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Rendezvous Problem

Rendezvous Problem:
Two or more entities move along a domain of communication
channels until they meet. Channels at intersections are chosen
according to a decision process.

Entities: people, particles, agents, etc
Domain: mall, airport, square, etc
Channels: streets, sidewalks, edges, etc
Process: deterministic, random, with(out) advice, etc

Which algorithm/strategy should they choose in order to meet
as soon as possible?
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Origins: Pure Form

The “pure form” of randomized rendezvous problem has its
origins to George Pólya1 who enjoyed taking walks in the
forest while thinking about mathematics.

“One day while out on his walk he encountered one
of his students strolling with his fiancée. Somewhat
later their paths crossed again and even later he
encountered them once again”

...and like any mathematician would do...

“this caused him to wonder how likely it was that
walking randomly through paths in the woods, one
would encounter others similarly engaged”

...thus leading to his seminal work.2

1Alexanderson. The random walks of George Pólya. MAA, 2000.
2Pólya. Über eine aufgabe betreffend die irrfahrt im strassennetz. Math.

Annalen, 84:149–160, 1921.
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Convergence of Two Random Walks

Polya’s Rendezvous can be interpreted as follows:
1 Repeat until other agent is present:
2 If heads move right else move left

A B

p p

d

n−d

Theorem Consider an n node ring. Two agents with O(1)
memory, starting at even distance d ≤ n/2 can rendezvous in
expected d

2 (n − d) steps.

Can be analyzed using the martingale apprach.
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Convergence of Two Random Walks (1/4)

Let Ed be the expected time for two agents starting at an
(even) distance d on an a ring of (even) size n to rendezvous
using the above algorithm.

It is easy to see that E0 = 0, and

En/2 = 1 + (1/2)En/2 + (1/2)En/2−2.

The latter equation gives rise to the recurrence

En/2 = 2 + En/2−2. (1)
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Convergence of Two Random Walks (2/4)

One of the following three cases may occur.
1 The two mobile agents make a single step and either move in

the same direction with probability 1/2, or
2 in opposite direction either towards each other with probability

1/4, or
3 away from each other with probability 1/4.

From this we derive the identity

Ed = 1 + (1/2)Ed + (1/4)Ed−2 + (1/4)Ed+2, (2)

for d = 2, 4, . . . , n/2− 2.

Substituting d + 2 for d in Identity 2 and solving the resulting
equation in terms of Ed we derive that for d ≥ 4,

Ed = 2Ed−2 − Ed−4 − 4. (3)

The initial condition E0 = 0 and Identity 3 yield E4 = 2E2− 4.
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Convergence of Two Random Walks (3/4)

More generally, we can prove the following identity for
2d ≤ n/2,

E2d = dE2 − 2d(d − 1). (4)

We prove by induction that there are sequences ad , bd such
that

E2d = adE2 − 4bd .

Indeed,

E2d = 2E2d−2 − E2d−4 − 4

= 2 (ad−1E2 − 4bd−1)− (ad−2E2 − 4bd−2)− 4

= (2ad−1 − ad−2)E2 − 4(2bd−1 − bd−2 + 1),

giving the recurrences ad = 2ad−1 − ad−2 and
bd = 2bd−1 − bd−2 + 1 with initial conditions
a0 = b0 = 0, a1 = 1, b1 = 0.
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Convergence of Two Random Walks (4/4)

Solving the recurrences we obtain easily that ad = d and
bd = −1

2 d + 1
2 d2, which proves Identity 4.

To derive a formula for E2d , it remains to compute E2.
Identity 4 yields the values

En/2 =
n

4
E2 − 2

n

4

(n

4
− 1
)

En/2−2 =
(n

4
− 1
)

E2 − 2
(n

4
− 1
)(n

4
− 2
)
,

which when substituted into Identity 1 shows that E2 = n− 2.

Finally, substituting this last value into Identity 4 we derive

E2d = d(n − 2d). (5)

Above algorithm translates into a finite automaton with a
constant number of states
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Open Problem(s)

Is there an analogue of this result for k agents?

