Boundary Patrolling Problems

E. Kranakis
Carleton University
School of Computer Science
Ottawa, Ontario, K1S 5B6, Canada

October 25, 2012

Outline

- Boundary Patrolling
 - Motivation
 - Problem
 - Setting
 - Related Work
 - Our Results
- Different Max Speeds
 - Related Problems
- Identical Speeds
 - Fragmented Terrains
- Conclusion

Boundary Patrolling Problems

Boundary Patrolling

Motivation

Patrolling problems in computer games

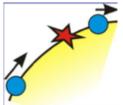
Safeguard a given region/domain/territory from enemy invasions.

Patrolling problems in robotics

 Patrolling is defined as the perpetual process of walking around an area in order to protect or supervise it.

Problem

- A set of k mobile agents are placed on the boundary of a terrain.
- An intruder attempts to penetrate to the interior of the terrain through a point of the boundary, unknown to and unseen by the agents.
- The intrusion requires some period of time t.



 The agents are required to protect the boundary, arriving before the intrusion is complete.

Setting

- Each agent i has its own predefined maximal speed v_i , for $1, 2, \ldots, k$.
- Agents are deployed on the boundary and programmed to move around the boundary, without exceeding their maximum speed.

• Question:

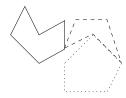
for given speeds $\{v_1, v_2, \dots, v_k\}$ and time τ , does there exist a deployment of agents which protects the boundary from any intruder with intrusion time not exceeding τ ?

Efficiency

- How do you optimize the frequency of visits to the points of the environment?
- Idleness (or refresh time)
 is the time elapsed since the last visit of the node.
 - Idleness can be average, worst-case, experimentally verified, etc,...
- In a way, given the input parameters you want to know what is the best effort result you can accomplish!

Patrolling Strategies

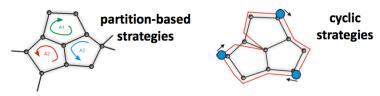
 The patrolled environment can usually be approximated by some form of graph (skeletonization).



 A skeleton of the environment is defined over which patrolling is being conducted by the robots.

Related Work: Mostly Heuristics

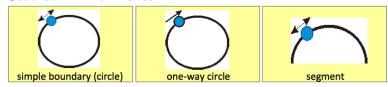
- Heuristics
 - Based on variants of TSP for agents with limited resources [survey - Almeida et al. 2004]
- No coordination reasonable only for very simple agents
 - Many random walks have smaller refresh time than one [Alon et al. 2008, Elsaesser-Sauerwald 2009]
- **Centralized coordination** two main types of heuristics [Chevaleyre 2004]



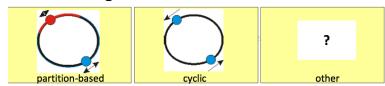
- Distributed coordination using local information exchange
 - tokens, pebbles, white boards, ant/swarm algorithms [Yanovski et al. 2001, Elor-Bruckstein 2010]

Results

- **Goal:** minimize maximal idle time for a set of boundary patrolling robots with distinct maximal speeds (v_1, v_2, \ldots, v_k)
- Studied Environments



Studied Strategies



Traversal Algorithm

- The position of agent a_i at time $t \in [0, \infty)$ is described by the continuous function $a_i(t)$.
- Hence respecting the maximal speed v_i of agent a_i means that for each real value $t \geq 0$ and $\epsilon > 0$, s.t., $\epsilon v_i < 1/2$, the following condition is true

$$dist(a_i(t), a_i(t+\epsilon)) \le v_i \cdot \epsilon$$
 (1)

where $dist(a_i(t), a_i(t + \epsilon))$ denotes the distance along the cycle between the positions of agent a_i at times t and $t + \epsilon$.

Definition (Traversal Algorithm)

A traversal algorithm on the cycle for k mobile agents is a k-tuple $\mathcal{A} = (a_1(t), a_2(t), \ldots, a_k(t))$ which satisfies Inequality (1), for all $i = 1, 2, \ldots, k$.

