Building a Computerized Story Book Reader
Wilf LaLonde and John Pugh
Introduction
Speech is becoming more important as compute power increases and research contributes solutions that work. There are two aspects to speech that is of interest to application developers: speech generation and speech understanding. Speech generation is the easy half and has been available for quite some time. Speech understanding is substantially more difficult but it is making inroads. In this column, we’ll make use of speech generation. In the next column, we’ll try speech understanding.

More specifically, we will implement an IBM VisualAge application that makes use of text to speech software called Monologue from First Byte that came bundled with a Sound Blaster 16 card. The application we have in mind is a computer substitute for reading bedtime stories to your kids. The application (see Figure 1) contains a file menu entry that can be used to open a file which is displayed in a text pane. To control the computerized reading of the file contents, three buttons are provided: start, restart, and stop.
Development Preamble
When we first developed this application, we built a special pool dictionary containing the names of the external C DLL functions associated with the text to speech software. One of the functions provided, for example, was “Say”. We called this pool dictionary FirstByteMonologueFunctions and initialized the “Say” entry as follows:

	FirstByteMonologueFunctions
		at: #'Say'
		put: (PlatformFunction
			callingConvention: #pascal16
 			function: 'Say'
 			library: 'FB_SPCH.DLL'
 			parameterTypes: #(#int32 #pointer)
 			returnType: #int16)

Subsequently, it was possible to call this function in a method whose class referenced the pool dictionary as follows:

		Say
			callWith: parameter1
			with: parameter2
			 …

Unfortunately, the approach turned out to be totally unfeasible when we started work on the speech recognition component because there were simply too many functions to tap into. We had to automate the process. So we build a “setup” application that could be used to create a FirstByteMonologuePackage and an IBMVoiceTypePackage that would contain the API specific dictionaries. These packages could then serve as prerequisites for our speech generation and recognition packages.
The Speech Setup Package
We designed the speech setup package to contain one application, SetupSpeech, which we created as a visual part using the composition editor. It is really just an elaborate big button application (actually two). The “setup speaker package” button (see Figure 2) creates FirstByteMonologuePackage, which we make use of in this column; the “setup listener package” button creates IBMVoiceTypePackage, which we intend to use in the next Smalltalk column. The SetupSpeech application also contains a progress bar (which isn’t really evident in the figure) and a status bar. To make use of these widgets, we had to load “Windows 95 Controls”. We also loaded “Language Interface, C” to make use of the facility, AbtCLangParser, that can be used to extract information about the API and C structures described in “*.h” files.

Although the application itself is trivial, a fair amount of code (see Listing 1) is needed to automatically generate the two packages. We set up the application so that the two push button #clicked events would trigger the corresponding methods setupSpeakerPackage and setupListenerPackage. These both make use of a generic method that goes through about a dozen steps. The step method is used to indicate the state of the installation in the progress bar. An appropriate status line (one of the sentences in a collection initialized by setupSteps) is also displayed in the status bar at the bottom of the application.

In summary, our setup application proceeds as follows. Step 1 (method setupInstallation) sets up the window title, the progress bar, and the status bar. Step 2 (method previouslySetup) determines if the package was previously set up (if it was, the user must unload the package from his image).

Step 3 (method includeFileFound) prompts the user for a C “.h” file provided by the implementers of the DLL that we wish to connect to (either “monologue.h” or “smapi.h”, depending on which button was clicked). This file (and any other “.h” files that might potentially be included by this initial file) is copied into the Smalltalk working directory (apparently, the C language parser wasn’t designed to work from an arbitrary directory).

Step 4 (method parseIncludeFile) invokes the C language parser on the above mentioned file which creates a table (we called it “nameTable) describing the C structures and function used in the “.h” file.

Step 5 (method buildPackage) actually creates the package programmatically.

Step 6 (method processIncludeFile) extracts the useful information from the name table, stores it into special variables “constants” and “functions”, and creates special Smalltalk classes (OS classes that can read/write information to/from C structures). As it turns out, there aren’t any generated for the speaker package, but a whole host are defined for the listener package.