Is there a closed form formula?
There are different ways to accomplish rendezvous!
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Rendezvous is Useful in P2P Computing

JXTA 2:

introduces the concept of a rendezvous super-peer network,
greatly improving scalability by reducing propagation traffic,
implementats the shared resource distributed index (SRDI)
within the rendezvous super-peer network, creating a loosely
consistent, fault-resilient, distributed hash table.3

iChat:

eliminates the need for using servers in the cloud to
communicate.

3Gong, JXTA: A network programming environment, Internet Computing,
IEEE, 5(3), 88–95, 2001.
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Origins: Game Theoretic Form

The Nobel laureate T. C. Schelling is generally credited with
introducing the “game theoretic form” of the rendezvous
problem in his technical report4

“if chess is the standard example of zero-sum game,
charades5 may typify the game of pure coordination;
if pursuit epitomizes the zero-sum game, rendezvous
may do the same for the coordination game”

concerning the strategy of conflict.

4Schelling, Prospectus for Reorientation of Game Theory, Rand Corporation,
1958, P-1491, 17 Sep 1958 (page 4).

5An acting game in which one player acts out a word or phrase, often by
miming similar-sounding words, and the other players guess the word or phrase.
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Rendezvous Search Games

A search space is usually represented by a graph G = (V ,E ).

A searcher starts from a given vertex.
A hider (mobile or otherwise) chooses its hiding point
independently of the searcher and occupies vertices.

Neither searcher nor hider have any a priori knowledge of the
movement or location of the other until they are some critical
distance r apart, also called the discovery radius.

Search problems are two-person, zero-sum games with
associated strategies available to the searcher and receiver.6

Cost of game specified by c : S ×H → R : (S ,H)→ c(S ,H)
representing the loss (or effort) by searcher S when using
trajectory S while the hider uses trajectory H.

Since the game is zero-sum, c(S ,H) also represents the gain
of the hider.

6S. Alpern and S. Gal. The theory of search games and rendezvous. Kluwer
Academic Publishers, 2003.
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Example

Consider the uniform mixed hiding strategy: hider is immobile
but chooses the hiding vertex H randomly with the uniform
distribution among the vertices of a graph with n vertices.

Assume discovery radius satisfies r = 0.

Searcher discovers at most one new vertex per time unit we
have Pr[T ≤ t] ≤ min{1, t

n}, where T is the capture time.

It follows that the expected capture time satisfies

E [T ] =
∑

t

Pr[T > t] ≥
∑

t

max
{

0, 1− t

n

}
=

n + 1

2
.

Is this tight?

In a mixed search strategy searcher selects a permutation
σ ∈ Sn at random with the uniform distribution.
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Optimality of Example in Kn

For a given σ,H the capture time c(σ,H) is equal to the
smallest t such that σ(t) = H.

Given t,H, there are exactly (n − 1)! permutations σ ∈ Sn

such that σ(t) = H.

n∑
H=1

∑
σ∈Sn

c(σ,H) =
n∑

H=1

n∑
t=1

∑
σ∈Sn

σ(t)=H

t =
n(n + 1)

2
· (n − 1)!

It follows that the expected capture time is

E [T ] =
1

n!
· 1

n
·

n∑
H=1

∑
σ∈Sn

c(S ,H) =
n + 1

2
.

Problem much more difficult in arbitrary graphs!
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Searching with Uncertainty

A mobile agent in a network wants to locate an item available
at one node in the network.

Each of the nodes of the network maintains a database
indicating the first edge on a shortest path to the items of
interest.

Uncertainty arises from the fact that inaccuracies may occur
in the database for reasons such as the movement of items,
out-of-date information, etc.

Item occupies an unknown location but information about its
whereabouts can be obtained by querying the nodes of the
network.

How does the agent find the requested item while traversing
the minimum number of edges?7

7Kranakis, Krizanc, Searching with Uncertainty. In SIROCCO 1999,
194-203, Carleton Scientific, 1999.
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Algorithm in the Ring

Consider a ring of n nodes.

Idea: Consult visited nodes and take majority of advice.

