Algorithmics of Directional Antennae

By Evangelos Kranakis

Outline

- Motivation
- Preliminaries
- Single Antenna
 - Upper Bounds
 - Lower Bounds
- Multiple Antennae
- New Ideas and Results
 - Robustness and consequenses
- Open Problems

Motivation

In the Real World...Antennae Everywhere

Why Directional Antennae: Signal Protection

- Omnidirectional antennae transmit the signal everywhere in a 360 degree angle.
 - This makes it harder to protect the signal.
- Directional antennae restrict signal transmission within a bounded degree angle.
 - This makes it easier to prevent ^a attacks and detect malicious users. ^b
 - Employing authentication along a given direction along with localization can be beneficial.

^aL. Hu, D. Evans, Using Directional Antennas to Prevent Wormhole Attacks, NDSS 2008.

^bR. Maheshwari, J. Gao, Samir Das, Detecting wormhole attacks in wireless networks using connectivity information, INFOCOM 2007.

Why Directional Antennae: Capacity

- Consider a set of sensors that transmit W bits per second.
- For omnidirectional antennae, the network capacity^a is

$$\sqrt{rac{1}{2\pi}}W\sqrt{n}$$

• For directional antennae having transmission beam of width α and a receiving beam width of angle β the network capacity is ^b

$$\sqrt{\frac{2\pi}{\alpha\beta}}W\sqrt{n}$$

^aGupta and Kumar. The capacity of wireless networks. 2000.

^bYi, Pei and Kalyanaraman. On the capacity improvement of ad hoc wireless networks using directional antennas. 2003.

Why Directional Antennae: Energy Consumption

- Directional antennae with angle α and range R consume energy proportional to $\frac{\alpha}{2} \cdot R^2$. Omnidirectional $\alpha = 2\pi$.
- The smaller the angle the further you can reach: If energy is E– a **directional** antenna can reach distance $\sqrt{2E/\alpha}$ and an **ominidirectional** $\sqrt{E/\pi}$
- For a network of *n* omnidirectional sensors having radius r_i , for i = 1, 2, ..., n: total energy consumed is $\sum_{i=1}^{n} \pi \cdot r_i^2$.
- For a network of *n* directional sensors having angular spread α_i and range R_i , the total energy consumed is $\sum_{i=1}^n \frac{\alpha_i}{2} \cdot R_i^2$.
- For the same energy, the shorter the angle the bigger the range!
- Savings can be significant!

Directional Antennae: Main Issues

- Directional antennae seem to improve
 - 1. Security
 - 2. Capacity
 - 3. Energy Consumption
 - 4. ...and more!
- How do we attain good topology control?
 - 1. Connectivity
 - 2. Coverage
 - 3. Routing Stretch Factor
 - 4. ...and more!

Adhocnow, 2012, Belgrade, July 9-11

Connectivity Problem and More

• Network topology changes!

• Main Problem:

For a set of sensors located in the plane and a given angular spread provide algorithms that minimize the range required so that by an appropriate rotation of each of the antennae the resulting network becomes strongly connected.

• What are the angle/range/stretch-factor trade-offs?

Communication: (Sender, Receiver) Model

- Communication must address the (T, L) access control issues:
 - How/when do sensors Talk and Listen?
 - Think of two phases: first you talk and then you listen.
- In this talk we use the (D, O) Model
 - Use Directional antenna to talk.
 - Use Omnidirectional antenna to listen.
 - In a way, this is how humans communicate!
- Other options: (O, D), (D, D), (O, O) Models.

Comparison of Omnidirectional & Directional Antennae

	Omnidirectional	Directional
Energy	More	Less
Throughput	More	Less
Capacity	Less	More
Collisions	More	Less
Interference	More	Less
Connectivity	Stable	Intermittent
Discovery	Easy	Difficult
Coverage	Stable	Intermittent
Routing $SF^{(*)}$	Less	More
Security	Less	More

(*) SF =Stretch Factor

Goals

- Present algorithms for solvable cases of the problem.
- Understanding the limits and complexity of the problem.