Idle Time

Definition (Idle time)

Let A be a traversal algorithm for a system of k mobile agents traversing the perimeter of a circle with the circumference 1.

- **1** The idle time induced by \mathcal{A} at a point x of the circle, denoted by $I_{\mathcal{A}}(x)$, is the infimum over positive reals T>0 such that for each $K\geq 0$ there exists $1\leq i\leq k$ and $t\in [K,K+T]$ such that $a_i(t)=x$.
- ② The idle time of the system of k mobile agents induced by \mathcal{A} is defined by $I_{\mathcal{A}} = \sup_{x \in \mathcal{C}} I_{\mathcal{A}}(x)$, the supremum taken over all points of the circle.
- **3** Finally, the idle time, denoted by I_{opt} , of the system of k mobile agents is defined by $I_{opt} = \inf_{\mathcal{A}} I_{\mathcal{A}}$, the infimum taken over all traversal algorithms \mathcal{A} .

Approach and Methodology

- Domain being traversed by the robots.
 - partition
 - decomposition
- Visualizing the movement of the robots
 - Using the classical concept of Distance Line Graphs: E. J. Marey. La méthode graphique. 1878.
 - The horizontal axis represents time and the vertical axis refers to the position of the corresponding agent on the circle (with 0 and 1 representing the same point).
- Proofs often elaborate.

Three Algorithms

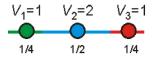
- Algorithm 1. Proportional Partition
 - Suitable for Segments
- Algorithm 2. Uniform-Cyclic
 - Suitable for Cycles
- Algorithm 3: Hybrid
 - Combination of the above

Partition-Based Strategies

Algorithm 1. Proportional Partition

for k agents with maximal speeds (v_1, v_2, \ldots, v_k)

1 Partition the unit segment into k segments, such that the length of the i-th segment s_i equals $\frac{v_i}{v_1+v_2+\cdots+v_k}$.



- 2 For each i, place the i-th agent at any point of segment s_i .
- **③** For each i, the i-th agent moves perpetually at maximal speed, alternately visiting both endpoints of s_i .

Idle time of algorithm Proportional Partition

On unit-length segment or circle, algorithm achieves idle time:

$$I=\frac{2}{v_1+v_2+\cdots+v_k}.$$

 The idle time of any strategy on the unit-length segment or circle is bounded from below by:

$$I_{OPT} \geq \frac{1}{v_1 + v_2 + \dots + v_k}.$$

Performance

- In general,
 Proportional-Partition is a 2-approx strategy.
- On the circle there are some configurations for which the approximation ratio of 2 is tight.
- On the segment
 - **Theorem.** Proportional-Partition is optimal for 2 agents, for any v_1, v_2 .
 - Conjecture. Theorem generalizes to any number of agents.

Performance

- In general,
 Proportional-Partition is a 2-approx strategy.
- On the circle there are some configurations for which the approximation ratio of 2 is tight.
- On the segment
 - **Theorem.** Proportional-Partition is optimal for 2 agents, for any v_1, v_2 .
 - Conjecture. Theorem generalizes to any number of agents.

Status of the Conjecture on a Segment

- Recall the conjecture that the maximum length of the fence that can be patrolled is $(v_1 + \cdots + v_k)/2$, which is achieved by the simple strategy where each agent i moves back and forth in a segment of length $v_i/2$.
- Akitoshi Kawamura and Yusuke Kobayashi, Fence patrolling by mobile agents with distinct speeds, ISAAC 2012 (to appear) prove
 - The conjecture is true for k = 3 robots.
 - The conjecture is false for k = 6 robots.
- **NB** Nothing known for k = 4, 5 and k > 6.