Leads directly to the following algorithm parameterized by k.
Algorithm: Search in a given direction for k steps.

1. Let dir be the direction given by the initial node.
2. for j = 1 to k or until item is found do
3. move in direction dir .
4. if majority of processors agree with dir ,

continue until item is found.
5. else reverse direction;

continue until item is found.
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Analysis (1/3)

Search proceeds for k steps and direction is chosen according
to principle of maximum likelihood:

direction agreed by the majority of nodes along this
path of length k.

Probability direction is correct is

pk :=
∑

i≥dk/2e

(
k

i

)
pi (1− p)k−i

Let X be the random variable that counts the number of steps
traversed by the algorithm.
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Analysis (2/3)

Let d be the distance of the initial node to the node
containing the desired item.

If decision of the direction made by the algorithm is correct
then X = d or X = d + 2k depending on whether or not the
algorithm reversed direction after k steps.

Similarly, if the decision made was incorrect then X = n − d
or X = n− d + 2k depending on whether or not the algorithm
reversed direction after k steps.

It follows that with probability at least pk the number of steps
traversed by the algorithm does not exceed d + 2k .
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Analysis (3/3)

Observe that pk = Pr[Sk ≥ k/2] and using Chernoff-Hoeffding
bounds (setting µ = kp and δ = 1− 1

2p ) we derive that

pk = Pr[Sk ≥ (1− δ)µ]

= 1− Pr[Sk < (1− δ)µ]

> 1− e−µδ
2/2,

where Sk is the sum of k independent and identically
distributed random variables X1, . . . ,Xk such that
Pr[Xi = 1] = p, for all i .

Choosing k ≥ c 2p
(p−1/2)2 ln n, the probability that the algorithm

requires less than d + 2k steps is ≥ 1− n−c for c > 0.
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More on Searching with Advice

Extensions of the model in other settings are quite interesting

In complete graphs.8

In networks with liars.9

Random walks with advice.10

Using clocks to alternate between phases of ignoring and
following advice.11

... and there is a lot more!

We’ll return to the theme of advice!

8Kirousis, Kranakis, Krizanc, Stamatiou, Locating information with
uncertainty in fully interconnected networks, DC 283–296, 2000.

9Hanusse, Kranakis, Krizanc, Searching with mobile agents in networks with
liars, DAM 137(1): 69–85, 2004.

10Hanusse, Kavvadias, Kranakis, Krizanc, Memoryless search algorithms in a
network with faulty advice, TCS 402(2): 190–198, 2008.

11Hanusse, Ilcinkas, Kosowski, Nisse, Locating a target with an agent guided
by unreliable local advice: how to beat the random walk when you have a
clock?, PODC, 355–364, 2010.
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Searching with Advice

A mobile agent is searching for an item stored at a node t of
a network, without prior knowledge of its exact location.

Each node of the network has a database that will answer
queries of the form

“How do I find t?”

by responding with the first edge on a shortest path to t.

Some nodes, called liars, give bad advice.

How do we search for the item?
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Search Algorithm with given parameter q > 1/2

1 Agent arrives at a node of degree ∆ and if it discovers the
token it halts. Otherwise, it asks the node for advice.

2 Node responds by pointing to one of the edges incident to it.
3 Agent then flips a biased coin and with probability q it follows

the advice.

That is, it moves to the adjacent node which is the other
endpoint of the edge.
If it decides not to follow the advice (an event with probability
1− q), it selects uniformly another edge among the remaining
∆− 1 incident edges and follows that edge.

4 Above steps repeated at the new node until the token is found.
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Searching with Advice

Theorem Let G be any network of maximal degree ∆ with k
liars in which the distance between the initial node s and the
token t is d . Then the expected number of steps of a mobile

agent to reach t is less than d
(

1 + 6
r−1

)
+ 6rk+3

(r−1)3 where

r = (∆− 1) q
1−q .

Theorem Assume that in Kn the number of liars is k = cn,
where c is a constant, 0 < c < 1. Then the expected number
of steps to reach the token is 1

(q−qc)(1−q) + O( 1
n ).