Step 7 (method buildMethods) creates and compiles a method in the package called loaded (which, in turn, uses two helper methods call loadConstants and loadFunctions) and another method called removing. Method loaded creates and initializes the pool dictionaries for the package and method removing removes the pool dictionary names from the global Smalltalk dictionary. For the speaker package, these pool dictionaries are respectively named FirstByteMonologueConstants and FirstByteMonologueFunctions. Creating the methods was actually quite easy. We built one string that contained all the method source (each method was delimited with “!”) and asked class EmFileOutInterface to file it in. The store string for the two pool dictionaries were plugged into the appropriate spots in the loadConstants and loadFunctions methods using a special built-in string message called bindWithArguments:. It’s a simple message to use

	'	Smalltalk at: #%1 put: (%2) !'
		bindWithArguments: (Array
			with: 'Test' with: 'nil')

is equivalent to writing

	'	Smalltalk at: #Test put: (nil) !'

Step 8 (method initializePackage) executes the newly generated method “loaded” to create the two dictionaries (which is what actually happens when the packaged is loaded; we don’t have any choice as to what to call this method). It also attempts to version the methods and the package.

Step 9 (methods removeIncludeFiles) deletes the include files previously added to the Smalltalk directory in step 3.

Step 10 (methods wrapupInstallation) resets the progress bar and adds a “done” message to the window title.
The Speaker Package
We designed a class called SpeakerEngine (see listing 2), which we placed in a package called SpeakerPackage, which uses FirstByteMonologuePackage as a prerequisite. A user wishing to make use of speech generation has to make an instance of the engine (SpeakerEngine new), tell it to open (anEngine open), make it say one or more statements (anEngine say: aString), and then finally close it when the engine is no longer needed (anEngine close).
The StorybookReader Package
We finally designed our goal application called StorybookReader (see listing 2) which we placed in a package called StorybookReaderPackage. Just like the setup application, it was created visually using the composition editor.

When the storybook reader is opened, an event (#aboutToOpenWidget) is triggered which causes method openReader to execute. This creates an instance of a speaker engine and opens it. When the storybook reader is closed, a corresponding (#closedWidget) event triggers the closeReader method which closes the engine.

As you can see from Figure 1, the storybook reader has a file menu bar entry with an “Open …” submenu. The #clicked event for this item triggers the handler (method openFile:) which prompts the user for a text file. The contents of the file is placed in the text widget and a stream (storyStream) is created to permit later extraction of the text one sentence at a time. Corresponding #clicked handlers (start, restart, and stop) for the buttons initiate or terminate the actual speech generation.

It is method start that actually contains the loop which extracts one sentence at a time and asks the engine to output it. Extracting a sentence is actually done by readABit. The readABit method additionally uses the starting and end positions in the stream to select the spoken text in the text widget (via methods markStart and markEnd). The reason we perform sentence extraction is that the speaker engine does not return control until after it has finished voicing the entire text. There are a number of facilities newly introduced into VisualAge that supposedly permits asynchronous execution of the C APIs. We tried them all and they all hung our application.

Method readABit was initially written with a traditional loop that executed as long as the boolean reading was true. But we found that the Stop button would not react to our clicks until after the loop terminated. Conceptually, it’s easy to understand why. Method readABit is actually executing in response to a #clicked event triggered from either the Start or Restart buttons. The Stop button’s event handler can’t generate a response to its own #clicked event until after the first event handler is finished. In fact, the button won’t even depress until the first handler terminates. To solve this problem, we placed the loop in a block and forked a new process to execute it. In Smalltalk, it’s very easy to do. Simply execute

	[… new process code …] fork

This way, the Start (or Restart) #clicked event handler finishes right away allowing subsequent #clicked events for Stop to be handled. However, this won’t happen unless the newly forked process relinquishes control periodically. So we added the following to the loop.

	Processor yield

This is adequate but it’s still not quite perfect. The Stop button will still not depress while in the middle of a sentence.
Conclusions
We built a very simple application to deal with speech generation. For the text to speech facility we used, all we needed was an open, say, and close facility. More sophisticated facilities with natural sounding speech generating capabilities are available. Presumably, they would be slightly more complex to control but hopefully, not a whole lot more complex.

