

Chapter 11

Modeling and Simulation

What is in This Chapter ?
This chapter explains the concepts of modeling and simulation with some examples of how we
can do this in JAVA. We begin with a simple example of modeling a traffic light that uses a
state machine and then discuss how we can model some objects to simulate some interactions
between objects that we often see in the real world.

COMP1405 – Modeling and Simulation Fall 2015

 - 331 -

 11.1 Simulation With State Machines

Computers are often used to simulate real-world scenarios. Here is a wikipedia definition:

A computer simulation is an attempt to model a real-life or hypothetical
situation on a computer so that it can be studied to see how the system works. By
changing variables, predictions may be made about the behaviour of the system.

Computer simulation has become a useful part of modeling many natural systems in the
areas of physics, chemistry, biology, economics, social science and engineering.

Video games are prime examples of simulation, where some real (or imaginary) life
situations are simulated in a virtual world. As time progresses, video games are becoming
more life-like as graphics and physical modeling become more precise and realistic.

Other places that require computer simulation are:

• network traffic analysis
• city/urban simulation
• flight/space/vehicle/medical simulators
• disaster preparedness simulations
• film and movie production
• theme park rides
• manufacturing systems

There is much to know about simulation, enough material to fill a few courses. In this course,
however, we will just address two basic categories of simulations:

• Running a simulation to find an answer to a problem
• Virtual simulation (i.e., animation) of a real world

scenario

When simulating, usually there is some kind of initialization
phase, followed by a processing loop that continuously
processes and (possibly) displays something on the screen.

Think of a simulation as a store. The initialization phase
corresponds to the work involved in getting the store ready to
open in the morning (e.g., tidying up, putting out signs,
stocking the shelves, preparing the cash register, unlocking
the door). The processing loop phase corresponds to the
repeated events that occur during the day (i.e., dealing with
customers one-by-one) until the store is to be closed.

COMP1405 – Modeling and Simulation Fall 2015

 - 332 -

Example:

In the real world objects have what is known as state. The state of an object is normally
considered to be some condition of the object with respect to a previous state. For example,
a light bulb is considered to be in a "working" state when we buy it, but if we smash it on the
ground it would then be in a "broken" state.

How can we simulate a traffic light ? It should have 3 states ... RED, GREEN
and YELLOW. Assume that the traffic light starts in a RED state and that we
want it to cycle continuously between these states. We will assume that the
light remains RED for 20 seconds, then GREEN for 30 seconds, then
YELLOW for 3 seconds. To simulate the traffic light, it is good to think of it as
a state machine.

A state machine is any device that stores the status of something at a given time
and can operate on input to change the status and/or cause an action or output to take
place for any given change.

We can then draw a state diagram to show how the traffic light changes from one state to
another as time goes by:

Notice how the state changes from RED to GREEN only when the time has reached 20
seconds. Note as well that inside the state of GREEN, we reset the time counter to 0 so that
we can count 30 seconds again in order to decide when to switch to the yellow state.

Let's represent the traffic light as an object. We will need to maintain the state/color of the
light as well as perhaps a countdown timer that keeps track of how much longer the light will
remain in that state. It will also be a good idea to create a constructor. We can create one
that makes sure that the light starts in a state of RED. Lastly, we will create a toString()

COMP1405 – Modeling and Simulation Fall 2015

 - 333 -

method that will allow our traffic light to display itself properly. Make sure that you understand
the following code, as there should be nothing new here:

public class TrafficLight {
 public static final byte RED = 1;
 public static final byte YELLOW = 2;
 public static final byte GREEN = 3;

 public int state; // The current state of the traffic light
 public int timeRemaining; // Seconds remaining in this state

 public TrafficLight(byte iState) {
 state = iState;
 timeRemaining = 0;
 }

 public String toString() {
 switch(state) {
 case RED: return "RED traffic light";
 case YELLOW: return "YELLOW traffic light";
 case GREEN: return "GREEN traffic light";
 default: return "OFF traffic light";
 }
 }
}

Now, for the simulation program that will simulate the light ... we will need to create the light
and then simulate it by allowing it to go through the states repeatedly. Here is the structure:

public class TrafficLightSimulationProgram {
 public static void main(String[] args) {
 TrafficLight light = new TrafficLight(TrafficLight.RED);

 System.out.println(light);
 while(true) {
 // ... Add code here to simulate ...
 }
 }
}

Now, to simulate the code, we just need to
make the timeRemaining value of the
TrafficLight count down from whatever it is at
... to zero. Then, we switch its state. We
just have to
switch at the
right time and
to the right
color. So, we
can write code
that follows the
state machine
diagram.

if (timeRemaining is 0) then {
 if (state is Red) then {
 state ← Green
 timeRemaining ← 30
 }
 otherwise if (state is Green) then {
 state ← Yellow
 timeRemaining ← 3
 }
 otherwise if (state is Yellow) then {
 state ← Red
 timeRemaining ← 20
 }
}

COMP1405 – Modeling and Simulation Fall 2015

 - 334 -

Here is the final code. Notice how the 1 second delay is added to ensure that the changing of
the states is correct:

public class TrafficLightSimulationProgram {
 public static void main(String[] args) {
 TrafficLight light = new TrafficLight(TrafficLight.RED);

 System.out.println(light);
 while(true) {
 try{ Thread.sleep(1000); } catch(Exception e){}; // Wait for 1 second
 if (light.timeRemaining == 0) {
 if (light.state == TrafficLight.RED) {
 light.state = TrafficLight.GREEN;
 light.timeRemaining = 30;
 }
 else if (light.state == TrafficLight.GREEN) {
 light.state = TrafficLight.YELLOW;
 light.timeRemaining = 3;
 }
 else if (light.state == TrafficLight.YELLOW) {
 light.state = TrafficLight.RED;
 light.timeRemaining = 20;
 }
 System.out.println(light); // Display the changed light
 }
 else
 light.timeRemaining--; // Count down each time
 }
 }
}

For some added fun, try writing a program to draw the traffic light as it changes state. You can
start with the code from our Ball Simulation.