Also possible to analyze the torus in this setting.
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Open Problems

Very little known on

Tight bounds for all types of braphs.
Analysis of preferential attachment models.
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Domain/Behavior/Advice

Domain:

modelled by a graph
processors are nodes
communication links are edges
sense of direction (consistent edge labelling
clockwise/counterclockwise)
etc

Behavior:

identical (anonymous)
synchronous/Asynchronous
etc

Advice:

token
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Emphasizing the Agent!

What is a Mobile Agent?

(American Heritage Dictionary): An agent is “one that has
the power or authority to act or represent another” or “the
means by which something is done or caused”.

(Shoham 1997):
A software entity which functions continuously and
autonomously in a particular environment, often inhabited by
other agents and processes

(Bradsaw 1997):
An agent that inhabits an environment with other agents and
processes is expected to be able to communicate and
cooperate with them, and perhaps move from place to place
in doing so
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Mobile Agents Model: Advice as a Token

Deterministic finite automata A = 〈S , δ〉:
1 S set of states including start state and halt state
2 δ transition function δ : S × P → S ×M

P = {present, notpresent} (presence of token at a node)
M = {+1, 0,−1} (movement of token towards)

Probabilistic finite automata A = 〈S , δ〉:
1 S set of states including start state and halt state
2 δ transition function δ : S × P → S ×M

P = {present, notpresent} (presence of token at a node)
M = {+1, 0,−1} (movement of token towards)

3 C = {H,T} result of fair coin toss

Mobile agents are essentially mobile (communicating) processes
moving on vertices of a network.
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Rendezvous

Two agents are said to rendezvous if after some finite time
they occupy the same node at the same time.

Interested in
measuring:

How long it takes (number of synchronous time steps)
The memory the agents require (proportional to log(|S |),
where S is the state space)

testing

Possibility/Impossibility of rendezvous.

Rendezvous may not be possible due to parity considerations.
We (sometimes) assume as part of the model that

agents can meet at an edge.
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Is Rendezvous always Possible?

Impossible to rendezvous for two synchronous, identical MAs
even with tokens

A

B

Impossible to rendezvous for two synchronous, identical MAs
without tokens.

A B

However, rendezvous is guaranteed if each MA has an
identical stationary token that it leaves at its respective
starting node! Why?
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Networks

Ring

Deterministic Oriented
k Mobile Agents
Randomized

Torus

Deterministic Oriented
Deterministic Unoriented
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k ≥ 2 Mobile Agents in a Ring of Size n

Several trade-offs possible for k mobile agents12

Memory Time

O(k log n) O(n)

O(log n) O(kn)

O(k log log n) O( n log n
log log n )

O(log n) O(n)

O(log k) O(n)

O(log k) O(n log k)

Lets look at O(k log log n) memory bound when k = 2.

p1, . . . , pr are the first r prime numbers s.t.
∏r

i=1 pi > n.

12Flocchini, Kranakis, Krizanc, Santoro, Sawchuk, Multiple Mobile Agent
Rendezvous in a Ring. LATIN 2004, pp. 599-608.
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Algorithm for k = 2

1. Release the token. /*Let d be the inter-token distance*/
2. Set m = p1.
3. Choose a direction and begin travelling around the ring.
4. Count the number of steps, modm, to the first token, δ1,

and continue walking.
5. Count the number of steps, modm, to the second token, δ2.

/* The MA is back at its starting node. */
6. If δ1 mod m = δ2 mod m,

If m = pr , stop. /* Rendezvous is not possible. */
If m < pr , set m = pi+1 and repeat from step 4.

8. If δ1 mod m < δ2 mod m, continue travelling in same direction.
9. Else, reverse direction and continue travelling.

/* If step 8 or 9 is executed, rendezvous occurs

in another d
2 steps.*/
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Algorithm for k = 2: Analysis

By Chinese Remainder Theorem if d ≡ (n − d) mod pi for all
i = 1, . . . , r , then d ≡ (n − d) mod

∏r
i=1 pi .