When we tested our storybook reader the first time, we opened it on the first file that happened to be a text file. This turned out to be an IBM copyright file. After a few sentences of computer generated speech, we clicked on Stop but nothing happened. Even the Smalltalk Cntl-Break key sequence wouldn’t work. The only way to stop it was to kill the entire Smalltalk session. We didn’t want to do that because some of the changes made in the composition editor hadn’t be saved. We walked around the office a few times while the computer droned on and on. Ultimately, we took a short lunch break.
Acknowledgments
We would like to thank Scott Helsby for all the help he provided in developing the software for both this column and the next.

�

Figure 1: Building the Storybook Reader.

�

Figure 2: The Setup Application.

Listing 1 The SetupSpeech class.

class:									SetupSpeech
superclass:							AbtAppBldrView
instance variables:			packagePrefix package domainName 											includeFileName includeFileNames
											nameTable dllName dllType constants
											functions statusLines stepIndex

comment							A visual part

instance methods

setup facilities

setupSpeakerPackage
	self showBusyWhile: [
		self
			setupPackage: #FirstByteMonologue
			domain: #speaker
			includeFile: 'monologue.h'
			dll: 'FB_SPCH'
			type: #'16BitPascal']

setupListenerPackage
	self showBusyCursorWhile: [
		self
			setupPackage: #IBMVoiceType
			domain: #listener
			includeFile: 'smapi.h'
			dll: 'SMAPI'
			type: #'32BitStandard']

setupPackage: packageNamePrefix
domain: packageDomainName
includeFile: fileName
dll: dllFileName
type: dllFileType
	
	packagePrefix := packageNamePrefix.
	domainName := packageDomainName.
	includeFileName := fileName.
	nameTable := nil. "to be filled in later"
	dllName := dllFileName.
	dllType := dllFileType.
	constants := nil. "to be filled in later"
	functions := nil. "to be filled in later"

	self setupInstallation.
	self step. self previouslySetup
		ifTrue: [^self abort: 'Package previously setup'].
	self step. self includeFileFound
		ifFalse: [^self abort: 'Include file not found'].
	self step; parseIncludeFile.
	self step; buildPackage.
	self step; processIncludeFile.
	self step; buildMethods.
	self step; initializePackage.
	self step; removeIncludeFiles.
	self step; wrapupInstallation
	
setup steps

step
	self progressBar
		value: (stepIndex := stepIndex + 1).
	self inform: (statusLines at: stepIndex).
	(Delay forSeconds: 1) wait

setupInstallation
	self window title: 'Installing ', self capitalizedDomainName.
	self setupSteps; setupProgressBar.

setupSteps
	| replacements |
	stepIndex := 0.
	replacements := Array
		with: domainName with: includeFileName.
	statusLines := #(
		'Checking if %1 package already exists'
		'Requesting location of file ''%2'''
		'Processing file ''%2'''
		'Building DLL API functions'
		'Building %1 package'
		'Writing %1 package methods'
		'Initializing %1 package'
		'Final cleanup'
		'All done') collect: [:line |
			line bindWithArguments: replacements].

	

setupProgressBar
	self progressBar
		minimum: 1;
		maximum: statusLines size

previouslySetup
	^Smalltalk includesKey: self packageName

includeFileFound
	| name |
	"The include file can include others."
	name := self getIncludeDirectoryName.
	name isEmpty ifTrue: [^false].
	includeFileNames := self getIncludeFileNames: name.
	includeFileNames do: [:fileName |
		CfsFileDescriptor copy: name, fileName new: fileName].
	^true

parseIncludeFile
	nameTable := AbtCLangParser parseFile: includeFileName.
	dllType == #'16BitPascal'
		ifTrue: [nameTable make16Bit; makePascal]

buildPackage
	Application
		create: self packageName
		with: (Array with: Kernel).
	package := Smalltalk at: self packageName

processIncludeFile
	| className |
	constants := nameTable constants.
	functions := nameTable platformFunctions: dllName.
	nameTable dataStructures
		keysAndValuesDo: [:name :structure |
			className := name asSymbol.
			OSStructure
				subclass: className
				instanceVariableNames: ''
				classVariableNames: ''
				poolDictionaries: ''.

