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Motivation
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In the Real World...Antennae Everywhere
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Radiation Patterns (Example: Dipole)

...are Complex, depending on the type of antenna.

...there is extensive literature!
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Idealized Antennae Models

• Lobes/Omnidirectional/Directional.

x

y
r

α

R

• Activating Sectors and/or Swiveling

Adhocnow, 2012, Belgrade, July 9-11



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 7

Why Directional Antennae: Signal Protection

• Omnidirectional antennae transmit the signal everywhere in a

360 degree angle.

– This makes it harder to protect the signal.

• Directional antennae restrict signal transmission within a

bounded degree angle.

– This makes it easier to prevent a attacks and detect

malicious users. b

– Employing authentication along a given direction along with

localization can be beneficial.

aL. Hu, D. Evans, Using Directional Antennas to Prevent Wormhole Attacks,

NDSS 2008.
bR. Maheshwari, J. Gao, Samir Das, Detecting wormhole attacks in wireless

networks using connectivity information, INFOCOM 2007.
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Why Directional Antennae: Capacity

• Consider a set of sensors that transmit W bits per second.

• For omnidirectional antennae, the network capacitya is√
1

2π
W
√
n

• For directional antennae having transmission beam of width α

and a receiving beam width of angle β the network capacity is b√
2π

αβ
W
√
n

aGupta and Kumar. The capacity of wireless networks. 2000.
bYi, Pei and Kalyanaraman. On the capacity improvement of ad hoc wireless

networks using directional antennas. 2003.
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Why Directional Antennae: Energy Consumption

• Directional antennae with angle α and range R consume

energy proportional to α
2 ·R

2. Omnidirectional α = 2π.

• The smaller the angle the further you can reach: If energy is E

– a directional antenna can reach distance
√

2E/α and an

ominidirectional
√
E/π

• For a network of n omnidirectional sensors having radius ri,

for i = 1, 2, . . . , n: total energy consumed is
∑n
i=1 π · r2i .

• For a network of n directional sensors having angular spread

αi and range Ri, the total energy consumed is
∑n
i=1

αi

2 ·R
2
i .

• For the same energy, the shorter the angle the bigger the range!

• Savings can be significant!
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Directional Antennae: Main Issues

• Directional antennae seem to improve

1. Security

2. Capacity

3. Energy Consumption

4. ...and more!

• How do we attain good topology control?

1. Connectivity

2. Coverage

3. Routing Stretch Factor

4. ...and more!

Adhocnow, 2012, Belgrade, July 9-11
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Directional Antennae Affect Connectivity
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Connectivity Problem and More

• Network topology changes!

• Main Problem:

For a set of sensors located in the plane and a given

angular spread provide algorithms that minimize the

range required so that by an appropriate rotation of each

of the antennae the resulting network becomes strongly

connected.

• What are the angle/range/stretch-factor trade-offs?

Adhocnow, 2012, Belgrade, July 9-11
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Communication: (Sender,Receiver) Model

• Communication must address the (T, L) access control issues:

– How/when do sensors Talk and Listen?

– Think of two phases: first you talk and then you listen.

• In this talk we use the (D,O) Model

– Use Directional antenna to talk.

– Use Omnidirectional antenna to listen.

– In a way, this is how humans communicate!

• Other options: (O,D), (D,D), (O,O) Models.

Adhocnow, 2012, Belgrade, July 9-11
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Comparison of Omnidirectional & Directional Antennae

Omnidirectional Directional

Energy More Less

Throughput More Less

Capacity Less More

Collisions More Less

Interference More Less

Connectivity Stable Intermittent

Discovery Easy Difficult

Coverage Stable Intermittent

Routing SF (∗) Less More

Security Less More

(*) SF = Stretch Factor

Adhocnow, 2012, Belgrade, July 9-11
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Goals

• Present algorithms for solvable cases of the problem.

• Understanding the limits and complexity of the problem.
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Preliminaries
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Setup: Set S of n Sensors in the Plane

Consider a set S of n points in the plane.