Preliminaries

Optimal Range for a Given Angle

- Given an angle φ .
- Directional antennae have identical range and angle φ .
- r_k(S, φ) is the minimum range of directed antennae of angular spread at most φ so that if every sensor in S uses at most k such antennae (with adequate directioning) a strongly connected network on S results.
- When $\varphi = 0$ we use simpler notation $r_k(S)$ instead of $r_k(S, 0)$.
- $\mathcal{D}_k(S)$ is the set of all strongly connected graphs on S with out-degree at most k.

To attain connectivity, the sensors' range must exceed the longest edge of a MST.

Optimal Range and MST

- For any graph $G \in \mathcal{D}_k(S)$, let $r_k(G)$ be the maximum length of an edge in G.
- Let MST(S) denote the set of all MSTs on S.
- For $T \in MST(S)$ let r(T) denote the length of longest edge of T, and let $r_{MST}(S) = \min\{r(T) : T \in MST(S)\}.$
- For a set S of size n, it is easily seen that $r_{MST}(S)$ can be computed in $O(n^2)$ time.
- For any angle $\varphi \geq 0$, it is clear that

$$r_{MST}(S) \le r_k(S,\varphi)$$

since every strongly connected, directed graph on S has an underlying spanning tree.

Single Antenna Problem:

Angle-Range Tradeoffs

1D: In a Line (Highway Model) (1/2)

• Assume sensors are arranged on a line

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Theorem 1 Consider a set of n > 2 points i = 1, 2, ..., n sorted according to their location on the line. For any φ ≥ 0 and r > 0, there exists an orientation of sectors of angle φ and radius r at the points so that the transmission graph is strongly connected if and only if the distance between points i and i + 2 is at most r, for any i = 1, 2, ..., n - 2.

1D: In a Line (Highway Model) (2/2)

• If the angle $\varphi \ge \pi$ then antennae behave like omnidirectional if properly oriented

• If the angle $\varphi < \pi$ then alternate antennae directions:

• Must be careful with antenna orientations, but same idea will work for a path that is not necessarily a straight-line.

2D: In the Plane

- Theorem 2 Given φ ≥ 8π/5, r > 0 and a set of points on the plane, an orientation of sectors of angle φ and radius r so that the transmission graph is strongly connected can be computed (if it exists) in polynomial time.
- Given a set S of points on the plane and r > 0, consider the proximity graph G_r(S) containing a node for each point of S and an edge for each pair of nodes if the distance of the corresponding points is at most r.

On the Plane: Proximity Graph

- If the proximity graph is not connected: clearly no orientation of the sectors that defines a strongly connected transmission graph can be found.
- If the proximity graph is connected: consider a MST.
- Since the edge costs are Euclidean, each node on this spanning tree has degree at most 5.
- For each node u, there are two consecutive neighbors v, w in the spanning tree so that the angle $\angle(vuw)$ is at least $2\pi/5$.

2D: Approximating the Range

 Theorem 3 (Caragiannis et al., 2008) Given an angle φ with π ≤ φ < 8π/5 and a set of points in the plane, there exists a polynomial time algorithm that computes an orientation of sectors of angle φ and radius

$$2\sin\left(\frac{\phi}{2}\right)\cdot r_1(S,\phi)$$

so that the transmission graph is strongly connected. ^a

^aCaragiannis, Kaklamanis, Kranakis, Krizanc and Wiese. Communication in Wireless Networks with Directional Antennae. 2008

2D: Algorithm for Approximating the Range

Take an MST and construct a matching M such that any non-leaf node of T is adjacent to an edge of M.

- 1. Initially, M is empty.
- 2. We root T at an arbitrary node s.
- 3. We pick an edge between s and one of its children and insert it in M.
- 4. Then, we visit the remaining nodes of T in a BFS manner.
- 5. When visiting a node u,
 - (a) if u is either a leaf-node or a non-leaf node such that the edge between it and its parent is in M, we do nothing;
 - (b) otherwise, we pick an edge between u and one of its children and insert it to M.

Antenna Orientation With Approximation Range

• Start with a set of n points in the plane:

Proof: Range (2/10)

- Let r*(φ) be the optimal range when the angle of the antennae is at most φ.
- Let r(MST) be the longest edge of the MST on the set of points.
- Observe that for $\varphi \geq 0$,

 $- r^*(\varphi) \ge r(MST).$

Proof: Edge Selection (3/10)

Find a maximal matching such that each internal vertex is in the matching. This can be done by traversing T in BFS order.

