
Polygon reconstruction from
local observations

work by
D. Bilò, J. Chalopin, S. Das, Y. Disser, B. Gfeller,

M. Mihalák, S. Suri, E. Vicari, P. Widmayer

MITACS, Ottawa, Jan 31, 2011

Robots with Little Sensing and Mobility

• due to

–cost

–weight

–form factor

–environments

For simple sensing model of a vision guided robot:

possibility and impossibility results

Microrobots, environments, problems

–Microrobots: autonomous, anonymous,
asynchronous, oblivious, no coordinates, no
compass, ...

–Unknown environment: graph, local
orientation, the plane, a polygon, obstacles,
terrain, no landmarks, ...

–Problems: guard a polygon, build a map, form
a pattern, count targets, rendezvous, ...

Basic Robot Model

• Robot is point on a vertex

• Robot can look at polygon
while sitting at a vertex
→ sees all visible vertices
(ccw)

• Robot can move to visible
vertices
→ cannot sense while
moving

Local View at a Vertex

visibility graph
 - polygon corner is graph vertex
 - edge iff corners see each other

Combinatorial Visibility

• For every consecutive
pair of visible vertices:

• 1 if neighbors in P

• 0 else

cvv = 11010001

What can robots do?

Global Convexity

•Polygon is convex iff every vertex’s cvv is a vector of all 1’s.

•Global knowledge despite local uncertainty.

Navigation

A distinguished vertex is enough ...

Topology: Global from local

•Are CVVs sufficient to decide if a polygon is simply-
connected?

–Does it have holes? How many?

Local vs. Global

• Robots can detect multiple boundaries

• But cannot distinguish holes from outer boundary

Monitoring: Visibility Coverage

• Can a group of robots self-deploy to cover a polygon?

• Art Gallery Theorem: Any n-gon can be guarded by n/3
guards.

• Fact: Guarding problem can be solved in the CVV model.

CVV triangulation

• Triangulation is a topological structure: dependent on
visibility, but not coordinates.

• Fact: Triangulation is possible in the CVV model.

Combinatorial Visibilities → Visibility Graph?

Map construction problem

Combinatorial Visibilities → Visibility Graph?

Combinatorial Visibilities + Boundary Angles
 → Visibility Graph?

combinatorial visibilities
and boundary angles

are not enough

Combinatorial Sensors
Geometrical Sensors

All inner angles

• Visibility graph + angles
⇔polygon shape

• Are angles alone enough?

?

problem definition
Polygon reconstruction

• Given:

• boundary vertex order

• angles at each vertex

• Find:

• visibility graph edges E
⇒polygon shape

i

12
3

4

n-1
n

α1

α2

α3

i

12
3

4

n-1
n

??
?

⇒

known
?

iterative reconstruction
Polygon reconstruction

• Reconstruct visibility
graph iteratively

• For k = 1,...,n/2:
find all edges (i, i+k) ∈ E

• k = 1:
trivial (boundary)

• k > 1:
need criterion to decide
whether (i, i+k) ∈ E

12

3

n

n-1

i

i

i+1

i+k-1

i+k

i

i+1

i+k-1

i+k

w
i

i+1

i+k-1

i+k

w

?

criterion
Polygon reconstruction

• Criterion for (i, i+k) ∈ E

• If (i, i+k) ∈ E: there is a
“witness” (sees both)

⇒If there is no witness:
(i, i+k) ∉ E

• And if there is a witness?

12

3

n

n-1

i

i

i+1

i+k-1

i+k

w

i+k-1
i

w

s

αi

criterion
Polygon reconstruction

• Consider angles:

• ω at w

• αi between w and the
next unknown vertex s

• βi+k between w and the
previous unknown
vertex t

• Build angle sum
⇒(i, i+k) ∈ E ⇔ Σ = π
⇒criterion: ∃w ∧ Σ = π

i

i

i+1

i+k-1

i+k

w

i

i+1

i+k-1

i+k

w

(i, i+k) ∈ E

(i, i+k) ∉ E

ω

ω

= s

αi

s

αi

t =
βi+k

t
βi+k

ω + αi + βi+k = π

ω + αi + βi+k ≠ π

all inner angles
are enough

All inner angle types

• Are all inner angles really
necessary? Or is less enough?