Cyclic Strategies

- **Goal:** deploy (some of) the robots, all moving around the circle at the same speed, with equal spacing.
- Algorithm 2. Uniform-Cyclic for k agents with maximal speeds $(v_1, v_2, ..., v_k)$ on the circle
- Let $v_1 \geq v_2 \geq \cdots \geq v_k$.
 - **1** Choose r from the range 1..k, so as to maximize: rv_r
 - ② Place agents 1, 2, ..., r at equal distances of 1/r around the circle.
 - **3** Agents 1, 2, ..., r move perpetually counterclockwise around the circle at speed v_r .
 - Agents r + 1, r + 2, ..., k are not used by the algorithm.
- NB Can employ this algorithm in either uni-directional or bi-directional circle.

Idle time of algorithm Uniform Cyclic

- Algorithm Uniform-Cyclic achieves idle time: $I = \frac{1}{\max_r r v r}$.
- Since $I_{OPT} \ge \frac{1}{v_1 + v_2 + \dots + v_k}$, in general, Uniform-Cyclic is a (In k+1)-approximation strategy.
- On the bi-directional circle...
 - **Theorem.** Uniform-Cyclic is optimal for k = 2 agents, for any v_1, v_2 .
 - **Note:** Uniform-Cyclic is sometimes not optimal for $k \ge 3$.

On the uni-directional circle...

- **Theorem.** Uniform-Cyclic is optimal for $k \le 4$ agents, for any set of max. speeds.
- Conjecture. The theorem generalizes to any number of agents.

Proof Outline for k = 3 (1/2)

- Theorem. On the uni-directional circle, algorithm Uniform-Cyclic is optimal for k ≤ 4 agents, for any set of max. speeds.
- Proof for k=3
- Let $v_1 \ge v_2 \ge v_3$
- Fix an arbitrary point x of the circle.
- Consider the infinite sequence of visits to point x by different agents.
- Define patterns as substrings of this sequence, e.g.:
 - [1, 3, 1] point x is visited by agent 1, next by agent 3, next by agent 1 again.
 - [2, (13)] point x is visited by agent 2, next by agents 1 and 3 (meeting at x).

Proof Outline for k = 3 (2/2)

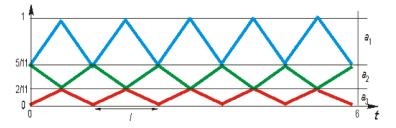
- Consider forbidden patterns: patterns which cannot appear in any strategy which has smaller idle time than algorithm Uniform-Cyclic.
 - E.g.: [3,1,2,3] is a forbidden pattern, since one of the time periods between visits of two successive agents is of duration at least $\frac{1}{3v_3}$.
- All sequences containing the meeting of agents (12) include a forbidden pattern: [(12), 1][(12), 2][1, (12)][2, (12)][3, (12), 3]
- Thus, agents 1 and 2 can never meet in a better strategy.
- Likewise, we show that no pair of agents can ever meet, and in the limit, the idle time of Uniform-Cyclic cannot be beaten.

Three Case Studies

- Can the ability of agents to change directions improve the idle time?
 - We have shown that this is not the case for any setting involving k = 2 agents.
 - However, there are settings already for k = 3 agents, when using negative speeds by the participating agents leads to a better idle time.
- Three Case Studies
 - Proportional Partition Algorithm
 - Uniform Cyclic Algorithm
 - Hybrid Algorithm

Case Study: Proportional Partition

- Horizontal axis represents time; vertical axis refers to the position of the corresponding agent on the circle (with 0 and 1 representing the same point)
- Two-directional circle, $k = 3, v_1 = 1, v_2 = 1/2, v_3 = 1/3$

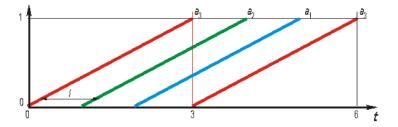


• Proportional-Partition Algorithm:

$$I = \frac{1}{1 + 1/2 + 1/3} = \frac{12}{11}$$

Case Study: Uniform

- Horizontal axis represents time; vertical axis refers to the position of the corresponding agent on the circle (with 0 and 1 representing the same point)
- Two-directional circle, $k = 3, v_1 = 1, v_2 = 1/2, v_3 = 1/3$

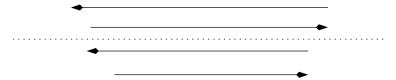


Uniform-Cyclic:

$$I=1$$

Is There a Better Strategy?