Proof: Algorithm (4/10)

- A greedy algorithm works as follows:
 - 1. Label all the vertices with *unused* and an arbitrary leaf with *used*.
 - 2. While there exist unused vertices do
 - 2.1 Add $\{u, v\}$ to the matching only if u is used and v is unused.
 - 2.2 Set *used* to v and each neighbor of v.
- The algorithm returns a valid Matching.
- A leaf is marked as used if its neighbor is added to the matching.

Proof: Sufficient Coverage (7/10)

Let $\{u, v\}$ be an edge in the matching. Consider the smallest disks of same radius centered at u and v that contain all the neighbors of u and v in the MST.

Proof: Orienting Antennae at Matched Vertices (8/10) Orient the directional antennae at u and v with angle φ in such a way that both disks are covered.

Proof: Sufficient Antenna Range (9/10)

To calculate the smallest radius necessary to cover both disks, consider the triangle uvw.

Proof: Approximation of Antenna Range (10/10)

From the law of cosines we can determine r.

$$r = \sqrt{|uv|^2 + |uw|^2 - 2|uv||uw|\cos(2\pi - \varphi)}$$

$$\leq \sqrt{2 - 2\cos(2\pi - \varphi)}$$

$$\leq 2\sin(\frac{2\pi - \varphi}{2})$$

$$\leq 2\sin(\pi - \varphi/2)$$

$$= 2\sin(\varphi/2)$$

Lower Bounds

Theorem 4 (Caragiannis et al.) Deciding whether there exists an orientation of one antenna at each sensor with angle less that 2π/3 and optimal range is NP-Complete. The problem remains NP-complete even for the approximation range less than √3 times the optimal range. ^a

^aCaragiannis, Kaklamanis, Kranakis, Krizanc and Wiese. Communication in Wireless Networks with Directional Antennae. 2008

2D: One Anenna (Summary)

• For $\pi \le \phi < 8\pi/5$, can we improve the approximation factor

$$2\sin\left(\frac{\phi}{2}\right)?$$

• Table of values

Angle	Approximation
$\pi \le \phi \le 2\pi$	$2\sin\left(\frac{\phi}{2}\right)$
$\phi = 0$	2
$\phi = 8\pi/5$	1.175

• How about values $\phi < \pi$?

Multiple Antennae

The Multiple Antennae Problem

- Recall: $r_k(S, \varphi)$ is the minimum range of directed antennae of angular spread at most φ so that if every sensor in S uses at most k such antennae (with adequate directioning) a strongly connected network on S results.
- We are interested in the problem of providing an algorithm for orienting the antennae and ultimately for estimating the value of $r_k(S, \varphi)$.
- Without loss of generality antennae ranges will be normalized, i.e., $r_{MST}(S) = 1$.

Main Theorem (Upper Bound)

- Theorem 5 (Dobrev et al 2010) Consider a set S of n sensors in the plane and suppose each sensor has k, 1 ≤ k ≤ 5, directional antennae.^a
 - Then the antennae can be oriented at each sensor so that the resulting spanning graph is strongly connected and the range of each antenna is at most $2 \cdot \sin\left(\frac{\pi}{k+1}\right)$ times the optimal.
 - Moreover, given a MST on the set of points the spanner can be constructed with additional O(n) overhead.

^aS. Dobrev, E. Kranakis, D. Krizanc, O. Morales Ponce, J. Opatrny, L. Stacho. Strong Connectivity in Sensor Networks with Given Number of Directional Antennae of Bounded Angle, DMAA 2012.

Lower Bound

- Theorem 6 (Dobrev et al 2010) For k = 2 antennae, if the angular sum of the antennae is less then α then it is NP-hard to approximate the optimal radius to within a factor of x, where x and α are the solutions of equations x = 2 sin(α) = 1 + 2 cos(2α). ^a
- Using the identity $\cos(2\alpha) = 1 2\sin^2 \alpha$ and solving the resulting quadratic equation with unknown $\sin \alpha$ we obtain numerical solutions $x \approx 1.30, \alpha \approx 0.45\pi$.