			AbtRecordGenerator new
				generateAllFieldsFrom: structure
				inClass: (Smalltalk at: className)]

buildMethods
	package becomeDefault.
	EmFileOutInterface
		fileInSourceFrom: (ReadStream
			on: self fileInString).

initializePackage
	package loaded.
	self versionAll

removeIncludeFiles
	includeFileNames do: [:fileName |
		CfsFileDescriptor remove: fileName]

wrapupInstallation
	self wrapupProgressBar.
	self window
		title: 'Done installing ', self capitalizedDomainName.

wrapupProgressBar
	self progressBar
		value: self progressBar minimum

setup steps support

packageName
	^(packagePrefix, 'Package') asSymbol

capitalizedDomainName
	^(domainName asString copy
		at: 1 put: domainName first asUppercase;
		yourself), ' Package'

fileInString
	| replacements lines |
	replacements := Array
		with: packagePrefix
		with: constants storeString
		with: functions storeString.
	lines := #(
		'!%1Package class publicMethods !'
		''
		'loadConstants'
		'	Smalltalk at: #%1Constants put: (%2) !'
		''
		'loadFunctions'
		'	Smalltalk at: #%1Functions put: (%3) !'
		''
		'loaded'
		'	self loadConstants; loadFunctions !!'
		''
		'removing'
		'	Smalltalk removeKey: #%1Constants.'
		'	Smalltalk removeKey: #%1Functions !! !!').

	^(lines inject: '' into: [:string :line |
		string, CldtConstants::LineDelimiter, line])
			bindWithArguments: replacements.

getIncludeDirectoryName
	| pathName suffix |
	pathName := self prompter
		title: 'Please locate file ''', includeFileName, '''';
		prompt;
		selectedFileName.
	pathName isEmpty ifTrue: [^''].
	suffix := pathName abrSimpleFilename.
	^pathName copyFrom: 1 to: pathName size - suffix size.

getIncludeFileNames: directoryName
	| fileList names entry fileName |
	fileList := CfsDirectoryDescriptor
		opendir: directoryName
		pattern: '*.h'
		mode: CfsConstants::FREG.
	names := OrderedCollection new.
	[(entry := fileList readdir) notNil] whileTrue: [
		fileName := entry dName.
		names add: fileName].
	^names

inform: message
	self statusBar
		labelString: message

abort: note
	| message |
	message := 'Aborted ... ', note.
	self inform: message.
	CwMessagePrompter errorMessage: message.
	self window title: 'Aborted ',
		self capitalizedDomainName, ' Installation'.
	self wrapupProgressBar

showBusyWhile: aBlock
	"Fork to ensure the status bar updates.
	Also requires disabling to prevent
	additional reactions to clicks while
	not done."
	[
		self window disable.
		System showBusyCursorWhile: [
			aBlock value.
		self window enable]
] fork.

versionAll
	| classes |
	classes := package defined select: [:class |
		self versionClass: class].
	package releaseEachClassIn: classes.
	(classes size = package defined size)
		ifTrue: [
			self versionPackage ifFalse: [
				System message: 'Package unsuccessfully versioned']]
		ifFalse: [
			System message: 'Not all classes successfully versioned']

versionClass: class
	"Returns a boolean."
	| name |
	name := EmInterface current
		availableClassVersionNameFor: class
		in: package.
	(name isNil or: [name isEmpty]) ifTrue: [^false].
	^class versionNameIn: package is: name

versionPackage
	"Returns a boolean."
	| name |
	name := EmInterface current
		availableApplicationVersionNameFor: package.
	(name isNil or: [name isEmpty]) ifTrue: [^false].
	^package versionName: name

widget references

progressBar
	^self subpartNamed: 'Progress Bar'

prompter
	^self subpartNamed: 'File Selection Prompter'

statusBar
	^self subpartNamed: 'Status Bar'
	
window
	^self subpartNamed: 'Window'

