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Abstract. We discuss the problem of computing shortest an-isotropic
paths on terrains. Anisotropic path costs take into account the length
of the path traveled, possibly weighted, and the direction of travel along
the faces of the terrain. Considering faces to be weighted has added re-
alism to the study of (pure) Euclidean shortest paths. Parameters such
as the varied nature of the terrain, friction, or slope of each face, can
be captured via face weights. Anisotropic paths add further realism by
taking into consideration the direction of travel on each face thereby e.g.,
eliminating paths that are too steep for vehicles to travel and prevent-
ing the vehicles from turning over. Prior to this work an O(n™) time
algorithm had been presented for computing anisotropic paths. Here we
present the first polynomial time approximation algorithm for comput-
ing shortest anisotropic paths. Our algorithm is simple to implement and
allows for the computation of shortest anisotropic paths within a desired
accuracy. Our result addresses the corresponding problem posed in [13].
Keywords: computational geometry, shortest path, approzimation.

1 Introduction

1.1 Motivation

Shortest path problems arise in many application areas like geographical infor-
mation systems® and robotics. They are among the fundamental problems in
computational geometry and other areas such as graph algorithms. In these ar-
eas objects are often modeled via terrains. A terrain is a set of points and edges
(connecting them) whose projection onto the zy-plane forms a triangulation.

A large body of work has centered around the computation of Euclidean
shortest paths (we refer the reader to the survey in [10]). For terrains, Sharir
and Schorr presented an algorithm for computing Euclidean shortest paths [12]
and now we know of a number of different algorithms (see cf. [1,6,10]). Weighted
shortest paths (introduced by [9]) provide more realism in that they can incor-
porate terrain attributes such as variable costs for different regions. This allows
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® We encountered several shortest path related problems in our R&D on GIS (see [14]);
more specifically, e.g., in emergency response time modeling where emergency units
are dispatched to emergency sites based on minimum travel times.



one to take into consideration e.g. that the cost of traveling through water, sand,
or on a highway is typically different. The NP-hardness and the large time com-
plexities of 3-d shortest paths algorithms even for special problem instances have
motivated the search for approximate solutions to the shortest path problem.
For weighted shortest path approximations on planar subdivisions or polyhedra,
more recently, several algorithms have been proposed [1,2,6-8].

In the model introduced by [9], the direction of travel along a face is not
captured. The direction of travel plays an important role in determining the
physical effects incurred on a vehicle (e.g., car, truck, robot, or even person)
traveling along a terrain surface. Through anisotropism, we can identify certain
directions of travel that represent inclines that are too steep to ascend or unsafe
to travel due to possible dangers such as overturning, sliding or wheel slippage.
It is for these reasons that we investigate anisotropic paths, i.e., paths that
take into account the direction of travel as well as length and other physical
properties. The model was introduced by Rowe and Ross [11] and it subsumes
all previously published criteria for traversal for isotropic weighted region terrain.
They present an algorithm which runs in O(n™) time in the worst case for an n-
vertex terrain. The high time complexity of this algorithm motivates the study
of approximation algorithms for anisotropic shortest path problems. Refer to
[10,11] for applications, further pointers and discussion on regular grid based
heuristics for these problems.

The quality of an approximate solution is assessed in comparison to the
correct solution. One particular class of approximation algorithms produces e-
approximations of the shortest path. Since mostly the geographic models are
approximations of reality anyway and high-quality paths are favored over opti-
mal paths that are "hard” to compute, approximation algorithms are suitable
and necessary. In e-approximation algorithms accuracy, arbitrarily high, can be
traded off against run-time. Such algorithms are appealing and are thus well
studied, in particular, from a theoretical view-point. In this paper we address
the problem of computing an e-approximation II'(s,t) to a shortest anisotropic
path II(s,t) for a vehicle between two points, s and ¢, on a terrain P, where
I|||1117,((+f))|||‘ < 1+ ¢, for any given € > 0.

In the case in which a user does not need arbitrary accuracy, we can design
a simpler algorithm that produces an approximation within an additive factor
of the shortest path. That is, we can compute an approximation IT'(s,t) of the
weighted shortest anisotropic path II(s,t) between two vertices s and ¢ of G such
that ||[IT'(s,t)|| < =tx (|I(s,t)|| + W|L|), where « is the angle that depends

upon the feasible directions of travel. Moreover, we can compute this path in
O(nklognk + nk?) time, where k is the number of segments of ||II(s,t)||. The
details of this simpler algorithm and that of proofs had to be omitted in this
paper (due to space restrictions) can be obtained from [7].

