Texture Wrappers: An Exercise in Micro Design
Wilf LaLonde and John Pugh
Introduction
I need to develop a TextureWrapper class for use in automatically generating texture coordinates and I need your help. There are a number of issues that I can’t resolve. Just discussing them with someone else is sure to help. Let me introduce the problem first and then I’ll come back to the unresolved issues.
Texture Mapping: What It Is

In the real-time 3D world, complex objects are generally modeled by decomposing them into planar polygons and associating a bitmap (called a texture) with the polygon. A renderer is used to draw the polygon with the proper perspective (see Figure 1) to give it a professional 3D look. To do this, texture coordinates are associated with 3D points of the polygon and stored as 5-component objects [x,y,z,tx,ty].
�
	Figure 1 Polygons need to be rendered with textures in proper perspective to look realistic.

In general, bitmaps come in arbitrary sizes and shapes. So it’s convenient to use texture coordinates that are size independent. One way is to use coordinate values that range from 0 to 1 as shown in Figure 2. If a texture extent is 32@64, a texture coordinate such as [tx,ty] = [0.33,0.5] can easily be mapped by the renderer to real coordinates using [tx,ty]*[32,64] = [0.33*32,0.5*64] which once truncated simplified to [10,32].
�
	Figure 2 Texture coordinates in the range 0 to 1 are bitmap-size independent.

In general, texture coordinates don’t need to be in the range 0 to 1 if the ultimate values are truncated to that range. The consequence of that, illustrated in Figure 3, is that textures can be tiled to create repetitive patterns or cropped to extract only a very small portion of the bitmap.
�
Figure 3 Results of mapping specific texture coordinate values to the polygon top left and bottom right.

When the polygons are rectangles, it’s easy to choose the texture coordinates by inspection. But when an arbitrary polygon is presented, it is much more difficult. For example, consider Figure 4. How do we choose the texture coordinates so that we get the same type of coverage that we would get if the polygon were rectangular? Also, the polygon points are in 3D space, not 2D space.

�
Figure 4 Texture coordinates for non-rectangular polygons are much harder to compute.

It’s all pretty complex but there are solutions. In essence, we have to compute the extremal points of the polygon and use those points to determine suitable 3D points to play the role of the origin, u, and v axes for the texture. Then we can construct a transformation (a 4 by 4 matrix) which when applied to the 3D points gives us the corresponding 2D texture points. This is call a planar wrap. Other well known but more sophisticated wraps are spherical wraps and cylindrical wraps which are meant to be applied to an entire object. The word “wrap” is used to suggest that we are physically wrapping an object by newly computed texture coordinates.
Micro Design Issues

With time and care, I’m sure I can develop the detailed Smalltalk code needed to implement the three different kinds of wraps and perhaps even interesting variations. I can imagine an Object3D class that maintains a collection of Face3D objects which in turn manages one instance each of Polygon3D and Texture. I can also postulate a RenderingPoint class, a Transformation4D class, and a Plane3D class. Although we didn’t use exactly those names, variations of those classes were presented in two OpenGL articles we did more than three years ago. In any event, classes such as the above can easily be created once we bone up on 3D graphics.

What I want to be able to do now is create a TextureWrapper class (or a group of classes) that can be used to apply wraps either to an object (and hence an entire collection of faces at once) or to an individual face. I also want to be able to edit each wrapped object or face to scale, rotate, and translate the resulting wrap that I get automatically. This isn’t hard to do. All that is needed is an “editing” transformation that pre-translates the original points before giving them to the wrapping algorithm.

The micro design issues that I need to resolve are much more mundane than the above complicated 3D notions. They are the kind of issues that any Smalltalk programmer ought to be able to resolve.

Micro Issue 1: Who Maintains The Wrapper?

Is it a 3D object’s responsibility to maintain a wrapper, or is it the responsibility of a 3D face, or both? I presume the answer “neither” is not a suitable response if we want to permit editing operations. With only 3 types of texture wrappers, we might be able to deduce which wrapper had to have been used but this deduction won’t be so obvious if 10 different kinds of wrappers are provided or if the texture wrapping objects are heavily parameterized. I’m assuming that a texture wrapper doesn’t need much space; so it’s worth keeping the texture wrapping object around. To determine whether a face or a 3D object should hold the wrapper, consider this scenario. Given have a vase to which I apply a cylindrical wrap, I might want to pick a face on one side to place a flat logo on it. Consequently, I might want to discard the texture coordinates generated by the object’s wrapper and create a new set via a planar wrapper. I will need to store this wrapper in the face in order to be able to edit it later. So it looks like both kinds of objects need to keep track of a wrapper. Mmm! I’m still not sure about this but let’s go with this decision for now.
Micro Issue 2: Does the Wrapper Keep Track of the Object or Face?
Is there a need for the wrapper to keep track of the object it is wrapping? If it does, then after we change it’s editing transformation, we could easily force all relevant texture coordinates to be recomputed by executing something like