 11.2 Modeling and Simulation Using Data Structures

Sometimes it is helpful to develop a model of some real world objects in order to simulate
something. It helps to understand the simulation when we can think of all the objects involved
in the same way that we would think of objects in the real world. So, for example, all objects
have state (which is the attributes that make the object different from other objects of the same
kind (e.g., name, size, color, age, etc...). Objects also have behavior (which is the things
that you can do with the object ... its abilities).

Consider modeling a theatre in which patrons purchase tickets for movies
from a box office. We can create object models to represent a Patron, a
Theatre , and a Ticket for a movie ... and then make a simulation program
that tests them altogether in a realistic kind of scenario.

To begin, we will define a Ticket object with a single instance variable indicating which movie
theatre that the Ticket is valid for. Let's assume that the id is a char (e.g., 'A', 'B', 'C', etc).
We will also make some decisions as to how much the tickets will cost and hardcode this as

COMP1405 – Modeling and Simulation Fall 2015

 - 335 -

constants in the class. Here is the basic class. Note that the theatreID represents the ID of
the theatre for which the ticket is valid:

public class Ticket {
 public static final float REG_CHILD_PRICE = 7.99f;
 public static final float REG_ADULT_PRICE = 10.99f;
 public static final float REG_SENIOR_PRICE = 8.50f;

 public char theatreID; // ID of the theatre to which it is valid

 public Ticket(char id) {
 theatreID = id;
 }
}

Now, let us define a Patron object with instance variables called age (which is an int) and
ticket (which is a Ticket object). We will write a simple toString() method as well that shows
the Patron with the following format, depending on whether or not he/she has a ticket:

 "19 yr old patron without a ticket"
 "19 yr old patron with a ticket for theatre A"

Here is the code:

public class Patron {
 public int age;
 public Ticket ticket;

 public Patron(int anAge) {
 age = anAge;
 ticket = null;
 }

 public String toString() {
 String result = age + "yr old patron with";
 if (ticket == null)
 return result + "out a ticket";
 return result + " a ticket for theatre " + ticket.theatreID;
 }
}

We can test these two objects out with the following test program:

public class PatronTestProgram {
 public static void main(String args[]) {
 Patron jenny = new Patron(19); // create 19 year old patron with no ticket
 Ticket aTicket = new Ticket('A'); // create a ticket for Theatre A

 jenny.ticket = aTicket; // give the ticket to jenny
 System.out.println(jenny); // make sure age is 19 and theatreID is A
 jenny.ticket = null; // discard jenny's ticket
 System.out.println(jenny); // make sure theatreID is gone now
 }
}

COMP1405 – Modeling and Simulation Fall 2015

 - 336 -

Here is the output:

19yr old patron with a ticket for theatre A
19yr old patron without a ticket

Now we can define a Theatre class that represents the place that will be showing movies.
Here is the basic code for the class, showing the instance variables that we want:

public class Theatre {
 public char id; // ID of theatre
 public String moviePlaying; // title of movie currently playing
 public float movieEarnings; // amount of money movie has made so far
 public int capacity; // # people that can be seated in theatre
 public int seatsSold; // # seats sold for movie so far
 public int admittedPatrons; // # patrons admitted into theatre

 public Theatre(char identification, int cap) {
 moviePlaying = "";
 movieEarnings = 0;
 capacity = cap;
 seatsSold = 0;
 id = identification;
 admittedPatrons = 0;
 }
}

Now, to simulate something interesting, we can pretend that some patrons will be buying some
tickets for some movies. We need to think about what happens in real life. Here are things
that we need to simulate:

• A new movie begins playing at a Theatre
• A Patron buys a ticket for a movie
• A Patron enters the Theatre and gives his ticket
• a Patron returns a ticket for a movie (before it starts) for a refund

Those are typical situations that can arise. So we need to simulate each of them. We can do
this with 4 individual procedures/methods:

• public static void openMovie(Theatre aTheatre, String newMovie) {...}
• public static void buyTicket(Patron aPatron, Theatre aTheatre) {...}
• public static void admit(Patron aPatron, Theatre aTheatre) {...}
• public static void returnTicket(Patron aPatron, Theatre aTheatre) {..}

For each of these methods, we will need to do two things:

1. Look at what objects/data are available
2. Decide how the objects/data will change

Examining the first method for a movie opening, we notice that a theatre is passed in as a
parameter as well as a movie name. We need to determine how the Theatre will change as a
result of the movie's opening. To do that, we need to decide how the attributes/instance
variables will change. Let's look at them ... which ones will change ?:

COMP1405 – Modeling and Simulation Fall 2015

 - 337 -

aTheatre: id, moviePlaying, movieEarnings, capacity, seatsSold, admittedPatrons

Well, the moviePlaying will change to the movie newMovie that is passed in to the method.
Also, we should ensure that the earnings for the movie are 0 as well as the number of seats
sold so far and the number of admitted patrons. Here is the code:

public static void openMovie(Theatre aTheatre, String newMovie) {
 aTheatre.moviePlaying = newMovie;
 aTheatre.movieEarnings = 0;
 aTheatre.seatsSold = 0;
 aTheatre.admittedPatrons = 0;
}

There. We have the code that will simulate the opening of a movie. It was not difficult. Now,
for the second one. Let's simulate the purchasing of a ticket by a patron for a specific movie
theatre. The buyTicket() method has two objects now ... a Patron and a Theatre, so we need
to see how these will change. Let's look again at the attributes for these objects:

aPatron: age, ticket
aTheatre: id, moviePlaying, movieEarnings, capacity, seatsSold, admittedPatrons

When the patron buys a ticket for the movie playing in the theatre, the patron will need to store
the ticket (i.e., to keep it). But there is no ticket passed as a parameter. That is because we
need to create the ticket by calling the constructor. Here is how to start this:

public static void buyTicket(Patron aPatron, Theatre aTheatre) {
 Ticket t = new Ticket(aTheatre.id); // make the ticket
 aPatron.ticket = t; // store the ticket
}

As for the theatre, what changes ? The movieEarnings will increase depending on the
amount of money paid for the ticket ... that is ... depending on the age of the Patron who
purchased it and the fixed prices in the Ticket class. The seatsSold will also increase. But
wait! We need to also ensure that the theatre is not full to capacity before selling the ticket.
Here is the completed method:

public static void buyTicket(Patron aPatron, Theatre aTheatre) {
 if (aTheatre.seatsSold < aTheatre.capacity) {
 Ticket t = new Ticket(aTheatre.id); // make the ticket
 aPatron.ticket = t; // store the ticket

 // Now increase the earnings
 if (aPatron.age <= 12)
 aTheatre.movieEarnings += Ticket.REG_CHILD_PRICE;
 else if (aPatron.age >= 65)
 aTheatre.movieEarnings += Ticket.REG_SENIOR_PRICE;
 else
 aTheatre.movieEarnings += Ticket.REG_ADULT_PRICE;

 aTheatre.seatsSold++; // Add 1 to the count of seats sold
 }
}

COMP1405 – Modeling and Simulation Fall 2015

 - 338 -

Now, what about allowing someone into the theatre to watch the movie ? Well, let's look
again at the attributes for these objects:

aPatron: age, ticket
aTheatre: id, moviePlaying, movieEarnings, capacity, seatsSold, admittedPatrons

The patron's ticket will be given to the theatre attendant, so we need to remove the ticket from
the patron. As for the theatre, the number of admitted patrons will increase by one:

public static void admit(Patron aPatron, Theatre aTheatre) {
 aPatron.ticket = null;
 aTheatre.admittedPatrons++;
}

However, we better make sure that the patron goes to the correct theatre. So, if the patron
attempts to enter a theatre for which he/she does not have a ticket, we should not allow it:

public static void admit(Patron aPatron, Theatre aTheatre) {
 if ((aPatron.ticket != null) &&
 (aPatron.ticket.theatreID == aTheatre.id)) {

 aPatron.ticket = null;
 aTheatre.admittedPatrons++;
 }
}

Do you understand why we needed to check for a null ticket ? If we didn't, then the code
would crash for anyone who did not have a ticket.

Our final method is for handling the returning of a ticket. To do this, we simply need to take
the ticket away from the patron and take the price of the ticket away from the theatre's
earnings. Of course, we'd better ensure that the patron actually has a ticket and that it
matches the theatre passed in, otherwise we cannot properly return the ticket.

public static void returnTicket(Patron aPatron, Theatre aTheatre) {
 if ((aPatron.ticket != null) &&
 (aPatron.ticket.theatreID == aTheatre.id)) {

 aPatron.ticket = null;

 // Now decrease the earnings
 if (aPatron.age <= 12)
 aTheatre.movieEarnings -= Ticket.REG_CHILD_PRICE;
 else if (aPatron.age >= 65)
 aTheatre.movieEarnings -= Ticket.REG_SENIOR_PRICE;
 else
 aTheatre.movieEarnings -= Ticket.REG_ADULT_PRICE;

 aTheatre.seatsSold--; // Deduct 1 from the count
 }
}

Looking at the code, there is a lot is similarity between this code as well as the buyTicket()
method, in that we need to determine the cost of the ticket in a similar way. Let's extract the

COMP1405 – Modeling and Simulation Fall 2015

 - 339 -

code into a useful method so that we do not have duplication. Let's write a function called
priceFor(Patron p) which returns the price that the patron should pay for his/her ticket:

public static float priceFor(Patron p) {
 if (p.age <= 12)
 return Ticket.REG_CHILD_PRICE;
 else if (p.age >= 65)
 return Ticket.REG_SENIOR_PRICE;

 return Ticket.REG_ADULT_PRICE;
}

Now that we have this useful method, we can update our buyTicket() and returnTicket()
methods:

public static void buyTicket(Patron aPatron, Theatre aTheatre) {
 if (aTheatre.seatsSold < aTheatre.capacity) {
 Ticket t = new Ticket(aTheatre.id); // make the ticket
 aPatron.ticket = t; // store the ticket

 // Now increase the earnings and add 1 to the count of seats sold
 aTheatre.movieEarnings += priceFor(aPatron);
 aTheatre.seatsSold++;
 }
}

public static void returnTicket(Patron aPatron, Theatre aTheatre) {
 if ((aPatron.ticket != null) &&
 (aPatron.ticket.theatreID == aTheatre.id)) {

 aPatron.ticket = null;

 // Now decrease the earnings and deduct 1 from the count
 aTheatre.movieEarnings -= priceFor(aPatron);
 aTheatre.seatsSold--;
 }
}

There ... that is much cleaner now. How can we adjust our code so that it is not necessary to
pass in aTheatre as a parameter to the returnTicket() method ?

Well, we still need the Theatre object in order to deduct from the earnings. But we can make
a change to store the Theatre object itself inside the Ticket instead of just the theatreID:

public class Ticket {
 public static final float REG_CHILD_PRICE = 7.99f;
 public static final float REG_ADULT_PRICE = 10.99f;
 public static final float REG_SENIOR_PRICE = 8.50f;

 public Theatre theatre; // The theatre to which it is valid

 public Ticket(Theatre t) {
 theatre = t;
 }
}

COMP1405 – Modeling and Simulation Fall 2015

 - 340 -

We would have to make some changes to the methods that we wrote, but this would be
simple. Notice how the returnTicket() method would simplify with just the one parameter:

public static void returnTicket(Patron aPatron) {
 if (aPatron.ticket != null) {
 aPatron.ticket = null;

 // Now decrease the earnings
 if (aPatron.age <= 12)
 aTheatre.movieEarnings -= Ticket.REG_CHILD_PRICE;
 else if (aPatron.age >= 65)
 aTheatre.movieEarnings -= Ticket.REG_SENIOR_PRICE;
 else
 aTheatre.movieEarnings -= Ticket.REG_ADULT_PRICE;

 aPatron.ticket.theatre.seatsSold--; // Deduct 1 from count
 }
}

So, now how do we test it all out to see if it works ? Well, we'd need to make a test program.

public class TheatreSimulatorProgram {

 // Simulate the opening of a movie to a theatre
 public static void openMovie(Theatre aTheatre, String newMovie) {
 aTheatre.moviePlaying = newMovie;
 aTheatre.movieEarnings = 0;
 aTheatre.seatsSold = 0;
 aTheatre.admittedPatrons = 0;
 }

 // Simulate a patron entering a theatre
 public static void admit(Patron aPatron, Theatre aTheatre) {
 if ((aPatron.ticket != null) &&
 (aPatron.ticket.theatreID == aTheatre.id)) {

 aPatron.ticket = null;
 aTheatre.admittedPatrons++;
 }
 }

 // Determine and return the price that the given Patron should pay for a ticket
 public static float priceFor(Patron p) {
 if (p.age <= 12)
 return Ticket.REG_CHILD_PRICE;
 else if (p.age >= 65)
 return Ticket.REG_SENIOR_PRICE;

 return Ticket.REG_ADULT_PRICE;
 }

COMP1405 – Modeling and Simulation Fall 2015

 - 341 -

 // Simulate a patron buying a ticket at a theatre
 public static void buyTicket(Patron aPatron, Theatre aTheatre) {
 if (aTheatre.seatsSold < aTheatre.capacity) {
 Ticket t = new Ticket(aTheatre.id); // make the ticket
 aPatron.ticket = t; // store the ticket

 // Now increase the earnings and add 1 to the count of seats sold
 aTheatre.movieEarnings += priceFor(aPatron);
 aTheatre.seatsSold++;
 }
 }

 // Simulate a patron returning a ticket for a theatre
 public static void returnTicket(Patron aPatron, Theatre aTheatre) {
 if ((aPatron.ticket != null) &&
 (aPatron.ticket.theatreID == aTheatre.id)) {

 aPatron.ticket = null;

 // Now decrease the earnings and deduct 1 from the count
 aTheatre.movieEarnings -= priceFor(aPatron);
 aTheatre.seatsSold--;
 }
 }

 // The program starts here
 public static void main(String args[]) {
 // Make a couple of theatres
 Theatre t1 = new Theatre('A', 3); // capacity = 3
 Theatre t2 = new Theatre('B', 10);

 // Make a few of patrons
 Patron adam = new Patron(10);
 Patron biff = new Patron(17);
 Patron chad = new Patron(21);
 Patron dana = new Patron(73);

 System.out.println("Theatre 1 capacity: " + t1.capacity);
 System.out.println("Theatre 1 seats sold: " + t1.seatsSold);

 System.out.println("Theatre 1 opening Movie ... \"Jurassic World\"");
 openMovie(t1, "Jurassic World");
 System.out.println("Theatre 1 earnings: " + t1.movieEarnings);

 System.out.println("10 year old buying a ticket ... ");
 buyTicket(adam, t1);
 System.out.println(adam);

 System.out.println("17 year old and 21 year old buying tickets ... ");
 buyTicket(biff, t1);
 buyTicket(chad, t1);
 System.out.println("Theatre 1 seats sold: " + t1.seatsSold);
 System.out.println("Theatre 1 earnings: " + t1.movieEarnings);

 System.out.println("10 year old returning a ticket ... ");
 returnTicket(adam, t1);
 System.out.println("Theatre 1 seats sold: " + t1.seatsSold);
 System.out.println("Theatre 1 earnings: " + t1.movieEarnings);

COMP1405 – Modeling and Simulation Fall 2015

 - 342 -

 System.out.println(adam);

 System.out.println("73 year old buying a ticket ... ");
 buyTicket(dana, t1);
 System.out.println(dana);
 System.out.println("Theatre 1 seats sold: " + t1.seatsSold);

 System.out.println("Admitting 17 year old into theatre ... ");
 admit(biff, t1);
 System.out.println(biff);

 System.out.println("Admitting 21 year old into wrong theatre ... ");
 admit(chad, t2);
 System.out.println(chad);
 System.out.println("Theatre 2 admitted patrons: " + t2.admittedPatrons);

 System.out.println("Admitting 21 year old into correct theatre ... ");
 admit(chad, t1);
 System.out.println("Theatre 1 admitted patrons: " + t1.admittedPatrons);
 System.out.println("Admitting 73 year old into theatre 1 ... ");
 admit(dana, t1);
 System.out.println("Theatre 1 admitted patrons: " + t1.admittedPatrons);
 System.out.println("Attempt to admit 10 year old into theatre 1 ... ");
 admit(adam, t1);
 System.out.println("Theatre 1 admitted patrons: " + t1.admittedPatrons);
 System.out.println("Theatre 1 earnings: " + t1.movieEarnings);
 }
}

Here is the expected output:

Theatre 1 capacity: 3
Theatre 1 seats sold: 0
Theatre 1 opening Movie ... "Jurassic World"
Theatre 1 earnings: 0.0
10 year old buying a ticket ...
10yr old patron with a ticket for theatre A
17 year old and 21 year old buying tickets ...
Theatre 1 seats sold: 3
Theatre 1 earnings: 29.97
10 year old returning a ticket ...
Theatre 1 seats sold: 2
Theatre 1 earnings: 21.98
10yr old patron without a ticket
73 year old buying a ticket ...
73yr old patron with a ticket for theatre A
Theatre 1 seats sold: 3
Admitting 17 year old into theatre ...
17yr old patron without a ticket
Admitting 21 year old into wrong theatre ...
21yr old patron with a ticket for theatre A
Theatre 2 admitted patrons: 0
Admitting 21 year old into correct theatre ...
Theatre 1 admitted patrons: 2
Admitting 73 year old into theatre 1 ...
Theatre 1 admitted patrons: 3
Attempt to admit 10 year old into theatre 1 ...
Theatre 1 admitted patrons: 3
Theatre 1 earnings: 30.48

COMP1405 – Modeling and Simulation Fall 2015

 - 343 -

 11.3 Converting to Object-Oriented Programming Style

In our previous example, we created 3 classes as data structures: Ticket, Patron and Theatre
as well as a couple of test programs, one being the simulator itself. But we actually wrote our
code in a non-object-oriented style.

In our main simulation program, we wrote 5 procedures that perform useful portions of the
simulation. However, at the highest level, the actual simulation took place in the main
method, where we made use of these methods. Here is a reduced form of our code (with
some code omitted):

public class TheatreSimulatorProgram {

 public static void openMovie(Theatre aTheatre, String newMovie) { ... }
 public static void admit(Patron aPatron, Theatre aTheatre) { ... }
 public static void buyTicket(Patron aPatron, Theatre aTheatre) { ... }
 public static void returnTicket(Patron aPatron, Theatre aTheatre) { ... }
 public static float priceFor(Patron p) { ... }

 public static void main(String args[]) {
 // Make a couple of theatres
 Theatre t1 = new Theatre('A', 3); // capacity = 3
 Theatre t2 = new Theatre('B', 10);

 // Make a few of patrons
 Patron adam = new Patron(10);
 Patron biff = new Patron(17);
 Patron chad = new Patron(21);
 Patron dana = new Patron(73);

 openMovie(t1, "Jurassic World");
 buyTicket(adam, t1);
 buyTicket(biff, t1);
 buyTicket(chad, t1);
 returnTicket(adam, t1);
 buyTicket(dana, t1);
 admit(biff, t1);
 admit(chad, t2);
 admit(chad, t1);
 admit(dana, t1);
 admit(adam, t1);
 }
}

In order to write code that uses proper object-oriented programming style, the 5 static methods
written here need to be moved elsewhere so that all that is left here is the main method. But
to where do we move these methods ? The simple answer is ... to the data structure classes.

Consider, for example, the priceFor() method. Recall the code, as shown on the next page.
You will notice that it makes use of both the Patron data structure as well as the Ticket data
structure. So, we can move this code into either of those classes.

COMP1405 – Modeling and Simulation Fall 2015

 - 344 -

 public static float priceFor(Patron p) {
 if (p.age <= 12)
 return Ticket.REG_CHILD_PRICE;
 else if (p.age >= 65)
 return Ticket.REG_SENIOR_PRICE;

 return Ticket.REG_ADULT_PRICE;
 }

Consider first, moving it to the Ticket class. Here is how the Ticket class would now look:

public class Ticket {
 public static final float REG_CHILD_PRICE = 7.99f;
 public static final float REG_ADULT_PRICE = 10.99f;
 public static final float REG_SENIOR_PRICE = 8.50f;

 public char theatreID; // ID of the theatre to which it is valid

 public Ticket(char id) {
 theatreID = id;
 }
 public static float priceFor(Patron p) {
 if (p.age <= 12)
 return REG_CHILD_PRICE;
 else if (p.age >= 65)
 return REG_SENIOR_PRICE;
 return REG_ADULT_PRICE;
 }
}

Notice that the method is simply moved here. However, you may also notice that
Ticket.REG_CHILD_PRICE has become simply REG_CHILD_PRICE. That is because the method
is now inside the Ticket class, so we don't need to tell JAVA to "go inside" the Ticket class by
saying Ticket..

What would the code look like now that calls this method ? Well, consider the buyTicket()
method from our TheatreSimulatorProgram:

 public static void buyTicket(Patron aPatron, Theatre aTheatre) {
 if (aTheatre.seatsSold < aTheatre.capacity) {
 Ticket t = new Ticket(aTheatre.id);
 aPatron.ticket = t;
 aTheatre.movieEarnings += priceFor(aPatron);
 aTheatre.seatsSold++;
 }
 }

This code won't compile now because the priceFor() method has been moved to a different
class/file. So, we need to tell JAVA where to go look for it. Hence the line:

aTheatre.movieEarnings += priceFor(aPatron);

needs to be replaced by:

aTheatre.movieEarnings += Ticket.priceFor(aPatron);

COMP1405 – Modeling and Simulation Fall 2015

 - 345 -

Now JAVA knows where we moved it to. It will "go inside" the Ticket class to find the method.

Now, instead of putting it into the Ticket class, we could have also put it into the Patron class.
Here is how the Patron class would now look:

public class Patron {
 public int age;
 public Ticket ticket;

 public Patron(int anAge) {
 age = anAge;
 ticket = null;
 }

 public String toString() {
 String result = age + "yr old patron with";
 if (ticket == null)
 return result + "out a ticket";
 return result + " a ticket for theatre " + ticket.theatreID;
 }

 public float priceFor() {
 if (age <= 12)
 return Ticket.REG_CHILD_PRICE;
 else if (age >= 65)
 return Ticket.REG_SENIOR_PRICE;
 return Ticket.REG_ADULT_PRICE;
 }
}

Notice a couple of things. First, we removed the word static from the method's first line (i.e.,
the method signature). That is because the method is no longer considered a class method,
but is now an instance method. What does that mean ?

Well, notice also that the Patron parameter is missing! Notice as well that we are now using
age instead of p.age. Since the method is inside the Patron class now, we don't need to tell
JAVA where to find the age. It finds it right here at the top of the class definition.

But how does JAVA know which Patron to get the age from ? Well, this is where the removal
of the static word comes into play. Consider how the method will be called now.

 public static void buyTicket(Patron aPatron, Theatre aTheatre) {
 if (aTheatre.seatsSold < aTheatre.capacity) {
 Ticket t = new Ticket(aTheatre.id);
 aPatron.ticket = t;
 aTheatre.movieEarnings += aPatron.priceFor();
 aTheatre.seatsSold++;
 }
 }

Here you will notice that we put aPatron. in front of the method call. This is a little different.
For the first time, we are putting a variable/parameter name in front of the dot instead of the
Patron class name.

COMP1405 – Modeling and Simulation Fall 2015

 - 346 -

This means that JAVA will considers the actual Patron object that is in front of the dot. It is
this patron (i.e., aPatron in this case) that is used inside the method when JAVA accesses the
age attribute. If we used a different Patron like this:

anotherPatron.priceFor();
yetAnotherPatron.priceFor();

then JAVA will used these other Patron objects when inside the method in order to access
their age attribute. So the age depends on the object instance being used in front of the dot.
That is, it varies according to the instance. Therefore, the method is now called an instance
method. And since it varies, it is no longer fixed or static. That is why the static keyword
has been removed.

The method name should likely be changed now, though, because there is no parameter:

aTheatre.movieEarnings += aPatron.ticketPrice();

 public float ticketPrice() {
 if (age <= 12)
 return Ticket.REG_CHILD_PRICE;
 else if (age >= 65)
 return Ticket.REG_SENIOR_PRICE;
 return Ticket.REG_ADULT_PRICE;
 }

Let us now consider this method that we wrote in our TheatreSimulatorProgram:

 public static void openMovie(Theatre aTheatre, String newMovie) {
 aTheatre.moviePlaying = newMovie;
 aTheatre.movieEarnings = 0;
 aTheatre.seatsSold = 0;
 aTheatre.admittedPatrons = 0;
 }

You will notice that it makes use of the Theatre class in the parameter. So we can move this
method into the Theatre class as follows:

public class Theatre {
 public char id; // ID of theatre
 public String moviePlaying; // # people that can be seated in theatre
 public float movieEarnings; // title of movie currently playing
 public int capacity; // amount of money movie has made so far
 public int seatsSold; // # seats sold for movie so far
 public int admittedPatrons; // # patrons admitted into theatre

 public Theatre(char identification, int cap) {
 moviePlaying = "";
 movieEarnings = 0;
 capacity = cap;
 seatsSold = 0;
 id = identification;
 admittedPatrons = 0;
 }

COMP1405 – Modeling and Simulation Fall 2015

 - 347 -

 // Simulate the opening of a movie to this theatre
 public void openMovie(String newMovie) {
 moviePlaying = newMovie;
 movieEarnings = 0;
 seatsSold = 0;
 admittedPatrons = 0;
 }
}

Notice again that the static is now removed and the Theatre parameter is no longer needed.
We access the theatre's attributes directly now. In the main() method of our
TheatreSimulatorProgram, we change the way that we call the method from this:

 openMovie(t1, "Jurassic World");

to this:

 t1.openMovie("Jurassic World");

Do you understand why ?

Finally, we need to move the admit(), buyTicket() and returnTicket() methods to where they
belong. Looking at the parameters, we have two choices ... the Patron class or the Theatre
class. For the admit() it makes sense to put that one in the Theatre class, passing a Patron
in as the only parameter:

 // Simulate a patron entering this theatre
 public void admit(Patron aPatron) {
 if ((aPatron.ticket != null) &&
 (aPatron.ticket.theatreID == id)) {

 aPatron.ticket = null;
 admittedPatrons++;
 }
 }

Again, the static is now removed and the Theatre parameter is no longer needed. In the
main() method of our TheatreSimulatorProgram, we change the way that we call the method
from this:

 admit(chad, t1);

to this:

 t1.admit(chad);

For the other two methods, we will put them in the Patron class, leaving the Theatre object as
the sole parameter:

COMP1405 – Modeling and Simulation Fall 2015

 - 348 -

 // Simulate this patron buying a ticket at a theatre
 public void buyTicket(Theatre aTheatre) {
 if (aTheatre.seatsSold < aTheatre.capacity) {
 Ticket t = new Ticket(aTheatre.id); // make the ticket
 ticket = t; // store the ticket

 // Now increase the earnings and add 1 to the count of seats sold
 aTheatre.movieEarnings += ticketPrice();
 aTheatre.seatsSold++;
 }
 }

 // Simulate this patron returning a ticket for a theatre
 public void returnTicket(Theatre aTheatre) {
 if ((ticket != null) &&
 (ticket.theatreID == aTheatre.id)) {

 ticket = null;

 // Now decrease the earnings and deduct 1 from the count
 aTheatre.movieEarnings -= ticketPrice();
 aTheatre.seatsSold--;
 }
 }

Here is the final TheatreSimulatorProgram. Notice how simple it is now:

public class TheatreSimulatorProgram {
 public static void main(String args[]) {
 // Make a couple of theatres
 Theatre t1 = new Theatre('A', 3); // capacity = 3
 Theatre t2 = new Theatre('B', 10);

 // Make a few of patrons
 Patron adam = new Patron(10);
 Patron biff = new Patron(17);
 Patron chad = new Patron(21);
 Patron dana = new Patron(73);

 System.out.println("Theatre 1 capacity: " + t1.capacity);
 System.out.println("Theatre 1 seats sold: " + t1.seatsSold);

 System.out.println("Theatre 1 opening Movie ... \"Jurassic World\"");
 t1.openMovie("Jurassic World");
 System.out.println("Theatre 1 earnings: " + t1.movieEarnings);

 System.out.println("10 year old buying a ticket ... ");
 adam.buyTicket(t1);
 System.out.println(adam);

 System.out.println("17 year old and 21 year old buying tickets ... ");
 biff.buyTicket(t1);
 chad.buyTicket(t1);
 System.out.println("Theatre 1 seats sold: " + t1.seatsSold);
 System.out.println("Theatre 1 earnings: " + t1.movieEarnings);

 System.out.println("10 year old returning a ticket ... ");

COMP1405 – Modeling and Simulation Fall 2015

 - 349 -

 adam.returnTicket(t1);
 System.out.println("Theatre 1 seats sold: " + t1.seatsSold);
 System.out.println("Theatre 1 earnings: " + t1.movieEarnings);
 System.out.println(adam);

 System.out.println("73 year old buying a ticket ... ");
 dana.buyTicket(t1);
 System.out.println(dana);
 System.out.println("Theatre 1 seats sold: " + t1.seatsSold);

 System.out.println("Admitting 17 year old into theatre ... ");
 t1.admit(biff);
 System.out.println(biff);

 System.out.println("Admitting 21 year old into wrong theatre ... ");
 t2.admit(chad);
 System.out.println(chad);
 System.out.println("Theatre 2 admitted patrons: " + t2.admittedPatrons);

 System.out.println("Admitting 21 year old into correct theatre ... ");
 t1.admit(chad);
 System.out.println("Theatre 1 admitted patrons: " + t1.admittedPatrons);
 System.out.println("Admitting 73 year old into theatre 1 ... ");
 t1.admit(dana);
 System.out.println("Theatre 1 admitted patrons: " + t1.admittedPatrons);
 System.out.println("Attempt to admit 10 year old into theatre 1 ... ");
 t1.admit(adam);
 System.out.println("Theatre 1 admitted patrons: " + t1.admittedPatrons);
 System.out.println("Theatre 1 earnings: " + t1.movieEarnings);
 }
}

The code is now considered to be "object-oriented" because the methods are organized into
the various classes as kinds of behaviors that the object is able to perform. For example,
Patrons are now able to buy tickets and return tickets and Theatres are able to open movies
and admit patrons.

Hopefully, you understand why we put the methods in those particular classes ... because the
simulation code is much more readable now. And also, if we made a different simulation, we
don't have to re-write the methods again, since they are stored in the appropriate classes.

You will learn much more about object-oriented programming in the next course.

 11.4 Convergence in Simulation

It is often the case that we need to compute an answer to some problem in which the
parameters are complex and/or uncertain. In some situations, it may be unfeasible or
impossible to compute an exact result to a problem using a well-defined and predictable
algorithm.

There is a specific type of simulation method that is well-suited for situations in which you
need to make an estimate, forecast or decision where there is significant uncertainty:

COMP1405 – Modeling and Simulation Fall 2015

 - 350 -

The Monte Carlo Method uses randomly generated or sampled data and
computer simulations to obtain approximate solutions to complex mathematical and
statistical problems.