1.2 Preliminaries

Our algorithm is designed for the model developed by Rowe and Ross [11].
The model allows two main forces to act against the propulsion of the vehicle,



namely friction and gravity. The model assumes no net acceleration over the
path from s to t and a cost of zero for turning. Let L be the longest edge
of a terrain P. P is composed of n triangular faces, each face f;,1 < j < n
having a cost p; pertaining to the coefficient of kinetic friction for that face
w.r.t. the moving vehicle. Let mg be the weight of the vehicle. Denote by 8 the
minimum angle between any two adjacent edges of any face on P. Now consider
a segment s; of the shortest path which crosses a face f; of P. Let ¢; be the
inclination angle (gradient) of f; and let ¢; be the inclination angle of s; w.r.t.
to the XY plane (see Figure 1a)). Using this model, the cost of travel for s;
is: mg(p; cos @; + sin ;) - |s;|. We assume that mg is constant for the problem
instance and is set to one in our analysis. The cost due to the force of friction is
represented by p; cos ¢; - |s;|. Therefore, it is convenient to define w; = p; cos ¢;
to be the weight of face f;. Let W (resp. w) be the maximum (resp. minimum)
of all w;,1 <j <n.

Impermissible Range

Sideslope Overturn Ranges

Friction

Braking Range
05 = inclination angle of the gradient

0 i inclination angle of the vehicle

Fig. 1. a) The forces of friction and gravity that act against the propulsion of the
vehicle. b) The up to three ranges representing impermissible travel and the braking
range of a single face.

The cost due to gravity is represented by |s;|sin; which is the change in
elevation of the path segment. Hence the work expended against gravity is equal
to the difference in height between s and ¢ which is independent of the path
taken. For certain inclination angles, the cost formula could become negative
(i.e., p; < —arcsin(u;cos¢;)) violating the above assumption that there is
no net acceleration. The model therefore (in a sense) assumes that the energy
gained going downhill is exactly compensated by the energy required to brake.
So, vehicles do neither accelerate nor do they gain or lose energy when traveling
in a braking range. This is captured by the introduction of critical braking angles
defined by ¢; = — arcsin(u; cos ¢;).

By replacing the y; cos ¢; friction factor by — sin ¢; we cancel out the gravity
force resulting in zero cost travel. Notice that the negative gravity force has
already been extracted from the metric leaving a cost of — sin ; - |s;| for segment
s;. For a braking segment s; passing through face f;, —sing; > w;.



The model assumes that each face has up to three ranges of angles that
define directions on a face that are impermissible for traveling. Together, with the
braking range, there are up to four important angular ranges per face as shown in
Figure 1b). The boundary angles of the impermissible ranges are called critical
impermissibility angles. The boundary angles of the braking range are called
critical braking angles. For the regular angular ranges (i.e., neither impermissible
nor braking), the range is bounded by critical impermissibility or braking angles.
We will also think of these as the critical angles for the regular range. A path
is said to be walid if and only if it does not travel in any of the impermissible
directions. If any of the impermissible ranges overlap, they are combined to create
a single impermissible range. In some cases, the ranges may cover all possible
angles and that represents an isotropic obstacle.

Given two points s and ¢ on P, there may not be a valid path II(s,t) between
s and ¢t on P. The algorithm description and analysis presented here will assume
that there exists at least one valid path (i.e. II(s,t)) between s and ¢. Although
we make this assumption in the analysis, our algorithm is able to detect the
absence of valid paths and report when such a path does not exist.

Let ¢, be a critical impermissibility angle for one of the critical impermissi-
bility ranges of a face f; of P. Let u and v be the two unit vectors representing
the directions on the boundaries of the range. Thus, the angle that « and v make
with the horizontal plane is .. Let a, be the angle between these two vectors
when placed end-to-end. Let o; be the minimum of all «. for the impermissible
ranges and let o be the minimum of all a;,1 < j < n. Similarly, we define 3 as
being the minimum of all 3;,1 < j < n, where §3; is the angle between vectors
defined by the boundaries of the braking range(s). Let A to be the minimum
angle of all braking and regular range angles.

Rowe and Ross [11] show that this model allows for three types of segments
which we denote as direction types. We say a segment of a path is braking if it
travels in a braking heading, otherwise it is a regular segment. A path is said to
be a switchback path if it zig-zags along a matched pair of critical impermissibility
directions. In our algorithms, we will treat switchback paths (denoted as z;) as
a single segment, say s;, and assign a weight to it which incorporates the length
of the switchback path itself. It can be shown that a switchback path between
two points @ and b on a face f; which uses directions defined by v and v has

ab

Let v be a vertex of P. Define h, to be the minimum distance from v to the
boundary of the union of its incident faces. Define a polygonal cap C,, called a
sphere, around v, as follows. Let r, = €h,, for some 0 < €. Let r be the minimum
r, over all v. Let vuw be a triangulated face incident to v. Let u’ (w') be at
the distance of r,, from v on vu (vw). This defines a triangular sub-face vu'w’ of
vuw. The spherical cap C, around v consists of all such sub-faces incident at v.

length at most

1.3 Overview of Our Approach

Our approach is to discretize the polyhedral terrain in a natural way, by placing
Steiner points along the edges of the polyhedron (as in our earlier subdivision



approach [2,6] but with substantial differences as illustrated below). We con-
struct a graph G containing the Steiner points as vertices and edges as those
interconnections between Steiner points that correspond to segments which lie
completely in the triangular faces of the polyhedron. The geometric shortest path
problem on polyhedra is thus stated as a graph problem so that the existing ef-
ficient algorithms (and their implementations) for shortest paths in graphs can
be used. The main difference to [6, 2] and to other somewhat related work (e.g.,
[3-5]) lies in the placement of Steiner points, due to the directional restrictions
imposed on the path segments in this case.

We introduce a logarithmic number of Steiner points along each edge of P,
and these points are placed in a geometric progression along an edge. They are
chosen w.r.t. (i) the vertex joining two edges of a face such that the distance
between any two adjacent points on an edge is at most € times the shortest
possible path segment that can cross that face between those two points (ii)
eight direction ranges (three impermissible, one braking and four regular) such
that the approximation segment is of the same type as that of the shortest path
segment.

A problem arises when placing these Steiner points near vertices of the face
since the shortest possible segment becomes infinitesimal in length. A similar
issue was encountered by [1,2,5,4]. The problem arises since the distance be-
tween adjacent Steiner points, in the near vicinity of a vertex, would have to
be infinitesimal requiring an infinite number of Steiner points. We address this
problem by constructing spheres around the vertices which have a very small
radius. These spheres help in bounding the number of path segments during
the graph construction phase. Note that since switchback paths are allowed, it
is possible that the number of segments in a path could be infinite, but there
is a concise description of such paths, and that is used in our algorithm. Here
lies a further difference to our earlier approach. While the algorithms in [1,2]
never add Steiner points within the spheres centered around each vertex of the
polyhedron for anisotropic paths do.

We show that there exist a path in the graph G with cost that is within
(14 f(€)) times the shortest path costs, where f(e€) is a function of € and geometric
parameters of the terrain. The running time of our algorithm is the cost for
computing the graph G plus that of running a shortest path algorithm in G.

2 Our Approximation Scheme

2.1 Computing the Graph

We begin by constructing a graph G; for each face f; of P by adding Steiner
points along edges of f; in three stages. In the first stage, we add enough Steiner
points to ensure that the distance between adjacent Steiner points on an edge is
at most f(e) times the length of a shortest path segment which passes through
it, for some function f(e) which is independent of n. This is done using the
algorithm of [2]. The second stage of Steiner points are required to ensure that



there exists an approximation segment with the same direction type as a shortest
path segment which passes between the same Steiner points. Recall that our
model of computation allows for eight direction ranges per face. Second stage
adds a set of Steiner points to f; corresponding to the braking range and (up to
four) regular ranges. We give here a description of how to add the Steiner points
corresponding to the braking range; the Steiner point sets for the regular ranges
are constructed in a similar manner. In the third stage, we expand G; by placing
additional vertices within at least one of the spheres around a vertex of f;.