aWrapper wrap

But clearly, the code for the wrapper must then depend on whether it is wrapping a 3D object or a face (let’s call it its client). If it’s not object-oriented, the wrap method will be implemented something like “if it’s a 3D object, do one thing; otherwise, do another” but if it is object-oriented, it will merely say “self client wrap”. There is no need to pass itself as a parameter since the client keeps track of its own wrapper.

But if we are modifying a texture wrapper, it will be in some editor subsequent to selecting an object or a face that we want to edit. Given a 3D object (or face) and the wrapper it contains, we have all the information needed to make the changes. I guess that means the wrapper has no need to keep track of the 3D object or face.
Micro Issue 3: Do We Need a Null Wrapper?
If applying a wrap to an object means computing the texture coordinates for all of the faces, what do we do for a face that has a wrapper of its own? I presume we use the face’s wrapper if it has one and the object’s wrapper otherwise. In Smalltalk terms, testing if a face has a wrapper could mean testing for nil. Alternatively, it could mean testing for a special kind of wrapper, say called a null wrapper (assuming we invent such a thing). Are these two alternatives simply equivalent implementation techniques? Or are we masking a third possibility?

Some modelers give us the ability to create complex polygonal objects and also provide facilities to wrap the objects with texture coordinates. When we consider a particular face, 3 possibilities now come to mind: (1) leave the existing texture coordinates alone, (2) recompute them using the object’s wrapper, and (3) recompute them using the face’s wrapper.

Do we decide that a null wrapper means “do nothing,” a nil wrapper implies “use the object’s wrapper,” and any other wrapper means “use it directly?” Given the existence of a null wrapper, this is equivalent to the simpler notion: the face’s wrapper is used if there is one; otherwise the object’s wrapper is used.

I’m not entirely pleased with this solution because there are other possibilities. For example, we could introduce a special “inherit from object” wrapper as the alternative to nil. But then we have to decide if this wrapper keeps track of the parent object. Or should faces keep track of their parent objects? In the simple design I had in mind, 3D objects kept track of their faces but not the other way around. This feels too complicated?

Maybe the better solution is to require that only faces maintain a wrapper. But this would imply that we have to be very careful about wrapper identities. If an object has ten faces, we need to ensure that all ten faces reference the same spherical wrapper (for example). This way, changing one wrapper’s editing transformation will affect all ten faces. This can be made to work but we have to be very careful. It is also more general than the original design. For example, it does permit us to use a spherical wrapper for half the faces, a cylindrical wrapper for most of the other half, and a planar map for one specific face. It also allows us to use two different spherical wrappers for different subsets of the faces. Mmm! I’m not so sure anymore. This micro-design approach does have it’s attractiveness.
Micro Issue 4: Dynamically changing Wrappers or What’s an Algorithm?
In an editing environment, users are likely to try out several different wrapping algorithms before they settle on one. If there is no sharing of wrapper objects, it is a simple matter to replace one wrapper by another using a set method and rewrap the object (whatever it might be). If wrappers are shared (a possibility we considered above), we have to find all references to the original wrapper and replace them all (which is not all that difficult to do in a traditional way if the editor is keeping track of all 3D objects and faces). An even simpler solution which is available only to Smalltalk is to mutate one wrapper into the other via code such as “wrapper1 become: wrapper2”. There is a third possibility…

We can trade off classes for methods. If the only distinction between the 3 different types of wrappers is a public method of the form

map: aPoint
	… wrapper specific code …

we might simply want to introduce a variables, say called “algorithm”, which refers to one of the three symbols #sphericallyMap:, #cylindricallyMap:, #planarMap. The map: method can then be implemented as follows:

map: aPoint
	self
perform: self algorithm
with: aPoint

sphericallyMap: aPoint
	… wrapper specific code …

cylindricallyMap: aPoint
	… wrapper specific code …

planarMap: aPoint
	… wrapper specific code …

Single-class designs always appear simpler to users than multi-class designs. My tendency is to avoid multi-class designs when I can but not if it muddies up the implementation. Not having tried to implement the whole thing yet, it looks like a single-class design might work. But only if we don’t need special state for each of the different kinds of wrappers. So I need to consider the separate cases. The planar map needs to compute a transformation (separate from the editing transformation) to perform the mapping. This transformation can be easily stored with the wrapper or recomputed on demand. The other two wrappers are dealing with mappings that are non-linear in nature. Does that mean we can’t use transformations (the kind used for 3D are all linear transformations). I suspect that the information needed to perform the non-linear spherical mapping is the radius of the sphere, its position, and perhaps its initial orientation. But the nicest way to record this information is to simply provide a transformation that specifies how to transform a polar axis. I’m not sure if I’m forcing the issue here, or generalizing the standard point of view to get something better.