^aS. Dobrev, E. Kranakis, D. Krizanc, O. Morales Ponce, J. Opatrny, L. Stacho. Strong Connectivity in Sensor Networks with Given Number of Directional Antennae of Bounded Angle.

New Ideas

Useful Ideas

- Connected Components:
 - When replacing an omnidirectional with a directional antennae you create connected components. Can you limit their number?
 - MST is a tool for accomplishing this, but it is not necessarily optimal.
 - Idea: Use toughness, robustness!
- Range of directional antenna:
 - To what extent can you bound it?
 - Idea: Use Bottleneck Travelling Salesman!

Toughness and Robustness

- Graph toughness:
 - A graph is *t*-tough if for each subset $S \subseteq V$ the number of connected components obtained from $G \setminus S$ is at most |S|/t.
 - A graph is *t*-weakly tough if for each vertex v, the number of connected components obtained from $G \setminus \{v\}$ is at most t.
- Robustness of UDGs:
 - The *t*-robustness $\sigma_t(P)$ is the infimum taken over all radii r > 0 such that UDG(P, r) is *t*-tough.
 - The *t*-weak robustness $\alpha_t(P)$ is the infimum taken over all radii r > 0 such that UDG(P, r) is *t*-weakly tough.

Toughness and Robustness in UDGs

- How do we compute strong robustness? It may be NPC!
- Weak robustness can be computed in polynomial time.
 - Indeed in $O(n \log n)$ time!
- Every connected UDG is 1/5-strong tough.
- Key Observation of Strong versus Weak:
 - Can prove that $\sigma_{1/4} = \alpha_{1/4}$.
 - Unknown whether or not $\sigma_{1/3} = \alpha_{1/3}$.

Optimality for Single Antennae

- φ = 0: equivalent to finding a Hamiltonian cycle minimizing the max length of an edge (Bottleneck Travelling Salesman).
 Parker, Rardin. (1984) proved that no polynomial time (2 - ε)-approx algorithm is possible unless P = NP
- <u>Results from a</u>

Antenna Angle	Approximation ratio	Complexity
$\frac{4\pi}{3} \le \phi$	1	$O(n^2)$
$\pi \le \phi < \frac{4\pi}{3}$	$2\sin(5\pi/6-\phi/2)$	$O(n^2)$
$\frac{2\pi}{3} \le \phi < \pi$	$2\cos(\phi/2) + 2$	$O(n\log n)$
$\frac{\pi}{3} < \phi \le \frac{2\pi}{3}$	$\min(3, 4\sin(\phi/2))$	$O(n^2)$
$\phi \leq \frac{\pi}{3}$	2	$O(n^2)$

^aOptimality in Directional Antennae to Attain Strong Connectivity, E. Kranakis, F. MacQuaries, O. Morales-Ponce, 2012, to appear.

Optimality for Multiple Antennae				
Results from ^a and ^b				
Out-Dg	LBound	UBound	Approx.	Complexity
4	r_{MST}	$2\sin(\pi/5)r_{MST}$	$2\sin(\pi/5)$	$O(n \log n)$
3	r_{MST}	$2\sin(\pi/4)r_{MST}$	$\sqrt{2}$	$O(n\log n)$
2	r_{MST}	$2\sin(\pi/3)r_{MST}$	$\sqrt{3}$	$O(n\log n)$
2	_	_	≤ 1.3	NPC
4	$\sigma_{1/4}$	$lpha_{1/4}$	1	$O(n \log n)$
3	$\sigma_{1/3}$	$2\sin(2\pi/9)\alpha_{1/3}$	$\leq 2\sin(2\pi/9)$	$O(n \log n)$

^aB. Bhattacharya, Y. Hu, E. Kranakis, D. Krizanc, Q. Shi. Sensor Network Connectivity with Multiple Directional Antennae of a Given Angular Sum. IPDPS 2009

^bS. Dobrev, E. Kranakis, O. Morales Ponce, M. Plzik. Robust Sensor Range for Constructing Strongly Connected Spanning Digraphs in UDGs, CSR 2012

