

This is page i
Printer: Opaque this

Approximating Shortest Paths on Weighted
Polyhedral Surfaces * T

Mark Lanthier, Anil Maheshwari and Jorg-Riidiger Sack
School of Computer Science
Carleton University
1125 Colonel By Drive
Ottawa, ON, CANADA K1S 5B6
E-mail: [lanthier,maheshwa,sack] @scs.carleton.ca

*Research supported by NSERC in conjunction with our industrial partner
ALMERCO Inc.

tA preliminary version has been presented at the 13th Annual ACM Sympo-
sium on Computational Geometry [21] with an accompanying video [23].

1 Introduction

1.1 Problem Definition

Shortest path problems are among the fundamental problems studied in
computational geometry and other areas such as graph algorithms, geo-
graphical information systems (GIS) and robotics. We encountered several
shortest path related problems in our R&D on GIS Y. Let s and ¢ be two
vertices on a given possibly non-convex polyhedron P, in R3, consisting
of n triangular faces on its boundary, each face has an associated positive
weight. A Euclidean shortest path 7(s,t) between s and t is defined to be
a path with minimum Euclidean length among all possible paths joining s
and t that lie on the surface of P. A weighted shortest path I1(s,t) between
s and t is defined to be a path with minimum cost among all possible paths
joining s and ¢ that lie on the surface of P. The cost of the path is the sum
of the lengths of all segments multiplied by the corresponding face weight.

In this paper we propose several simple and practical algorithms (schemes)
to compute an approximated weighted shortest path II'(s, t) between two
points s and ¢ on the surface of a polyhedron P.

1.2 Related Work

Shortest path problems in computational geometry can be categorized by
a variety of factors which include the dimensionality of space, the type
and number of objects or obstacles (e.g., polygonal obstacles, convex or
non-convex polyhedra, ...) and the distance measure used (e.g., Euclidean,
number of links, or weighted distances). Here we discuss those contributions
which relate directly to our work; these are in particular 3-dimensional
weighted scenarios. Due to their relevance in practice, 3-dimensional short-
est paths problems have received considerable attention. The 3-dimensional
Euclidean shortest path problem is stated as follows: Given a set of pair-
wise disjoint polyhedra in R* and two points s and ¢, compute a shortest
path between s and ¢, that avoids the interiors of the polyhedra. Canny
and Reif [7] showed that this problem is NP-Hard. The shortest path prob-
lem amidst (disjoint) convex polyhedra can be solved in time exponential
in the number of polyhedral objects as was shown by Sharir [36]. For two
polyhedral obstacles with a total of n vertices, Baltsan and Sharir [6] pre-
sented an O(n®logn) time shortest path algorithm. The computation of
Euclidean shortest paths on non-convex polyhedra has been investigated
by [8, 28, 30, 2]; currently, the best known algorithm is due to Chen and
Han [8] and it runs in O(n?) time.

Y For information regarding our GIS work see [39].

iii

Since most application models are approximations of reality and high-
quality paths are favored over optimal paths that are “hard” or expensive
to compute, approximation algorithms are suitable and necessary. Choi et
al. [9] presented a refinement of work by Papadimitriou [32] who provided
an e-approximation of shortest paths amidst polyhedral obstacles in three
dimensions. The algorithm runs in O(n*(L + log(n/€))?/€?) time, where L
represents the bit precision. Clarkson [10] presented an O(2'%8") time al-
gorithm to build a data structure so that a path between two query points
can be computed in O(2 + nlogn) time. He also provides an algorithm
to compute an e-approximation for paths amidst polyhedral obstacles in
3-space which runs in approximately O(n?1og®") n/e*) time.

Recently, there have been several results on approximation algorithms
for computing shortest paths on single convex and non-convex polyhedra.
Hershberger and Suri [17] presented a simple linear time algorithm that
computes a short path on a convex polyhedron that is at most twice the
Euclidean shortest path length. Har-Peled et al. [16] extended this result
to provide an algorithm to compute an e-approximation of the shortest
path; it runs in O(nmin{1/e!-5 logn} + 1/€*°log(1/¢)) time. Agarwal et
al. [1] provided an improved algorithm that runs in O(nlog 1 + k) time.
All of these algorithms crucially exploit the properties of convex polyhedra
and hence are not easily extendible to non-convex polyhedra. Varadarajan
and Agarwal [2] provide an algorithm that computes a path on a, possibly
non-convex, polyhedron that is at most 7(1 + €) times the shortest path
length; it runs in O(n®/31og®® n) time. They also present a slightly faster
algorithm that returns a path which is at most 15(1 + €) times the shortest
path length.

All of the work mentioned so far considers the problem of computing
paths using the Euclidean distance metric. Mitchell and Papadimitriou [29]
introduced the weighted region problem in which each face has an associated
weight, denoted by a real number w; > 0. They presented an algorithm that
computes a path between two points in a weighted planar subdivision which
is at most (1 + €) times the shortest weighted path cost. Their algorithm
requires O(n8L) time in the worst case, where L = log(nNW/we) is a
factor representing the bit complexity of the problem instance. Here N is
the largest integer coordinate of any vertex of the triangulation and W
(respectively, w) is the maximum (respectively, minimum) weight of any
face of the triangulation. In recent work, Johannson presents a weighted
distance model for injection molding [19]. Mata and Mitchell [26] presented
independently and at the same time as this work [21] an alternate algorithm
that constructs a graph which can be searched to obtain an e-approximate
path; their algorithm runs in O(kn®) time, where k = O(W/w), W/w is

€Omin

iv

the largest to smallest weight ratio, and 6,,,;, is the minimum angle of any
face of P.

1.3 Contributions

Our approach to solving the weighted shortest path problem is to discretize
the input polyhedron in a natural way, by placing Steiner points along the
edges of the polyhedron. We construct a graph G containing the Steiner
points as vertices and edges as the interconnections between Steiner points
that correspond to segments which lie completely in the triangular faces
of the polyhedron. The geometric shortest path problem on polyhedra is
thus stated as a graph problem so that the existing efficient algorithms and
their implementations for shortest paths in graphs can be used (we use a
variation of Dijkstra’s algorithm as mentioned in Section 4.1).

Our discretization method falls into the class of edge subdivision algo-
rithms. Grid-based methods as introduced e.g., by Papadimitriou [32], are
instances of this class. As concluded by Choi, Sellen and Yap [9]: “.. grids
are o familiar practical technique in all of computational sciences. From
a complexity theoretic viewpoint, such methods have been shunned in the
past as trivial or uninteresting. This need mot be so, as Papadimitriou’s
work has demonstrated. In fact, the grid methods may be the most practical
recourse for solving some intractable problems.” The results of this paper
substantiate their claim.

Our contributions are:
1. Theoretical

e The design and analysis of several simple schemes for shortest
path approximations on weighted and unweighted polyhedra.

e Proofs establishing the accuracy of the approximations. The ac-
curacy of the approximation varies with the length of the longest
edge L of P and the maximum weight W of the faces of P.
We present two variations on the algorithm. The first ensures
that ||II'(s, t)|| < ||ITI(s,t)|| + W|L|. The second, based on graph
spanners, ensures that ||II'(s,t)|| < B(||TI(s, t)||+W|L]|) for some
fixed constant 8 > 1. This second variation produces quicker run
times, but at the cost of reduced accuracy.

e Results on arbitrary shortest path queries.
2. Experimental

e Implementation of:

— all of our schemes

— point-to-point Euclidean shortest paths in a sleeve
— graph spanners on faces of polyhedra
— Chen and Han’s algorithm (as relevant to this work)

e The algorithms:

— are easy to implement

— employ elementary data structures (such as heap, graph,
list) and operations.

e Extensive experiments on triangular irregular networks (TINs)
establish:

— Excellent performance of the schemes in path quality and
run time both being better than the theoretical worst case
bounds.

— A constant number of Steiner points (i.e., six) per edge suf-
fice implying an O(nlogn) run time as was also observed
experimentally.

— In the unweighted case, a direct comparison to Chen and
Han’s algorithm is possible. Here our schemes show a fast
convergence to optimal in accuracy with a much improved
running time over Chen and Han. Using an additional post-
processing step the exact shortest paths are frequently ob-
tained.

— In the weighted scenario, as far as we are aware of, this
work represents the first adequately documented implemen-
tationt. Here also the path accuracy converges rapidly at a
fast running time.

The paper is organized as follows: Section 2 introduces notation and
properties that are required. Sections 3 describes our approximation al-
gorithms for shortest paths computations. Section 4 presents the testing
procedures, experimental setup and results that were obtained. Section 5
discusses an extension to our algorithm to handle shortest path queries.
We conclude with Section 6.

2 Preliminaries

Let P be a polyhedron with n triangular faces. Let L be the longest edge
of P and let 6,,;, be the minimum interior angle among all faces of P.
Each face f;,1 <14 < n is assigned a positive weight, wy, > 0, which repre-
sents the cost of traveling through that face. The cost could be determined

fAt the same time as this work [21], an alternate approach of [26] was proposed.

vi

e.g., by the slope or the characteristic of terrain (water, forest, ...). Two
faces are called edge-adjacent if they share a common edge. The weight
of an edge e of P is the minimum weight of its adjacent faces. Let W and
w denote the maximum and minimum weights of any face in P, respectively.

Let s and ¢ be two points on the surface of P (the source and target points
respectively). Denote by dist(s,t) the minimum distance between s and ¢
in 3-space. A shortest Euclidean path between s and ¢ is denoted by 7 (s, t)
with cost, |7(s,t)|, and it is composed of a sequence of k adjacent straight
line segments (or links) sq,s2, ..., sx. We use ' to denote the corresponding
approximation paths, segments etc... In general, k # k', but for analysis we
will often examine approximated paths where k = k' (i.e., 7'(s,t) passes
through the same sequence of faces as 7(s,t)).

Property 2.1 (Sharir and Schorr [37]) A Euclidean shortest path m(s,t)
may cross a face at most once.

Property 2.2 (Sharir and Schorr [37]) A Euclidean shortest path does
not bend in the interior of a face.

Let F = fi, fa, ..., fr be a set of faces of P such that f; is edge-adjacent
to firq for 1 <4 < k — 1. We say that f; and f;41 are edge-adjacent if
they share an edge e;. An unfolding of two edge-adjacent faces f; and fiy1
is the set of points obtained by rotating f;11 about e; until all vertices
of fiy1 lie in the same plane as that of f;. The unfolding is said to be a
planar unfolding if and only if the unfolded faces do not overlap. (We say
that two faces overlap if they have a common point in their interior). A
sequence of faces F' is unfolded by unfolding the faces in order from 1 to k
such that f; is in the same plane as each of f;_1, fi_2,...,f1, where i > 1.
Let F' = f{, f3,..., f;, be the sequence of faces obtained by applying such
an unfolding. We call F' a simple sleeve if it is a planar unfolding. An un-
folding which does not guarantee planarity is called a non-simple sleeve.

