Polygon reconstruction from local observations

work by D. Bilò, J. Chalopin, S. Das, Y. Disser, B. Gfeller, M. Mihalák, S. Suri, E.Vicari, P.Widmayer

MITACS, Ottawa, Jan 31, 2011

Robots with Little Sensing and Mobility

- due to
 - -cost
 - -weight
 - -form factor
 - -environments

For simple sensing model of a vision guided robot: **possibility** and **impossibility** results

Microrobots, environments, problems

- -Microrobots: autonomous, anonymous, asynchronous, oblivious, no coordinates, no compass, ...
- -Unknown environment: graph, local orientation, the plane, a polygon, obstacles, terrain, no landmarks, ...
- -**Problems:** guard a polygon, **build a map,** form a pattern, count targets, **rendezvous, ...**

Basic Robot Model

- Robot is point on a vertex
- Robot can look at polygon while sitting at a vertex
 → sees all visible vertices (ccw)
- Robot can move to visible vertices
 - → cannot sense while moving

Local View at a Vertex

visibility graph

- polygon corner is graph vertex
- edge iff corners see each other

Combinatorial Visibility

- For every consecutive pair of visible vertices:
 - I if neighbors in P
 - 0 else

What can robots do?

•Polygon is convex iff every vertex's cvv is a vector of all I's.

•Global knowledge despite local uncertainty.

Navigation

A distinguished vertex is enough ...

Topology: Global from local

•Are CVVs sufficient to decide if a polygon is simplyconnected?

-Does it have holes? How many?

Local vs. Global

- Robots can detect multiple boundaries
- But cannot distinguish holes from outer boundary

Monitoring: Visibility Coverage

- Can a group of robots self-deploy to cover a polygon?
- Art Gallery Theorem: Any n-gon can be guarded by n/3 guards.
- Fact: Guarding problem can be solved in the CVV model.

CVV triangulation

- Triangulation is a topological structure: dependent on visibility, but not coordinates.
- Fact: Triangulation is possible in the CVV model.

Map construction problem

Combinatorial Visibilities → Visibility Graph?

Combinatorial Visibilities \rightarrow Visibility Graph?

Combinatorial Visibilities + Boundary Angles → Visibility Graph?

combinatorial visibilities and boundary angles are not enough

Combinatorial Sensors Geometrical Sensors

All inner angles

- Visibility graph + angles
 ⇔polygon shape
- Are angles alone enough?

problem definition

- Given:
 - boundary vertex order
 - angles at each vertex

- Find:
 - visibility graph edges E
 ⇒polygon shape

iterative reconstruction

- Reconstruct visibility graph iteratively
- For k = 1,...,n/2: find all edges (i, i+k) ∈ E
- k = I: trivial (boundary)
- k > I: need criterion to decide whether (i, i+k) ∈ E

criterion

- Criterion for (i, i+k) $\in E$
- If (i, i+k) ∈ E: there is a "witness" (sees both)
- ⇒If there is no witness: (i, i+k) ∉ E
- And if there is a witness?

criterion

(i, i+k) ∈ E

$$ω + α_i + β_{i+k} = π$$

- Consider angles:
 - W at w
 - C_i between w and the next unknown vertex s
 - β_{i+k} between w and the previous unknown vertex t Build angle sum vertex t \Rightarrow (i, i+k) $\in E \Leftrightarrow \Sigma = \pi$

 \Rightarrow criterion: $\exists w \land \Sigma = \pi$

all inner angles are enough

All inner angle types

- Are all inner angles really necessary? Or is less enough?
- **Types** of angles between all pairs of visible vertices

Looking Back

- Types of all inner angles is enough, if ...
- ... robot can look back

Algorithm

- Progressively identify distant vertices
 → assign global name
- Assume robot at v_i already has identified vertices up to v_j
- Vertex v_k is the next unidentified vertex
 - \rightarrow determine k

Algorithm

- E cannot contain vertices
 - $\rightarrow k=j+|J|+|K|+1$
- Need to count vertices
 "behind" v_j and v_k

Algorithm

Count vertices behind v_j:

- Move to v_j and identify v_i
 by looking back
- Count vertices with reflex angle to v_i
- Count vertices behind those vertices recursively
- move back to v_i

Works also if the number of vertices is not known

all inner angle types and look back are enough

Look Back, no angle types

- All information a robot can ever collect about v
 ⇒view from v
 ⇒collection of all paths
- level-one-view: $v^{1} = (L_{1}, L_{2}, ..., L_{d})$
- level-k-view: $v^{k} = (N_{1}^{k-1}, N_{2}^{k-1}, ..., N_{d}^{k-1})$

Vertices as Viewpoints

classes

- group all vertices with same v[∞] into classes C_i
 - ⇒periodic on boundary ⇒ $|C_i| = |C_j| \forall i,j$
- $|C_i| = 1$: distinguishable \checkmark
- vⁿ⁻¹ is enough (same resulting classes)

The Unique Class C* definition

- C* is the lexicographically smallest class that forms a clique
- We will see: Every polygon has a class that forms a clique
- C^{*} is well defined, unique

The Class C*

ears

The Class C*

existence of a clique

- Cut ears repeatedly...
 ⇒cut the entire class
 ⇒no class will split!
- … until only one remains
 ⇒must be a clique!
 - ⇒contains all vertices of some original class

⇒Every polygon has a class that is a clique!

Meeting and Mapping

problem re-definition

 Views of level n-1 are sufficient to infer classes \Rightarrow task in terms of classes

Given:

- classes along boundary
- classes of neighbors

Tasks:

- meet other robots
- infer visibility graph

Meeting and Mapping meeting 5 • C^{*} is unique 12 • C* can be inferred 10 9 class neighbors vert C₂,C₄,C₁,C₂,C₄,C₁,C₂,C₃,C₄ C \Rightarrow Meeting: **C**₂ C₃,C₄,C₁,C₂,C₄,C₁,C₂,C₄,C 3 C_{4}, C_{1}, C_{2} Move along boundary to C4,C1,C2,C4,C1,C2,C3 5 $C_2, C_4, C_1, C_2, C_4, C_1, C_2, C_3, C_4$ a vertex in C^* 6 C $C_{3}, C_{4}, C_{1}, C_{2}, C_{4}, C_{1}, C_{2}, C_{4}, C_{1}$ 7 Ca C_4, C_1, C_2 8 C_4 $C_1, C_2, C_4, C_1, C_2, C_4, C_1, C_2, C_3$ 9 C₂,C₄,C₁,C₂,C₄,C₁,C₂,C₃,C₄ 10 C_2 C₃,C₄,C₁,C₂,C₄,C₁,C₂,C₄,C₁ C_{4}, C_{1}, C_{2} C_3 (C_4) $C_1, C_2, C_4, C_1, C_2, C_4, C_1, C_2, C_3$ 12

Meeting and Mapping visibility graph reconstruction

- need to identify vertices in the list of neighbors
- If own class is a clique:
 - classmates are easy
 - classmates can be used to segment neighbors
- Classes are periodic
 - \Rightarrow segment + class \rightarrow ID
- \Rightarrow C^{*} vertices identified
- \Rightarrow others: a bit more work

look back is enough

Contrast: Map construction for graphs is impossible

minimum base is unique

for strongly connected, directed, edge labelled graphs: minimum base is the same for many graphs

for visibility graphs with labels reflecting all angle types: visibility graph is unique for minimum base

algorithm: find minimum base reconstruct visibility graph

all inner angle types are enough

Summary

- Boundary angles only: No map.
- All angles: Map, even if moves only on boundary.
- All angle types, look back: Map.
- Look back: Map.
- All angle types: Map.

Some Open Problems

• Many individual questions, such as: All lengths ?

- Robots: More realistic
- Environments: More realistic
- Solutions: More efficient