Algorithm checks d ≡ (n − d) mod pi , for each i . If the
statement is true for all pi , then d = n − d = n

2 and the
algorithm stops since rendezvous is impossible. If
d 6≡ (n − d) mod pi for some pi , however, then d < n

2 .

However,

r∏
i=1

pi ≥
r∏

i=1

i log pi

8
=

r !

8r

r∏
i=1

log pi ≥ r !8−r ≥ 2Ω(r log r)

Therefore r ∈ O( log n
log log n ).

The time complexity of the algorithm, O(rn), is O( n log n
log log n ).
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Rendezvous with Failing Tokens

Several trade-offs possible for rendezvous.13

n is the size of the ring and k is the number of agents.

Tokens Fail Knowledge Time Memory

Never n or k O(n) O(log n)
O(n log k) O(log k)

Upon release n O(n) O(k log n)
k O(k n) O(k log n)

Anytime n O(k n) O(k log n)
k O(k2 n) O(k log n)

Lets look at the case of failure upon release with k known and
assuming that gcd(k ′, n) = 1, for all k ′ ≤ k

13Flocchini, Kranakis, Krizanc, Luccio, Santoro, Sawchuk, Mobile Agents
Rendezvous When Tokens Fail. SIROCCO 2004.
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Algorithm

1 Release the token at the starting node.

2 Choose a direction and start walking.

3 Compute the sequence of 3k inter-token distances i.e., S =
d1, d2, . . . , d3k .

4 Let SR be the reverse of S .

5 Find the shortest aperiodic subsequence Q that starts with
the first element of SR and is repeated such that SR =
Qq + dγ , . . . , d1 where γ < |Q|.

6 Move to MeetingPoint(Q)
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Algorithm: Analysis (1/2)

Let m = k − f be the number of tokens that do not fail.

Let A = δ1, . . . , δm be the sequence of the m inter-token
distances that exist after the f tokens have failed.

Let S(a) be the sequence of 3k inter-token distances
calculated by a given agent a in step 3 of the Algorithm.

Let SR(a) be the reverse of S(a) and AR be the reverse of A.

For all agents, the 3k inter-token distances are of the form

SR(a) = (AR)ρ+dγ , . . . , d1 = (δm, . . . , δ1)ρ+dγ , . . . , d1. (6)

where (AR)ρ is the concatenation of ρ copies of the aperiodic
subsequence AR , + is the concatenation operator, and
dγ , . . . , d1 is a subsequence such that γ < m.

Thus, there exists at least one aperiodic subsequence, namely
AR , that satisfies equation 6. Note that AR is aperiodic
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Algorithm: Analysis (2/2)

If AR is the shortest subsequence that satisfies Equation 6,
the agents discover AR in step 5 of Algorithm. Otherwise, the
agents discover a shorter aperiodic subsequence, Q, that
satisfies Equation 6.

The subsequence discovered in step 5 of Algorithm is unique.
This implies that all the agents identify the same rendezvous
node in the remaining steps of Algorithm and rendezvous
occurs.

Calculating S , the sequence of 3k inter-token distances
requires O(k log n) memory and requires O(kn) time.
Identifying the appropriate subsequence in step 5, determining
the rendezvous node, and walking to the rendezvous node
takes O(kn) time, so the overall time requirement is O(kn).
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Open Problems

Tight bounds not known.

Effect of multiple tokens not well understood.
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Flickering Tokens

Each agent has a flickering token which it releases at its
starting position.14

When A (respectively, B) is traversing the node occupied by
its token it will see the token with probability p and will not
see it with probability 1− p.

A B

p p

d

n−d

14Kirousis, Kranakis, Krizanc, Rendezvous with Flickering Tokens, 2010.
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Flickering Tokens Algorithm

The mobile agents run the following algorithm:

Double Token Algorithm (DTA):
1. Leave token at starting position;
2. Repeat until rendezvous;
3. Choose a direction and walk on the nodes of the ring;
4. If you see token then change direction;
5. else stay in same direction.
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Flickering Tokens

Theorem: The expected time until rendezvous for DTA is at
most

n

4p(1− p)
+

n

4
if the initial MA distance is d = n/2,

1 + p(1− p)

p(1− p)
(n − d) if the initial MA distance is d < n/2.
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Open Problems

Tighten the constants.