The shortest weighted cost path between s and ¢ is denoted by Il(s,t)
with cost ||TI(s,t)||. The cost of a segment s;,1 < j < k passing through
face f;,1 < i <mn is assumed to be wy,|s;|.

Property 2.3 (Mitchell and Papadimitriou [29]) A weighted shortest path
obeys Snell’s law [25] of refraction in which the path bends at the edges of
P. The amount by which it bends depends on the relative weights of the two
faces adjacent to this edge (see Figure 1a)).

Property 2.4 (Mitchell and Papadimitriou [29]) A weighted shortest path
may travel along (i.e., critically use) an edge which is cheaper and then
reflect back into the face (see Figure 1b).

Property 2.5 (Mitchell and Papadimitriou [29]) A weighted shortest path
may cross a face 8(n) times.

vii

We distinguish between two types of path segments of a weighted shortest
path: 1) face-crossing segments in which the endpoints lie on different edges
of a face, and 2) edge-using segments in which both endpoints lie on the
same edge of P.

face crossing edge-using

a) b)

FIGURE 1. Characteristics of a weighted shortest path. a) adjacent face-crossing
segments cause a bend in the path, b) edge-using segments cause a reflection
back into the same face.

Let G = (V, E) be a simple connected graph with vertex set V' and edge
set E, where each edge has a positive weight. We will make use of the fol-
lowing algorithms:

Algorithm 1: Given two vertices s and t of G, a shortest path in G from s
to t can be computed in O(V?) time (Dijkstra [11]). Using Fibonacci heaps,
a shortest path can be computed in G from s to t in O(VlegV + E) time
(Fredman and Tarjan [12]).

Observation 2.1 follows by straight forward generalization of the planar
point location algorithm [35], see also [14] and [31].

Observation 2.1 Given a polyhedron P with O(n) faces, a data structure
can be built in O(n?) time such that for a given query point ¢ on P, we can
determine the face of P in which q lies in O(logn) time. In the special case
in which P is a terrain, then more efficient planar point location algorithms
can be used (e.g. see [20]).

3 Shortest Path Approximations

A natural approach to approximating paths on a given polyhedron P is to
choose a path which is restricted to traveling along edges of P. That is, one
could compute a graph G as follows. The vertices in G correspond to the
vertices of P and there is an edge between two vertices in G if the corre-
sponding vertices in P are connected by a polyhedral edge. The weight of

viii

an edge in G is the Euclidean length of the corresponding edge in P times
the minimum weight of its two adjacent faces. For simplicity, assume that
s and t are vertices of P. An approximate shortest path II'(s,t), between
s and t can now be computed by using Algorithm 1.

Although this method may not produce a good approximation in the
worst case (the interested reader is referred to [21] for an example), we
can bound the path cost with respect to parameters of P. In the following
theorem we present an upper bound on the approximation quality obtained
by using the simple approach. Due to the dependency on 8,,;,, the approx-
imation may be bad in the worst case which motivates the development of
alternate schemes presented next. We include the proof in the appendix for
the interested reader.

Theorem 3.1 A shortest path II(s,t) between two wvertices s and t of a
wetghted polyhedral surface P with n faces can be approximated by o path
IU'(s,t) such that ||[TI'(s,t)|| < (Sinozmm)||1'l(s,t)||, where O,,n s the mini-

mum interior angle of any face of P. Furthermore, ||II'(s,t)|| can be com-
puted in O(nlogn) time.

3.1 Improved Approrimation Schemes

The approximation schemes introduced in this section discretize the poly-
hedron by placing Steiner points along the edges of the polyhedron. The
schemes differ in the placement of Steiner points, the interconnection (edges)
between Steiner points, and possible refinement (post-processing using sleeve
computation). We point out that, in all of our schemes, we can store the
graph as it pertains to Steiner points implicitly. In an iteration of Dijkstra’s
algorithm, adjacency information can be computed on the fly at a small
additional cost. Thus, the graph needs neither to be precomputed nor to
be stored.

We give an outline of our presentation of the three schemes. First, we de-
scribe the method of placing Steiner points on each face (i.e., the scheme),
and define a graph on each face, called a face graph. Then we derive bounds
on the portion of the shortest path going through a face. After that we com-
pute the graph for the entire polyhedron by taking the union of face graphs
for each face and prove the stated approximation bounds for paths com-
puted by the respective schemes. We do this by showing the existence of a
path approximating the shortest path within the stated bounds. The result
of applying Dijkstra’s algorithm may be this path or a path with equal or
better cost.

ix
Fixed Scheme:

We place m Steiner points evenly along each edge of P, for some positive
integer m. For each face f;,1 < ¢ < n of P, compute a face graph G; as
follows. The Steiner points, along with the original vertices of f;, become
vertices of G;. Connect a vertex pair v,, vy of G; to form an edge v,vp of G;
if and only if v, and vy correspond to Steiner points (or vertices) that lie
on different edges of f; or are adjacent on the same edge of f;. The weight
on a graph edge v,v, is the Euclidean distance between v, and v, times
the weight of f;, and the magnitude of this weight is denoted as |v,vs|. For
example, Figure 2 shows how 6 Steiner points and 27 edges are added to a
face to form the face graph G; where m = 2.

FIGURE 2. Adding Steiner points and edges to a face using the “fixed scheme”.

To avoid introducing additional notation, we say that the segment cor-
responding to graph edge s’; on P is also s, and from the context its usage
will be clear.

Claim 3.1 Given a segment s; crossing face f;, there exists an edge s’ in

G such that |si| < wy, - |s;] +wy, - %

Proof: Each edge in P is divided into m + 1 intervals which have length at
most WLLJI Let s; = ab, where a and b are the end points of s; lying on edges
e, and ep of f;, e, # ey, respectively. Let ¢ (respectively, d) be Steiner point
in f;, where c (respectively, d) is closest to a (respectively, b) among Steiner
points on e, (respectively, e;). Since ¢ and d lie on different edges of f;,
then we know that there is an edge e € G; joining them (see Figure 3), set

s, = e. The triangle inequality ensures that |s}| < [ca|+|s;|+[bd|. Since we

chose the closer interval endpoints, then |¢a| < % and |bd| < %
Hence

/ | L]
8] < [s5] + ——h (1)

Now, multiplying by wy, we have

L]

wy; - |85 Swy - |s;] +wy, - mal

FIGURE 3. A face-crossing segment s; of a weighted shortest path.

I.

Notice that the weight of the graph edge s} equals the length of the
segment s;- on P times the weight wy, of the face. Moreover, the above
arguments can be used to show that if s; is edge using, then there exists
a sequence of adjacent collinear Steiner edges joining the corresponding
Steiner points, and we can view these collinear edges as a single segment
s%. O

A graph G is computed by forming the union of all face graphs G;,1 <
1 < n. We call this particular method of graph creation the fized scheme. It
can be shown that all edges of G lie on the surface of P. Hence, any path
in G (i.e., our approximation) can be transformed to a path on the surface
of P. In the following lemma we show that there exists a path in G that
approximates shortest path II(s,t).

Lemma 3.1 Given two vertices s and t of P, there exists a path IT'(s,t)
in G between the vertices corresponding to s and t such that ||II'(s,t)|| <
L]

ITI(s,)| + 55 - k- W, where k 4s the number of segments of I1(s, t).

Proof: Let II(s,t) = {s1,82, -, sk }. For each s; € II(s,t), it follows from
Claim 3.1 that there exists an edge s; € G that approximates s;. We
choose this edge s; such that it joins the Steiner points that are closest to
the endpoints of s;. Let IT'(s, t) = {s}, s}, - -, s}, } € G. Observe that since
consecutive edges s; and s;41 of II(s,t) share a common point, then s’
and s}, will share a common Steiner point. This “sharing” ensures that
IT'(s,) is a connected path. In some special cases, s; may degenerate to a
vertex but II'(s, t) still remains connected.

By applying Claim 3.1 to each segment of II'(s,t) we have: Zle |st] <
Ele(wfsi <8 + wy,, %), where wy, denotes the weight of the face

that s; passes through. We can rewrite this as

k
Lj |L|
I <|m L < || L T
I < o)+ 20 3w) < G0l + 255 -

xi

Theorem 3.2 Using the fized scheme, we can compute an approxrimation
II'(s,t) of the weighted shortest path I1(s,t) between two points s and t on
a polyhedral surface P such that |II'(s,t)|| < ||1I(s,t)|| + W|L|, where L is
the longest edge of P and W is the mazimum weight among all face weights
of P. Moreover, we can compute this path in O(n®) time.

Proof: In Lemma 3.1 we have shown that there is a path II'(s,¢) in G
that approximates a shortest path II(s,t) on P. We use Algorithm 1 to
compute a shortest path between the vertices corresponding to s and ¢ in
G. This will result in a path in G that has either the same cost as IT'(s, t)
or even less. Since any path in G can be mapped to a path on P, we obtain
an approximate path on P. From Property 2.5 it follows that II(s,t) may
have 8(n?) segments. In Lemma 3.1, set k = m = 6(n?), we obtain:

T (s,)| < [[TI(s,)] + WIL].

Now we analyze the time complexity of the algorithm. In the fixed
scheme, each edge of P contributes O(n?) graph vertices and each face
contributes O(n*) graph edges. Algorithm 1 is then applied which runs in
O(n®) time. (The path from G can be mapped to the path on P in the
time proportional to the number of links in the path. Although in our im-
plementation this additional step is avoided.) O

Note: The bound of the above theorem can be rewritten as ||II'(s, t)|| <

ITI(s, t)||+ WI%IT‘ , where |Lr| is the sum of all edge lengths of P and |E| de-
notes the number of edges of P. This bound uses the average edge length as
opposed to the pessimistic longest edge length. In the worst case, however,
this bound is the same as stated in the theorem. This bound can actually
be made tighter and written as ||TI'(s, t)|| < ||TI(s,t)||+ V‘llllfillil where |Lyp| is
the length of all edges that II(s,t) passes through and |Ep| is the number of

edges that TI(s, t) passes through. These bounds hold throughout the paper.

Interval Scheme:

In the fixed scheme, we made an assumption in our analysis that each
edge crossed by the shortest path was of length |L|. In reality there may
be many edges of P with small length compared to |L|. We can improve
the fixed scheme by forcing the intervals between adjacent Steiner points
on an edge to be of equal length, approximately % As a result, we can
reduce the number of Steiner points added per edge considerably. We call
this scheme, the interval scheme. Figure 4 shows an example of how Steiner
points are added to faces using a) the fixed scheme where m = 7 and b) the
interval scheme. As can be seen in the figure, the interval scheme allows a

significant decrease in the number of Steiner points placed while maintain-

xii
ing the same path accuracy as with the fixed scheme.

Since the maximum length of an interval is at most %, the proofs
of Claim 3.1 and Lemma 3.1 still apply and hence Theorem 3.2 holds for
the interval scheme. Although, the worst case analysis is the same for both
schemes, the interval scheme typically reduces the number of Steiner points

and edges that need to be processed.

