = f (e)/cap(e)

∀e, x(e) +
X

e′∈N≥(e)

x(e′) ≤ λ (Congestion Constraints)

∀e, f (e) ≥ 0
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Non-uniform power levels: Formulation Pnon−uniform(λ)

Lemma

There is a constant λ such that the constraints ∀e, x(e) +
P

e′∈N≥(e) x(e′) ≤ λ are

necessary: every feasible vector x̄ is a feasible solution to program Pnon−uniform(λ).

Lemma

The constraints ∀e, x(e) +
P

e′∈N≥(e) x(e′) ≤ 1 are sufficient: the solution to

Pnon−uniform(1) can be scheduled feasibly.

Theorem

The program Pnon−uniform(1) gives an O(1)-approximation to the total throughput
capacity under non-uniform power levels.
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Necessary condition

Lemma

For any edge e and any D-2
matching E ′, |E ′ ∩ N≥(e)| ≤ λ

1 e ∈ E ′ ⇒ |E ′ ∩ N≥(e)| = 1

2 Let e �∈ E ′

Suppose
e1 = (u1, v1), e2 = (u2, v2) ∈ E ′ ∩ N≥(e)
u1, v1 �∈ D(u2) ∪ D(v2)
D(u) ∪ D(v) can be partitioned into disjoint
regions of area πr(e)2/λ

3 Let n(e) =# packets sent on e in time T

4 ∀e, n(e) +
P

e′∈N≥(e) n(e′) ≤ λT

5 Set x(e) = n(e)/T
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Sufficient condition

Lemma

The constraints ∀e, x(e) +
P

e′∈N≥(e) x(e′) ≤ 1 are sufficient: the solution to

Pnon−uniform(1) can be scheduled feasibly.

Objective: Need to show existence of stable schedule that can send all packets
Different approaches:

1 Periodic scheduling: stable, not necessarily polynomial time, in general

2 Randomized scheme: stable, centralized
3 Random access scheduling: completely local

1 Lose a factor of 1
e

for synchronous random access

2 Lose a factor of O( 1
γ
), where γ is the ratio of the maximum transmission duration to

the minimum transmission duration

4 Distributed collision free scheduling: based on access hash functions
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Periodic Scheduling

Step I: Choosing time slots

1 Choose W s.t. S(e) = Wx(e) integral for each e

2 Order edges so that r(e1) ≥ . . . ≥ r(em)

3 (Inductive Scheduling) Choose time slots S(e) for edges in this order:
• For edge ei choose any Wx(ei ) slots from the set
{1, . . . ,W } \ (∪j≤i−1, ej∈N≥(ei )S(ej))

Step II: Periodic scheduling

For each packet, move one edge in W steps
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Example

W = 7

Need Wx(e) = 1 slot for all links other than (3, 5); Wx(3, 5) = 2

Assign slots: S(1, 2) = {1}, S(2, 3) = {2}, S(3, 4) = {3}, S(3, 5) = {4, 5},...
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When does greedy fail?

Consider the utilization vector:

W = 8. Assign slots {1, . . . , 8}
Consider an ordering with link (3, 5) in the end

Suppose greedy assigns: S(1, 2) = {1, 2}, S(2, 3) = {3, 4}, S(3, 4) = {5},
S(5, 6) = {1, 2}, S(6, 7) = {3, 4}
Not enough free slots for (3, 5)
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Periodic scheduling: proof

Lemma

For each edge ei ,

|{1, . . . ,W } \ (∪j≤i−1,ej∈N≥(ei )S(ej))| ≥ Wx(ei )

Proof.

If not,
Wx(ei) +

X
j≤i−1,ej∈N≥(ei )

Wx(ej) > W

which violates the congestion constraint in Pnon−uniform(1).

⇒ S(e) = W · x(e) slots can be allocated for each edge e
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Sufficient condition: proof (continued)

Schedule is valid since N() is symmetric:
Suppose e ∈ N(e′), e′ ∈ N(e), r(e′) ≥ r(e) ⇒ e′ ∈ N≥(e)
Suppose e′ is scheduled at time t. Then, t ∈ S(e′). Since e′ ∈ N≥(e), slot t is not
assigned to edge e

Schedule is stable (constant bit rate): in a frame of length W , number of packets
required to flow through e is x(e)W , and exactly this many slots are assigned for
this edge.