• Types of angles between all
pairs of visible vertices

Looking Back

• Types of all inner angles
is enough, if ...

• ... robot can look back

Algorithm

• Progressively identify
distant vertices

→ assign global name

• Assume robot at vi
already has identified
vertices up to vj

• Vertex vk is the next
unidentified vertex

→ determine k

vi

vj
vk

Algorithm

• E cannot contain vertices

→ k=j+|J|+|K|+1

• Need to count vertices
“behind” vj and vk vi

vj
vk

E

J

K

Algorithm

Count vertices behind vj:

• Move to vj and identify vi
by looking back

• Count vertices with reflex
angle to vi

• Count vertices behind
those vertices recursively

• move back to vi

vi

vj
vk

Works also if the number of vertices is not known

all inner angle types
and look back

are enough

k-1 k-1 k-1

k

view
Look Back, no angle types

• All information a robot
can ever collect about v
⇒view from v
⇒collection of all paths

• level-one-view:
v1 = (L1, L2, ..., Ld)

• level-k-view:
vk = (N1k-1,N2k-1, ..., Ndk-1)

. . .N1 N2 Nd

v

look back L1

L2

Ld

classes
Vertices as Viewpoints

• group all vertices with
same v∞ into classes Ci

⇒periodic on boundary
⇒|Ci| = |Cj| ∀i,j

• |Ci| = 1: distinguishable ✓

• vn-1 is enough (same
resulting classes)

definition
The Unique Class C*

• C* is the lexicographically
smallest class that forms
a clique

• We will see:
Every polygon has a class
that forms a clique

• C* is well defined, unique

-2
-3

ears
The Class C*

• Let a,b,c be a sequence of
vertices on the boundary
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”
⇒vertices in the same

class as an ear are ears

• Every polygon has an ear

first left
neighbor

second right neighbor
second left
neighbor

a

b

c

existence of a clique
The Class C*

• Cut ears repeatedly...
⇒cut the entire class
⇒no class will split!

• ... until only one remains
⇒must be a clique!
⇒contains all vertices of

some original class

⇒Every polygon has a class
that is a clique!

problem re-definition
Meeting and Mapping

• Views of level n-1 are
sufficient to infer classes
⇒task in terms of classes

• Given:

• classes along boundary

• classes of neighbors

• Tasks:

• meet other robots

• infer visibility graph

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

meeting
Meeting and Mapping

• C* is unique

• C* can be inferred

⇒Meeting:
Move along boundary to
a vertex in C*

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

1

2

34

5

67

8 9
10

11

12

I

II
III

I II III

visibility graph reconstruction
Meeting and Mapping

• need to identify vertices
in the list of neighbors

• If own class is a clique:

• classmates are easy

• classmates can be used
to segment neighbors

• Classes are periodic
⇒segment + class → ID

⇒C* vertices identified

⇒others: a bit more work

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

1

2

34

5

67

8 9
10

11

12

? ? ? ? ? ? ? ? ?5 9 11

look back
is enough

Contrast:
Map construction for graphs

is impossible

minimum base
is unique

 for strongly connected, directed, edge labelled graphs:
 minimum base is the same for many graphs

 for visibility graphs with labels reflecting all angle types:
 visibility graph is unique for minimum base

 algorithm:
 find minimum base
 reconstruct visibility graph

all inner angle types
are enough

Summary

• Boundary angles only: No map.

• All angles: Map, even if moves only on
boundary.

• All angle types, look back: Map.

• Look back: Map.
• All angle types: Map.

Some Open Problems

•Many individual questions, such as: All lengths ?

•Robots: More realistic

•Environments: More realistic

•Solutions: More efficient