Stage 1: For each vertex v of face f; we do the following: Let e, and e, be the
edges of f; incident to v. First, place Steiner points on edges e, and e, at distance
r, from v; call them ¢; and p;, respectively. By definition, [vg| = [vp1]| = 7.
Define § = (1 + €sin8,) if §, < %, otherwise 6 = (1 + ¢). We now add Steiner
points ¢2,¢s, ..., ¢,,—1 along e, such that [7g;| = 7,67~1 where 1, = logs(|eq4|/Ts)-
Similarly, add Steiner points p2,ps, ..., p,,—1 along e,, where v, = logs(|ep|/7v)-

Stage 2: (see Figure 2) Let u and v be the critical angle directions for the range
on the plane of f;. Consider now each vertex v of f; and apply the following
algorithm twice (once as is and then again where u and v are swapped):
g« v.
WHILE (g does not lie within C,, of f;, where v; # v) DO {
x4 < the ray from g in direction wu.
IF (z, intersects an edge e of f;) THEN {
p + intersection point of z, and e.
Add p as a Steiner point on e.
xp + the ray from p in direction —wv.
IF (x, does not intersect an edge e of f;) THEN STOP
ELSE {
g < intersection point of z, with e.
Add q as a Steiner point one. } } }

Fig. 2. Adding Steiner points to a face corresponding to a braking range.



Note that when applying this stage to the adjacent faces of f;, some addi-
tional Steiner points will be added to the edges of f;. When creating the graph
for an adjacent face f;11, each edge of f; may also gain a set of Steiner points
due to this second stage construction. Hence, each edge may have two such sets
of Steiner points. The first and second stage of Steiner points along with the
vertices of f; become vertices of G;. Connect a pair of vertices in G; by two
oppositely directed edges if and only if 1) they represent Steiner points lying on
different edges of f; or 2) they represent adjacent Steiner points lying on the
same edge of f;. In addition, for each vertex of G; which corresponds to a vertex,
say v, of f;, connect it with two oppositely directed edges to 1) all vertices of
G; that represent Steiner points lying on the edge opposite to v, and 2) the two
vertices of G; corresponding to the two closest Steiner points that lie on the two
incident edges of v.

Stage 3: Let ¢ be a Steiner point (or vertex of f;) on edge e, of f; which
was added during the first or second stage of Steiner placement (including those
from adjacent faces as well). Extend rays from ¢ in the directions of u and v. For
each ray, if it intersects an edge e, # e, of f; at some point 2 within some C, of
vertex v of f; then add a Steiner point at z. Add = as a vertex of G; and add
edge @2 to G;. Also add edge Z¥ to G;. Now extend rays from ¢ in the directions
of —u and —v. For each ray, if it intersects an edge e, # e, of f; at some point
x within a distance of r, of a vertex v of f; then add a Steiner point at z. Add
z as a vertex of G; and add edge ¢ to G;. Also add edge 7% to G,. Let ¢,
and g,+1 be two adjacent Steiner points added on an edge within a sphere C,
as just mentioned. Let p, and pyy1 be the Steiner points that generated ¢, and
da+1, respectively. If |Goqar1| > 74(6 — 1) then we add additional evenly spaced
Steiner points between ¢, and g,4+1. We add only enough Steiner points to en-
sure that the distance between two adjacent points is at most r,(6 — 1). Once
again, connect each of these new Steiner points, say p to v with two oppositely
directed edges. Also, connect p to p, and pp+1 With two oppositely directed edges
each. Keep in mind that although we just described the addition of these Steiner
points with respect to the two critical directions w and v for the braking range,
we must also add similar sets of Steiner points for the regular ranges.

Having added vertices and edges to G; we must now assign appropriate
weights to the edges. For each edge ab of G, we set its weight as follows: If ab
is regular then its weight is set to w;|ab|. If ab is braking then its weight is set
to — sin @;|ab| where 6; is the declination angle of ab. Tf ab is switchback then its
weight is set to Si?g |ab|. This completes the construction of G ;. The graph G is
defined to be the union Gy U G5 U ...Go.

Claim 2.11. G is connected and has O(nlogs(|L|/r) + nlogz(r/|L|)) vertices

and O(n(logs(|L|/r) +1ogz(r/|L]))?) edges, where F = ﬁ%m, 0 is the min-

imum angle between any two adjacent edges of any face on P, and X\ is the
minimum of all braking and regular range angles.



2.2 Constructing the Approximated Path

We describe here the construction of a path IT'(s, t) in G. In the section to follow,
we will bound the cost of this path. Note however that Dijkstra’s algorithm may
produce a better path than the one constructed here. Recall that a switchback
path z; of II(s,t) within face f; is represented with a single segment (i.e. s;) of
I1(s,t) whose weight encapsulates the distance of the switchback path. Each s;,
must be of one of the following types:

i) s;NC, = @,

ii) s; N C, = subsegment of s;, or

111) s;NC, = s;.

Let Cy,,Cy,, ..., Cy,. be a sequence of spheres (listed in order from s to %)
intersected by type ii) segments of I1(s,t) such that C,, # C, Now define
subpaths of II(s,t) as being one of two kinds:

a1

Definition 1. Between-sphere subpath: A path consisting of a type i) segment
followed by zero or more consecutive type i) segments followed by a type i)
segment. These subpaths will be denoted as II(0q,04+1) whose first and last
segments intersect Cy, and Co, ., , respectively. We will also consider paths that
begin or/and end at a vertex to be a degenerate case of this type of path containing
only type i) segments.

Definition 2. Inside-sphere subpath: A path consisting of one or more consecu-
tive type i) segments all lying within the same C,,; these are denoted as II(ay).
(Note that inside-sphere subpaths of II(s,t) always lie between two between-
sphere subpaths. That is, IT(c,) lies between IT(cq—1,04) and II(c4,00+41))-

Let z and y be the endpoints of s; and let x (respectively y) lie on edge e,
(respectively e,) of f;. Let g, and ¢, (respectively p, and ps) be the Steiner
points on e, (respectively e,) between which z (respectively y) lies.

Claim 2.21. At least one of @.pi or GsPa s of the same direction type as ;.

We begin our path construction by choosing a segment s, in G; which ap-
proximates a segment s; crossing face f;. If s, is a type i) or type ii) segment,
then choose s} to be one of zPa, @b, @GP and gops such that s) is of the same
direction type as s; and ||s}|| is minimized. Claim 2.21 ensures that at least one
of these segments is of the same type as s;. For the sake of analysis, we will
assume that s} is chosen so as to have the same direction type as s; and we will
bound s} accordingly. In practice however, we may choose a segment with less
cost, since we are choosing the minimum of these four. Note that this choice also
pertains to the special case in which e, = e,. Note also that if s; is of type ii),
then one of g4, gs, Po Or P» may degenerate to a vertex of f;. In the case where
8; is a type iii) segment, there is no corresponding segment s in IT'(s,t).

At this point, we have approximations for all type i) and type ii) segments but
they are disconnected and therefore do not form a path joining s and t. We will
now add edges joining consecutive type i) or type ii) segments of II(s,t). Let s;
and s;11 be two consecutive segments of II(s,t) that are type i) or type ii) with



corresponding approximation segments s; of G; and s, ; of G;1, respectively.
Let e be the edge of P joining faces f; and fjy1. Let ¢ be the endpoint of s
lying on e and let p be the endpoint of s}, ; lying on e. It is easily seen that
either ¢ = p or ¢ and p are adjacent Steiner points on e. If ¢ = p, then s, and
s;4, are already connected. If ¢ # p then let s; be the edge in G; from ¢ to p.
st is used to

The addition of these segments (i.e. all s!) ensures that all segments of
between-sphere subpaths are connected to form subpaths. We now need to in-
terconnect the between-sphere subpaths so that II'(s,t) is connected.

Consider two consecutive between-sphere subpaths of IT'(s, t), say II'(c4—1,04)
and IT'(04,04+1). They are disjoint from one another, however, the first path
ends at a Steiner point within sphere C,, and the second path starts at a Steiner
point within C,,. Join the end of II'(0,—1,0,) and the start of IT'(¢,,04+41) to
vertex vy, by two segments (which are edges of G created in Stage 3). These
two segments together will form an inside-sphere subpath and will be denoted as
IT'(0,). This step is repeated for each consecutive pair of between-sphere sub-
paths so that all subpaths are joined to form IT'(s,t). Constructing a path in
this manner results in a connected path that lies on the surface of P.

2.3 Bounding the Approximation

We give a bound ||II'(s,t)|| on the cost of II'(s,t). To begin, a bound is shown
for each of the between-sphere path segments. The claims to follow bound the
approximation segments of the type i) and type ii) face crossing segments of
II(s,t). Assume therefore that s is a type i) or type ii) face-crossing segment.
The claims give bounds for the three possible direction types of si. That is, we
bound the weighted cost of s for the cases in which s} (and hence s;) is regular,
braking and switchback, respectively. For the following claims, we will assume
that s, = G, pp; similar proofs hold when s} = G@p,.

