Hamilton cycles in the random geometric graph

Nick Wormald

University of Waterloo

Hamilton cycles in the random geometric graph

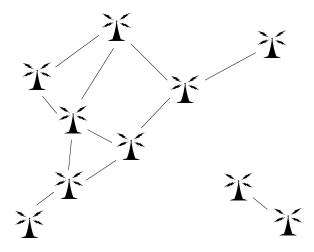
Nick Wormald

University of Waterloo

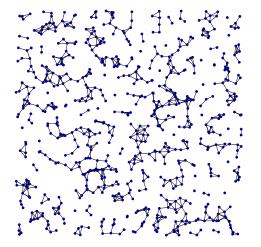
joint work with Tobias Müller and *Xavier Pérez Giménez

(*also contributed to presentation)

Wireless networks



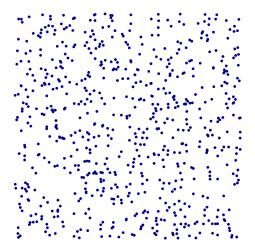
Random geometric graph

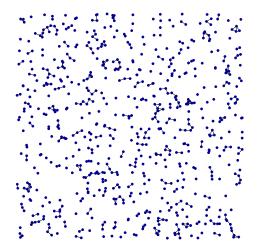


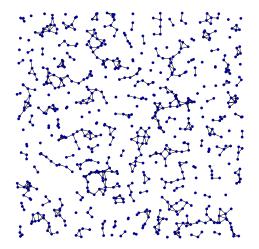
(Gilbert 1961)

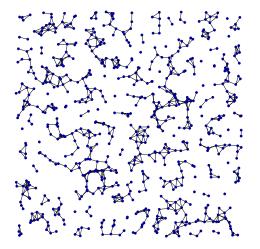
n vertices radius r = r(n)

 $n \to \infty$

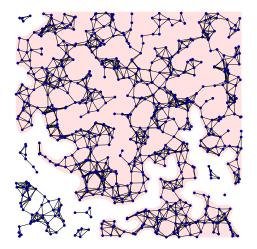






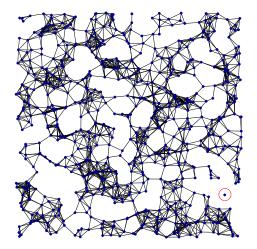


no giant component yet

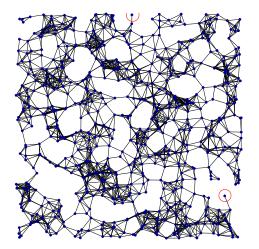


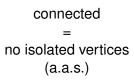
$$r \sim \sqrt{C/n}$$

giant component!

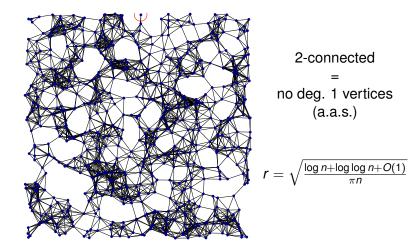


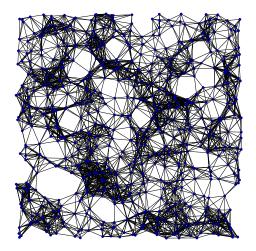
still disconnected!



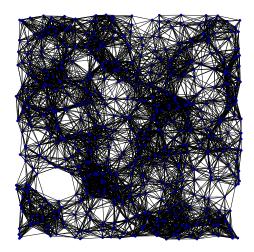


$$r = \sqrt{\frac{\log n + O(1)}{\pi n}}$$



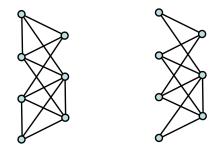


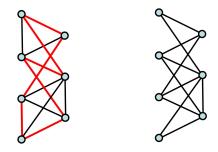
higher connectivity

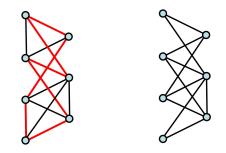


still large diameter: $\Theta(1/r)$

bad expansion

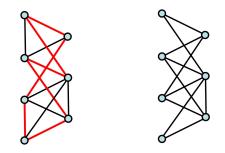






Necessary conditions:

min. deg. \geq 2 2-connected



Necessary conditions:

 $\begin{array}{l} \text{min. deg.} \geq 2 \\ \text{2-connected} \end{array}$

Are they sufficient for the RGG?

Hamilton cycles in random graphs

 $\mathcal{G}(n, m)$ is the random graph with *n* vertices and *m* edges chosen randomly ...

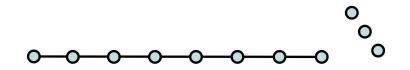
... a snapshot of the random graph process at time *m*.

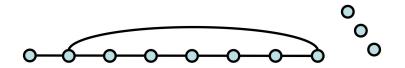
Thm (Bollobás 1984)

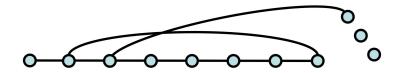
Asymptotically almost surely, the first edge to give the graph min degree 2 also gives it a Hamilton cycle.