There is always some error involved with this scheme, but the larger the number of random
samples taken, the more accurate the result.

The simplest example that is used to describe the Monte Carlo method is that of computing an
approximation of π (i.e., pi). π is a mathematical constant whose value is the ratio of
any circle’s circumference to its diameter. It is approximately equal to 3.141593 in the usual
decimal notation. π is a very important number in math and computer science as it relates to
many trigonometric functions and geometric algorithms and is used in graphics and animation.

The value of π can be approximated using a Monte Carlo method based on this principle:

Given a circle inscribed in a square (i.e., the largest circle that fits in the
square), the ratio of the area of the circle to that of the square is π / 4.

Knowing this, if we can get an estimate for the area of the
circle as well as the area of the square, then we can find
an approximation for π / 4, of course then multiplying by
4 to get an approximation for π.

We can estimate the area of the square and circle by
uniformly scattering some points throughout the square.
Some will lie within the circle, some will lie outside the
circle. The more points that we add, the better the
approximation of the area, as the whole square and circle
will eventually be covered as time goes on.

 2,000 8,000 16,000 32,000
 3.15242 3.15461 3.14075 3.144625

Here is the algorithm, assuming that the circle and square are centered at point (R,R):

COMP1405 – Modeling and Simulation Fall 2015

 - 351 -

Algorithm: ComputePi
 R: the radius of a circle and ½ width & ½ height of a square

1. pointsInCircle = 0
2. pointsInSquare = 0
3. repeat for a user-chosen amount of iterations {
4. x = random value from 0 to 2R-1
5. y = random value from 0 to 2R-1
6. pointsInSquare = pointsInSquare + 1
7. if ((the distance from (x,y) to (R,R) < R) then
8. pointsInCircle = pointsInCircle + 1
 }
9. print (pointsInCircle / pointsInSquare * 4)

We can stop the loop at any time. As the loop goes on, however, the algorithm will slowly
converge to a better approximation as more data points are sampled. If the points are
purposefully chosen only around the center of the circle, they will not be uniformly distributed,
and so the approximation will be poor. An approximation will also be poor if only a few points
are randomly chosen throughout the whole square. Thus, the approximation of π will become
more accurate both with more points and with their uniform distribution.

Here is an example showing how the approximated value (blue) will converge towards the
optimal value (solid red line).

In JAVA, we can write a program that shows us visually what is happening by drawing each
point that is randomly chosen. For those inside the circle we can draw them as small circles
and those outside as small squares. The code below creates a simple JPanel and then
enters an infinite loop to compute the random points and draw them each time. It also

3.06

3.08

3.1

3.12

3.14

3.16

3.18

3.2

0 50000 100000 150000 200000 250000 300000 350000 400000

COMP1405 – Modeling and Simulation Fall 2015

 - 352 -

computes the estimate for PI and continually shows it. DrJava has a difficult time handling a
lot of output to the console, so your program may slowly crawl to a halt at around 30,000
points.

import java.awt.*;
import javax.swing.*;

public class MonteCarloPiEstimationProgram {
 public static void main(String[] args) {
 int R = 300;
 int x, y;
 int pointsInCircle = 0;
 int pointsInSquare = 0;

 JFrame frame = new JFrame("Monte Carlo PI Estimator");
 JPanel panel = new JPanel();
 panel.setPreferredSize(new Dimension(2*R, 2*R));
 frame.add(panel);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack(); // Makes size according to panel's preference
 frame.setVisible(true);

 // Start Simulating
 while(true) {
 x = (int)(Math.random()*2*R);
 y = (int)(Math.random()*2*R);
 if (Math.sqrt((x-R)*(x-R) + (y-R)*(y-R)) < R) {
 panel.getGraphics().fillOval(x, y, 3, 3);
 pointsInCircle++;
 }
 else
 panel.getGraphics().fillRect(x, y, 3, 3);

 pointsInSquare++;
 System.out.println("Points: " + pointsInSquare + " PI estimate: " +
 (double)pointsInCircle/pointsInSquare*4);
 }
 }
}

It will take a long time for this code to produce a reasonable approximation for PI. We could
add a for loop in the while() loop to add many points each time (such as 1000) in order to
speed up the approximation process. The code is on the following page.

It may take quite a few added points to get a good value for PI. In one iteration, at about
1,000,000 points, I was able to get 3.140212. It will be very hard for us to get an accurate
value of 3.14159 because we are depending on the random number generator. Hence, we
will always have an approximation, which will get closer to the optimal value in time.

In some areas of computer science (such as Learning Automata), approximate solutions to
complex problems are often easier to obtain, although they are not always accurate.
Regardless, most approximations are "close enough" in real world applications.

Here is the updated code:

COMP1405 – Modeling and Simulation Fall 2015

 - 353 -

while(true) {
 for (int i=0; i<1000; i++) {
 x = (int)(Math.random()*2*R);
 y = (int)(Math.random()*2*R);
 if (Math.sqrt((x-R)*(x-R) + (y-R)*(y-R)) < R) {
 panel.getGraphics().fillOval(x, y, 3, 3);
 pointsInCircle++;
 }
 else
 panel.getGraphics().fillRect(x, y, 3, 3);

 pointsInSquare++;
 }
 System.out.println("Points: " + pointsInSquare + " PI estimate: " +
 (double)pointsInCircle/pointsInSquare*4);
}