I’m tempted to use multiple classes for the initial implementation but I will be carefully monitoring my progress to see if I can collapse it down to one class as suggested above. It would be nice to be confident enough to predict the eventual best choice. If I make the choice now with no additional information, it’s just as likely to be the second best solution as the best.
Micro Issue 5: How Do We Do Reference Variables?
In my partial implementation of the planar wrapper so far, I start with three initial candidates for the origin, the maximal u-axis point, and the maximal v-axis point. The maximal u-axis is not necessarily the x axis (or even the y- or z-axes). It more like the maximal value in a direction in which the face is the longest. The end-result is that many passes are made over the points looking for different useful information. I have half a dozen different methods to which I want to pass &origin, &u, &v (to use C++ reference notation). Each method can modify one, two, or all three of these points. But destructively modifying the points doesn’t feel right (it works but it’s very unusual for a method to destructively modify one of its parameters). The only thing that feels right is to return an array with the three points. But this is cumbersome for the invoking method since he has to decompose the array to get at the new points.

I have two solutions for this programming pattern which I seem to encounter a couple of times a year. The first is to invent a groupDo: method in collection to allow me to easily decompose the result. When I use this approach, my code looks like

	anArray := self compute???With: ….
	anArray groupDo: [:x :y :z |
		…]

I’ve given an implementation of groupDo: in previous articles so I’ll leave it up to you to figure out how to implement it. I find this solution ideal when I’m invoking someone else’s method that returns a collection of objects. But if I’m invoking my own, I would rather generalize it to provide the new values as block parameters. For example, I might write something like

	self with: … compute???AndDo: [:x :y :z |
		…]

The method is simple to implement

	self with: … compute???AndDo: aBlock
		… code …
		^aBlock
value: newX
value: newY
value: newZ
What would you do (say if the three values were numbers instead of points)?
Summary of Micro Design Consideration.

Believe it or not, this short discussion was a big help. I resolved a number of issues that I just couldn’t resolve by myself. Moreover, they had little to do with large-scale design. That’s why I called them micro design issues. But let me summarize what I learned from this.

I started out by assuming that my texture wrapper objects should be stored in both the faces and the 3D objects. But I now believe that storing them only in the faces is the most general approach. I also believe that not storing them at all would be better provided that they can be recreated from the existing data. This might very well be possible so I’m going to keep a watchful eye out for that possibility as I carry on with the implementation.

Given this decision above, there is really no need for a null wrapper because all faces affected by a particular wrapper would contain that wrapper. We can still use nil to represent the fact that there is no wrapper (so texture coordinates are not intended to be computed). But there is no need for a special “inherit wrapper from parent.”

Additionally, I decided to use a multi-class design. Generally, I try to develop a single-class design until something forces me to widen the scope of my implementation. There are many programmers that I know who automatically create multi-class designs. Nothing wrong with that. But when their code is reviewed in detail, many of these design can be shrunk to single-class designs with one or two simple generalizations. Rather than go through a two stage process, I actively seek out the single-class design. It’s particularly hard to do when you don’t yet know if the cases you are considering are superficially different or fundamentally different.

I am also using parameterized blocks to receive multiple objects. I haven’t found any nicer solution yet.
Conclusions
One of the best ways to help you decide something is to tell someone about the issues. In my case, I often tell my wife about the different choices and she picks a choice for me. In some cases, I end up agreeing with her choice and my dilemma is resolved. In other case, I completely disagree with her choice but my dilemma is still resolved. The funny thing is that she doesn’t know anything about computers, let alone Smalltalk or object-oriented programming.

Another funny thing I just learned. It works even if I’m describing the problem to an unknown reader. It doesn’t work if I talk to myself, however.
References

Preparing for 3D Graphics: Interfacing to OpenGL, JOOP Smalltalk Column, May 95, Vol. 8, No. 2, pp. 77-84
Rendering 3D Graphics in OpenGL, JOOP Smalltalk Column, June 95, Vol. 8, No. 3, pp. 63-72

� PAGE �6�

