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Robots with Little Sensing and Mobility

•  due to

–cost 

–weight

–form factor

–environments

For simple sensing model of a vision guided robot: 

possibility and impossibility results



Microrobots, environments, problems

–Microrobots: autonomous, anonymous, 
asynchronous, oblivious, no coordinates, no 
compass, ...

–Unknown environment: graph, local 
orientation, the plane, a polygon, obstacles, 
terrain, no landmarks, ...

–Problems: guard a polygon, build a map, form 
a pattern, count targets, rendezvous, ...



Basic Robot Model

• Robot is point on a vertex

• Robot can look at polygon 
while sitting at a vertex
→ sees all visible vertices 
(ccw)

• Robot can move to visible 
vertices
→ cannot sense while 
moving



Local View at a Vertex

visibility graph
                          - polygon corner is graph vertex
                          - edge iff corners see each other



Combinatorial Visibility

• For every consecutive 
pair of visible vertices:

• 1 if neighbors in P

• 0 else

cvv = 11010001



What can robots do?



Global Convexity

•Polygon is convex iff every vertex’s cvv is a vector of all 1’s. 

•Global knowledge despite local uncertainty.



Navigation

A distinguished vertex is enough ... 



Topology: Global from local

•Are CVVs sufficient to decide if a polygon is simply-
connected?

–Does it have holes? How many?



Local vs. Global

•  Robots can detect multiple boundaries

• But cannot distinguish holes from outer boundary



Monitoring: Visibility Coverage

•  Can a group of robots self-deploy to cover a polygon?

•  Art Gallery Theorem:  Any n-gon can be guarded by n/3 
guards.

•  Fact: Guarding problem can be solved in the CVV model.



CVV triangulation

•  Triangulation is a topological structure: dependent on 
visibility, but not coordinates.

• Fact:  Triangulation is possible in the CVV model.



Combinatorial Visibilities → Visibility Graph?

Map construction problem



Combinatorial Visibilities → Visibility Graph?



Combinatorial Visibilities + Boundary Angles
 → Visibility Graph?



combinatorial visibilities
and boundary angles

are not enough



Combinatorial Sensors
Geometrical Sensors



All inner angles

• Visibility graph + angles
⇔polygon shape

• Are angles alone enough?

?



problem definition
Polygon reconstruction

• Given:

• boundary vertex order

• angles at each vertex

• Find:

• visibility graph edges E
⇒polygon shape
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iterative reconstruction
Polygon reconstruction

• Reconstruct visibility 
graph iteratively

• For k = 1,...,n/2:
find all edges (i, i+k) ∈ E

• k = 1: 
trivial (boundary)

• k > 1: 
need criterion to decide 
whether (i, i+k) ∈ E
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criterion
Polygon reconstruction

• Criterion for (i, i+k) ∈ E

• If (i, i+k) ∈ E: there is a 
“witness” (sees both)

⇒If there is no witness:
(i, i+k) ∉ E

• And if there is a witness?
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Polygon reconstruction

• Consider angles:

• ω at w

• αi between w and the 
next unknown vertex s

• βi+k between w and the 
previous unknown 
vertex t

• Build angle sum
⇒(i, i+k) ∈ E ⇔ Σ = π
⇒criterion: ∃w ∧ Σ = π
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all inner angles
are enough



All inner angle types

• Are all inner angles really 
necessary? Or is less enough?

• Types of angles between all 
pairs of visible vertices



Looking Back

• Types of all inner angles 
is enough, if ...

• ... robot can look back



Algorithm

• Progressively identify 
distant vertices

→ assign global name

• Assume robot at vi 
already has identified 
vertices up to vj

• Vertex vk is the next 
unidentified vertex

→ determine k

vi

vj
vk



Algorithm

• E cannot contain vertices

→  k=j+|J|+|K|+1

• Need to count vertices 
“behind” vj and vk vi

vj
vk

E

J

K



Algorithm

Count vertices behind vj:

• Move to vj and identify vi 
by looking back

• Count vertices with reflex 
angle to vi

• Count vertices behind 
those vertices recursively

• move back to vi

vi

vj
vk

Works also if the number of vertices is not known



all inner angle types
and look back

are enough
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view
Look Back, no angle types

• All information a robot 
can ever collect about v
⇒view from v
⇒collection of all paths

• level-one-view:
v1 = (L1, L2, ..., Ld)

• level-k-view:
vk = (N1k-1,N2k-1, ..., Ndk-1)

. . .N1 N2 Nd

v

look back L1

L2

Ld



classes
Vertices as Viewpoints

• group all vertices with 
same v∞ into classes Ci

⇒periodic on boundary
⇒|Ci| = |Cj| ∀i,j

• |Ci| = 1: distinguishable ✓

• vn-1 is enough (same 
resulting classes)



definition
The Unique Class C*

• C* is the lexicographically 
smallest class that forms 
a clique

• We will see: 
Every polygon has a class 
that forms a clique

• C* is well defined, unique



-2
-3

ears
The Class C*

• Let a,b,c be a sequence of 
vertices on the boundary 
⇒b is an ear, iff a sees c

• b is an ear, iff the move
-1, 2, look back yields “-2”
⇒vertices in the same 

class as an ear are ears

• Every polygon has an ear

first left 
neighbor 

second right neighbor
second left 
neighbor 

a

b

c



existence of a clique
The Class C*

• Cut ears repeatedly...
⇒cut the entire class
⇒no class will split!

• ... until only one remains
⇒must be a clique!
⇒contains all vertices of 

some original class

⇒Every polygon has a class 
that is a clique!



problem re-definition
Meeting and Mapping

• Views of level n-1 are 
sufficient to infer classes
⇒task in terms of classes

• Given:

• classes along boundary

• classes of neighbors

• Tasks:

• meet other robots 

• infer visibility graph

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3
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meeting
Meeting and Mapping

• C* is unique

• C* can be inferred

⇒Meeting:                   
Move along boundary to 
a vertex in C*

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

2 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

3 C3 C4,C1,C2

4 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

5 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

6 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

7 C3 C4,C1,C2

8 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3

9 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4

10 C2 C3,C4,C1,C2,C4,C1,C2,C4, C1

11 C3 C4,C1,C2

12 C4 C1,C2,C4,C1,C2,C4, C1,C2,C3
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I
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III

I II III

visibility graph reconstruction
Meeting and Mapping

• need to identify vertices 
in the list of neighbors

• If own class is a clique:

• classmates are easy

• classmates can be used 
to segment neighbors

• Classes are periodic
⇒segment + class → ID

⇒C* vertices identified

⇒others:  a bit more work 

vert class neighbors
1 C1 C2,C4,C1,C2,C4,C1,C2,C3,C4
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look back
is enough



Contrast:
Map construction for graphs 

is impossible

minimum base
is unique



  for strongly connected, directed, edge labelled graphs:
     minimum base is the same for many graphs

  for visibility graphs with labels reflecting all angle types:
     visibility graph is unique for minimum base

     algorithm:
          find minimum base
          reconstruct visibility graph



all inner angle types
are enough



Summary

• Boundary angles only: No map.

• All angles: Map, even if moves only on 
boundary.

• All angle types, look back: Map.

• Look back: Map.
• All angle types: Map.



Some Open Problems

•Many individual questions, such as:  All lengths ?

•Robots: More realistic

•Environments: More realistic

•Solutions: More efficient