Adhocnow, 2012, Belgrade, July 9-11
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Optimal Range for a Given Angle

• Given an angle ϕ.

• Directional antennae have identical range and angle ϕ.

• rk(S, ϕ) is the minimum range of directed antennae of angular

spread at most ϕ so that if every sensor in S uses at most k

such antennae (with adequate directioning) a strongly

connected network on S results.

• When ϕ = 0 we use simpler notation rk(S) instead of rk(S, 0).

• Dk(S) is the set of all strongly connected graphs on S with

out-degree at most k.

Adhocnow, 2012, Belgrade, July 9-11
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Importance of Minimum Spanning Tree on S (MST)

To attain connectivity, the sensors’ range must exceed the longest

edge of a MST.

Adhocnow, 2012, Belgrade, July 9-11
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Optimal Range and MST

• For any graph G ∈ Dk(S), let rk(G) be the maximum length of

an edge in G.

• Let MST (S) denote the set of all MSTs on S.

• For T ∈MST (S) let r(T ) denote the length of longest edge of

T , and let rMST (S) = min{r(T ) : T ∈MST (S)}.

• For a set S of size n, it is easily seen that rMST (S) can be

computed in O(n2) time.

• For any angle ϕ ≥ 0, it is clear that

rMST (S) ≤ rk(S, ϕ)

since every strongly connected, directed graph on S has an

underlying spanning tree.

Adhocnow, 2012, Belgrade, July 9-11
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Single Antenna Problem:

Angle-Range Tradeoffs
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1D: In a Line (Highway Model) (1/2)

• Assume sensors are arranged on a line

• Theorem 1 Consider a set of n > 2 points i = 1, 2, . . . , n

sorted according to their location on the line. For any φ ≥ 0

and r > 0, there exists an orientation of sectors of angle φ and

radius r at the points so that the transmission graph is strongly

connected if and only if the distance between points i and i+ 2

is at most r, for any i = 1, 2, . . . , n− 2.

Adhocnow, 2012, Belgrade, July 9-11
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1D: In a Line (Highway Model) (2/2)

• If the angle ϕ ≥ π then antennae behave like omnidirectional if

properly oriented
ϕ

x

• If the angle ϕ < π then alternate antennae directions:

• Must be careful with antenna orientations, but same idea will

work for a path that is not necessarily a straight-line.

Adhocnow, 2012, Belgrade, July 9-11
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2D: In the Plane

• Theorem 2 Given φ ≥ 8π/5, r > 0 and a set of points on the

plane, an orientation of sectors of angle φ and radius r so that

the transmission graph is strongly connected can be computed

(if it exists) in polynomial time.

• Given a set S of points on the plane and r > 0, consider the

proximity graph Gr(S) containing a node for each point of S

and an edge for each pair of nodes if the distance of the

corresponding points is at most r.

Adhocnow, 2012, Belgrade, July 9-11
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On the Plane: Proximity Graph

• If the proximity graph is not connected: clearly no

orientation of the sectors that defines a strongly connected

transmission graph can be found.

• If the proximity graph is connected: consider a MST.

• Since the edge costs are Euclidean, each node on this spanning

tree has degree at most 5.

• For each node u, there are two consecutive neighbors v, w in

the spanning tree so that the angle ∠(vuw) is at least 2π/5.

α

u

v

w

Adhocnow, 2012, Belgrade, July 9-11
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2D: Approximating the Range

• Theorem 3 (Caragiannis et al., 2008) Given an angle φ

with π ≤ φ < 8π/5 and a set of points in the plane, there exists

a polynomial time algorithm that computes an orientation of

sectors of angle φ and radius

2 sin

(
φ

2

)
· r1(S, φ)

so that the transmission graph is strongly connected. a

aCaragiannis, Kaklamanis,Kranakis, Krizanc and Wiese. Communication

in Wireless Networks with Directional Antennae. 2008
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2D: Algorithm for Approximating the Range

Take an MST and construct a matching M such that any non-leaf

node of T is adjacent to an edge of M .

1. Initially, M is empty.

2. We root T at an arbitrary node s.

3. We pick an edge between s and one of its children and insert it

in M .

4. Then, we visit the remaining nodes of T in a BFS manner.

5. When visiting a node u,

(a) if u is either a leaf-node or a non-leaf node such that the

edge between it and its parent is in M , we do nothing;

(b) otherwise, we pick an edge between u and one of its children

and insert it to M .

Adhocnow, 2012, Belgrade, July 9-11
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Antenna Orientation With Approximation Range

• Start with a set of n points in the plane:

Adhocnow, 2012, Belgrade, July 9-11
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Proof: MST (1/10)

Consider a Minimum Spanning Tree on the Set of Points.

r(MST )

Adhocnow, 2012, Belgrade, July 9-11
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Proof: Range (2/10)

• Let r∗(ϕ) be the optimal range when the angle of the antennae

is at most ϕ.

• Let r(MST ) be the longest edge of the MST on the set of

points.

• Observe that for ϕ ≥ 0,

– r∗(ϕ) ≥ r(MST ).

Adhocnow, 2012, Belgrade, July 9-11
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Proof: Edge Selection (3/10)

Find a maximal matching such that each internal vertex is in the

matching. This can be done by traversing T in BFS order.

Adhocnow, 2012, Belgrade, July 9-11
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Proof: Algorithm (4/10)

• A greedy algorithm works as follows:

1. Label all the vertices with unused and an arbitrary leaf

with used.

2. While there exist unused vertices do

2.1 Add {u, v} to the matching only if u is used and v is

unused.

2.2 Set used to v and each neighbor of v.

• The algorithm returns a valid Matching.

• A leaf is marked as used if its neighbor is added to the

matching.

Adhocnow, 2012, Belgrade, July 9-11
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Proof: Antennae Orientation for Leaves (5/10)

Orient unmatched leaves to their immediate neighbors.

Adhocnow, 2012, Belgrade, July 9-11
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Proof: Connecting Matched Vertices (6/10)

Consider a pair of matched vertices

Adhocnow, 2012, Belgrade, July 9-11
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Proof: Sufficient Coverage (7/10)

Let {u, v} be an edge in the matching. Consider the smallest disks

of same radius centered at u and v that contain all the

neighbors of u and v in the MST.

u
v

Adhocnow, 2012, Belgrade, July 9-11
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Proof: Orienting Antennae at Matched Vertices (8/10)

Orient the directional antennae at u and v with angle ϕ in such a

way that both disks are covered.

u
v

ϕ

ϕ

Adhocnow, 2012, Belgrade, July 9-11
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Proof: Sufficient Antenna Range (9/10)

To calculate the smallest radius necessary to cover both disks,

consider the triangle uvw.

u
v

ϕ

w

r
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Proof: Approximation of Antenna Range (10/10)

From the law of cosines we can determine r.

r =
√
|uv|2 + |uw|2 − 2|uv||uw| cos(2π − ϕ)

≤
√

2− 2 cos(2π − ϕ)

≤ 2 sin(2π−ϕ
2 )

≤ 2 sin(π − ϕ/2)

= 2 sin(ϕ/2)

Adhocnow, 2012, Belgrade, July 9-11
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Lower Bounds

• Theorem 4 (Caragiannis et al.) Deciding whether there

exists an orientation of one antenna at each sensor with angle

less that 2π/3 and optimal range is NP-Complete. The problem

remains NP-complete even for the approximation range less

than
√

3 times the optimal range. a

aCaragiannis, Kaklamanis,Kranakis, Krizanc and Wiese. Communication

in Wireless Networks with Directional Antennae. 2008

Adhocnow, 2012, Belgrade, July 9-11
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2D: One Anenna (Summary)

• For π ≤ φ < 8π/5, can we improve the approximation factor

2 sin

(
φ

2

)
?

• Table of values

Angle Approximation

π ≤ φ ≤ 2π 2 sin
(
φ
2

)
φ = 0 2

φ = 8π/5 1.175...

• How about values φ < π?