Is there any intersting Time/Memory tradeoff?

Is there any advantage in introducing “Waiting Search” for
flickering tokens on a ring?

Similar tradeoffs for other networks?
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Randomized Rendezvous on a Ring

Polynomial time rendezvous is possible on any network using
the theory of random walks.

Therefore two agents on an n node ring can rendezvous in
O(n2) time with a random walk.

The number of states required is O(1) - essentially memoryless

Can we do better using more memory?
Algorithm Time Memory RandBits

RandWalk O(n2) O(1) O(n2)

RandWalk with Tokens O(n) O(1) O(1)

Coin Half-Tour O(n) O(log n) O(1)

Approximate Counting O(n) O(log log n) O(n)
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Random Walk with Tokens (1/2)

How can tokens and randomization be combined?

Two MAs have memory O(1) and know neither n nor d .

Algorithm: Random Walk with Tokens
1 Release the token.
2 Set count = 0.
3 Choose a direction and walk until a token is reached.
4 At the token, set count = count + 1.
5 If count mod 2 = 0, change direction with probability

0 ≤ p ≤ 1.
6 Otherwise, maintain the same direction.
7 Walk to the next token.
8 Repeat from step 4 until rendezvous occurs.
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Random Walk with Tokens (2/2)

The expected number of rounds is

∞∑
i=1

(2p(1− p))(1− 2p(1− p))i−1i =
1

(2p(1− p))
.

All but the final round take time n.

Once the MAs are travelling in opposite directions on the ring,
the expected time to rendezvous is n

2 . Thus the total
expected time to rendezvous is

n

(
1

2p(1− p)
− 1

)
+

n

2
=

n(1− p(1− p))

2p(1− p)

which is O(n). The expected time is minimized when p = 1
2 .

Theorem Two agents with O(1) memory each, starting at an
even distance d ≤ n/2 on an even n node synchronous and
unoriented ring and carrying one stationary token each can
rendezvous in O(n) expected time.
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Randomized Rendezvous

Consider an oriented ring of size n and two mobile agents A,B at
distance d from each other (see Figure 1). Further assume that
d ≤ n − d .

A B

p pa b

d

Figure: Two mobile agents at distance d in an oriented ring with n nodes.
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If you Know the Distance

Assume the two MAs know the distance d . The precise algorithm
for A is as follows (a similar algorithm is executed for B).

Algorithm for mobile agent A:
1. Repeat until rendezvous.
2. A with probability pa takes dd/2e steps to the right;

if you do not meet other MA go back to original position;
3. A with probability 1− pa takes dd/2e steps to the left;

if you do not meet other MA go back to original position;

Let X be the random variable that counts the number of trials
until success. This is a geometric distribution with probability of
success pa(1− pb). It follows that the algorithm requires O(log d)

memory, O
(

1
p(1−p)

)
random bits, and time O

(
d

p(1−p)

)
.
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Incremental Step Algorithm

Assume the two MAs do not know the distance d .

Algorithm for mobile agent A:
1. For r = 1 until rendezvous do;
2. A with probability pa takes r steps to the right;

if you do not meet other MA go back to original position;
3. A with probability 1− pa takes r steps to the left;

if you do not meet other MA go back to original position;

Let X be the random variable that counts the number of steps
until rendezvous. At the k-th trial it takes time 2k for the mobile
agents to explore and return to their original position, in which
case the total running time is 2 multiplied by

1 + 2 + · · ·+
(
dd/2e+

⌈
1

pa(1− pb)

⌉)
.

Expected # of random bits is O(n), the expected running time is

O

((
d + 1

pa(1−pb)

)2
)

, and the expected memory O(log n).
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Coin Half Tour Algorithm (Alpern)

Repeat the following until rendezvous occurs:

1 Flip a fair coin;
1 if H then D = left,
2 else D = right.

2 Proceed in direction D for n/2 steps.

Probability of success on each phase equals 1/2 implies
expected time to rendezvous is O(n)

Requires an automaton with n/2 states, i.e., Θ(log n) memory

Is this optimal?
Can we achieve linear time rendezvous with less memory?
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Randomized Rendezvous Algorithm on the Ring

Theorem: Θ(log log n) bits of memory are necessary and sufficient
to achieve rendezvous in linear time on an n node ring.

