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Wireless networks



Random geometric graph

(Gilbert 1961)

n vertices

radius r = r(n)

n→∞



Random process: 0 ≤ r ≤
√
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Random process: 0 ≤ r ≤
√

2

still large diameter:

Θ(1/r)

bad expansion



What about hamilton cycles?

Necessary conditions:
min. deg. ≥ 2
2-connected

Are they sufficient for the RGG?



What about hamilton cycles?

Necessary conditions:
min. deg. ≥ 2
2-connected

Are they sufficient for the RGG?



What about hamilton cycles?

Necessary conditions:
min. deg. ≥ 2
2-connected

Are they sufficient for the RGG?



What about hamilton cycles?

Necessary conditions:
min. deg. ≥ 2
2-connected

Are they sufficient for the RGG?



Hamilton cycles in random graphs

G(n,m) is the random graph with n vertices and m edges
chosen randomly ...

... a snapshot of the random graph process at time m.

Thm (Bollobás 1984)
Asymptotically almost surely, the first edge to give the graph min
degree 2 also gives it a Hamilton cycle.

Thm (Bollobás and Frieze 1985)
Asymptotically almost surely, the first edge to give the graph min
degree k also gives it k/2 edge-disjoint Hamilton cycles.



Proof technique for random graphs

Based on Pósa’s idea from 1976.
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Hamilton cycles in random regular graphs

Gn,d : d-regular graph on n vertices chosen uniformly at random.



Hamilton cycles in random regular graphs

Let Yn be number of Hamilton cycles in Gn,3.

Then EYn ∼ e
√

π

2n

(
4
3

)n/2

.

Density of Yn/EYn:



Earlier results on RGG

In RGG, edges are added in increasing length.

Thm (Penrose 1999)
Asymptotically almost surely, the edge making the RGG have
minimum degree k also makes it k -connected, and this happens
for r ∼

√
(log n)/πn.

Thm (Petit 2001)

The RGG with r =
√
ω(log n)/n a.a.s. has a Hamilton cycle.

Thm (Dı́az, Mitsche & Pérez Giménez 2007)

For any ε > 0, the RGG with r ≥ (1 + ε)
√

log n
πn a.a.s. has a

Hamilton cycle.

(And extensions to general `p norm.)



Recent results

Thm (Balogh, Bollobás, Krivelevich, Müller, Pérez Giménez,
Walters & W. 2010)
In the RGG process:
Hamiltonian⇐⇒ min. deg. ≥ 2 (a.a.s.)
(extension to general dimension and `p norm)

Thm (Balogh, Bollobás & Walters 2010)

Weaker analogue for the k -Nearest Neighbour Graph.

Thm (Krivelevich & Müller 2010)
Pancyclic⇐⇒ min. deg. ≥ 2 (a.a.s.)



Recent results

Thm (Balogh, Bollobás, Krivelevich, Müller, Pérez Giménez,
Walters & W. 2010)
In the RGG process:
Hamiltonian⇐⇒ min. deg. ≥ 2 (a.a.s.)
(extension to general dimension and `p norm)

Thm (Müller, Pérez Giménez & W. 2010)

k/2 disjoint Hamilton cycles⇐⇒ min. deg. ≥ k (a.a.s.)
(extension to general dimension and `p norm)

For k odd there is an additional disjoint perfect matching.



Proof for disjoint Hamilton cycles



Preliminaries

From Penrose (2003):
Let rk be the smallest r such that RGG is k -connected.

Then
πnr2

k − log n − (2k − 3) log log n

is bounded in probability.

Relevant r :

r =

√
log n + m log log n + λ

πn



First step: tesselation

r =
√

log n+O(log log n)
πn
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dense (≥ M points)

sparse (< M points)

dist. ≤ r

bad cells
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Simple computations:

P(a given cell is sparse)

=
M−1∑
t=0

(
n
t

)
(δ2r2)t (1− δ2r2)n − t

= (Θ(δ2 log n))M−1(log n)O(1)n−πδ
2

... after some computations ...

Every bad component is “small”.
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Rerouting at dense cells



Rerouting at dense cells
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Extension into bad cells

a lot harder!



k = 4

But not 4-connected.
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First solution for bad cells

Let graph G consist of a clique on vertex set J, |J| = j , and a
bipartite graph H with parts J and B, where

each vertex in J has degree at least k ;
for each v , v ′ ∈ J, |NG(v) ∪ NG(v ′) \ {u, v}| ≥ k ;
some vertex in J has degree at least k + 1.

Then G contains a packing of k/2 edge-disjoint linear forests,
with each vertex in J of degree 2 in each forest.



k = 6

[Conjecture that ‘degree ≥ k + 1’ condition unnecessary.]
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Second solution for bad cells

For sufficiently small η > 0 and relevant r , every set of j ≥ 2
vertices in a circle of radius ηr (satisfying a certain max degree
condition) has k common neighbours.



Open question

What if k is not fixed? In particular:

Are there a.a.s. b δ(RGG)
2 c edge disjoint Hamilton cycles?