Adhocnow, 2012, Belgrade, July 9-11
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Multiple Antennae

Adhocnow, 2012, Belgrade, July 9-11
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The Multiple Antennae Problem

• Recall: rk(S, ϕ) is the minimum range of directed antennae of

angular spread at most ϕ so that if every sensor in S uses at

most k such antennae (with adequate directioning) a strongly

connected network on S results.

• We are interested in the problem of providing an algorithm for

orienting the antennae and ultimately for estimating the value

of rk(S, ϕ).

• Without loss of generality antennae ranges will be normalized,

i.e., rMST (S) = 1.

Adhocnow, 2012, Belgrade, July 9-11
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Main Theorem (Upper Bound)

• Theorem 5 (Dobrev et al 2010) Consider a set S of n

sensors in the plane and suppose each sensor has k, 1 ≤ k ≤ 5,

directional antennae.a

– Then the antennae can be oriented at each sensor so that the

resulting spanning graph is strongly connected and the range

of each antenna is at most 2 · sin
(

π
k+1

)
times the optimal.

– Moreover, given a MST on the set of points the spanner can

be constructed with additional O(n) overhead.

aS. Dobrev, E. Kranakis, D. Krizanc, O. Morales Ponce, J. Opatrny, L. Sta-

cho. Strong Connectivity in Sensor Networks with Given Number of Directional

Antennae of Bounded Angle, DMAA 2012.
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Inductive Step: 4 antennae, angle 0

uu0
u2

u3

T ′ Tu1

uu0
u2

u3

T ′ T

u4

u1

uu0

u1

T ′ T
u2

u3

u4

uu0

u1

T ′ T

u2

u3

u4
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Lower Bound

• Theorem 6 (Dobrev et al 2010) For k = 2 antennae, if the

angular sum of the antennae is less then α then it is NP-hard

to approximate the optimal radius to within a factor of x,

where x and α are the solutions of equations

x = 2 sin(α) = 1 + 2 cos(2α). a

• Using the identity cos(2α) = 1− 2 sin2 α and solving the

resulting quadratic equation with unknown sinα we obtain

numerical solutions x ≈ 1.30, α ≈ 0.45π.

aS. Dobrev, E. Kranakis, D. Krizanc, O. Morales Ponce, J. Opatrny, L. Sta-

cho. Strong Connectivity in Sensor Networks with Given Number of Directional

Antennae of Bounded Angle.
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New Ideas
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Useful Ideas

• Connected Components:

– When replacing an omnidirectional with a directional

antennae you create connected components. Can you limit

their number?

– MST is a tool for accomplishing this, but it is not

necessarily optimal.

– Idea: Use toughness, robustness!

• Range of directional antenna:

– To what extent can you bound it?

– Idea: Use Bottleneck Travelling Salesman!

Adhocnow, 2012, Belgrade, July 9-11
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Toughness and Robustness

• Graph toughness:

– A graph is t-tough if for each subset S ⊆ V the number of

connected components obtained from G \ S is at most |S|/t.
– A graph is t-weakly tough if for each vertex v, the number

of connected components obtained from G \ {v} is at most t.

• Robustness of UDGs:

– The t-robustness σt(P ) is the infimum taken over all radii

r > 0 such that UDG(P, r) is t-tough.

– The t-weak robustness αt(P ) is the infimum taken over

all radii r > 0 such that UDG(P, r) is t-weakly tough.

Adhocnow, 2012, Belgrade, July 9-11
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Toughness and Robustness in UDGs

• How do we compute strong robustness? It may be NPC!

• Weak robustness can be computed in polynomial time.

– Indeed in O(n log n) time!

• Every connected UDG is 1/5-strong tough.

• Key Observation of Strong versus Weak:

– Can prove that σ1/4 = α1/4.

– Unknown whether or not σ1/3 = α1/3.

Adhocnow, 2012, Belgrade, July 9-11
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Optimality for Single Antennae

• ϕ = 0: equivalent to finding a Hamiltonian cycle minimizing

the max length of an edge (Bottleneck Travelling Salesman).

Parker, Rardin. (1984) proved that no polynomial time

(2− ε)-approx algorithm is possible unless P = NP

• Results from a

Antenna Angle Approximation ratio Complexity

4π
3 ≤ φ 1 O(n2)

π ≤ φ < 4π
3 2 sin(5π/6− φ/2) O(n2)

2π
3 ≤ φ < π 2 cos(φ/2) + 2 O(n log n)

π
3 < φ ≤ 2π

3 min(3, 4 sin(φ/2)) O(n2)

φ ≤ π
3 2 O(n2)

aOptimality in Directional Antennae to Attain Strong Connectivity, E.

Kranakis, F. MacQuaries, O. Morales-Ponce, 2012, to appear.
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Optimality for Multiple Antennae

Results from a and b

Out-Dg LBound UBound Approx. Complexity

4 rMST 2 sin(π/5)rMST 2 sin(π/5) O(n log n)

3 rMST 2 sin(π/4)rMST

√
2 O(n log n)

2 rMST 2 sin(π/3)rMST

√
3 O(n log n)

2 - - ≤ 1.3 NPC

4 σ1/4 α1/4 1 O(n log n)

3 σ1/3 2 sin(2π/9)α1/3 ≤ 2 sin(2π/9) O(n log n)

aB. Bhattacharya, Y. Hu, E. Kranakis, D. Krizanc, Q. Shi. Sensor Net-

work Connectivity with Multiple Directional Antennae of a Given Angular Sum.

IPDPS 2009
bS. Dobrev, E. Kranakis, O. Morales Ponce, M. Plzik. Robust Sensor Range

for Constructing Strongly Connected Spanning Digraphs in UDGs, CSR 2012
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Stretch Factor for a Single Antenna

• Results from a

aE. Kranakis, F. MacQuarie, O. Morales Ponce. Spanning Trade-offs in Wire-

less Sensor Networks with Directional Antennae. COCOA 2012.
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Double Antennae

• Idealized Models

x

y

r r

φφ
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Double Antennae

• Results froma

DA Angle Approx Ratio Complexity Stretch Factor

2π
3 ≤ φ < π 1 O(n2) -

π
2 ≤ φ ≤

2π
3

√
3 O(n log n) -

π
2 ≤ φ < π 4 sin(π4 + φ

2 ) O(n) 4

0 ≤ φ < π
2 3 O(n log n) -

φ < π
3 − ε

√
3− ε NP-Complete -

Table 1: Double antenna connectivity and stretch-factor trade-

offs on n sensors in the plane and for antennae of angle φ

aM. Eftekhari Hesari, E. Kranakis, O. Morales-Ponce, F. MacQuarrie, L.

Narayanan. Strong Connectivity of Sensor Networks with Double Antennae.,

SIROCCO 2012
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Antennae in 3D

• Idealized Model

θ
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Antennae in 3D

• Results froma

Theorem 7 Given a set S of n points in 3D and a solid angle

Ω such that 2π ≤ Ω < 18π
5 , it is possible to orient the antennae

at each sensor with solid angle Ω and range r(Ω) in

O((n log(n))4/3) time so that the transmission graph is

connected, where

r(Ω) =

√
Ω(4π − Ω)

π
· rMST (S)

aE. Kranakis, D. Krizanc, A. Modi, O. Morales Ponce. Connectivity Trade-

offs in 3D Wireless Sensor Networks Using Directional Antennae. In proceedings

of IPDPS 2011
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Open Problems
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Open Problems

• Single/Multiple Antenna Tradeoffs:

– Antennae models with realistic transceiver patterns.

– k-Connectivity, Stretch factor, Angle, Range tradeoffs.

– More realistic metrics (3D, Metric Spaces, Locality).

– Energy consumption and capacity: angle/range tradeoffs.

• Communication:

– Antenna Interference: SNIR (Signal Noise to Interference

Ratio) in the context of directional antennae.

– Broadcasting, gossiping, etc, in the (D,O) Model and its

relation to the (O,O) Model.

• Dynamic Models:

– Changing direction of antennae during the communication.
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