Repeat the following until rendezvous occurs:15

1 Flip a fair coin;

1 if H then D = left,
2 else D = right.

2 Proceed in direction D flipping coin at each step until t Hs in
a row observed.

Essentially Coin Half Tour where half tour is replaced by a
walk of expected length 2t .

Can be implemented with 2t states.

Let m iterations of repeat loop in algorithm be called a round.

15Kranakis, Krizanc, Morin, Randomized Rendez-Vous with Limited Memory.
ACM TALG, 2011.
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Martingales

Q1,Q2, . . . is a martingale wrt X1,X2, . . . if for all i ,
E [|Qi |] <∞ and Qi = E [Qi+1|X1, . . . ,Xi ]
If Q1,Q2, . . . is a martingale with respect to X1,X2, . . . and T
is a stopping time for X1,X2, . . . then E [QT ] = E [Q1]
provided that at least one of the following holds:

1 Qi is uniformly bounded for all i ≤ T ,
2 T is bounded, or
3 E [T ] <∞ and ∃M <∞ s.t. E [|Qi+1 − Qi ||X1, . . . ,Xi ] < M

For example,

Qi =

 i∑
j=1

(Xj − E [X ])

2

− i · Var(X )

is a martingale with respect to X = X1,X2, . . . (i.i.d.s), and

var

(
T∑

i=1

Xi

)
= E [T ]var(X )
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Upper Bound Analysis

We show, with constant probability, distance travelled by an
agent in a round is at least β2t√m for some constant β > 0.

Set m =
⌈

n2

β222t

⌉
≤ 1 + n2

β222t . For any given round, the

probability the agents will rendezvous is constant.

Using the above plus the observation that the rounds are
independent and the sum of their lengths form a martingale

Qi =

 i∑
j=1

(Xj − E [X ]

2

− i · Var(X )

with X = X1,X2, . . . i.i.d., for which we can take as a stopping
time the first round in which the agents rendezvous we get:

Theorem: Algorithm achieves rendezvous on an n-node ring
in expected time O(n2/2t + 2t) and uses at most 2t states.
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Lower Bound Analysis

A finite automata is well-behaved if its corresponding graph is
strongly-connected. For well-behaved automata we define a
round as the steps between consecutive visits to the start
state. A well-behaved automata is unbiased if the expected
distance it travels in a round is 0.

For any t state automata that achieves rendezvous in
expected R steps there exists a well-behaved unbiased
automata with 2t states that achieves rendezvous in less than
expected 2R steps.

The expected rendezvous time for any t-state well-behaved
unbiased automata is Ω(n2/2t). From the above we conclude:

Theorem: Any t/2 state rendezvous algorithm has expected
rendezvous time Ω(n2/2t).
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Open Questions

Case of multiple agents in the ring.

Other topologies.

Random walks with advice.
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Some Subtle Observations

Deterministic rendezvous may not have a solution, e.g.,
symmetric cases

Deterministic rendezvous has a solution when n is odd.

Question

Can the agents determine whether or not the rendezvous
problem has a solution?
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Token/Memory/Time Tradeoffs

RV: rendezvous without detection
Agents know that the rendezvous problem has a solution
either for the given system configuration or regardless of the
system configuration and they just want to accomplish
rendezvous at a node of the ring in, say, minimum number of
steps

RVD: rendezvous with detection
We are also interested in the halting problem for rendezvous.
I.e., an algorithm that detects feasibility of a solution for all
starting positions after a finite number of steps (usually
dependent either on their distance or the size of the network).
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Algorithm for Rendezvous with Detection (RVD)

Algorithm Two-Tokens.

1 Drop 1st token at your home base and 2nd token to node
located to the right.

2 repeat

3 Travel right and move every second token you meet one
position to the right.

4 until agent detects two tokens on top of each other.