Stretch Factor for a Single Antenna

• Results from ^a

Beam Width	Approximation Ratio of r_s	Stretch Factor	Scope
$\begin{array}{c} \frac{5\pi}{3} \leq \varphi < 2\pi \\ \pi \leq \varphi < \frac{5\pi}{3} \end{array}$	$\frac{1}{2\sin(\frac{\phi}{2})}$	2	Global
$\frac{\pi}{2} \le \phi < \pi$	$4\cos(\frac{\phi}{2})+3$	3	Local
$\phi = \frac{\pi}{3}$	$36\sqrt{2}$	10	Global
$\phi < \frac{\pi}{3}$	$4\sqrt{2}(\frac{7\pi}{\phi}-6)$	$\lceil 8\log(\frac{2\pi}{\phi}) \rceil - 1$	Global

^aE. Kranakis, F. MacQuarie, O. Morales Ponce. Spanning Trade-offs in Wireless Sensor Networks with Directional Antennae. COCOA 2012.

Double Antennae

• Results from^a

DA Angle	Approx Ratio	Complexity	Stretch Factor
$\boxed{\frac{2\pi}{3} \le \phi < \pi}$	1	$O(n^2)$	-
$\frac{\pi}{2} \le \phi \le \frac{2\pi}{3}$	$\sqrt{3}$	$O(n \log n)$	-
$\frac{\pi}{2} \le \phi < \pi$	$4\sin(\frac{\pi}{4} + \frac{\phi}{2})$	O(n)	4
$0 \le \phi < \frac{\pi}{2}$	3	$O(n\log n)$	-
$\phi < \frac{\pi}{3} - \epsilon$	$\sqrt{3}-\epsilon$	NP-Complete	-

Table 1: Double antenna connectivity and stretch-factor tradeoffs on n sensors in the plane and for antennae of angle ϕ

^aM. Eftekhari Hesari, E. Kranakis, O. Morales-Ponce, F. MacQuarrie, L. Narayanan. Strong Connectivity of Sensor Networks with Double Antennae., SIROCCO 2012

Antennae in 3D

• Results from^a

Theorem 7 Given a set S of n points in 3D and a solid angle Ω such that $2\pi \leq \Omega < \frac{18\pi}{5}$, it is possible to orient the antennae at each sensor with solid angle Ω and range $r(\Omega)$ in $O((n \log(n))^{4/3})$ time so that the transmission graph is connected, where

$$r(\Omega) = \frac{\sqrt{\Omega(4\pi - \Omega)}}{\pi} \cdot r_{MST}(S)$$

^aE. Kranakis, D. Krizanc, A. Modi, O. Morales Ponce. Connectivity Tradeoffs in 3D Wireless Sensor Networks Using Directional Antennae. In proceedings of IPDPS 2011

Open Problems

Open Problems

- Single/Multiple Antenna Tradeoffs:
 - Antennae models with realistic transceiver patterns.
 - $k\mbox{-}$ Connectivity, Stretch factor, Angle, Range tradeoffs.
 - More realistic metrics (3D, Metric Spaces, Locality).
 - Energy consumption and capacity: angle/range tradeoffs.

• Communication:

- Antenna Interference: SNIR (Signal Noise to Interference Ratio) in the context of directional antennae.
- Broadcasting, gossiping, etc, in the (D, O) Model and its relation to the (O, O) Model.

• Dynamic Models:

- Changing direction of antennae during the communication.

References

- **Tutorial:** for ICDCN, Jan 2012: http://people.scs.carleton.ca/ kranakis/conferences/icdcn.html
- I. Caragiannis, C. Kaklamanis, E. Kranakis, D. Krizanc, A. Wiese, Communication in Wireless Networks with Directional Antennae. In proceedings of SPAA 2008.
- S. Dobrev, E. Kranakis, D. Krizanc, O. Morales, J. Opatrny, L. Stacho. Strong Connectivity in Sensor Networks with Given Number of Directional Antennae of Bounded Angle. DMAA 2012.
- E. Kranakis, D. Krizanc, O. Morales. Maintaining Connectivity in Sensor Networks Using Directional Antennae. In Theoretical Aspects of Distr. Comp. in Sensor Networks, S. Nikoletseas and J. Rolim, editors, Springer, 2010.