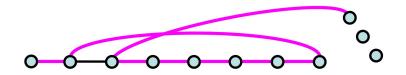
Thm (Bollobás and Frieze 1985)

Asymptotically almost surely, the first edge to give the graph min degree k also gives it k/2 edge-disjoint Hamilton cycles.



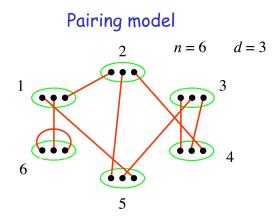






Hamilton cycles in random regular graphs

 $\mathcal{G}_{n,d}$: *d*-regular graph on *n* vertices chosen uniformly at random.



Hamilton cycles in random regular graphs

Let Y_n be number of Hamilton cycles in $\mathcal{G}_{n,3}$.

Then
$$\mathbf{E}Y_n \sim e\sqrt{\frac{\pi}{2n}} \left(\frac{4}{3}\right)^{n/2}$$
.
Density of $Y_n/\mathbf{E}Y_n$:

Earlier results on RGG

In RGG, edges are added in increasing length.

Thm (Penrose 1999)

Asymptotically almost surely, the edge making the RGG have minimum degree *k* also makes it *k*-connected, and this happens for $r \sim \sqrt{(\log n)/\pi n}$.

Thm (Petit 2001)

The RGG with $r = \sqrt{\omega(\log n)/n}$ a.a.s. has a Hamilton cycle.

Thm (Díaz, Mitsche & Pérez Giménez 2007)

For any $\epsilon > 0$, the RGG with $r \ge (1 + \epsilon)\sqrt{\frac{\log n}{\pi n}}$ a.a.s. has a Hamilton cycle.

(And extensions to general ℓ_p norm.)

Thm (Balogh, Bollobás, Krivelevich, Müller, Pérez Giménez, Walters & W. 2010)

In the RGG process: Hamiltonian \iff min. deg. \ge 2 (a.a.s.) (extension to general dimension and ℓ_p norm)

Thm (Balogh, Bollobás & Walters 2010)

Weaker analogue for the *k*-Nearest Neighbour Graph.

Thm (Krivelevich & Müller 2010)

Pancyclic \iff min. deg. \ge 2 (a.a.s.)

Thm (Balogh, Bollobás, Krivelevich, Müller, Pérez Giménez, Walters & W. 2010)

In the RGG process: Hamiltonian \iff min. deg. \ge 2 (a.a.s.) (extension to general dimension and ℓ_p norm)

Thm (Müller, Pérez Giménez & W. 2010)

k/2 disjoint Hamilton cycles \iff min. deg. $\ge k$ (a.a.s.) (extension to general dimension and ℓ_p norm)

For k odd there is an additional disjoint perfect matching.

Proof for disjoint Hamilton cycles

From Penrose (2003):

Let r_k be the smallest r such that RGG is k-connected.

Then

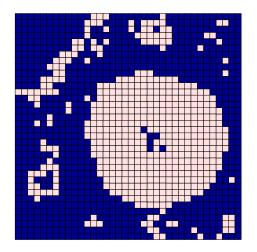
$$\pi nr_k^2 - \log n - (2k - 3) \log \log n$$

is bounded in probability.

Relevant *r*:

$$r = \sqrt{\frac{\log n + m \log \log n + \lambda}{\pi n}}$$

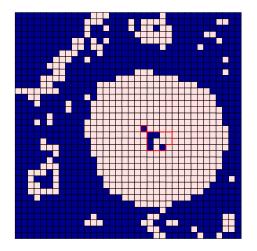
First step: tesselation



$$r = \sqrt{\frac{\log n + O(\log \log n)}{\pi n}}$$
$$\Box \ddagger \delta r$$

- dense ($\geq M$ points)
- sparse (< *M* points)

First step: tesselation



$$r = \sqrt{\frac{\log n + O(\log \log n)}{\pi n}}$$

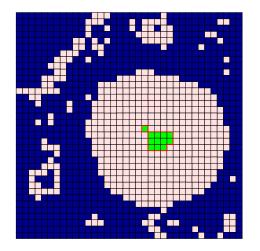
$$\Box \ddagger \delta r$$

$$\blacksquare \text{ dense } (\geq M \text{ points})$$

$$\Box \text{ sparse } (< M \text{ points})$$

$$\Box \text{ dist } \leq r$$

First step: tesselation



$$r = \sqrt{\frac{\log n + O(\log \log n)}{\pi n}}$$

$$\exists \delta r$$

$$dense (\geq M \text{ points})$$

$$sparse (< M \text{ points})$$

$$dist. \leq r$$

$$bad cells$$

Simple computations:

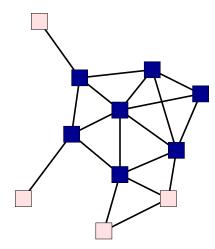
P(a given cell is sparse)

$$= \sum_{t=0}^{M-1} \binom{n}{t} (\delta^2 r^2)^t (1 - \delta^2 r^2) n - t$$
$$= (\Theta(\delta^2 \log n))^{M-1} (\log n)^{O(1)} n^{-\pi\delta^2}$$

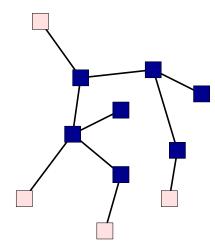
... after some computations ...

Every bad component is "small".

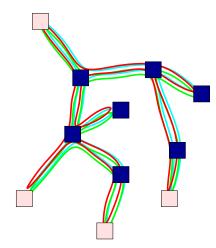
Hamilton cycles: large-scale template



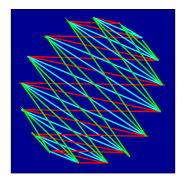
Hamilton cycles: large-scale template



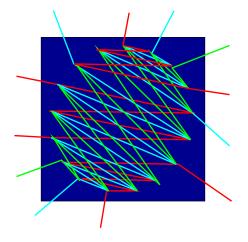
Hamilton cycles: large-scale template

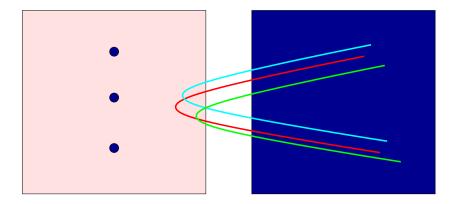


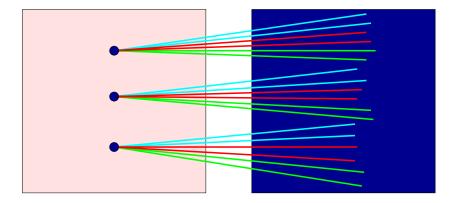
Rerouting at dense cells

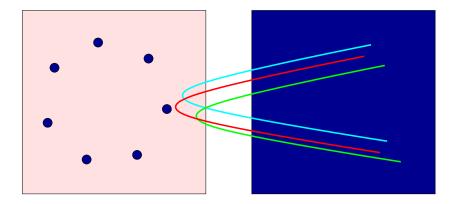


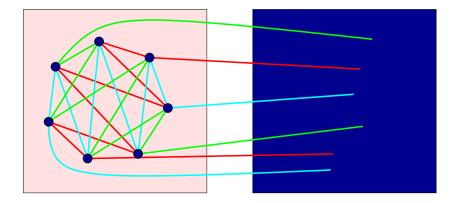
Rerouting at dense cells



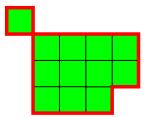








Extension into bad cells

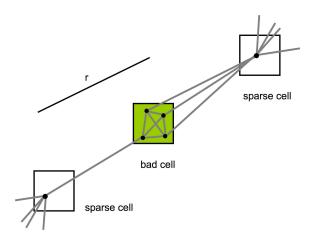


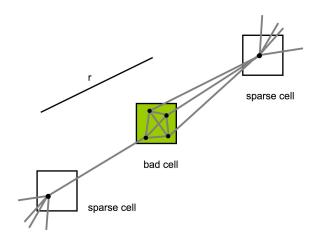
a lot harder!

sparse cell

bad cell

sparse cell



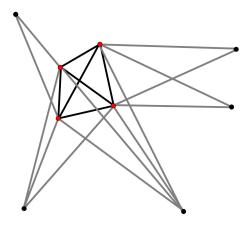


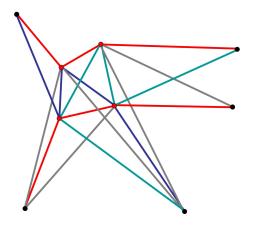
But not 4-connected.

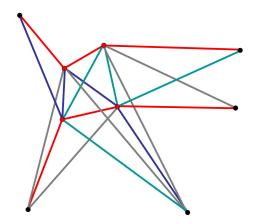
Let graph *G* consist of a clique on vertex set *J*, |J| = j, and a bipartite graph *H* with parts *J* and *B*, where

- each vertex in *J* has degree at least *k*;
- for each $v, v' \in J, |N_G(v) \cup N_G(v') \setminus \{u, v\}| \ge k;$
- some vertex in J has degree at least k + 1.

Then *G* contains a packing of k/2 edge-disjoint linear forests, with each vertex in *J* of degree 2 in each forest.







[Conjecture that 'degree $\geq k + 1$ ' condition unnecessary.]

For sufficiently small $\eta > 0$ and relevant *r*, every set of $j \ge 2$ vertices in a circle of radius ηr (satisfying a certain max degree condition) has *k* common neighbours.

What if k is not fixed? In particular:

Are there a.a.s. $\lfloor \frac{\delta(RGG)}{2} \rfloor$ edge disjoint Hamilton cycles?