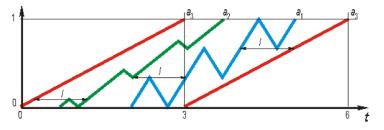
- A "partition" strategy may not necessarily be optimal.
- Instead robots are allocated "overlapping" subdomains dynamically.
- In the picture below



by reversing direction, a faster robot can help a slower moving robot reduce the idle time.

Case Study: Hybrid

- Horizontal axis represents time; vertical axis refers to the position of the corresponding agent on the circle (with 0 and 1 representing the same point)
- There exist settings such that in order to achieve the optimal idle time, some agents need to move in both directions.
- two-directional circle, $k = 3, v_1 = 1, v_2 = 1/2, v_3 = 1/3$



A hybrid strategy:

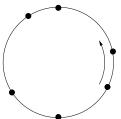
$$I = 35/36 < 1$$

Lonely Runners Problem

Lonely Runners

Similarities to Lonely Runner (Willis 1967)

- **Problem** There are k runners on a unit circle, running perpetually around with **constant** speeds $\{v_1, v_2, \dots, v_k\}$.
- They all start together from the same starting spot and continue running at their own speed forever.
- They never vary their speeds, stop, or interfere with each other.



• **Question:** Is it always true that for every runner, at some moment in time, their distance from the nearest runner will be at least 1/k?

Progress?

- 40 years of incremental progress.
- Solved for k < 6.

k	Year Proved	Proved by
3	1972	Betke and Wills; Cusick
4	1984	Cusick and Pomerance; Bienia et al.
5	2001	Bohman, Holzman, Kleitman; Renault
6	2008	Barajas and Serra

- Problem difficult even for specific speeds.
- Some very recent progress using dynamic systems theory.
- Problem related to Diophantine approximation theory (Littlewood's conjecture) and number theory (Goldbach's and Polignac's conjectures).

Example: Runners from the Origin

- k runners start at 0, running at speeds $1, 2, \ldots, k$.
- Question: Will there be a time when each runner will be distance at least ²/_k from the start?
- **Claim:** With positive probability there will be no runners in the interval I = [-a, a], for some a.
 - Let E_i be the event that the *i*-th runner is in the interval I.
 - Since cycle has length one and a runner with speed i performs i laps in a unit of time, $Pr[E_i] = 2a$, for each i.
 - Therefore $\Pr[\exists \text{ (runner in the interval } I)] \leq \sum_{i=1}^{k} 2a = 2ka.$
 - For $a < \frac{1}{2k}$ we derive that

 $Pr[no \ runner \ is \ in \ the \ interval \ I] \ge 1 - 2ka > 0.$

• Recall I has length 2a, which is $\approx \frac{1}{k}$, when $a \approx \frac{1}{2k}$.

Some Open Questions

- One of the main difficulties is that robots get to choose their speeds (up to a max value).
- What is the optimal solution to the boundary patrolling problem on the circle for agents with known maximal speeds?
 - solved for k < 2.
- Is a Proportional-Partition strategy optimal on the segment?
 - proved for $k \le 2$.
- Is Uniform-Cyclic strategy optimal on uni-directional cycle?
 - proved for $k \le 4$.
- Which strategies will work best for patroling problems in geometric scenarios (area patrolling) and in graphs?
- How about fragmented domains?

References

- J. Czyzowicz, L. Gasieniec. A. Kosowski, E. Kranakis.
 Boundary Patrolling by Mobile Agents with Distinct Maximal Speeds. In proceedings of 19th European Symposium on Algorithms (ESA'11), Saarbruecken, Germany, September 05-07, 2011.
- A. Collins, J. Czyzowicz, L. Gasieniec, A. Kosowski, E. Kranakis, D. Krizanc, R. Martin, O. Morales Ponce. Optimal Patrolling of Fragmented Boundaries. To appear.