5 if two tokens are found on top of each other go around
and check if other two tokens are also on top of each other.

6 if yes then rendezvous is not possible else agent waits
at last position.

7 endif

8 endif
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Rendezvous with Detection (RVD)

Theorem: RVD is solvable in a unidirectional ring for two
mobile agents with constant memory and two
indistinguishable tokens each, in time O(n2).

Theorem: Neither the rendezvous problem (RV) nor
rendezvous with detection (RVD) is solvable for two identical
mobile agents having constant memory and one token each in
a unidirectional ring.

Theorem: Rendezvous with detection (RVD) is not solvable
for two identical mobile agents having constant memory and
one token each in a bidirectional ring.

Theorem: The rendezvous problem (RV) for two mobile
agents having constant memory and two tokens each require
Ω(n2) time in a bidirectional ring of size n.

E. Kranakis Carleton University School of Computer Science Ottawa, Ontario, K1S 5B6, CanadaRendezvous Search with Mobile Agents: How good is the Advice?



Rendezvous with Detection

Time bounds for two mobile agents with constant memory to
detect if rendezvous is possible (RVD) and to rendezvous
when input is asymmetric (RV) on an n node synchronous
uni-, bi-directional ring with one or two tokens.16

Conditions Time Required for

# Tokens # Directions RVD RV
1 1 ∞ ∞
1 2 ∞ Θ(n2)

2 1 Θ(n2) Θ(n2)

2 2 Θ(n2) Θ(n2)

16Czyzowicz, Dobrev, Kranakis, Krizanc, The Power of Tokens: Rendezvous
and Symmetry Detection for two Mobile Agents in a Ring. SOFSEM 2008.
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Multiple Tokens (1/2)

Algorithm
1 Just go around and every time increase the base by t;
2 Skip first token of the base, then walk until the second token is

found, pick it up and keep picking up until you have t − 1
tokens in hand17, and then just lay them down one after
another.

3 Stop the whole thing and verify if you find the next base while
laying the tokens of your base.

Theorem: The rendezvous problem (RV) for two mobile
agents having constant memory and t tokens each requires
Ω(n2/t) time in an unidirectional ring of size n. Moreover,
there is an algorithm achieving this bound.

17if you cannot count to t, just have the tokens next to each other, the first
empty space means end-of-base
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Multiple Tokens (2/2)

Consider a synchronous ring with n nodes and two mobile agents
located at two nodes of a bidirectional ring.18

Theorem: Rendezvous with detection (RVD) is solvable for
two mobile agents having t ≥ 3 tokens and O(log t) bits of
memory each in time O(mn), where m is the smallest integer
such that

(m−1
t−2

)
≥ n − 1.

Theorem: Rendezvous with detection (RVD) is solvable for
two mobile agents having t > 2 tokens and memory O(log t)

each, in time O(n
t−1
t−2 t) in a bidirectional ring. Moreover, if

t = log n then it takes time O(n log n).

18Czyzowicz, Dobrev, Kranakis, Krizanc, The Power of Tokens: Rendezvous
and Symmetry Detection for two Mobile Agents in a Ring. SOFSEM 2008.
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Open Problems

We are lacking general non-trivial lower bounds for t ≥ 3
tokens.

Can we derive sharp upper and lower bounds for t tokens?

Another problem concerns whether t tokens are really more
powerful than t − 1 tokens.

It would also be interesting to look at rendezvous with
detection for more than two mobile agents, and also consider
the case where no synchrony is assumed.
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Oriented n × n Torus

Rendevous in an Oriented Torus19

# Tokens Token-Type Memory Time

O(1) Unmovable o(log n) ∞
1 Movable o(log n) ∞
1 Unmovable O(log n) RVD
2 Movable O(1) RVD

19Kranakis, Krizanc, Markou, Mobile Agent Rendezvous in a Synchronous
Torus. In DAM 159 (2011) 896-923.
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Open Problems

Are the results tight?

What about the

multidimensional torus?
hypercube?

What is the Memory/# Tokens Tradeoff for RVD?
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