Lyapunov technique for proving stability for stochastic arrivals
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Adding additional constraints: fairness

Objective: max
P

i fi
Subject to:

∀i , fi =
X

e=(si ,v)

f (e) −
X

e=(v,si )

f (e)

∀e, x(e) = f (e)/cap(e)

∀v , x(e) +
X

e′∈N≥(e)

x(e′) ≤ 1

∀e, f (e) ≥ 0

∀i , j , fi ≤ fj/γ Fairness constraints

Fairness:

γ = 1 ⇒ completely fair

γ = 0 ⇒ throughput maximization
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Adding additional constraints: fairness

Same approximation ratio holds

Can quantify the relationship between fairness and capacity
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Extensions: SINR model

SINR model: If pairs (v1, v
′
1), (v2, v

′
2), . . . communicate

P1
d(v1,v

′
1)α

N +
P

i>1
Pi

d(vi ,v
′
1)α

≥ β

∀e : N(e) = E

∀e = (u, v) : N≥(e) = {e′ = (u′, v ′) : �(e′) ≥ max{�(e), a · d(u, u′)}
Assumptions: Power levels for all links are fixed, For each edge e, cap(e) is fixed
under an additive white Gaussian noise assumption
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Extensions: SINR model

∆ = maxe{�(e)}/mine′{�(e′)}

Lemma

The program Pnon−uniform(λ) gives necessary conditions for a constant λ, while the
program Pnon−uniform(1/ log ∆) gives sufficient conditions.
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Extensions: power constraints

Setting: S has to determine which edges e to use at time t, and what power level to
use

Capacity of link e at power level p

cap(e, p) = W log2(1 +
p

d(u, v)αN0W
)
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Extensions: power constraints

Setting: S has to determine which edges e to use at time t, and what power level to
use

Capacity of link e at power level p

cap(e, p) = W log2(1 +
p

d(u, v)αN0W
)

J= set of possible choices of power levels; need not be finite

Define T (J) = {(e, p) ∈ E × J}
Define N(e, p) = {(e′ = (u′, v ′), p′) : e′ ∈ V 2, p′ ∈ J, d(u, u′) ≤
(1 + ∆)(range(p) + range(p′))}
Define N≥(e, p) = {(e′ = (u′, v ′), p′) ∈ N(e, p) : p′ ≥ p}
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Program Ppctm(λ)

max
X

i

fi s.t.:

∀i , fi =
X

(e=(si ,v),p)∈T

f (e, p) −
X

(e=(v,si ),p)∈T

f (e, p)

∀(e, p) ∈ T , x(e, p) = f (e, p)/cap(e, p)

∀(e, p) ∈ T , x(e, p) +
X

(e′,p′)∈N≥(e,p)

x(e, p) ≤ λ

∀i ,∀u �= si , ti
X

e∈Nout(u)

f (e, p) =
X

e∈Nin(u)

f (e, p)

X
(e,p)∈T

x(e, p) · p ≤ B

B= total bound on power usage
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Joint power and throughput capacity optimization: special

case

Lemma

Any feasible rate vector and power assignment must satisfy the constraints of P(c) for a
constant c. Further, any solution to P(1) is feasible.
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Joint power and throughput capacity optimization: special

case

Lemma

Any feasible rate vector and power assignment must satisfy the constraints of P(c) for a
constant c. Further, any solution to P(1) is feasible.

Assumption: |J| ≤ poly(n) ⇒ |Ppctm| is polynomial sized.
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Joint power and throughput capacity optimization: general

case

Let pmax = max{p ∈ J} and pmin = min{p′ ∈ J}
Assumption: pmax/pmin ≤ poly(n)

J ′ = {pmin, (1 + ε)pmin, . . . , pmax}

Lemma

The program Ppctm(1) defined using set J ′ (instead of set J) gives a constant factor
approximation to throughput capacity under a given bound on total power consumption.
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Extension: capacity with random access scheduling

Node v attempts to transmit on link
e = (v ,w) only if no neighbor of v is
currently transmitting

If channel free, v transmits on e with
probability τ (e)

Tid : idle slot length

Txmit(�): length of transmission on link
�

Npri (�): links within primary
interference of �

Nsec(�) = N(�) \ Npri (�)

Probability of accessing the link �:
τ (�) = 1 − e−x(�)
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Synchronous Random Access Networks

Lemma

Let x̄ be a feasible solution to the program P(1). Then, 1
e
x̄ can be achieved by

synchronous random access scheduling.

Proof:
Choose τ (�) = 1 − e−x(�)/λ, for each �.
Probability of collision free transmission on edge �:

η(�) = Π�′∈I (�)(1 − τ (�′))

= e
P

�′∈I (�) −x(�′)

≥ ex(�)−1
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Synchronous Random Access Networks

Successful flow through � = cap(�) · τ (�) · η(�)
≥ cap(�) · (1 − e−x(�)) · ex(�)−1

= cap(�) · (ex(�)−1 − e−1)

≥ cap(�) ·
„

1 + x(�)

e
− 1

e

«

=
f (�)

e

⇒ 1
e f̄ is stable
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Random Access Scheduling in an Asynchronous Network

Tid : idle slot length

Txmit(�): transmission duration on �

γ = max� Txmit (�)
min�′ Txmit (�′)

∆: max #simultaneous transmissions possible
in N(�) (interference degree)

Theorem

Let �x be a feasible solution to P(1). The random
access protocol with channel access probability

τ (�) = 1 − e
− x(�)

∆(�)
· Tid
Txmit (�)(1+γ) ,

achieves a link utilization of �h ≥ 1
e(γ+1)∆

�x.
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Asynchronous Random Access: effect of packet sizing

policies

Random access is more competitive when the packet sizes on links are non-uniform, and
are proportional to the link capacity
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Limits on the competitive ratio of asynchronous random

access scheduling

�0

�1

�2

�∆

∀i ≥ 1, �i ∈ hidden(�0)
∀i ≥ 1, �0 ∈ hidden(�i)
Assume Txmit(�i) = Txmit = a1Tid

and Txmit(�0) = γTxmit

�f = 〈1/2, . . . , 1/2〉 is feasible for greedy
scheduling

Lemma

λ�f is feasible for random access scheduling
only if λ ≤ c log ∆γ

∆γ
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Characterizing the capacity region for random access

protocols

New formulation to approximate the throughput capacity of an asynchronous random
access network within an O(∆)-factor:

Theorem (Necessary Conditions)

�x is feasible for asynchronous random access protocol only if:

∀� : x(�) +
X

�′∈exposed(�)

x(�′) +
X

�′∈hidden(�)

x(�′) · (1 +
Txmit(�) − Tid

Txmit(�′)
) ≤ ∆

Theorem (Sufficient Conditions)

�x is feasible for asynchronous random access protocol if:

∀� : x(�) +
X

�′∈exposed(�)

x(�′) +
X

�′∈hidden(�)

x(�′) · (1 +
Txmit(�) − Tid

Txmit(�′)
) ≤ 1

e
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Extension: multi-channel multi-radio networks

Graph G = (V ,E)

For each node u ∈ V , Radios(u): set
of wireless interfaces associated with it.

Set Ψ of channels available

Schedule + channel assignment: at
each time t, choose links e = (u, v)
which will transmit, which radio
interfaces to use at u, v and which
channel to use

Induced Radio Network G = (V,L):
V is the set ∪uRadios(u) and L =
∪e=(u,v)∈ERadios(u) × Radios(v)

For link � = (ρ, ρ′),
parent(�) = (u, v) if ρ ∈ Radios(u)
and ρ′ ∈ Radios(v)

Consider set
T = {(�, ψ) : � ∈ L, ψ ∈ Ψ}
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Necessary conditions for scheduling

For link � = (ρ, ρ′) in induced radio network G = (V,L):

Pri(�) = {�′ sharing a radio with �}
Pri	(�) = {�′ ∈ Pri(�) : parent(�′) � parent(�)}
Sec(�) = {�′ : parent(�′) ∈ Pri(parent(�))} ∪ {�′ : parent(�′) ∈ Sec(parent(�))}
Sec	(�) = {�′ ∈ Succ(�) : parent(�′) � parent(�)}

Theorem

Flow constraints with the following congestion constraints are necessary for any feasible
flow+utilization vector:

x(�, ψ) +
X

ρ∈Ψ\{ψ}

x(�, ρ) +
X
χ∈Ψ

X
f ∈Pri�(�)

x(f , χ)

+
X

g∈Sec�(�)

x(g , ψ) ≤ λ+ 2
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Sufficient conditions

Theorem

The rate vector satisfying the following conditions can be scheduled feasibly:

∀(�, ψ), x(�, ψ) +
X

ρ∈Ψ\{ψ}

x(�, ρ) +
X
χ∈Ψ

X
f ∈Pri(�)

x(f , χ)

+
X

g∈Sec(�)

x(g , ψ) ≤ 1

e
− ε

Anil Vullikanti (Virginia Tech) Capacity of Wireless Networks 73 / 100



Random Access Hash Functions

Need access-hash function H(�, ψ, t) such that:

H(�, ψ, t) =


1 with probability 1 − e−e·x(�,ψ)

0 with probability e−e·x(�,ψ)

Key Property: Value of H(., ., ) fixed no matter who invokes it with the same
arguments

Also known as random oracles in Cryptography

SHA-1 works well in practice
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Algorithm PLDS

Executed by each radio ρ:

1 ∀� incident on ρ: compute H(�, ψ, t), for each ψ, t.

2 Randomly pick a pair (�, ψ) s.t. H(�, ψ, t) = 1
• if no such pair exists, sleep during time t

3 If selected link � ∈ Lout(ρ), then schedule an outgoing transmission across � on
channel ψ at time t

4 if selected link � ∈ Lin(ρ), then tune to channel ψ and await an incoming
transmission across � on channel ψ at time t
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Extensions: Bounding Delays

Goal: choose flow vector �f so that:P
i fi is maximized

For each session i such that fi > 0, average delay for each packet is at most D

Our Result

Careful choice of paths plus random access scheduling to get joint bounds on throughput
and delays.
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Choosing routes and flows

Choose flow �f that maximizes
P

i fi subject to:

∀i ,
X

p∈P(i)

f (p)cost(p) ≤ Dfi

∀(e, i), x(e, i) =
X

p∈P(i): e∈p

f (p)/cap(e)

∀e,
X

i

x(e, i) +
X

e′∈N(e)

X
i

x(e′, i) ≤ 1

(Filter) Drop flows on paths longer than 2D for each i

(Round) Choose a subset S of sessions and a path pi for each i ∈ S by iterative
rounding

(Choose flows) Choose flow f (pi) = K log log D/ log D
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Joint Delay-Throughput Tradeoffs

Theorem

The flow vector �f along with random access scheduling ensures thatP
i fi = Ω(OPT · log log D/ log D), and at least (1− 1/n)-fraction of the packets for each

session i are delivered within a delay of O(D · (log D/ log log D) · log n).

Adaptive channel switching delays can be incorporated into the framework in terms
of cost(p) to quantify the throughput gains of adaptive channel switching

Similar tradeoffs for adaptive power switching
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Summary: General strategy

Define suitable interference set N̂(e) for each link e

Construct LP P(λ) with flow constraints, and congestion constraints of the form

x(e) +
X

e′∈N̂(e)

x(e′) ≤ λ,

for each e

Prove that P(c1) gives necessary conditions – any feasible solution �f ,�x satisfies the
constraints of P(c1)

Prove that P(c2) gives sufficient conditions – corresponding to any feasible solution
�f ,�x of P(c2), we can construct a schedule S that corresponds to �f ,�x
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Summary

Two techniques for cross-layer formulation of the end-to-end capacity of wireless
networks

Linearization of interference constraints
Inductive ordering to deal with non-uniform power levels

Framework extends to a number of models, constraints and objective functions

Anil Vullikanti (Virginia Tech) Capacity of Wireless Networks 80 / 100



Part III: Dynamic control for network stability
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Outline for Part III

Background: arrival processes, queuing

Backpressure algorithm and its analysis

Approximate version of backpressure algorithm

Random access approach

Summary of related research
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Background

“Arrivals at all sources are well-behaved”
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Background

“Arrivals at all sources are well-behaved”

1 Let Ai (t) be the exogenous arrival process for connection i with rate λi

2 An arrival process Ai (t) is admissible with rate λi if
1 The time averaged expected arrival rate satisfies:

lim
t→∞

1

t

t−1X
τ=0

E [Ai (τ)] = λ

2 Let H(t) represent the history until time t There exists Amax such that
E [(Ai (t))2 | H(t)] ≤ A2

max for t.
3 For any δ > 0, there exists an interval size T , possibly dependent on δ, such that for

any initial time t0:

E

"
1

T

T−1X
k=0

Ai (t0 + k)|H(t0)

#
≤ λ + δ

Other models: adversarial arrivals
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Background (continued)

Each node v maintains queues for each link (v ,w) and each connection i

Assume unbounded buffer sizes – no packet drops because of buffer overflows

Let U i
v (t) denote the queue at node v for connection i at time t; let U(t) = 〈U i

v (t)〉
µi

(u,v)(t) ≤ c(u, v): data rate allocated to commodity i during slot t across the link
(u, v) by the network controller.
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Capacity region revisited

I ⊂ E is a conflict free subset if for every e, e′ ∈ I , e and e′ are conflict-free.

Let I denote the set of all possible conflict-free subsets I ⊂ E

Let µ(I ) denote the vector of transmission rates for each e ∈ I .

Let
Γ
.
= Conv({�µ(I ) | I ∈ I})

denote the convex hull of all transmission-rate matrices

Let inflowi
v,µ(t) =

P
(w,v)∈E µ

i
(w,v)(t) denote the flow of commodity i into node v

for policy µ at time t

Let outflowi
v,µ(t) =

P
(v,w)∈E µ

i
(v,w)(t) denote the flow of commodity i out of node

v for policy µ at time t

Let netflowi
v,µ(t) = outflowi

v,µ(t) − inflowi
v,µ(t) denote the total flow of commodity

i out of node v for policy µ at time t
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Example

Assume primary interference: edges
with common end-point conflict

Two connections (s1, t1) and (s2, t2)

Γ = {αI1 + βI2 : α+ β ≤ 1}

Traffic matrix corresponding to
µ = 2

3 I1 + 1
3 I2

inflow1
2,µ(t) = µ1

(1,2) = 2/3
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Capacity region

Theorem (Grigoriadis et al., 2006)

The connection rate vector 〈λi〉 is within the network-layer capacity region Λ if and only
if there exists a randomized network control algorithm that makes valid µi

(u,v)(t)
decisions, and yields:

∀i , E[netflowi
si ,µ(t)] = λi

∀i , ∀w /∈ {si , ti}, E[netflowi
w,µ(t)] = 0
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Backpressure algorithm

At each time t

For each link (v ,w): let i = i∗ be the commodity with maximum
differential backlog ∆U i

v − U i
w

For each link (v ,w), define weight(v ,w) to be the maximum
differential backlog

Choose independent set I with maximum weight
wt(I ) =

P
e∈I wt(e)

Schedule all links in I simultaneously, and send as much as possible
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Example

Assume primary interference: edges
with common end-point conflict

Two connections (s1, t1) and (s2, t2)

Γ = {αI1 + βI2 : α+ β ≤ 1}

∆U1
(1,2) = 5, ∆U2

(1,2) = −35
⇒ i∗(1,2) = 1,W ∗

(1,2) = 5

∆U1
(2,3) = 15, ∆U2

(2,3) = 5
⇒ i∗(2,3) = 1,W ∗

(2,3) = 15

∆U1
(3,4) = 0, ∆U2

(3,4) = 30
⇒ i∗(3,4) = 2,W ∗

(3,4) = 30

wt(I1) = 5 + 30 = 35,
wt(I2) = 15
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Backpressure algorithm

At each time t

For each link (v ,w): let i∗(v,w)(t) denote the connection which
maximizes the differential backlog

W ∗
(v,w)(t) = U

i∗(v,w)(t)

v (t) − U
i∗(v,w)(t)

w (t).

Choose conflict-free link set I∗ ∈ I which maximizesP
(u,v)∈I∗ W ∗

(u,v)(t) · c(u, v)

The network controlled chooses links e = (u, v) ∈ I∗ and connection
i∗(u,v)(t) if W ∗

(u,v)(t) > 0 (if there is not enough backlogged data, i.e.,

U
i∗(u,v)(t)

(u,v) (t) < c(u, v) use dummy bits)
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Analysis

Consider any valid resource allocation policy that assigns a rate of µ̃i
(u,v)(t) to

commodity i across link (u, v) at time t.

Let µi
(u,v)(t) denote the corresponding values for the dynamic backpressure

algorithm.

By construction:X
(u,v)

X
i

µ̃i
(u,v)(t)[U

i
u(t) − U i

v (t)] ≤
X
(u,v)

X
i

µ̃i
(u,v)(t)W

∗
(u,v)(t)

≤
X
(u,v)

W ∗
(u,v)(t) · µ(u, v)
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Analysis (continued)

Rearranging the terms:
“

P
v of queue-size at v · netflow(v) =

P
e flow(e)·backlog(e)”
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Analysis (continued)

Rearranging the terms:
“

P
v of queue-size at v · netflow(v) =

P
e flow(e)·backlog(e)”

X
i

X
v

U i
v (t) · [

X
w

µi
(v,w)(t) −

X
u

µi
(u,v)(t)]

=
X
(u,v)

X
i

µi
(u,v)(t)[U

i
u(t) − U i

v (t)]

Lemma (Property)

If µ̃i
(u,v)(t) denotes any resource allocation policy, and µi

(u,v)(t) denotes the resource
allocation for the Backpressure scheme, we have:X

v

X
i

U i
v (t)[

X
w

µ̃i
(v,w)(t) −

X
u

µ̃i
(u,v)(t)]

≤
X

v

X
i

U i
v (t)

"X
w

µi
(v,w)(t) −

X
u

µi
(u,v)(t)

#
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Lyapunov functions

Define:
L(U(t)) =

X
i

X
v

(U i
v (t))

2

Theorem (Grigoriadis et al., 2006)

If there exist constants B > 0 and ε > 0 such that for all slots t:

E[L(U(t + 1)) − L(U(t)) | U(t)] ≤ B − ε
X

v

X
i

U i
v (t) (1)

then, the network is strongly stable.
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Analysis of backpressure

Theorem

Let �λ denote the vector of arrival rates; if there exists an ε > 0 such that �λ+ �ε ∈ Λ
(where �ε is the vector such that εi = 0 if λi = 0, and εi = ε otherwise), then the dynamic
backpressure algorithm stably services the arrivals.
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Analysis of backpressure

If V ,U, µ,A ≥ 0 and V ≤ max{U − µ, 0} + A, then,

V 2 ≤ U2 + µ2 + A2 − 2U(µ− A)

Since U i
v (t + 1) ≤ max{U i

v (t) −
P

e=(v,w) µ
i
e(t), 0} +

P
i A

i (t) +
P

e=(u,v) µ
i
e(t), we

have:

U i
v (t + 1)2 ≤ U i

v (t)
2 +

`P
w µ

i
(v,w)(t)

´2
+

`
Ai

v (t) +
P

u µ
i
(u,v)(t)

´2 −
2U i

v (t) ·
`P

w µ
i
(v,w)(t) − Ai

v (t) −
P

u µ
i
(u,v)(t)

´
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Analysis (continued)

Summing over all indices (v , i) and since
P

j z
2
j ≤ (

P
j zj )

2, if zj ≥ 0,

L(U(t + 1)) − L(U(t)) ≤ 2BN − 2
X

v

X
i

Ui
v (t) ·

 X
w

µi
(v,w)(t) − Ai

v (t) −
X

u

µi
(u,v)(t)

!
,

where B
.
= 1

2N ·
P

v [(maxw µ(v ,w))2 + (maxi A
i + maxu µ(u, v))2].

⇒ E[L(U(t + 1)) − L(U(t)) | U(t)] ≤ 2BN + 2 ·
X

i

Ui
si
(t) · E[Ai

si
(t) | U(t)] −

2E[
X
v

X
i

Ui
v (t) ·

0
@X

w

µi
(v,w)(t) −

X
(u,v)

µ(u,v)(t)

1
A | U(t)]
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Analysis (continued)

Simple algebra: “expected change in potential ≤ constant
+2 ·

P
i U

i
si (t) expected-arrival at si − 2

P
v E [U i

v (t) netflow(v)]”
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Analysis (continued)

Simple algebra: “expected change in potential ≤ constant
+2 ·

P
i U

i
si (t) expected-arrival at si − 2

P
v E [U i

v (t) netflow(v)]”

⇒ E[L(U(t + 1)) − L(U(t)) | U(t)] ≤ 2BN + 2 ·
X

i

U i
si (t) · E[Ai

si (t) | U(t)] −

2E[
X

v

X
i

U i
v (t) · (

X
w

µi
(v,w)(t) −

X
(u,v)

µ(u,v)(t)) | U(t)]
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Analysis (continued)

By definition of arrival process: E[Ai
si (t) | U(t)] = λi for all commodities i .

For optimal allocation vector µ̃:
∀i , E[total flow out of si for µ̃] = λi + εi

∀i , E[total flow out of v for µ̃] = 0, for all v �= si , ti

Backpressure algorithm maximizes

E[
P

v

P
i Ui

v (t) ·
“P

w µi
(v,w)

(t) −P(u,v) µ(u,v)(t)
”

| U(t)] at each step t

⇒ E[
X
v

X
i

Ui
v (t) · (

X
w

µi
(v,w)(t) −

X
(u,v)

µ(u,v)(t)) | U(t)] ≥
X

i

Ui
si
(t)(λi + εi )

⇒ E[L(U(t + 1)) − L(U(t)) | U(t)] ≤ 2BN − 2
X

i

Ui
si
(t)εi ,

which implies stability of backpressure algorithm with arrival rates �λ if �λ+ �ε is stable.
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Approximate max-weight independent set

Finding max-weight independent set is NP-complete in most interference models

Approximating the max-weight independent set within a γ-factor implies γ-factor
approximation of the rate region, γ > 1:

Suppose γ�λ ∈ Γ, and λi is the arrival rate for connection i
In earlier analysis:

P
i U

i
si
(t) · E[Ai

si
(t) | U(t)] =

P
i λi U

i
si
(t)

For any policy µ̃, approximate backpressure implies:X
(u,v)

X
i

µ̃i
(u,v)(t)[U

i
u(t) − Ui

v (t)] ≤
X
(u,v)

X
i

µ̃i
(u,v)(t)W

∗
(u,v)(t)

≤ γ
X
(u,v)

W ∗
(u,v)(t) · µ(u, v)
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Approximate max-weight independent set

Finding max-weight independent set is NP-complete in most interference models

Approximating the max-weight independent set within a γ-factor implies γ-factor
approximation of the rate region, γ > 1:

Suppose γ�λ ∈ Γ, and λi is the arrival rate for connection i
In earlier analysis:

P
i U

i
si
(t) · E[Ai

si
(t) | U(t)] =

P
i λi U

i
si
(t)

For any policy µ̃, approximate backpressure implies:X
(u,v)

X
i

µ̃i
(u,v)(t)[U

i
u(t) − Ui

v (t)] ≤
X
(u,v)

X
i

µ̃i
(u,v)(t)W

∗
(u,v)(t)

≤ γ
X
(u,v)

W ∗
(u,v)(t) · µ(u, v)

Rearranging terms:

1

γ

X
v

X
i

Ui
v (t)[

X
w

µ̃i
(v,w)(t) −

X
u

µ̃i
(u,v)(t)]

≤
X

v

X
i

Ui
v (t)

"X
w

µi
(v,w)(t) −

X
u

µi
(u,v)(t)

#

Implies stability condition for approximate backpressure
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Summary

Approximation algorithm for one-hop weighted link scheduling problem
⇒ approximation algorithm for end-to-end throughput capacity in general
interference models.

Greedy scheduling gives O(1)-factor approximation to max-weight scheduling in
many models

Limitations:
Does not immediately give us a way to compute the approximate rate vector �λ – need
additional characterization
Convergence time not necessarily polynomial time
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Open problems

SINR models

Distributed algorithms

Delay-throughput tradeoffs

Incorporating specific protocols for different layers

Power constraints

Adaptive channel switching, cognitive networks

New paradigms: Cooperative networking, Physical layer advances, information
theoretic bounds
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Thank You
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