FIGURE 4. The difference in the layout of Steiner points (m=7) for a) the fixed

scheme, b) the interval scheme.

Spanner Scheme:

We present here a scheme that improves upon the time complexity of the
fixed and interval schemes; though the approximation achieved is not quite
as good. The key idea is to compute a sparse face graph G; for each of the
faces of P instead of the dense graphs computed in the fixed or interval
schemes. This is based on the notion of spanners. Clarkson [10] has shown
that given a planar point set S, one can compute a sparse graph H, where
vertices in H are the points in P, so that any segment joining two points in
S can be approximated by a path joining the corresponding two vertices in
H. A graph H is called a 3-spanner of a point set S, if any segment joining
two points in S can be approximated by a path joining the corresponding
vertices in H of length at most [times the length of the segment, where
B > 1is a constant. The number and the placement of edges in H depends
upon the desired accuracy bounds.

Now we briefly describe the computation of the spanners using the cone
method of Clarkson [10]. Consider a face f; of P, and add Steiner points
according to either the fixed or interval scheme on the boundary of f;. Let
S; denote the set consisting of the Steiner points and the vertices of f;. Let
G, be the required spanner graph on the points in S;. (We also add edges
between Steiner points that are adjacent on a common polyhedral edge.)
Let C be the set of planar cones with apex at all v; € S; and the conical
angle 6 = % for an integer constant p > 4. For each v; € S; perform a

xiii

radial sweep of the elements of S;. During this sweep compute the element
Umin € S that has minimal distance to v; in each of the p cones and add
an edge in the spanner graph G; connecting the vertices corresponding to
v; and U (see Figure 5).

Vi_V5 Vi1

FIGURE 5. The spanner edges added from a vertex v; with 6 = 30°.

Results of Clarkson [10], ensure that G; is a [(-spanner, where 3 =
—1 . The graph consists of O(m) vertices and edges (recall that |S;| =
O(m)). We compute a spanner for each face of P individually and then
merge each G;,1 <4 < n to form the union G. We call this the 3-spanner
scheme. The following theorem summarizes the results for spanner scheme.

Theorem 3.3 An approzimate weighted shortest path II'(s,t) between two
points s and t on a polyhedron P of n faces can be computed in O(n®logn)
time such that ||IU'(s,t)|| < B(||T(s,t)|| + WI|L|), B8 > 1, where L is the
longest edge of P and W is the maximum weight among all face weights of
P.

Proof: In Claim 3.1 we can replace s;- by an approximated path, say p;,
in G, where |p;| < - s}|, and use this value in Theorem 3.2, to obtain
1T (s, t)Il < BUITI(s, t)I| + WIL]), B > 1.

Now we analyze the time complexity of the algorithm. We apply the
[(-spanner scheme to obtain G; for each face f; of P where 1 < i < n. Us-
ing O(n?) Steiner points per edge, each subgraph G; contains O(n?) graph
vertices and each vertex has a constant degree. Hence, G; contains O(n?)
graph edges. The graph G; is computed as follows. Observe that the ver-
tices (or points) lie on the boundary of the triangular face, and they are at
fixed intervals. For each vertex v; all the cones (O(1) in all) with apex at v;
can be computed in O(1) time. Moreover the closest vertex to v; in each of
its cone can be computed in O(1) time, by observing the relative location
of vertices (or points) in the cone with respect to the perpendicular from
v; to the edges of f; (we are omitting the technical details). This implies

Xiv

that each G; can be computed in O(n?) time and G can be computed in
O(n?) time. A shortest path in G can be computed by using Algorithm 1
and it runs in O(n3logn) time. O

Sleeve Based Schemes - Unweighted Case:

Here we describe how an approximated Euclidean (unweighted) path can
be fine tuned to be of near-optimal length and sometimes be optimal. This
technique is based on choosing an edge sequence based on an approxima-
tion 7'(s, t) using either the fixed or the interval scheme. We then determine
a sleeve S by unfolding the faces along the edge sequence of 7'(s,t) and
computing the shortest path 7s(s,t) that lies within this sleeve (using the
algorithm of Lee and Preparata [24]). This path is then projected back
onto P to obtain a refined approximation 7''(s,t). If the sleeve we choose
happens to coincide with a shortest path edge sequence the final approxi-
mation is optimal.

In order to construct the sleeve, we choose a sequence of faces through
which 7'(s,t) passes, i.e., for each segment s; of 7'(s,t) we determine the
face through which it passes. If s; is not incident to a vertex of the face
we append that face to our list of faces for the sleeve. If s; passes through
a vertex, say v, we must make a decision as to whether or not the edge
sequence should go around v in the clockwise (CW) or counter-clockwise
(CCW) orientation. The example of Figure 6 shows how this decision can
affect the overall accuracy of ws(s,t). If we choose the shaded faces, 7s(s,t)
will not be as good as if we choose a CCW path around vz since 7(s,t)
does not pass through all of the shaded faces.

We attempt to choose the good edge sequence (hence sleeve) by apply-
ing a simple heuristic for the special class of polyhedra: TINs. Let s; and
s;+1 be consecutive edges of 7'(s,t) such that their shared endpoint lies
at a vertex v of P. Determine the turn type (i.e., left, right or collinear)
between the projections of s; and s;4; onto the XY plane. If it is a left
turn, we chose a CW path around the vertex, otherwise we chose a CCW
path. In Figure 6 we can see that all three vertices that were crossed result
in left turns and we have chosen the CW path around each. Obviously, at
v3 the heuristic has chosen badly and we will never obtain an optimal path
from 7'(s,t). However, we have observed that this heuristic performs well
in practice on terrain data (see Section 4).

Given the unfolded sleeve, we compute the shortest path 7g(s,t) in the
sleeve from s to t. Lee and Preparata [24] show that a funnel data structure
can be used to represent a shortest path from any point s in a sleeve to a
diagonal of the sleeve. The funnel consists of 4 components: a tail path, a
cusp point and two convex chains of vertices forming the funnel borders.

XV

The two convex chains meet at the cusp and are joined at their other end
by the funnel diagonal (or lid) (see Figure 7).

FIGURE 6. Choosing an edge sequence from the path 7'(s,t).

funnel diagonal

FIGURE 7. The funnel structure.

The algorithm maintains a funnel structure F from s while expanding by
one sleeve diagonal at a time until ¢ is reached. ws(s,t) is then computed
which has as most three pieces: 1) the tail path from s to cusp(F), 2) a
(possibly empty) sequence of edges along the left or right convex chain of
F up to some point, say p and 3) a line segment from p (or cusp(F) if
piece 2 is empty) to t. We denote the consecutively computed funnels by
Fi,Fa, ..., Fn for an n-face sleeve such that 7,14 is formed from F; through
the expansion of one face (i.e., extending the funnel by one sleeve diagonal).

Xvi

One problem is that the algorithm of Lee and Preparata [24] applies to
a simple sleeve (non-intersecting). Since P is non-convex in general, S may
be non-simple. We must show that even though the sleeve may be self-
overlapping, it does not affect the correctness of the algorithm. We must
also show that the resulting path is non-overlapping when projected back
onto the surface of P.

Property 3.1 7'(s,t) does not pass through a face of P more than once.

Proof: The proof is by contradiction. Assume that #'(s,t) is a shortest
path in G that enters through an edge e of a face f; at some Steiner point
a and exits f; at some Steiner point b. Now assume that 7'(s,t) enters f;
again, say through Steiner point ¢. Since a and ¢ are both Steiner points
on edges of the same face f;, there exists a Steiner edge @c in G' which is
clearly a shortest path from a to ¢. Hence, the portion of 7'(s,t) from b to
¢ cannot be a shortest path in G and we have a contradiction. O

Claim 3.2 No two segments of ws(s,t) lie in the same face of P.

Proof: By definition, none of F;,1 <14 < n are self-intersecting. However,
it is possible that a funnel may intersect the tail which it is connected
to. Hence, 7s(s,t) may be non-simple due to the constraints that force
it to pass through adjacent faces of S. By construction of any funnel F;,
any convex chain of segments from cusp(F;) to lid(F;) can be formed by
line segments which pass through unique faces of S. The left and right
convex chains of F; also consists of segments that lie in different faces of S.
Since the tail of any funnel is constructed by appending the convex chains
of previous funnels, it is composed of segments that lie in different faces
of S. Therefore, ms(s,t) contains segments that lie in different faces of S
since it consists of pieces from tail(F,), chain(F,) and a path consisting
of segments passing through the unique funnel faces. O.

Lemma 3.2 The projected path ©'"(s,t) is simple.

Proof: The proof follows from Property 3.1, and Claim 3.2. O

Section 4 shows that these approximated paths are more accurate with
this additional computation at a negligible increase in execution time. In
our algorithm, as m increases the difference |7'(s,t)| — |7 (s,t)| decreases.
For some value of m, 7'(s,t) will pass through the same edge sequence
as 7(s,t). Since the sleeve computation unfolds the sleeve which contains
both 7'(s,t) and 7 (s,t), path 7"/(s,) will exactly match 7(s,t). Hence, in
some instances, the edge sequence of the approximated path is identical to
that of 7(s,t) and the sleeve computation produces the exact shortest path.

Xvil

There is no efficient algorithm for computing shortest paths in weighted
sleeves. Hence, we apply a different approach, namely that of continuously
refining approximations based on a selected region of the terrain. To do
this, we first compute a preliminary approximation #'(s,t) as before using
either the fixed or interval scheme. We then form P’ as the union of all faces
that 7' (s, t) intersects. If «’(s,) passes through a vertex v of P, we include
all faces incident to v. This union of faces forms a non-convex polyhedral
surface P’ but in general it does not form a closed polyhedron. We call this
union a buffer around 7'(s,t). We then apply the approximation scheme
on P’ with an increased number of Steiner points per edge. As a result, we
obtain a refined path. The refinement can be iterated allowing a trade-off
between path accuracy and running time.

4 Experimental Results

In this section, we describe implementation issues, our testing procedures
and experimental results. Due to their practical relevance, and in the con-
text of our R&D [18], our experimental results are carried out on subclass
of non-convex polyhedra: Triangular Irregular Networks (or TINs). A TIN
is often constructed from a triangulated point set in the plane in which each
point is assigned a height. In Geographic Information Systems, Cartogra-
phy and related areas, shortest path problems arise frequently on terrains
which are often modeled using TINs as shown in Figure 8. The algorithms
presented in the previous section apply to any non-convex polyhedron.
In addition to the tests explained here, we have verified that our imple-
mentation also works on 3D model data (non-convex polyhedra) which we
obtained from the National Research Council of Canada (see [22]).

The section is organized as follows. In Section 4.1 we discuss implemen-
tation issues then discuss our test data suite and our procedure for testing.
In Section 4.2 we then begin a discussion of the Euclidean results by first
examining the path accuracy. We give a description as to how the addi-
tional sleeve computation, stretching of the TIN heights and spanner usage
affects the accuracy. In Section 4.3 computation time is examined and com-
parisons are made with spanners. In Section 4.4, we describe the results for
the weighted setting.

4.1 Implementation and Testing Procedures

Implementation Issues:

The implementation of our various algorithms involved implementing a
variant of Dijkstra’s algorithm, computing the unfolding of edge sequences

xviii

FIGURE 8. A weighted shortest path on a terrain in which traveling on water is
expensive.

(only for refinement stage), computing the shortest path in a planar sleeve
(subset of the algorithm to compute shortest paths in a polygon) and fi-
nally a modification to store an implicit graph representation.

The variation of Dijkstra’s algorithm used was that of the well-known
A* algorithm (see [15]), which incorporates a “distance-to-goal estimate”
during the search. An additional weight was associated with each vertex,
namely its Euclidean distance to the destination vertex. Then, during each
iteration, we chose the vertex which minimized the sum of its cost from the
source vertex plus the Euclidean distance to the destination vertex, over
all candidate vertices.

Suri [38] points out that the Chen and Han algorithm [8] based on un-
folding is sensitive to numerical problems, mainly due to the fact that
3D rotations are performed and errors accumulate along the paths and
geometric structures computed. In our schemes the paths go through ver-
tices or Steiner points (with the exception of the variation using the sleeve
computation as its final step); thus reducing the chances of accumulating
numerical errors. When doing the final step in which a sleeve in 3D is un-
folded onto a plane, we compute an exact shortest path within the resulting
sleeve. Although this is an exact path computation, it too is susceptible to

Xix

numerical errors since the unfolding process may have generated discrep-
ancies in the sleeve itself. We have shown however, that this final stage of
refinement does provide significant improvement in the resulting accuracy.

Our implementation of Chen and Han’s algorithm was designed to enable
time and approximation quality comparisons with our algorithms. We took
care of numeric stability issues as required. When using LEDA’s data types
[27], the running time of our implementation of Chen and Han'’s algorithm
deteriorated drastically. Thus, by using LEDA (or similar) the comparison
to our algorithms would have become worse for Chen and Han.

One final implementation issue was that of storage. Since our graphs are
created based on evenly distributed points along an edge, it is possible to
implicitly store the graph vertices and edges and only compute them as
needed. Our initial implementation stored the entire graph and then dur-
ing the execution of Dijkstra’s algorithm, added all vertices to the priority
queue as an initialization step. We later improved the implementation such
that the graph vertices were still stored but the graph edges were not. In
order to simplify the code, this improved implementation still added the
vertices to the priority queue during the initial stage of Dijkstra’s algo-
rithm. It should be pointed out that a further improvement can be made
by only adding the vertices to the priority queue as they are encountered
during propagation. We ran tests which showed that this implicit edge rep-
resentation improved the preprocessing time (i.e. graph construction) by a
factor of two to three. The additional computations required to compute
the edge lengths and weights during the running of Dijkstra’s algorithm
was negligible. Thus, we maintained almost the same query time.

Test Data:

One of the main difficulties in presenting experimental results is the lack
of data, in general, and here of benchmark TINs. It is conceivable that
different TIN characteristics could affect the performance of an algorithm.
We have attempted to accommodate different characteristics by perform-
ing our tests with TINs that have different sizes (i.e. number of faces),
height characteristics (i.e. smooth or spiky as modeled by accentuating the
heights), and data sources (i.e. random or sampled from Digital Elevation
Models (DEM)). Table 1 shows the attributes of the TINs that we tested.
TINs with stretched heights were created by multiplying their heights by
five. *

For the weighted domain, we used the same TINs and set the weight of

*Images of these TINs can be found in the [22]

XX

No. of FACES | STRETCHED | DATA SOURCE

1,012 NO DEM

1,012 YES DEM

5,000 NO RANDOM

5,000 YES RANDOM

10,082 NO DEM

10,082 YES DEM

9,799 NO DEM of partial Africa

9,788 NO DEM of partial North America
9,944 NO DEM of partial Australia
9,778 NO DEM of partial Brazil

9,817 NO DEM of partial Europe

9,690 NO DEM of partial Greenland
10,952 NO DEM of partial Italy

2,854 NO DEM of partial Japan

9,839 NO DEM of partial Madagascar
9,781 NO DEM of partial Northwest Territories

TABLE 1. The data used for the experiments showing the TINs and their at-
tributes.

each face to be the slope of the face. Thus, steeper faces have higher weight.
Each edge of the TIN is given weight equal to the minimum of its adjacent
faces. To determine if the results were biased due to our choice of weights,
we ran additional tests in which the weights were chosen at random for
each face.

Testing Procedure:

For each TIN, we computed a set of 100 random vertex pairs. We then
tested each of the approximation schemes listed in Table 2. We give the
legend id of each scheme as they appear in the graphs. For each test, we
computed the path cost between each of the 100 vertex pairs and then
obtained an “average path cost” for these pairs. We also computed the
average computation time for the 100 pairs. The timing results presented
here include the time required to compute the path itself, not just to pro-
duce the cost. The tests were performed in iterations based on the number
of Steiner points per edge. Each scheme was tested for both weighted and
unweighted scenarios (with the exception of the sleeve computations which
were only computed in the unweighted case; a second approximation using
a buffer was applied in the weighted case).

Graph Spanners:

In each test for graph spanners, we varied the degree of the cones from
which the spanner graph was created from 1° to 40°. A 1° spanner can be

XX1

| LEGEND ID | SCHEME | SLEEVE |

INT INTERVAL NO
FIX FIXED NO
INTSLV INTERVAL YES
FIXSLV FIXED YES
x degree SPANNER NO

TABLE 2. The different approximation schemes.

viewed as the same graph which is obtained in the fixed or interval scheme.

4.2 Path Accuracy

We first examine the Euclidean shortest path problem. Figure 10 depicts
the results of these tests for four terrains. The approximated path length
rapidly converges to the actual path length (as computed using Chen and
Han algorithm [8]). The graphs show that six Steiner points per edge suffice
to obtain close-to-optimal approximations. The path accuracy observed is
far better than the theoretical bound derived.

To understand this, recall that our theoretical worst-case analysis as-
sumes that all edges intersected by the approximate path are long. In most
applications this will be unlikely as short edges are common. (Long edges,
if they are present, tend to be near the boundary and will therefore not be
crossed by a shortest path.) We have examined edge-length histograms for
all of our TIN data and show a typical histogram in Figure 9.

2341

of Occurences

1686. 6 Z8E. 5
Edae Lenaths

FIGURE 9. Histogram of edge lengths for one of our TINs.

xxii

1,012 Face Unweighted TIN 1,012 Face Unweighted TIN (Stretched Heights)

1060

1950
Fix —— 1900 Fix ——
Int -+ Int —+- 7
1040 § FixSlv -8 1 | FixSlv -=
A IntSlv 1850 f IntSlv
} Chen and Han ---- + Chen and Han ----
1020 1 1800 |4
% £ 1750 |}
S 1000 i 5 ;
3 I 3 1700 ¢
e | < .
g 980 & 1650
x
960 | 1600 |
. 1550
940
1500 |
920 1450
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
10,082 Face Unweighted TIN 10,082 Face Unweighted TIN (Stretched Heights)
1120 T T T 2300 T T T T T
Fix —— Fix ——
Int -] I Int -+
1100 FixSlv 2200 ; FixSlv -
4 IntSlv - i IntSlv -
1080 Chen and Han ---- 3 Chen and Han ----
i 2100 | %
< 1080 | Y £
2 ’ S 2000 |
3 1040 3
g £ 1900 |
o 1020 p [
e 1800 f
1000 F .
p—
980 | 1700 x R
. j— T
x . .
960 - - - - L 1600
0 6 0 6

1 2 3 4 5 1 2 3 4 5
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge

FIGURE 10. Graphs showing average path length for four selected terrains.

Sleeve Computation:

The graphs also illustrate that the additional sleeve computation helps
to obtain even better approximations. We concluded that the best of our

unweighted schemes is the interval scheme with the sleeve computation
(IntSlv).

Effects of Stretching:

We now discus the effects on the accuracy due to stretching of the TIN.
As mentioned, for this test, the heights of the vertices were multiplied by
a factor of five. Figure 10 allows a comparison of accuracy for stretched
versus unstretched TINs. In both instances, the approximate path length
converges after only a few Steiner points per edge have been added. One
may notice however, a slightly slower convergence for stretched input TINs.
This is mainly due to the fact that Steiner points are placed further apart
along the now longer edges. Therefore, it requires more Steiner points to
reduce the interval size to that of the flatter TIN. The interval scheme per-
forms better than the fixed scheme, since interval scheme favors placement
of Steiner points on longer edges and longer edges are more likely to be
crossed by the set of paths.

xxiii

Percent of Exact Sleeve Matches for 3 Unweighted TINs

100 ‘ ‘ :
1012 IntSlv —~—
1012 FixSlv -+---
1012e IntSlv =
go | 1012e FixSlv - o]
10082 IntSlv -2-- B
10082 FixSlv -x--- P
3
<
8 ~
©
= § x
©
E o
[0} ——
8 e
o) T
& e
0 L L ‘ ‘ ‘
0 1 2 3 4 5 6

Average Number of Steiner Points per Edge

FIGURE 11. Graph showing the percentage of exact edge sequence matches for
a 1012 face terrain, a 1012 face stretched terrain and a 10082 face terrain.

It is no surprise that the sleeve computation provides a significant im-
provement on the average path cost. Figure 11 shows the results of running
sleeve match tests on a 1012 face terrain, a 1012 face stretched terrain
and a 10082 face terrain. In each case, we determined the percentage of
iterations that converged to the exact same edge sequence as the shortest
path computed using our implementation of Chen and Han’s algorithm.
As can be easily seen, the smaller terrain had more sleeve matches and the
stretched 1012 face terrain had less than the unstretched 1012 face terrain.
In any case, we see that with six Steiner points per edge, an exact shortest
path is obtained between 40% to 80% of the time.

We have proven that the worst case Euclidean approximation factor for
the fixed and interval schemes is ||II'(s, t)|| < ||II(s, t)|| + W|L|. The analy-
sis made the pessimistic assumption that each edge crossed by the shortest
path was of length |L| and that all faces had maximum weight. We made
the claim that terrains typically have many edges which are shorter than
L and hence our worst case analysis is an over estimate (see also Figure 9).
Just after the proof of Theorem 3.2, we have shown that this bound can
be written in terms of the average length of edges through which II(s,t)

passes as follows: ||II'(s,t)|| < ||II(s,)| + V‘(E‘?‘ﬂ The graphs of Figure 12
compare this improved worst case theoretical accuracy with that of the
produced accuracy for tests on the 10,082 face terrain using the fixed and

interval schemes. The top graph depicts the maximum (i.e. worst case) error

XXiv

1(.":‘%mparison of Approximation Accuracy with Theoretical Maximum Bound

T

Fixed -o--
Interval -+
Fixed + Sleeve -&

Computed Path Length / Shortest Path Length

1 2 3 4 5
Average Number of Steiner Points per Edge

Comparison of Approximation Accuracy with Theoretical Average Bound
1.16 T T T T T

1.14 |
\ Fixed -o--
Interval -+

Fixed + Sleeve -=-

Computed Path Length / Shortest Path Length

108 F Y E
1.06 | 1
1.04 —
;1 o
1.02 b . + 0 R
+ e S—
(=] + B s
1 . h 2) Py
0 1 2 3 4 5 6

Average Number of Steiner Points per Edge

FIGURE 12. Graphs comparing the worst case (theoretical) accuracy with that
of the produced accuracy for a 10,082 face terrain using the fixed and interval
schemes (top: maximum error; bottom: average error).

obtained from the 100 paths tested; whereas the bottom graph depicts the
average error obtained. The worst case and average case theoretical bounds
using the computation of ||II'(s,#)|| < ||U(s,t)|| + W|L| are not shown on
the graph, but are 3.220407 and 1.445150, respectively. The results confirm
that the algorithm performs much better in practice than predicted by the
theory.

Additional Terrains:

In order to verify that the algorithm would perform well on a variety of
terrain data, we ran additional tests on 10 terrains which were constructed
from DEM data from various parts of the world as shown in Table 1. Some
of these results are depicted in Figure 13 and they verify that all terrains
tested had similar accuracy and convergence behavior. Figure 14 shows the
typical path accuracy as compared to that of Chen and Han’s algorithm

25200 T T 25400
Fix —— \ Fix ——
25000 [Int -+ 4 25200 i\ Int -+ 4
A\ FixSlv & A FixSlv -=
24800 |- IntSly - 25000 IntSly -
24600 24800
E=1 s
2 24400 - 2 24600
o 5]
3]
% 24200 % 24400
o o
24000 24200
23800 . 24000
23600 - 23800
23400 : . : : : 23600 : : . ; .
0 1 2 3 4 6 0 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
9,944 Face Unweighted TIN (Australia) 9,817 Face Unweighted TIN (Europe)
92000 T T T T T 14000 T T T T T
91500 | Fix —— Fix ——
i Int -1 b Int -+ |
) FixSlv & 13900 h\ FixSlv -=
91000 | IntSlv - IntSlv -
13800
90500
13700
£ 90000 - £
5 g
— 89500 [— 13600
£ £
© L ©
a 89000 o 13500
88500 4
13400
88000
87500 - 13300
87000 : 13200 : : . ; .
0 1 2 3 4 6 0 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
10,952 Face Unweighted TIN (ltaly) 2,854 Face Unweighted TIN (Japan)
9600 T T T T T 17700 T T T T T
Fix —— Fix ——
Int -+ 17600 Int -+
9400 FixSly ~a-- 17500 [FixSlv -=
IntSlv - 1y IntSlv -
9200 4 17400
< < 17300
2 %0005 1 € 17200
3 3
5 8800 1§ Moo
& & 47000
8600 .] 16900
16800
8400 b =
=2 16700
X O = 1
8200 : 16600 : : : .
0 6 0 6

9,799 Face Unweighted TIN (Africa)

1 2 3 4
Average Number of Steiner Points per Edge

XXV

9,788 Face Unweighted TIN (North America)

1 2 3 4 5
Average Number of Steiner Points per Edge

FIGURE 13. Graphs showing average path length for six real-data terrains.

for these additional TINs. The path converges quickly to near-optimal after
only six Steiner points are added.

Spanners:

To determine the effects of using graph spanners on the path accuracy
we ran several experiments whose set-up is described next. In each test,
we varied the degree of the graph spanner cones from 1° to 40° degrees
in increments of five. The 1° test essentially represents the graph without
spanners allowing therefore a comparison of accuracy for schemes with
and without spanners. Figure 15 depicts the results of computing shortest
Euclidean paths on the 10,082 face terrain using the fixed and interval

XXVi

9,799 Face Unweighted TIN (Africa)
23600 T T T

Fix ——
23400 } Int -+ -
i FixSlv -a--
ISy x|
23200 - Chen and Han ----

23000 -

22800

Path Length

22600 |
22400 [

22200 |

22000

21800 : : : : :
0

2 3 4
Average Number of Steiner Points per Edge

FIGURE 14. Graph comparing average path length between our schemes and
that of Chen and Han for the Africa TIN.

schemes . The graphs show the loss in path accuracy with increasing cone
angle. Asin the non-spanner schemes, the interval scheme converges quicker
that the fixed scheme.

4.8 Computation Time

First we remark that we attempted to make a fair comparison between our
schemes and Chen and Han’s algorithm (for the unweighted case). For this,
we used the same geometric primitives wherever possible.

In general, the algorithms’ running times depend on the number of
Steiner edges in G because we are invoking Algorithm 1. Since we are
adding only a constant number of Steiner points on average per edge, the
total number of edges is linear, and thus the running time of our algorithms
becomes O(nlogn).

Figure 16 depicts the actual run-time results of the Euclidean shortest
path tests for variations of our approximation schemes on four of our orig-
inal six terrains. As we ran tests for many pairs of points, we precomputed
the graph G instead of building it every time on the fly. Then we mea-
sured the time it took to compute an approximate path for a query pair
(source, destination). The differences between the individual schemes are
not important in this graph. More importantly, the graph indicates that our
algorithms are substantially faster than the one due to Chen and Han[8].
The main reason is that our algorithms do not require any complex data
structures, nor do they perform expensive computations (such as 3D ro-

fThe 100 (random) vertex-pairs considered here are different than those in Figure 10

10,082 Face Unweighted TIN using Fixed Scheme with Spanners
T T T T T T

XXVii

1120
1 degree ——
5degree -+ |
1100 10 degree -&
15 degree -
1080 20 degree -=-- A
25 gegree -k
30 degree o~
< 1060 - 35 degree -+~ |
g 40 degree -=-
S 1040 Chen and Han]
=
©
& 1020 |]
1000]
980
960 . - L . . L
0 1 2 4 6 7
Average Number of Steiner Points per Edge
10,082 Face Unweighted TIN using Interval Scheme with Spanners
1120 T T T T T T
1 degree
F 5degree -+ |
1100 10 degree -
15 degree
1080 20 degree -=-- A
25 gegree -k
30 degree -
g 1060 35 degree 7]
2 40 degree
S 1040 Chen and Han]
=
©
& 1020 |-]
1000 0 e b
980
960 . - L . . L
0 1 2 3 4 5 6 7

Average Number of Steiner Points per Edge

FIGURE 15. Graphs showing path accuracy obtained for a 10,082 face terrain
using the fixed and interval schemes for a variety of spanner angles.

tation and unfolding). Due to the scale of the graph (resulting from the
large time difference to Chen and Han), we cannot distinguish between the
characteristics of the fixed and interval schemes.

Figure 17 depicts a graph showing the typical experimental run-time
results obtained from our tests. Shown here are two sets of results, one
for a 1,012 face TIN and one for the same TIN stretched by a factor of
five. From the graph, we can see that the time required for the additional
sleeve computation is negligible. In addition, there is very little difference
between the fixed and interval schemes. This is mainly due to the fact that
we are looking at the average number of Steiner points per edge. If we
had chosen the X-axis of the graph to be “Maximum Number of Steiner
points per Edge” we would see that the fixed scheme had a much slower
running time than the interval scheme; however, this would have been an
unfair comparison. Note as well, that the computation time increases for
the stretched terrain. The timing results for six additional terrains is shown

XXviii

1,012 Face Unweighted TIN 1,012 Face Unweighted TIN (Stretched Heights)

Fix ——

Int -+
5t FixSlv -e-- | 5 Fix ——|
IntSly - Int -+
Chen and Han ---- FixSlv -=
® 4l © a4l IntSIv. x|
€ £ Chen and Han ---
= =
< c
S S
k5 3r ks 3
s 5
a a
£ £
3 2 8 2|
1r 1
s M
0 t ? 0 ? .
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
10,082 Face Unweighted TIN 10,082 Face Unweighted TIN (Stretched Heights)
200 T T T 300 T T T T T
180 F B
Fix —— L 7
160 | Int -+ 250 e
Fixglv = FixSlv -=
140 IntSlv -
2 ChenandHan -—-{ & 200 | Ghen ananow
= 120 =
< <
L= 8
= 100 = 150
s 5
g eof £
3 3
100
o 60 L [$)
40 |
0 50
20
0 0 =
0 6 0 6

1 2 3 4 5 1 2 3 4 5
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge

FIGURE 16. Graphs showing average computation time for four selected terrains.

in Figure 18 ; notice the similarly computed running time.
Graph Spanners:

Getting back to the spanner schemes, we can now examine their compu-
tation time. Although the path accuracy is reduced when the more sparse
spanner graphs are used, the running time also decreases since there are
less edges in the graph. Figure 19 shows the running time for the tests
corresponding to the graphs of Figure 15. We can see that the spanners us-
ing the larger cone angle have better running time that those with smaller
cone angles. In fact, we see that the graph shape goes from “quadratic” to
“linear” since the number of graph edges becomes linear (times a constant)
when spanners are used. We also see that there is little difference again
between the fixed and interval schemes.

Clearly, the spanners allow a tradeoff between path accuracy and run-
ning time. From looking at these graphs, it is not immediately clear how
the tradeoff can help make a decision as to whether or not to use a spanner
and if so, what cone size to choose. The graphs of Figure 20 help determine
the feasibility of the spanner scheme. The graphs show the path accuracy
vs. computation time for the same data as Figure 15 and Figure 19. Here
we can see which cone size provides the best path accuracy, when given

XXiX

1,012 Face Unweighted TIN (Normal(N) and Stretched(S))

0.45

04 k
0.35 ’
0.3
0.25

0.2

Computation Time

0.15

0.1

0.05

0 > ' Il Il Il Il Il Il Il
0 1 2 3 4 5 6 7 8
Average Number of Steiner Points per Edge

FIGURE 17. Graph showing the typical running time characteristics for
the tested terrains using the fixed and interval schemes for normal(N) and
stretched(S) terrains.

a certain computation time. For instance, if a path is required in 2 sec-
onds, one can see that the 1 degree spanner provides the best accuracy for
that amount of time and the 40 degree spanner provides the worst accuracy.

Examining the graphs more closely, we notice that the 5 and 10 degree
spanners provide essentially the same accuracy as the 1 degree spanner.
The 15 degree spanner also has similar accuracy. Figure 19 illustrates that
the 10 and 15 degree spanner results can be 17% to 29% faster than the 1
degree spanner. One could therefore conclude that it may be worthwhile to
implement the 5, 10 or 15 degree spanner since nearly the same accuracy
can be obtained in less time. The graphs also indicate that if the allowable
computation time is small, the more sparse spanner schemes do not perform
well and should not be used. If the graphs could be extrapolated for larger
run times, it is likely that at some point, the spanner schemes will provide
a better accuracy vs. run time tradeoff. However, since good path accuracy
is obtained in practice after only a few (constant) Steiner points are added
per edge, the more sparse spanners become impractical.

4.4 Weighted Paths

For the weighted scenario, there is no implementation of an algorithm that
determines the (true) shortest weighted path. This poses a problem when
determining the accuracy of approximation. Another problem arises when

XXX

9,799 Face Unweighted TIN (Africa) 9,788 Face Unweighted TIN (North America)

25 T T 25
2 2+
o @
£ E
= 15+ Fix =— F 15
5 It = §
2 FixSlv -o-| 2
s IntSlv - 5
g 4 {8 s IntSIv. -
3 3
o [$)
0.5 9 0.5 4
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
9,944 Face Unweighted TIN (Australia) 9,817 Face Unweighted TIN (Europe)
1.8 : : . : : ~ 25 : : : : :
1.6 -
141 2r
" Int -+
o 1.2 FixSlv -84 o Fix ——
E ’ IntSlv <] E It
= =15 FixSlv -a-
s ! 1 8 IntSly
T ©
3 o8 103
£ £ 1 1
3 06 18
0.4 9 05]
0.2 4
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
10,952 Face Unweighted TIN (ltaly) 2,854 Face Unweighted TIN (Japan)
3 T T T T T 0.9 T T T T T
08 -
25
0.7 + 4
2 2 Fix =— 2 06 - Fix ——
E Int -+ E % Int -+
c FixSlv -&- c 05 F FixSlv -=--
L IntSlv x| .2) 7 IntSlv -
T 15 5]
32 3 04 P 1
£ £
3 1 18 03 7 1
02 4
0.5]
0.1 4
0 0
0 6 0 6

1 2 3 4 5 1 2 3 4 5
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge

FIGURE 18. Graphs showing average computation time for six real-data terrains.

attempting to refine weighted paths by adding Steiner points. How many
Steiner points are to be used during the second stage of approximation?

For our initial experiments, we used 20 Steiner points per edge in this
second stage. However, with the interval scheme, even though the average
number of Steiner points per edge is small (e.g., six) there may be many
more than six Steiner points placed on longer edges. Therefore, the approx-
imation accuracy may get worse during the second stage if we only allow a
maximum of 20 Steiner points per edge.

Figure 21 shows the accuracy obtained through experimentation on wei-
ghted terrains with and without the second stage approximation (using 20

XXX1

10,082 Face Unweighted TIN using Fixed Scheme with Spanners
4 T T T T

35 9
3l]
£
£ 25f 1
c
o
= 2+ 1 degree ——
5 5 degree -+
g 15 10 degree = |
S - 15 degree -
o 20 degree -a--
1 25 degree -*--|
30 degree -~
35 degree -+
0.5 40 degree -8+
0
0 7

2 3 4 5 6
Average Number of Steiner Points per Edge
,082 Face Unweighted TIN using Interval Scheme with Spanners

o

4.5
4t]
35 9
g st 1
=
5 25 1
T
32 2t 1 degree ——-
£ 5 degree -+
(=] 10 degree -=-- |
© 5 15 degree -
20 degree -a--
1 25 degree -x--]
30 degree -~
0.5 35 degree -+
40 degree -8

2 3 4 5 6 7
Average Number of Steiner Points per Edge

FIGURE 19. Graphs showing computation time obtained for a 10,082 face terrain
using the fixed and interval schemes for a variety of spanner angles.

Steiner points per edge as mentioned). Like for the unweighted scenario,
the path costs converge after only a few Steiner points have been added
on each edge. Since the convergence is similar to that of the unweighted
case, it is natural to conjecture that the cost of the paths converges to
the actual weighted path cost. The second approximation based on the
buffer technique provides an increase in accuracy, similarly. Since we use
the same algorithm for unweighted and weighted scenarios, we obtained
almost identical running time as shown in Figure 22. The second stage of
approximation resulted in a significant increase in computation time. This
is mainly due to the construction of a newly refined graph which is neces-
sary for each query.

Time Independence from Weight Assignment:

The results just mentioned are based on terrains in which weights were as-
signed to each face based on slope. To show that this assignment of weights

XXXii

Accuracy/Runtime Tradeoff for Spanner Graphs using Fixed Scheme
20 T T T T T T T

1 gegree ——
5 degree -+
1100 10 degree -=- 7
15 degree ~x
20 degree -&--
1080 | 25 degree -x-- |
30 degree ~o--
s 35 degree -
2 1060 - 40 degree &
S
T 1040 | 1
o
1020 1
1000 1
980
0 0.5 1 1.5 2 25 3 3.5 4
Computation Time
Accuracy/Runtime Tradeoff for Spanner Graphs using Interval Scheme
1120 T T T T T T T
1 gegree ——
5 degree -+
1100 r § 10 degree =~ 7
15 degree ~x
. 20 degree -&--
1080 - 25 degree -*--
30 degree o~
s 35 degree ~+
2 1060 - 40 degree &
S
T 1040 | 1
o
1020 1
1000 1
980 . . . | i

0 o5 1 15 2 25 3 35 4
Computation Time
FIGURE 20. Graphs showing path accuracy vs. computation time obtained for
a 10,082 face terrain using the fixed and interval schemes for a variety of spanner
angles.

does not bias the results, we ran additional tests in which the weights were
chosen at random for each face. ¥ The additional tests were performed on
the normal and stretched versions of the 5000 face terrain with random
heights and face weights. For these tests, we also changed the number of
Steiner points used in the second stage of approximation. For the second
stage approximation using the interval scheme, we increased the number
of Steiner points per edge to produce intervals of approximately half of the
size from the first stage. The fixed scheme tests were carried out as before
with 20 Steiner points per edge.

Figure 23 compares the weighted path costs between terrains with slope

weights and random weights. The slope weight tests were redone here with
the new calculation for the second stage approximation. As can be seen

iThe standard gnu-c function drand48() was used to generate the random weights.

1,012 Face Weighted TIN

XXxiii

1,012 Face Weighted TIN (Stretched Heights)

1600 T T 7500 T
Fix —— B Fix ——
X Int -+ 7400 1 Int -+ 7
1580 R\ FixSlv -8 | A FixSlv -=
IntSlv - 7300 IntSlv - 4
1560 7200 4
= 5 7100]
S S
Q1540 2 7000
T ©
a o 6900
1520 6800
1500 s 6700
6600
1480 6500
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
10,082 Face Weighted TIN 10,082 Face Weighted TIN (Stretched Heights)
1980 T T T T T 14500 T T T T T
Fix —— Fix ——
Int -+ | Int —+—
1960 FixSlv 14000 % FixSly - 7
IntSly - 3 IntSly -
1940 4
13500
. 1920 1L
é é 13000
2 1900 1 g .
& 5 12500
1880 1
12
1860 & 4 000
1840 4 11500 x " . :
1820 11000
0 6 0 6

1 2 3 4 5
Average Number of Steiner Points per Edge

1 2 3 4 5
Average Number of Steiner Points per Edge

FIGURE 21. Graphs showing average path cost for four selected weighted ter-
rains.

by the graphs, there is very little difference between the shape and conver-
gence behavior between the two weighted scenarios. The timing graphs for
these additional tests also showed very little difference.

The similar characteristic shape and scale of the graphs as compared to
the unweighted case imply that our algorithm is not sensitive to the weights
of the faces.

5 Shortest Path Queries

In this section, we describe algorithms for computing paths between arbi-
trary query points on the polyhedral surface. We consider two variations of
the shortest path query problem: 1) fixed source, and 2) arbitrary queries.
The preprocessing time involves running our algorithm from the previous
section and building a structure for point location.

XXX1V

1,012 Face Weighted TIN

1,012 Face Weighted TIN (Stretched Heights)

1.2
s
o
1r Fix —— 1F .
e Int -+ =
™ FixSlv -=
e o083 e ISl e e gt
= =
< c
L= 8
s 0.6 [s 0.6 - X
2 H ’
£ £ L
8 o4t S 04l e IntSly. -
0.2 | 02
0 0
0 1 2 3 4 5 6 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
10,082 Face Weighted TIN 10,082 Face Weighted TIN (Exagerated Heights)
10 T T T 30 T T T T T
9l
25 -
8l
7t e
g g 207 e
= 6 £
< <
L= 8 e’
4|
3 IS x| & ol
o 3 1l © % .
- - Fix ——
2 51 < Int -
..... " x FixSlv -=
! x IntSlv -
0 0
0 6 0 6

1 2 3 4 5 1 2 3 4 5
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge

FIGURE 22. Graphs showing average computation time for four selected weighted
terrains.

5.1 Fized Source

Let us consider a fixed source (w.l.o.g. assumed to be a vertex) and allow
arbitrary destination queries. Since the source is fixed, we can run Algo-
rithm 1 as a preprocessing step. Now, if the destination query point is a
vertex or a Steiner point, the cost from s to ¢ is precomputed and thus can
be reported in constant time. The path can be reported in time propor-
tional to the number of its segments. If the destination ¢ is not a vertex,
face f; which contains ¢ must first be located. Then the predetermined
shortest paths are used to the vertices and/or Steiner points of f;. An ap-
proximation for IT'(s,¢) can be constructed in one of two ways through
concatenation of:

1. T'(s,q:), qit, where ¢; is a Steiner point of f;, or
2. TI'(s,vs),v;t, where v; is a vertex of f;.

The choice of going through a vertex or a Steiner point allows for a tradeoff
between path accuracy and query time. The following theorem applies to
the two construction strategies above:

XXXV

5,000 Face Slope Weighted TIN (Random Heights) 5,000 Face Slope Weighted TIN (Random Stretched Heights)

4650

55000

Fix —— A\ Fix ——
Int -+ 1 Int ——
4600 FixSlv = FixSlv -=
\ IntSly 50000 | IntSly
4550 |\ J '
4500 [)
3 5 45000 -
S S
o 4450 £
& &
4400 | 40000 |
4350 -
) 35000 -
4300 | J
4250 30000
0 1 2 3 4 5 6 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
5,000 Face Random Weighted TIN (Random Heights) 5,000 Face Random Weighted TIN (Random Stretched Heights)
1950 T T T T T 6000 T T T T T
Fix —— Fix ——
Int -+ Int —+—
1900 L\ FixSlv -a-- 5500 4 FixSlv o
IntSlv - IntSlv -
5000 |
1850 -
E g 4500 -
< 1800 F: £
& § 4000
1750 + =
3500 |- \
1700 | 3000 -

1650 2500
0 0

1 2 3 4 5 1 2 3 4 5
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge

FIGURE 23. Graphs comparing the accuracy of weighted approximations for 2
weight scenarios: slope weights and random weights.

Theorem 5.1 A given polyhedron P can be preprocessed, for a given source
vertez s such that a path TI'(s,t) can be computed to a query point t on P
mn

1) O(m +logn) time such that ||TI'(s,t)|| < [[TI(s,t)|| + (1 + #H)W|L|

2) O(logn) time such that |TT'(s,t)|| < ||TI(s, t)]| + (1 + \%)W|L|

Proof: The proof is given separately for the two construction methods.
1) The query time follows from Observation 2.1 applied to n faces with an
additional O(m) time for computing the minimum of O(m) precomputed
paths from s to Steiner points of f;. Now consider the accuracy of the path
so obtained. Let b be the point at which II(s,t) enters f; and let b’ be the
Steiner point, closest to b, at which II'(s,t) enters f; (as per our scheme).
Using Theorem 3.2 we can derive the following bound on the cost of II'(s, t)
to be [[IU(s, ¢)[| < [[T(s, t)[| + (1 + 57 WILI.

2) For the analysis, we will assume that v; is the vertex of f; that is closest
to t and let L be the longest edge among the edges of f;. It can be shown
that |vit] < %, since the distance |v:t| is maximized when f; is an equilat-
eral triangle and ¢ is the point of intersection of the perpendicular bisectors
of each of the sides. Now from Theorem 3.2 it follows that ||II'(s,v:)|| <
|ITI(s,v¢)|| + W|L| Applying this to the constructed path II'(s,t) we ob-

XXXVi

tain: [[II(s, ¢)|| = |[II(s, ve) | + loet]| < [ITL(s, £)]| + lfoet]l + WIL| + [Jost| <

(s, &)l + (1 + Z)WIL|. O

5.2 Arbitrary Queries

Now consider the case in which both s and ¢ are arbitrary query points.
Preprocess the polyhedron by computing the shortest path from each ver-
tex of P to all Steiner points. We can then construct a path in one of two
ways as for the fixed source query problem. Let fs and f; be the faces
containing s and t, respectively. Let ¢, (respectively ¢;) be a Steiner point
of f; and let v, (respectively v;) be a vertex of f; (respectively f;). We
can construct II'(s, t) in one of the following ways: (A) 3¢5, 1'(gs, qt), it

(B) mvﬂl(v.ﬁqt)?ﬁ (C) manl(q.hvt)vm (D) m7nl(v87vt)7/utt'

In order to make the best choice of g5, ¢;,vs and/or vy, we compute the
path for all possible pairs of Steiner points and/or vertices of f; and f;.
In the first case, this takes O(m?) time as there are O(m) possibilities
for both g, and ¢;. For the second (respectively third) case, we need to
check O(m) possibilities for ¢; (respectively ¢,) and three possibilities for
v, (respectively v;). This takes O(m) time. Since there are at most nine
combinations to check, the last case can be carried out in constant time.

Theorem 5.2 A given polyhedron P can be preprocessed such that a path
II'(s,t) can be computed between two query points s and t on P in

1) O(logn +m?2) time such that ||TI'(s,t)|| < ||T(s,¢)|| + (1 + mLH)W|L|,
2) O(logn+m) time such that ||’ (s, t)|| < ||H(5,t)||+(1+%+m#+1)W|L|,

3) O(logn) time such that ||IU'(s,t)|| < ||TI(s,t)]| + (1 + \%)W|L|

Proof: The proof is similar to Theorem 5.1 where 1) uses construction
method (A), 2) uses construction method (B) or (C), and 3) uses construc-
tion method (D). O

6 Conclusion

Shortest path problems belong to a class of geometric problems that are
fundamental and of significant practical relevance. While realistic shortest
path problems frequently arise in applications where the cost of travel is
not uniform over the domain, the time, space and implementation com-
plexities of existing algorithms even for the planar case are extremely high
which motivates our study of approximation algorithms. Our experimental
results show that high-quality approximations can be obtained with very
good run-times. More precisely, we have provided empirical results show-
ing that typical terrain data requires only a few (constant) Steiner points

XXXVil

per edge. This reduces the running time to O(nlogn) in practice which
is orders of magnitude smaller than the best known exact shortest path
algorithm. The solutions are simple and of practical value.

We also theoretically establish bounds on the approximation quality and
give worst-case bounds on the run-time of our algorithms. For the un-
weighted scenario, we compared our accuracy to that of Chen and Han
[8] and gave results indicating that our algorithm performs up to 50 times
faster with a minimum observed speedup of 14 times and produces nearly
identical path results. We claim that our algorithm is efficient w.r.t. ac-
curacy versus running time and is simple to implement. Our algorithm is
of particular interest also for the case of queries with unknown source and
destination.

A different class of approximation is an e-approximation where we would
like to find a path such that |[TI'(s,t)|| < (1 + €)||TI(s, t)|| for some € > 0.
We can prove that our vertex-to-vertex schemes are e-approximations. How-
ever, the number of Steiner points required and preprocessing cost could be
high, making this scheme of little practical value. The worst case bounds,
when compared in the integer coordinate model, match that of Mata and
Mitchell [26]. An improved e-approximation algorithm is described in [5].
Furthermore, the e-approximation scheme for queries is discussed in [3].
In [4] the determination of an isotropic paths is discussed. The study of
anisotropic paths adds further realism by taking into consideration the di-
rection of travel on each face thereby e.g., eliminating paths that are too
steep for vehicles to travel and preventing the vehicles from turning over.

In order to further verify the schemes, we ran tests on different sources of
data: TINs created from DEMs, random data and general polyhedral mod-
els which were based on 3D range finder data. We found that all data re-
sulted in good performance for the schemes presented here. We did observe
however, that the flatter terrain data provided slightly better results than
the more “spiky” terrains. In addition to the schemes presented here, we
have designed additional Steiner placement and interconnection schemes.
Tests have shown that these other schemes did not perform well [22]. It
remains an open problem as to whether or not it is advantageous to place
Steiner points within the interior of the polyhedral faces.

Several other problems remain open. For the Euclidean shortest path
problem, our implementation of Chen and Han’s algorithm allowed us to
compare the path accuracies obtained by applying our schemes to the true
value. For the weighted shortest path problem, no algorithm exists. It re-
mains thus open to: (1) provide an algorithm and its implementation for
the weighted shortest path problem and (2) establish whether our conjec-
ture that the accuracy of our weighted shortest paths converges to the true

XXXViii

value is correct. (The curves for weighted and unweighted look very similar
suggesting correctness.)

The preprocessing time taken to answer queries efficiently, increases the
internal storage space requirements and, as also observed by Mata and
Mitchell [26], it remains an open question as to how the shortest path algo-
rithms fare experimentally in external memory settings. We are presently
investigating methods to overcome the storage issues these include also
the use of parallel computing [22]. Furthermore, a data-base of geometric
objects including e.g., benchmark TINs, should be constructed and made
available to the community. This would aid in providing a good basis for
experimental comparisons between algorithms and code.

Acknowledgments:

The authors would like to thank Stefan Schirra for his help in analyzing
our code with respect to numerical stability issues. We would also like to
thank Paola Magillo for supplying us with TINs as well as Gerhard Roth
from the NRC for providing us with general 3D polyhedral model data.
Finally, we would like to thank the referees for providing input resulting in
this version of the paper.

7 REFERENCES

[1] P.K. Agarwal, S. Har-Peled, M. Sharir, and K.R. Varadarajan, “Approxi-
mating Shortest Paths on a Convex Polytope in Three Dimensions”, Journal

of the ACM, Vol. 44, 1997, pp 567-584.

[2] P.K. Agarwal and K.R. Varadarajan, “Approximating Shortest Paths on a
Polyhedron”, Proceedings of the 88th IEEE Symp. on Foundations of Com-
puter Science, 1997.

[3] L. Aleksandrov, M. Lanthier, A. Maheshwari and J.-R. Sack, “An e-
Approximation Algorithm for Weighted Shortest Path Queries on Poly-
hedral Surfaces”, 14th FEuropean Workshop on Computational Geometry,
Barcelona, Spain, March 1998, pp. 19-21.

[4] M. Lanthier, A. Maheshwari, and J.-R. Sack, ”Shortest Anisotropic Paths
on Terrains”, in Proc. ICALP’99, Prague, LNCS 1644, , pp. 524-533, 1999.

[6] L. Aleksandrov, M. Lanthier, A. Maheshwari and J.-R. Sack, “An e-
Approximation Algorithm for Weighted Shortest Paths on Polyhedral Sur-
faces”, 6th Scandinavian Workshop on Algorithm Theory, Stockholm, Swe-
den, July 1998.

[6] A. Baltsan and M. Sharir, “On the Shortest Paths Between Two Convex
Polyhedra”, Journal of the ACM, 35, January 1988, pp. 267-287.

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

XXXIX

J. Canny and J. H. Reif, “New Lower Bound Techniques for Robot Motion
Planning Problems”, Proceedings of the 28th IEEE Symp. on Foundations
of Computer Science, 1987, pp. 49-60.

J. Chen and Y. Han, “Shortest Paths on a Polyhedron”, International Jour-
nal of Computational Geometry and Applications, Vol. 6, 1996, pp. 127-144.

J. Choi, J. Sellen and C.K. Yap, “Approximate Euclidean Shortest Path in 3-
Space”, International Journal of Computational Geometry and Applications,
Vol. 7, No. 4, 1997, pp. 271-295.

K.L. Clarkson, “Approximation algorithms for shortest path motion plan-
ning”, Proc. 19th Annual ACM Symp. Theory of Computing, 1987, pp. 56-65.

E.W. Dijkstra, “A Note on Two Problems in Connection with Graphs”,
Numerical Mathematics 1, 1959, pp.269-271.

M.L. Fredman and R.E. Tarjan, “Fibonacci Heaps and Their Uses in Im-
proved Network Optimization Algorithms”, J. ACM, 34(3), 1987, pp.596-
615.

C. Gold, “The Practical Generation and Use of Geographic Triangular El-
ement Data”, in Harvard Papers on Geographic Information Systems, 5,

(1978).

M. Goodrich and R. Tamassia, “Dynamic Trees and Dynamic Point Loca-
tion”, Proceedings of the 28rd Annual Symposium on Theory of Computing,
1991, pp. 523-533.

P.E. Hart, N.J. Nilsson, B. Raphael, “A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths”, IEEE Transactions on System Science
and Cybernetics, SSC-4(2), 1968, pp. 100-107.

S. Har-Peled, M. Sharir, and K.R. Varadarajan, “Approximating Short-
est Paths on a Convex Polytope in Three Dimensions”, Proc. 12th Annual
Symp. on Computational Geometry, Philadelphia, PA, 1996, pp. 329-338.

J. Hershberger and S. Suri, “Practical Methods for Approximating Shortest
Paths on a Convex Polytope in R2”, Proc. of the 6th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1995, pp. 447-456.

D. Hutchinson, M. Lanthier, A. Maheshwari, D. Nussbaum, D. Royten-
berg, J.-R. Sack, “Parallel Neighbourhood Modeling”, Proc. of the 4th ACM
Workshop on Advances in Geographic Information Systems,Minnesota,
1996, pp. 25-34.

P. Johansson, “On a Weighted Distance Model for Injection Molding”,
Linképing Studies in Science and Technology, Thesis no. 604 LiU-TEK-LIC-
1997:05, Division of Applied Mathematics, Linképing University, Linkdping,
Sweeden, February 1997.

D.G. Kirkpatrick, “Optimal Search in Planar Subdivisions”, SIAM Journal
of Computing, Vol. 12, No. 1, 1983, pp. 28-35.

x1

21]

22]

23]

[24]

[25]

[26]

[27]

28]

29]

[30]

31]

32]

[33]

[34]

[35]

M. Lanthier, A. Maheshwari and J.-R. Sack, “Approximating Weighted
Shortest Paths on Polyhedral Surfaces”, Proceedings of the 13th Annual
ACM Symposium on Computational Geometry, 1997, pp. 274-283.

M. Lanthier, “Shortest Path Problems on Polyhedral Surfaces”, Ph.D. The-
sts in progress, School of Computer Science, Carleton University, Ottawa,
Canada, 1999.

M. Lanthier, A. Maheshwari and J.-R. Sack, “Approximating Weighted
Shortest Paths on Polyhedral Surfaces”, video in this proceedings, 13th An-
nual ACM Symposium on Computational Geometry, June 1997.

D.T. Lee, and F.P. Preparata, “Euclidean Shortest Paths in the Presence of
Rectilinear Barriers”, Networks, 14, 1984, pp. 393-410.

L.A. Lyusternik, “Shortest Paths: Variational Problems”, Macmillan, New
York, 1964.

C. Mata and J. Mitchell, “A New Algorithm for Computing Shortest Paths
in Weighted Planar Subdivisions”, Proceedings of the 13th Annual ACM
Symposium on Computational Geometry, 1997, pp. 264-273.

K. Mehlhorn and S. Naher, LEDA: a platform for combinatorial and geo-
metric computing, Commun. ACM, 38, 1995, pp. 96-102.

J.S.B. Mitchell, D.M. Mount and C.H. Papadimitriou, “The Discrete
Geodesic Problem”, SIAM Journal of Computing, 16, August 1987, pp.
647-668.

J.S.B. Mitchell and C.H. Papadimitriou, “The Weighted Region Problem:
Finding Shortest Paths Through a Weighted Planar Subdivision”, Journal
of the ACM, 38, January 1991, pp. 18-73.

J. O’Rourke, S. Suri and H. Booth, “Shortest Paths on Polyhedral Sur-
faces”, extended abstract, Dept. Electrical Engineering and Computer Sci-
ence, Johns Hopkins University, Baltimore, Maryland, September 1984.

M. Overmars and A. van der Stappen, “Range Searching and Point Location
among Fat Objects”, Journal of Algorithms, Vol. 21, 1996, pp. 629-656.

C.H. Papadimitriou, “An Algorithm for Shortest Path Motion in Three Di-
mensions”, Information Processing Letters, 20, 1985, pp. 259-263.

T. K. Peucker, “Data Structures for Digital Terrain Modules,” in Harvard
Papers on Geographic Information Systems, 5, (1978).

T. K. Peucker, R. J. Fowler, J. J. Little, and D. M. Mark, “The Triangulated
Irregular Network,” in Proceedings DTM Symposium American Society of
Photogrammatry - American Congress on Survey and Mapping, pp. 24-31,
(1978).

F.P. Preparata, “A New Approach to Planar Point Location”, STAM Journal
of Computing, Vol. 10, No. 3, 1981, pp. 473-482.

xli

[36] M. Sharir, “On Shortest Paths Amidst Convex Polyhedra”, SIAM Journal
of Computing, 16, 1987, pp. 561-572.

[37] M. Sharir and A. Schorr, “On Shortest Paths in Polyhedral Spaces”, SIAM
Journal of Computing, 15, 1986, pp. 193-215.

[38] S. Suri, personal communication, 1996.

[39] Paradigm Group Web-page, School of Computer Science, Carleton Univer-
sity, http://www.scs.carleton.ca/™ gis.

xlii
Appendix - Proof of Theorem 3.1

We present here a proof of Theorem 3.1. The proof makes use of two
properties, a claim and a lemma which are stated first.

Property 7.1 An edge of P cannot have a weight greater than its adjacent
faces.

Property 7.2 Let ABC be a triangle. Let X be a point on AC and Y
be a point on AB such that [AX| = §|AC| and |AY| = 6|AB| for some
0< 6 < 1. Then XY is parallel to BC. Furthermore, | XY | = §|BC|.

Claim 7.1 Let ABC be a triangle such that LCAB = 6. Now let XY be
a line segment with endpoints X andY lying on AC and AB, respectively.
Given some constant 0 < 6 < 1, the following is true:

i) If [AX| > 6|AC| and [AY| < 6|AB| then [AC| < 2V
2 AX| < §|AC| and |AY| > 6|AB| then < symmetrica
If [AX| < §|AC| and [AY| > 6/AB| then |AB gg:e I
to i above) o
iii) If |AX| > 6|AC| and [AY| > 6[AB| then [BC| < XXl

Proof: Let P be the point on line AB such that | X P| is minimized (i.e., X P
is a perpendicular of line AB which may or may not lie on segment AB).
Define Y’ to be the point on segment AB such that |XY”| is minimized
(Y' = A, P, or B). Since | XY'| < |XY], it is sufficient to prove the claim
for | XY"|. Lastly, let D and E be the points on AC' and AB, respectively,
such that |AD| = 6|AC| and |AE| = §|AB|. (See Figure 24 where 6 is set
to §).

i) (case ii is symmetrical) By definition [XY| > [XY'| > |[XP|. If Y’ = A
then we are done since by assumption [AX| > §|AC]|. Hence [AC| < XX1.
Now if Y’ = P, then sinf = % and from our assumption that |[AX]| >
§|AC| we have |AC < X

§|AC| and |AY| > |_A_| hen we can infer that |XY| > |ED| = §|CB)|.
Therefore, [CB| < ! X XYl

|< 2 < BT
iii) From Property 7.2 | | = 6|CB|. Due to the constraint that [AX| >
6

O

Lemma 7.1 A Euclidean shortest path w(s,t) between two vertices s and
t of P can be approximated by a path ©'(s,t) consisting only of edges of P
such that |7'(s,t)| < m(s,t)|.

Proof: We will show that for each segment s; of w(s,t) there is a cor-
responding segment st of 7'(s,t) which represents an edge of P and is
bounded by m9 |31| Let s; = Zy and s;41 = Tz be two consecutive
segments of (s tﬁ Let 2,y and z lie on edges e, e, and e, respectively.

sin g'mzn

xliii

(iii)

FIGURE 24. The three cases in which an edge of AABC (shown dashed) has
length bounded by a segment XY crossing the triangle.

Also let v,, v, and v, be the vertices of e;, e, and e, that are closest to

x,y and z, respectively. Claim 7.1 ensures that |0;7,] < % and that
lyz| '

[0y 7z] < 5o Let s; = 0,0y and s;,, = UV, be segments of 7'(s,t)
that approximate s; and s; 1, respectively. This bound applies to every seg-
ment |s| of 7'(s,t) such that |s}| < (z=2—)|ss|. Since the cost of m(s,t)

sin Opmin
is the sum of the cost of its segments, then |7'(s,t)| < (sin92m,-7, (s, t)].
Connectivity is ensured since every pair of consecutive segments of 7'(s, t)
share a vertex. O

Theorem 3.1 A shortest path Il(s,t) between two vertices s and t of a
weighted polyhedral surface P with n faces can be approrimated by a path
' (s,t) such that ||TT'(s,t)|| < (Singmm)HH(s,t)H, where O,in s the mini-
mum interior angle of any face of P. Furthermore, ||IU'(s,t)|| can be com-
puted in O(nlogn) time.

Proof: The time complexity follows from Algorithm 2. From Lemma 7.1 we
know that the length of an approximation segment s, that passes through
a face is at most ﬁ times the actual shortest path segment length. In
addition, s} is an edge of P. From Property 7.1, s, cannot have a weight
greater than the weight of its adjacent faces. Hence, for any segment s; of
TI(s,t) that passes through a face, we approximate it with a segment s, of
II'(s,t) with cost at most (ﬁ)”&“ If there are no reflected segments
in TI(s,t) (as in Figure 1b), then the bound of Lemma 7.1 also applies in
the weighted case since edges of the terrain cannot have a cost higher than
its incident faces. We must now show that if paths are reflected, then the
bound also holds.

Let AABC be a face of P. Let p1,p2,ps and ps be consecutive points of
TI(s,t) joining consecutive segments of II(s,t). Without loss of generality,

xliv

B)

FIGURE 25. 12 cases in which a weighted path can reflect back into a face.

xlv

let p; lie on AC, ps,ps lie on AB and py lie on either AC or BC. Figure 25
shows many examples of such a set of points. In addition, we will assume
that |Ap;| < |Cpy|. (we can apply a similar proof when [Ap;| > |Cpy|. Also,
a similar proof can be constructed for when p, and ps lie on CB while py
lies on AB). There are 12 different types of placements of po,ps and py
which differ with respect to which vertex the points are closest to. We will
prove that the subpath II'(p1, ps) produced, by sliding these 4 points to
the closest vertex of the edge on which they lie, will be bounded such that

1T (p1, pa)ll < (o)T (1, pa) -

Consider the three cases of Figure 25A) in which II'(p;,ps) = AB. Since
AB necessarily has weight cheaper than the face (Property 7.1), then the
result of Claim 7.1 proves that |[AB| < 2.|pips| < —=—|Pipal- By

sin 6 min o
triangle inequality, [pipa] < |pipz| + [P2P3| + [Pspal and hence |[AB| <
<5 |(p1,p4)|. Since |AB| has weight which is no more than any portion

of T(py, ps) then [TT'(p1, pa)l| = IAB| < 52— [M(pr, pa)|. Tn the cases
of Figure 25D) both p; and p,s are slid to A and so we can assume that
this portion of the path never “leaves” A and hence has a cost of zero.
Thus, [|IT'(p1,p4)ll < |IIL(p1,p4)]|- In Figure 25C) me apply Claim 7.1 to
show that [AC| < -2-|p3Pa|, where 6 is as shown. Since P3pz is internal

to the face and ||papal| < |[TL(p1, pa)ll, then [|AC|| < 77— |[Pspal|. Lastly,

the cases in Figure 25B) depict the scenarios in which the approximated
path has two segments. In each case, [BC| < —2—|p3pa| through Claim

BC|| < z5—IPspall-
As for |AB|, we make use of the fact that |pipz| < |pipz| + |P2ps|, and
bound |AB| with respect to [pip3| using Claim 7.1 again. Once again, the
cheapest weight is along edge [AB| and so ||AB|| < 53— [lp1psl|- Hence

I (p1, pa) | = [AB|| + 1 BC| < g IT(p1, pa) - O

7.1 and since P3p; is internal to the face then, |