Claim 2.31. Let s; and s, be two segments as discussed above, passing through
a face f; which has weight w;. Then
i) if s; and s, are regular then ||si|| < (1 + 2¢)]|s]|

i) if s; and s are braking then ||si|| < (1 + 2—6) I|s:]|-
i) if s; and s, are switchback then ||si|| < (1 + 52 _) IIss]|
w) Isill < g llsill-

Lemma 1. IfIT'(0,_1,0,) is a between-sphere subpath of IT'(s,t) corresponding
to an approzimation of II(0q, 1,04) then |I'(0q_1,04)] < (1 + max(z2x +
2

w’sln—

sin —

YOI (0g—1,04)||, where w is the minimum weight of the faces ofP

Proof Sketch: Let s; be a segment of II'(04_1,0,) which approximates a seg-
ment s; of H(aa 1,04) passing through face f;. By Claim 2 31 we have ||s}|| <
(14 2emax(L, Sm—_))||sz|| We can charge the cost of each s/ to s;. Therefore, we

can say from Clalm 2.31(iv) that ||s]| + ||s?]| < (14 max(; 1= T+ 2 2 _) MIssl-




Hence, each segment s: of IT'(0,_1,0,) has cost at most (1 + max(=1 =

& amz)elsill and [T (001, 00)l| < (14 max(ls + 5 52w )e) | T (00— 1ol

Claim 2.32. Let II'(6,—1,0.) be a between-sphere subpath of II'(s,t) corre-
sponding to an approzimation of II(o.—1,0,) then

T (0ol < (5 2Ses ) T (a1, 0|, where 0 < e < 4
Proof sketch: The distance between C,,_, and C,, must be at least (1—2¢)h,,
Since II(0,-1,0,) is a between-sphere subpath, it intersects both C,,_, and C,, .
Thus |I1(0a—1,04)| > (1 — 2€)h,, . By definition, IT'(0,) consists of exactly
two segments which together have length satisfying |IT'(0,)| < 2r,,, = 2¢€h,, .
Thus, |I'(0,)] < 12 2€|H(oa 1,04)|- In the worst case, we can assume that
segments of II’ (aa) are impermissible and that II(o,_1,0,) is braking. Hence,
1T (o)l < s HT'(00)] < ragsmg M (0a-1,00)]-

w(1—2€)sin

sin 2

Lemma 2. If II(s,p) is a shortest anisotropic path in P, where s is a vertezx of
P and p is a verter of G then there exists an approzimated path II'(s,p) € G
such that || IT'(s,p)|| < (L + f(€))|| (s, p)|| where 0 <€ < % and

50 = (- (e +mox (g + 2.57)))

Proof sketch: Using the results of Claim 2.32 and Lemma 1, it can be shown that

1Tt T ) < (14 € (2 +max (s + 2,522 )) 1 (@acr, 00l
This essentially “charges” the length of an inside-sphere subpath to a between-
sphere subpath. The union of all such subpaths form IT’(s, p). This allows us to

approximate IT'(s, p) within the bound of 1+€ (% + max (Sm +2, 3 ))
2

times the total cost of all the between-sphere subpaths of II(s, p). Since II(s,p)
has cost at least that of its between-sphere subpaths, the lemma holds true.

Theorem 1. Let P be a polyhedral surface with maximum and minimum face
weights W and w, respectively such that W > sin 5, where a is the minimum
angle defined by any pair of matched critical impermissible and braking angles.
Let II(s,t) be a shortest weighted path on P, where s and t are vertices of P
then there exists an approzimated path II'(s,t) € G such that ||II'(s,t)|| < (1 +

FENI(s,t)||, where f(€) = ( 3We%). Moreover, ||IT'(s,t)|| can be computed by

w sin

running Dijkstra’s shortest path algorithm on the graph computed in Claim 2.11.

3 Conclusion

We presented an algorithm for computing an e-approximation to a shortest
anisotropic path on the terrain. A similar, but simplified (therefore omitted
here) methodology allows for the computation of an approximation to within an
additive factor of the shortest anisotropic path [7]. Both algorithms expand on
and generalize edge subdivision schemes we had introduced earlier [1,2]. Thus



one general technique gives rise to Euclidean, weighted and anisotropic path al-
gorithms. The differences are not so significant for the implementation as they
are for the analysis. All graph construction schemes are easy to implement and
then require only running a shortest path algorithm in a graph. We believe that
the approximations within an additive factor will be of special interest for prac-
titioners. The e-approximations are also of theoretical interest as they require
new ideas (as also discussed here).

Acknowledgments: The authors would like to thank Lyudmil Aleksandrov for
helpful discussion on Claim 2.11.
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