Listing 2 The SpeakerEngine class.

class:									SpeakerEngine
superclass:							Object
instance variables:			soundControlBlock
pool dictionaries:				FirstByteMonologueFunctions

comment							A non-visual part.

class methods

examples

example1
	"SpeakerEngine example1"
	| sentences engine |
	engine := SpeakerEngine new.
	sentences := #(
		'A good morning omelette'
		'4 large eggs'
		'a pinch of salt'
		'a little milk'
		'stir and cook over medium heat').
	engine open.
	sentences do: [:sentence | engine say: sentence].
	engine close

instance methods

registering/deregistering

open
	soundControlBlock :=
		OpenSpeech callWith: 0 with: 0 with: 0.

close
	CloseSpeech callWith: soundControlBlock

saying

say: sentence
	Say callWith: soundControlBlock with: sentence asPSZ

Listing 3 The StorybookReader class.

class:									StorybookReader
superclass:							AbtAppBldrView
instance variables:			storyStream speakerEngine reading

comment							A visual part.

instance methods

part referencing

restartButton
	^(self subpartNamed: 'Restart')
startButton
	^(self subpartNamed: 'Start')
stopButton
	^(self subpartNamed: 'Stop')
textPart
	^(self subpartNamed: 'Text Part')

startup/wrapup event handling

openReader
	self prepareForFile.
	speakerEngine := SpeakerEngine new.
	speakerEngine open

closeReader
	speakerEngine close

opening

openFile: fileName
	| fileStream everything |
	fileStream := CfsReadFileStream open: fileName.
	everything := fileStream contents.
	fileStream close.
	storyStream := ReadStream on: everything.
	self textPart string: everything.
	self prepareForStarting

button event handling

start
	[self reading: true.
	self prepareForStopping.
	[self readingInProgress] whileTrue: [
		self readABit.
		Processor yield].
	self prepareForStarting] fork

restart
	storyStream reset.
	self start

stop
	self reading: false.

button enabling/disabling

prepareForFile
	self startButton disable.
	self restartButton disable.
	self stopButton disable.

prepareForStarting
	self startButton enabled: self readingCanContinue.
	self restartButton enable.
	self stopButton disable.

prepareForStopping
	self startButton disable.
	self restartButton disable.
	self stopButton enable.

text reading

reading
	^reading

reading: aBoolean
	reading := aBoolean

readingCanContinue
	^storyStream atEnd not

readingInProgress
	^self reading and: [self readingCanContinue]

specialSuffixEncountered: candidate
	| tail |
	#('Mr.' 'Mrs.' 'Ms.' 'Dr.' 'Sr.' 'Jr.') do: [:suffix |
		candidate size >= suffix size ifTrue: [
			tail := candidate
				copyFrom: candidate size - suffix size + 1
				to: candidate size.
			suffix = tail ifTrue: [^true]]].
	^false

readABit
	| sentence |
	self markStart.
	sentence := self nextSentenceToRead.
	self markEnd.
	speakerEngine say: sentence

nextSentenceToRead
	| candidate |
	candidate := storyStream abrUpToAny: #($. $!! $?).
	storyStream atEnd ifFalse: [
		storyStream skip: -1.
		candidate := candidate copyWith: storyStream next].
	(self longEnoughCandidateSentence: candidate)
		ifTrue: [^candidate]
		ifFalse: [^candidate, self nextSentenceToRead]

longEnoughCandidateSentence: candidate
	storyStream atEnd ifTrue: [^true].
	storyStream peek isSeparator not ifTrue: [^false].
	candidate size < 20 ifTrue: [^false].
	(self specialSuffixEncountered: candidate) ifTrue: [^false].
	^true!

text scrolling

markStart
	self textPart cursorPosition: storyStream position

markEnd
	self textPart
		selectTextFrom: self textPart cursorPosition
		to: storyStream position

� PAGE �4�

