Chapter 5

Arrays and Searching

What is in this Chapter ?

When solving problems, we often deal with data that has been collected together. We often
must sift through collections of information to find answers. This chapter discusses how data
can be collected together into Arrays and also the various ways that we can search through
the data efficiently to find what we want.

COMP1405 — Arrays and Searching Fall 2015

5.1 Storing Objects Together Using Arrays

In real life, objects often appear in groups or collections. For example, we see collections of
objects when we are...

e storing products on shelves in a store

e maintaining information on multiple customers

e keeping track of cars for sale, for rental or for servicing

e a personal collection of books, CDs, DVDs, cards, etc...

e maintaining a shopping cart of items to be purchased from a website

As we have already learned, data is stored in variables. As this point, we have seen variables
that are one of 8 kinds of primitive data types: (byte, short, int, long, float, double, boolean,
char). Each variable stored one value.

i nt age = 18;

char gender = 'f';
doubl e wei ght = 145. 2;
bool ean retired = true;

Sometimes, however, we need many variables to solve our problems. For example, imagine
writing a program that asks the user to enter the ages and genders of a large group of people
(e.g., 100) and then trying to find the oldest, youngest, average age, number of adults, number
of pre-teen girls, number of teenage boys, number of retired people, ... maybe even grouping
them into categories of minors, adults and post-retirement etc...

We may begin by getting the individual ages and genders from the user as follows:

i nt al, a2, a3, a4, a5, ... etc..., aloo;
char g1, g2, 93, g4, g5 ... etc..., gloo0;
Scanner keyboard = new Scanner (Systemin);

Systemout.println("Enter age 1:");

al = keyboard. nextlnt();

Systemout. println("Enter gender 1:");
gl = keyboard. next().charAt(0);

Systemout.println("Enter age 2:");
a2 = keyboard. nextInt();

-115-

COMP1405 — Arrays and Searching Fall 2015

Systemout.println("Enter gender 2:");
g2 = keyboard. next().charAt(0);

Systemout.println("Enter age 3: ");
a3 = keyboard. nextlInt();

Systemout. println("Enter gender 3:");
g3 = keyboard. next (). charAt (0);

etc. ..

Systemout.println("Enter age 100: ");
al00 = keyboard.nextInt();
Systemout.println("Enter gender 100:");
0100 = keyboard. next().char At (0);

Can you imagine how long this code would be and how much code duplication is involved ?
What if there were 1000 people ? Yikes!

The problem is that each age and gender is stored in their own unique variables for later
processing to determine the various requested statistics and to group them into categories of
minors, adults, post-retirement, etc...

Rather than having to create 200 variables ... there is a better way to do this. Most (if not all)
programming languages have a fixed data type called an array.

An array is a collection of data items that can be selected by indices (or locations).

So, arrays are a means of “gluing” a bunch of variables side-by-side in some specified order.

0 1 2 3 4] 6 7 8 9

Each item (also known as element) in an array is stored at a location which is specified by an
index. The index is an integer that identifies the location within the sequence of items.
Indices start at 0.

Arrays can hold a fixed number of items ... that is ... they don’t grow or shrink ... they have a
fixed size. In the above image, the array holds exactly 10 items, so the indices go from O
through 9. An index of 10 or higher would be out of the array’s “bounds”, and would therefore
be invalid.

We often refer to the “size” of the array as its length. The size/or length of the array is NOT
the number of items that we have put inside it, rather, it is the capacity of the array (i.e., the
maximum number of items that we can put into it).

Arrays are data types that store a particular kind of item within them. Each item is
understood to be of the same type (e.qg., all integers, all floats, all booleans, etc..).

- 116 -

COMP1405 — Arrays and Searching Fall 2015

Arrays are declared similarly to regular variables but square brackets are used to tell the
compiler that the variable will hold many values instead of just one:

Single-value variables Array variables
bool ean hungry; bool ean[] hungr yArr ay;
i nt days; int[] daysArray;
char gender ; char[] gender Arr ay;
fl oat anount ; float[] anount Arr ay;
doubl e wei ght ; doubl e[] wei ght Array;

(* Note that the square brackets may appear either with the type (as shown above) or with the
variable’'s name as follows: int days[];)

Do you understand the difference between int days; and int[] daysArray; ?
days stores a single integer, while daysArray stores many integers.

The int[] daysArray; variable declaration simply "reserves space” to store the array, but it
actually does not create the array object itself.

So, the following code would print out null because the variable is not yet initialized:

int[] daysArray;
System out . printl n(daysArray);

Notice above that we do not use the square brackets [] when you are
using the array variable in our code ... we only use the brackets
when we define the variable.

To use this variable (which is just like any other variable), we must
give it a value. What kind of value should it have ? It should be an
array object. The array object will hold many integers inside of it, but
the variable itself is considered to be a single object. An array is kind
of like a "stack of papers". There are many papers, but altogether
they make up a single stack.

If we know the values that we want to put into the array, we can simply supply these values on
the same line as the declaration of the variable. Here are some examples:

int[] ages = {34, 12, 45};

doubl e[] weights = {4.5, 23.6, 84.1, 78.2, 61.5};
bool ean[] retired = {true, false, false, true};
char[] vowels = {'a', 'e', '"i'", "o, "u},;

Here, the array’s size is automatically determined by the number of values that you specify
within the braces, each value separated by a comma.

At any time, if we would like to ask an array how big it is (i.e., its size or capacity), we can
access one of its special attributes called length as follows:

- 117 -

COMP1405 — Arrays and Searching Fall 2015

System out. println(ages.|ength); /1 displays 3
System out. printl n(wei ghts.|ength); /1 displays 5
Systemout.println(retired.|ength); /1 displays 4
System out. println(vowel s. | ength); /1 displays 5

Notice the use of the dot after the array name, followed by the word length. Remember that
the length of an array is its overall capacity, it is NOT the number of elements that you put into
the array.

So then, how do we access the items that are in an array ? Well, each item in the array has
it's own unique integer index, representing it location. So we need to ask the array for the
item that we want by supplying its index. We do this by specifying the array name, followed by
square brackets with the index inside:

doubl e[] wei ghts = {4.5, 23.6, 84.1, 78.2, 61.5};
Systemout.println("The first weight is: " + weights[0]);

Systemout.println("The last weight is: " + weights[4]);
Systemout.println("The |last weight is: " + weights[weights.length - 1]);

Notice that the first item in the array is accessed at position 0. The last item in this particular
array is at position 4 ... or the array's length minus 1. The above code would print out the
numbers 4.5, 61.5 and 61.5.

A common task with an array is to loop (or iterate) through it. For example, we can sum up all
of the weights by using a for loop as follows:

doubl e sum = 0;
for (int i=0; i<weights.length; i++) _

sum = sum + wei ghts[i];
Notice that the loop goes from position O in the array to position (length - 1).

A common error when looping through arrays is to go too far past the bounds of the array.
For example, consider the following similar code:

doubl e sum = 0;
for (int i=0; i<=weights.length; i++)
sum = sum + wei ghts[i];

We have changed the < symbol to <=. This will allow the loop to go one extra time, so the
value of loop variable i will go from 0 to 5. On the last iteration through the loop, the code will
attempt to access the element at position 5 in the array. This will generate an error ... since
the array only has positions from 0 through 4. Java would halt the program and give us an
error like this :

Exception in thread "main" java.lang. Arrayl ndexQut Of BoundsException: 5

This is telling us that the main() method has an error and that the error is of the type:
"Array Index Out of Bounds". The value of 5 is even shown to indicate the index that we are
trying to access within the array.

In addition to being able to access the values in an array, we can modify them.

- 118 -

COMP1405 — Arrays and Searching Fall 2015

While we cannot "add" extra values to an array or "remove" any, we are able to "replace” the
value at any position in the array with a new value at any time. We do this just as we would
modify any variable ... but we must always remember to supply the index position of the
element that we want to modify:

int[] ages = {34, 12, 45};
Systemout.println(ages[1]); // displays 12

ages[1] = 13;
Systemout.println(ages[1]); // displays 13 now

ages[1] ++;
Systemout.println(ages[1]); // displays 14 now
ages[3] = 8; /1 generates an Arrayl ndexQut Of BoundsExcepti on

A common problem when using an array is to forget to initialize it ... that is ... we might forget
to create the array itself:

int[] daysArray; @
Systemout. println(daysArray[1]); // generates a conpile error

The above code will not compile. It will give this error:

error: variable daysArray m ght not have been initialized

Java is telling us here that we forgot to create the array. This would fix it:

int[] daysArray = {31, 28, 31};
System out. printl n(daysArray[1]);

Sometimes, however, we are unsure as to what values we want to put
into an array. For example, what if we want to enter peoples ages and
genders, as in the program at the beginning of this chapter ? We initially
may know that there is a maximum number of people (e.g., 100), but we
don't know the information yet. Java allows you to create a kind of
"blank" array that we could insert items into later. This is like buying a
shelf and setting it up, but at first it remains empty until we start loading it
up with things.

The syntax that we use in Java to create a kind of "blank" array is as follows:

new ArrayType[ArraySi ze]

This is the template to create an array that can hold up to Arr aySi ze values of type
ArrayType. Remember that arrays are fixed size, so you cannot enlarge them later. If you
are unsure how many items that you want to put into the array, you should chose an over-
estimate (i.e., a maximum bound) for its size. Here are some examples of how to give a value
to array variables by creating some fixed-size arrays:

int[] counts = new int[30]; /1l creates array to hold 30 ints
float[] weights = new float[100]; // creates array to hold 100 floats

- 119 -

COMP1405 — Arrays and Searching Fall 2015

The counts array will reserve space for 30 integers, while the weights array will reserve
space for 100 floats. We can do this now:

int[] daysArray = new int[3];
System out. printl n(daysArray[1]);

The code will compile now, however, the value printed will be zero. That is because
whenever we create an array like this, we are simply reserving space, but are not assigning
any values for the items in the array. All arrays that store numbers will have zeroes as the
default values at each position in the array. Boolean arrays will have false values as default.
Other than that, arrays created in this manner work the same way as before:

int[] daysArray = new int[3];

daysArray[0] = 31;
daysArray[1] = 28;
daysArray[2] = 30;

Systemout. println(daysArray[1]); // prints 28

5.2 Searching Arrays

In real life, we are often faced with the problem of sifting through information
(i.e., data) to determine whether or not a particular type of value lies within the
information. We call this the searching problem, since we are searching
through data for a (possibly partial) solution to our problem at hand.

For example, we may look through a list to:

1. determine the existence of a piece of data (e.g., check if a person is on a list)

2. verify that all items satisfy a condition (e.g., have all employees signed up for a seminar)

3. pick an appropriate candidate(s) for our problem (e.g., find an available seat on a flight)
etc..

Alinear search (or sequential search)is a method of checking every
one of the elements in a list, one at a time and in sequence, until a value is found
that satisfies some particular condition (e.g., until a match is found).

When developing algorithms, the simplest approach is often called a “brute force” approach,
implying that there is a lack of human sensibility in the solution. A “brute force” algorithm is
one that is often easy to come up with, but that does not usually consider efficiency or any
form of ingenuity.

A linear search is the simplest kind of search since it involves naively looking through the

elements in turn for the one that matches the criteria. In all the examples below, we will
assume that the items that we are searching through are stored in arrays.

- 120 -

COMP1405 — Arrays and Searching Fall 2015

Example: (searching a list for a particular item)

Suppose that we had a stack of a few trading cards
and that we wanted to know if we had a specific card
number (i.e., each card has a unique number on the
back). Write a program that goes through an array
of these card numbers and determines whether or not
a particular card is in the set. We will "assume" that
the card numbers have already been read into our
program and have been placed into a fixed array and
we will ask the user for a specific card number to look
for. To begin, here is what we will start with:

i mport java.util.Scanner;
public class CardSearchProgram {
public static void main(String[] args) {
bool ean found = fal se;
int[] cards = {2, 4, 9, 11, 12, 43, 45, 65, 76, 13, 84, 92, 95, 104};

Systemout. println("Wich card are you | ooking for ?");
i nt num = new Scanner (Systemin).nextlnt();

/1 ... complete the code ...
if (found)
Systemout.println("Card # + num+ " is in the set.");
el se
Systemout.println("Card # + num+ " is not in the set.");

}

Notice that we begin with found set to false, meaning that we assume that the card is not
there. To determine if a card is in the set, we then simply check all of the cards and if we find
it, we set the boolean found to true.

This boolean variable is called a boolean flag because it is like holding up a
"sign” (or flag) indicating that something important has just happened. Itis
analogous to the little flag on mailboxes that the mailperson lifts up to let
people know when their mail has arrived. Flags are usually set once during
an algorithm and then after the flag is "checked for" in the code, it is
sometimes reset for the next round or iteration. Here is the missing code:

for (int i=0; i<cards.length; i++) {
if (cards[i] == num
found = true,

We can place this code in a loop so that it repeats indefinitely (or until the user enters some
"stopping” number such as -1):

-121 -

COMP1405 — Arrays and Searching Fall 2015

i mport java.util.Scanner;

public class CardSearchProgranm? {
public static void main(String[] args) {
bool ean found;
int[] cards = {2, 4, 9, 11, 12, 43, 45, 65, 76, 13, 84, 92, 95, 104};

int num= 1;

while (num> 0) {
found = fal se;
Systemout. println("Wich card are you | ooking for ?");
num = new Scanner (Systemin).nextInt();

for (int i=0; i<cards.length; i++) {
if (cards[i] == num
found = true,;

}
if (found)
Systemout.printin("Card # + num+ " is in the set.");
el se
Systemout.println("Card # + num+ " is not in the set.");

}

Notice that the while loop goes until O or negative numbers are entered. Also, the num
variable is defined outside of the loop because we need to give it a value before getting into
the loop. Lastly, note that the boolean flag found must be reset to false each time during the
loop.

Example: (searching two lists at the same time and quitting when found)

Assume now that we have a deck of regular playing cards and we
want to determine whether or not a specific card is in the deck and
then quit as soon as we find it, rather than continuing to check all
the remaining cards. A card is identified as having a rank (i.e., 2, 3,
4,5,6,7,8,9, 10, Jack, Queen, King, Ace) as well as a suit (i.e.,
Hearts, Diamonds, Spades, Clubs). We can represent the ranks as
numbers from 2 through 13 and the suits as characters 'H', 'D', 'S,
and 'C'.

The code is similar to before, but now we use two arrays ... one to
store the ranks of the cards and the other to store the suits:

i mport java.util.Scanner;
public class CardSearchProgrand {
public static void main(String[] args) {
bool ean found = fal se;

int[] ranks = {2, 4, 5, 7, 9, 11, 12, 3, 6,
10, 13, 7, 9, 3, 8, 12, 13};

char[] suits ={'H,'H,"H,'H,'H,'H,'H,'D, 'D,
IDY'DY'S'Y'S'Y'CY'C!IC!IC};

-122 -

COMP1405 — Arrays and Searching Fall 2015

Systemout.println("Wat is the card's rank (2-14)7?");
int rank = new Scanner (Systemin).nextlnt();
Systemout.println("Wat is the card's suit (H D, S, ©?");
char suit = new Scanner(Systemin).next().charAt(0);
for (int i=0; i<ranks.length; i++) {

if ((ranks[i] == rank) && (suits[i] == suit))

found = true;

}
i f (found)

Systemout.println("Card #"+rank+" of "+suit+" is in there");
el se

Systemout.println("Card #"+rank+" of "+suit+" is not in there");

}

The code is very similar to before, but now accesses both arrays to make sure that the suit

AND rank both match. The above code is not very efficient. A standard deck of cards
contains 52 cards (without joker cards). What if the very first card was the one that we were

looking for ? The code above will continue to check the remaining 51 cards. That is not very
efficient. We can use the break statement to tell Java that we want to "break out" of the loop.

Here is how it would be used in this scenario:

for (int i=0; i<ranks.length; i++) {
System out. println("Checking card: " + i); /1 just to verify
if ((ranks[i] == rank) && (suits[i] == suit)) {
found = true;
br eak;
}
}
i f (found)
Systemout.println("Card #"+rank+" of "+suit+" is in there");
el se
Systemout.println("Card #"+rank+" of "+suit+" is not

in there");

When the card is found, the above code will stop the for loop and continue with the next line

after the loop ... whichisthe i f (found) statement.

You can verify this by observing the

indices printed at the beginning of the loop. Now this is much more efficient (up to 51 times

faster for a full deck of cards, but just 2 times faster on average).

Exam pIe: (searching for a String and returning a corresponding attribute)

Consider now trying to look through a list to determine someone's age.
Assume that it is just a list of names and corresponding ages. We can store
the names in an array of Strings and the ages in an equal-sized array of ints.

To create an array of names, we set the type to be St ri ng[], which is an
array of String objects.

Name

Bob E. Pins
Sam Pull
Mary Mea
Jim Class

Patty O. Lantern | |

Rebkin Banks
Shelly Fish
Barb Wire

Tim Burr
Dwayne D. Pool
Hugh Jarms
llene Dover
Frank M. Stein
Ruth Less

- 123 -

COMP1405 — Arrays and Searching Fall 2015

Here is how to do this:

String[] nanes = {"Bob E. Pins", "Sam Pull",
"Mary Me", "Jimd ass",
"Patty O Lantern”, "Robin Banks",
"Shelly Fish", "Barb Wre",
"TimBurr", "Dwayne D. Pool",
"Hugh Jarns", "Il ene Dover",
"Frank N. Stein", "Ruth Less"};

We would want to have a corresponding array of ages:

int[] ages = {25, 24, 31, 54, 62, 18, 17, 21, 26, 47, 36, 42, 13, 71},

This array should be the same size so that each name has a corresponding age at the same
position in the array. We would then need to ask which name is being searched for and get it
from the user as follows:

i nput Name = new Scanner (System i n). nextLine();

Finally, one more note about Strings, is that to compare them, we cannot use the == sign, but
instead must use a function called equals(). We will discuss why this is so, later in the
course. So here is how we would compare a name in the list to the one entered:

if (nanes[i].equal s(inputName)) //...

All that remains to do then, is to put it all together. Remember ... we are looking for the age of
someone, and we want to print it out. So, we will probably want to remember the age in a
variable as we go through the list so that we can print it out later. Here is the completed code:

i mport java.util.Scanner;

public class AgeSear chProgram {
public static void main(String[] args) {

i nt age = 0;

String i nput Nare;

String[] nanes = {"Bob E. Pins", "Sam Pull", "Mary Me", "Jim Cl ass",
"Patty O Lantern", "Robin Banks", "Shelly Fish",
"Barb Wre", "TimBurr", "Dwayne D. Pool ",
"Hugh Jarns", "llene Dover", "Frank N. Stein",
"Ruth Less"};

int[] ages = {25, 24, 31, 54, 62, 18, 17, 21, 26, 47, 36, 42, 13, 71};

System out. println("Wose age are you | ooking for ?");
i nput Name = new Scanner (System i n). nextLine();

for (int i=0; i<names.length; i++) {
if (nanes[i].equal s(inputNane)) {
age = ages[i];
br eak;

- 124 -

COMP1405 — Arrays and Searching Fall 2015

if (age !'= 0)

Systemout.println("The age of " + inputName + " is " + age);
el se

Systemout.println(inputName + " is not on the list.");

Example: (searching for a maximum/minimum)

Another very common task when searching through a set of values is to find the
maximum or minimum. Can you write a program to find the oldest and the youngest
people on a list ? Let us see if we can do this with functions as well. The functions
should take, as parameters, an array of names and a corresponding array of ages.
They should then return the name of the oldest/youngest person. Here is what the
functions should look like:

public static String findd destPerson(String[] names, int[] ages) {

/1

P . N . .

public static String findYoungestPerson(String[] nanmes, int[] ages) {
/1

}

Notice that the return type is a String (because it is a person’'s name) and that the array can be
passed in as parameters just like any other values, provided that the square brackets [] are
used. Here is the structure for the program:

i mport java.util.Scanner;
public class d dest Youngest Program {

public static String findd destPerson(String[] nanes, int[] ages) {

/1 ... code not conpleted yet
}
public static String findYoungestPerson(String[] nanes, int[] ages) {
/1 ... code not conpleted yet
}
public static void main(String[] args) {
String[] nanes = {"Bob E. Pins", "SamPull", "Mary Me", "Jim Cl ass",
"Patty O Lantern", "Robin Banks", "Shelly Fish",
"Barb Wre", "TimBurr", "Dwayne D. Pool ",
"Hugh Jarns", "llene Dover", "Frank N. Stein",
"Ruth Less"};
int[] ages = {25, 24, 31, 54, 62, 18, 17, 21, 26, 47, 36, 42, 13, 71};
Systemout.println("The ol dest person is " +
fi ndd dest Per son(nanes, ages));
Systemout. println("The youngest person is " +
fi ndYoungest Per son(nanes, ages));
}

- 125 -

COMP1405 — Arrays and Searching Fall 2015

How do we write the function now ? Well, we simply treat the incoming parameters as regular
variables. We can use a for loop to determine the maximum age and then return the name of
the person with that age. In order to determine the oldest person's age, this is like finding a
maximum value from a list. We will need to keep track of the "oldest person so far" as we are
going through the list ... which is the person with the "maximum age so far". Whenever we
find a person whose age is larger than the "maximum age so far" then that person's age
becomes the "maximum age so far". Here is what we have so far:

public static String findd destPerson(String[] nanes, int[] ages) {
i nt maxi mumAgeSoFar = O;
for (int i=0; i<ages.length; i++) {
if (ages[i] > maxi numAgeSoFar)
maxi mumAgeSoFar = ages[i];

/[l ... nore to go ...

}

When the for loop ends, we will have the age of the oldest person! But, we need to know the
name of the oldest person. Unfortunately, we are just holding on to the actual age ... and by
the time the loop ends, we don't know who that person was.

There are two simple ways to fix this. The first one is to keep track of the oldest person's
name as well as the age. We would just need another variable. Then we know the person to
return from the function:

public static String findd destPerson(String[] nanes, int[] ages) {
i nt maxi mumAgeSoFar = O;
String ol dest Per sonSoFar ;
for (int i=0; i<ages.length; i++) {
if (ages[i] > maxi numAgeSoFar) {
maxi mumAgeSoFar = ages[i];
ol dest Per sonSoFar = nanes[i];
}
}
return ol dest Per sonSoFar ;

}

A different (and better) way to do this is to just keep track of the index position of the oldest
person so far instead of the person's age and name. The following code starts off assuming
that the first person in the list is the oldest person (i.e., at position 0).

public static String findd destPerson(String[] nanes, int[] ages) {
i nt ol dest Per sonSoFar = O;
for (int i=0; i<ages.length; i++) {
if (ages[i] > ages|[ol dest PersonSoFar])
ol dest Per sonSoFar = i;
}

return nanes| ol dest Per sonSoFar] ;

}

What about finding the youngest person ? The code is similar ... but we just need to change
the comparison:

- 126 -

COMP1405 — Arrays and Searching Fall 2015

public static String findYoungestPerson(String[] nanmes, int[] ages) {
i nt youngest Per sonSoFar = 0;
for (int i=0; i<ages.length; i++) {
i f (ages[i](:)ages[youngestPersonSoFar])
youngest Per sonSoFar = i;

}

return names[youngest Per sonSoFar];

}

However, this will not work if the array has size zero (which is a weird situation that should
never happen, but someone may possibly make an error somewhere and a zero-sized array
may get passed in as a parameter). Just be careful! What should the answer be if there are
no people in the array ? We can always return an empty string as a value ... or null. Null
represents an "undefined object” ... and this is often used as a kind of "invalid solution" return
value for functions that require an object to be returned:

public static String findYoungestPerson(String[] nanmes, int[] ages) {
if (ages.length == 0)
return null; // or return ""

i nt youngest Per sonSoFar = 0;
for (int i=1; i<ages.length; i++) {
if (ages[i] < ages[youngest PersonSoFar])
youngest Per sonSoFar = i;

return nanes[youngest Per sonSoFar];

5.3 Comparing and Selecting Items in Arrays

This section contains some more example programs which use arrays to handle situations
such as checking the items in one or more arrays to see whether they meet a specific criteria,
comparing two arrays with one another, extracting items from an array, and splitting arrays.

Example: (checking a list to see if it is in order)

Suppose that we had a stack of a few trading cards and that we wanted
to know if the cards were in order sequentially, based on the unique
number that each card has on the back. Write a program that goes
through an array of these card numbers and determines whether or not
the cards are in increasing order.

To begin, here is what we will start with:

- 127 -

COMP1405 — Arrays and Searching Fall 2015

public class Cardsl nOrder Program {
public static void main(String[] args) {
bool ean i nOrder = true;

int[] <cards ={2, 4, 9, 11, 12, 43, 45, 65, 76, 13, 84, 92, 95, 104};
/1l ... conplete the code ..
if (inOrder)

Systemout.println("The cards are in order.");

el se
Systemout.println("The cards are not in order.");

}

Again, we are using a boolen flag. We will assume that the cards are in order and simply set
the boolean variable to false if the cards are found to be out of order. Now, how do we solve
the problem of determining whether the cards are in order ? Well, we need to go through
each number in order and make sure that the numbers before it are all smaller.

Here is one strategy: Keep track of the maximum number and make sure that each number is
larger than the maximum. If ever one is smaller than the maximum, it was out of order.

i nt maxi nrum = 0;
for (int i=0; i<cards.length; i++) {
if (cards[i] < maxinmum
i nOrder = fal se;
el se
maxi mum = cards[i];

A different way of doing this is as follows. Instead of keeping a maximum variable, we can
just check adjacent pairs of numbers to make sure that the one on the right is larger than the
one on the left.

public class Cardsl nOrder 2Program {
public static void main(String[] args) {
bool ean i nOrder = true;

int[] cards = {2, 4, 9, 11, 12, 43, 45, 65, 76, 13, 84, 92, 95, 104},

for (int i=1; i<cards.length; i++) {
if (cards[i-1] > cards[i])
i nOrder = fal se;

}

if (inOrder)
Systemout.println("The cards are in order.");
el se
Systemout.println("The cards are not in order.");

- 128 -

COMP1405 — Arrays and Searching Fall 2015

How can we make a function that takes the array as a parameter and determines whether or
not the cards are in order ? Well, the array can be passed in as any other variable and a
boolean value must be returned. Note the use of the return statement:

public class Cardsl nOrder 3Program {

public static boolean inOder(int[] array) {
for (int i=1; i<array.length; i++) {
if (array[i-1] > array[i])
return false;

}

return true;

}

public static void main
int[] cardsl = {

{

{

(String[] args) {

2, 4, 9, 11, 12, 43, 45, 65, 76, 13, 84, 92, 95, 104};
int[] cards2 2, 4, 9, 11, 12, 13, 43, 45, 65, 76, 84, 92, 95, 104};
1

int[] cards3

if (inOrder(cardsl))
Systemout.printin("Card set 1 is in order.");
el se
Systemout.println("Card set 1 is not in order.");

if (inOrder(cards2))
Systemout.println("Card set 2 is in order.");
el se
Systemout.printin("Card set 2 is not in order.");

if (inOrder(cards3))
Systemout.println("Card set 3 is in order.");
el se
Systemout.println("Card set 3 is not in order.");

}

Note that since we have a nice function now, we can call it easily with different card sets.
Interestingly, our solution even works for an empty array.

Exam pIe: (comparing contents of two or more arrays)

Assume now that we have three hands of 5 playing cards each and we want
to know which is the "higher" hand in terms of points. We would just need
to look at the ranks of the cards and compare their totals. Write a function
that compares two hands (as incoming int arrays of size 5) and returns true
if the first hand is higher in total, otherwise the 2nd is returned.

- 129 -

COMP1405 — Arrays and Searching Fall 2015

public class Hi ghest HandProgram {

/1l Returns true if the 1st hand is higher in total than the 2nd hand
public static boolean isH gher(int[] handl, int[] hand2) {
i nt totall = 0, total2 = O;

for (int i=0; i<handl.length; i++) {
total 1 += handl[i];
total 2 += hand2[i];

}
return totall > total 2;

}

public static void main(String[] args) {
int[] <cardsl ={2, 7, 4, 9, 13};
int[] cards2 = {6, 1, 8, 7, 10};
int[] <cards3 = {3, 2, 12, 9, 11}

if (isH gher(cardsl, cards2))
if (isH gher(cardsl, cards3))
Systemout.println("Hand 1 is the highest");
el se
Systemout.println("Hand 3 is the highest");
el se
if (isH gher(cards2, cards3))
Systemout.println("Hand 2 is the highest");
el se
Systemout.println("Hand 3 is the highest");

Exam pIe: (selecting multiple values from an array that match a criteria)

Another very common task when searching through a set of values is to select a bunch of
values from the array. For example, given an array of numbers, let us write a function that
returns a new array which contains all the numbers from the original array that are odd
numbers. This can be useful for selecting roughly half of a set of numbers from a random set.
For example, if we had 20,000 students, roughly half of their student numbers will be even, the
other half will be odd. So, selecting the odd ones would roughly select half

of the students from the list in a fair manner (as opposed, for example, by

splitting into males/females or alphabetically A-L and M-Z as is often done

in life). Here is what the function should look like: A
public static int[] selectOdd(int[] studentNunmbers) {) @ .*’.l
s Ll

Notice that the return type is an array of integers. This is not the same array that we started

with. It is a new array which will contain the odd numbers from the studentNumbers array.

How big should this array be ? In theory, all student numbers could be odd ... and so it may
need to be as big as the original:

i nt[] oddNunbers = new i nt[student Nunmbers. | ength];

- 130 -

COMP1405 — Arrays and Searching Fall 2015

Then we just need to loop through and fill it up with the odd numbers. Odd numbers will not
be divisible by two. So, we can use the modulus operator (%) to find them. If we modulo the
numbers by 2 (i.e., find the remainder after dividing by two), the result will always be either O or
1. Ifthe resultis 1, the number was odd, otherwise it was even. Here is the structure:

for (int i=0; i<studentNunbers.length; i++) {
if (studentNunmbers[i]% == 1)
/1 Add this nunber to the result
}

Now, how do we "add the number to the result” ? Well, we are "filling in" the oddNumbers
array as we find odd numbers. Recall that to put something into an array, we need to specify
the index position. So, we will need to keep track of where we are in that array that we are
filling up so that we can put the items in consecutive positions in the array. All we need is a
counter to keep track of how many items we have in there so far. Here is the result:

public static int[] selectOdd(int[] studentNunmbers) {
i nt[] oddNunbers = new i nt[student Nunmbers. | ength];
i nt oddNunber sFound = 0O;

for (int i=0; i<studentNunbers.length; i++) {
if (studentNunmbers[i]% == 1)
oddNunber s[oddNunber sFound++] = student Nunmbers[i];

}
return oddNunbers;

}

Notice as well that we MUST NOT FORGET to increase the oddNumbersFound counter after
we add the odd number to the result. That way, the next item will go into the next position and
will not overwrite the one we just put in !

public class OddStudent Nurber Pr ogr am {

public static int[] selectOdd(int[] studentNunbers) {
int[] oddNumbers = new int[student Nunbers. | ength];
i nt oddNunber sFound = 0;

for (int i=0; i<studentNunbers.length; i++) {
i f (studentNunbers[i]% == 1)
oddNunber s[oddNunmber sFound++] = student Nunbers[i];
}

return oddNunbers;

}

public static void main(String[] args) {
int[] nuns = {162793, 170983, 177914, 276385, 167822, 181830,
278924, 178962, 187923, 127891, 128936, 179128};

Systemout.printin("Here are the odd nunmbers:");
int[] result = selectOdd(nuns);

for (int i=0; i<result.length; i++)
Systemout.println(result[i]);

- 131 -

COMP1405 — Arrays and Searching Fall 2015

This code will work. However, notice the result:

Here are the odd nunbers:
162793
170983
276385
187923
127891

eNoNeoloNoNeNe)

The array has the same size as the original array, which is 12. But there were only 5 odd
student numbers in the array, so only the first 5 positions will filled in. The remaining positions
still have zero in them. In this scenario, it is not that big of a concern, because the zeros are
clearly not student numbers. So we could fix this in the code as follows:

for (int i=0; i<result.length; i++) {
if (result[i] !'= 0)
Systemout.printlin(result[i]);
}

Since each value is checked before displaying, the zeros will not be displayed. However, after
encountering the first zero, the loop still continues checking all the remaining numbers ... which
are all zeros. A more efficient way to do this check is to break out of the loop once the first
zero has been identified:

for (int i=0; i<result.length; i++) {
if (result[i] == 0)
br eak;
Systemout.println(result[i]);

}

This is now more time-efficient. However, the code is still not space-efficient. If there were
20,000 student numbers and half were odd, we will have an array of size 20,000 but with
10,000 valid numbers and 10,000 zeros. Each int takes 4 bytes of memory, so we are
allocating (i.e., wasting) 40 kilobytes of memory without necessity. That is poor programming
style. How can we fix this ?

Well, we need to allocate just enough space for the answer. So, before creating the array, we
need to determine how many odd numbers there are. Then we can make the array the exact
size that is needed.

This will require an extra for loop:

- 132 -

COMP1405 — Arrays and Searching Fall 2015

public static int[] selectOdd(int[] studentNunbers) ({

/1 First determ ne the nunmber of odd nunbers in the array
i nt oddNunber sFound = 0;
for (int i=0; i<studentNunbers.length; i++) {
i f (studentNunbers[i]% == 1)
oddNunber sFound++;
}

/1 Now create and fill-up the array
int[] oddNunmbers = new int[oddNunber sFound];

oddNunber sFound = 0; /] reset
for (int i=0; i<studentNunbers.length; i++) {
i f (studentNunbers[i]%® == 1)
oddNunber s[oddNunber sFound++] = st udent Nunbers[i];
}

return oddNunbers;

And voila! Our code is now space-efficient. However, it came at a cost of being a little
slower, because we have to search through the numbers twice. In =

your life as a computer scientist, you will learn that there is often a
trade-off between time efficiency and space efficiency. The trick is to
get the right balance for the problem at hand. This tradeoff is common
in real life. For example, if you wanted to sort 250 exam papers by
grade, it would take a long time to do this sitting on a chair with them
on your lap. However, if you had a lot more space available (i.e., a
large empty table in front of you), then you could make use of that to
make the sorting go much quicker (e.g., sort into smaller piles).

Example: (dividing array data into multiple individual arrays)

The above example extracted the odd numbers from an array. How could we extract two
arrays ... one for the odd numbers and another for the even numbers ? Since functions
require one return type, we cannot return two things. However, there are a few ways to solve
the problem ... here are two:

(1) We could write two methods. One to extract
the odd, the other to extract the even.

(2) We could create the two arrays in advance
and pass them in to the function.

The 2nd strategy is interesting. We can adjust
the function to take three arrays as parameters
(the original array, the array that will contain the odd numbers and the array that will contain
the even numbers). There need not be a return type anymore, since there is no particular
result being returned.

Instead, the arrays are simply filled in with the appropriate data:
-133 -

COMP1405 — Arrays and Searching Fall 2015

public static void extract GddEven(int[] studentNunbers, int[] oddNunbers,
int[] evenNunbers) {
i nt oddNunber sFound = 0, evenNumber sFound = O;
for (int i=0; i<studentNunbers.length; i++) {
i f (studentNunbers[i]% == 1)
oddNunber s[oddNunber sFound++] = student Nunbers[i];
el se
evenNumber s[evenNunber sFound++] = student Numbers[i];

Of course, to test it, we need to create the arrays in advance:

public class GddEvenSt udent Nunber Program {
public static void extractGddEven(int[] studentNunbers, int[] oddNunbers,
int[] evenNunbers) {
/1 ... code witten as above ... onmtted here to save space

}

public static void main(String[] args) {
int[] nunms = {162793, 170983, 177914, 276385, 167822, 181830,
278924, 178962, 187923, 127891, 128936, 179128};

/1l Create the arrays that will be "filled-up"
int[] oddArray = new int[numns.|ength];
int[] evenArray = new int[nuns.|ength];

/1l Extract the data into the two arrays
extract GddEven(nuns, oddArray, evenArray);

/1 Display the results
Systemout.println("Here are the odd nunbers:");
for (int i=0; i<oddArray.length; i++) {
if (oddArray[i] == 0)
br eak;
Systemout. println(oddArray[i]);
}
Systemout.println("Here are the even nunbers:");
for (int i=0; i<evenArray.length; i++) {
if (evenArray[i] == 0)
br eak;
Systemout. println(evenArray[i]);

}

This is an example of parameters that are pass-by-reference. This means, that we are
passing a "pointer" to the array's memory location (i.e., reference). This way, within the
procedure, we have the array itself ... so we can access and modify it during the procedure.
When the procedure has completed, the arrays have changed.

- 134 -

COMP1405 — Arrays and Searching Fall 2015

5.4 Dealing With Array Capacity and Unwanted Values

Since arrays are fixed in size, we cannot make them bigger
once they get full. Sometimes, when we are not sure of how
big we need an array, we may chose a somewhat arbitrary
value as the array's maximum capacity. Ultimately, however, it
is possible that we may attempt to add an item beyond the
array’s capacity. In such a case, the program will usually crash
(or stop unexpectedly and non-gracefully). Often, we get an
unpleasant Exception:

Exception in thread "main" java.lang. Arrayl ndexQut Of BoundsException: 10000

In addition to exceeding an array's capacity, sometimes we need to remove data from an array
because it is no longer valid. However, since we cannot shrink an array, we can only remove

data by placing a piece of garbage data in its place ... a kind of overwrite at that location in the
array. As time goes on, the array can be filled with much garbage data and it could slow down
searching algorithms as well as the processes of adding new pieces of data.

How do we address these potentially serious problems ?

For the first issue, since arrays are fixed size, we cannot simply make more room within the
existing array. Rather, a new bigger array must be created and all elements must be copied
into the new array. But how much bigger ? It's up to us.

Regarding the second issue, we need to defragment (or consolidate) the data by bringing all
the data together again into contiguous (one after another) memory locations. Let us look at
some examples.

Example:

Consider a program that continually asks for integers from the user, and adds them to an array
as they come in until -1 is entered, and then does something interesting with the numbers that
were entered:

i mport java.util.Scanner;
public class Readl nNunber sProgram {
public static void main(String[] args) {

int[] nunbers = new i nt[100];
i nt count = 0;
i nt ent eredVval ue = 0;
while (enteredValue !'= -1) {
Systemout. print("Enter nunber " + (count+1) + ": ");
ent eredVal ue = new Scanner (Systemin).nextlnt();
if (enteredvalue !'= -1)
nunber s[count ++] = ent er edVal ue;
}
/1 ... do something interesting with the nunbers ...

- 135 -

COMP1405 — Arrays and Searching Fall 2015

Notice that each number coming in is added to the array according to the count position,
which is incremented each time a valid number arrives. When the loop has completed, count
represents the number of integers that were entered and added to the array. The code is
straight forward. However, can you foresee a problem that may arise ?

What happens when we try to enter too many numbers ? After all, the user has no idea that
the maximum amount of numbers that can be entered is 100. This code will crash when the
101°% number is entered.

Clearly, it is simple to increase the capacity of the array to 200, 500, 10000 or whatever. But
what if only 105 numbers are needed ? Do we really want to create a huge array, allocating
space that we won't need ? No. Even if we do pick a large value, it is still possible that we
may exceed it (e.g., in scenarios where we are reading data from a file...because nobody in
their right mind would sit and type in 10000 integers into a program).

Instead, an option that we could take is to simply increase the storage by some incremental
value each time we are about to exceed the limit. We can increase by some constant value
such as 5, 10, 50, 100, etc... To do this, we would need to make an entirely new array which
has a bigger size, and then copy into it all of the values that we have read in so far (there are
more efficient ways to deal with this, but let us take this approach for now).

Here is a function that will create a bigger array by some given amount and return it:

public static int[] enlarge(int[] originalArray, int anountTolncreaseBy) {
/1l First, create the bigger array
int[] enl argedArray = new int[original Array.length + anount Tol ncreaseBy];

/1 Now copy over all the val ues
for (int i=0; i<originalArray.length; i++)
enl argedArray[i] = original Array[i];

return enl argedArray;

}

Do you understand the code ? We can call this method any time that we need to "enlarge”
the array. Keep in mind that we are not really enlarging the array, but we are making a new
array that is bigger. So, we will need to remember to store the returned value from the
function. Here is our "fixed" code now:

i mport java.util.Scanner;

public class Readl nNunber sProgran? {
public static final int GROMH SI ZE = 5; // Amunt to grow array by

/1 Function to make the array bigger
public static int[] enlarge(int[] original Array, int amountTol ncreaseBy) {
int[] enl argedArray = new int[original Array. |l ength + anount Tol ncreaseBy];

for (int i=0; i<originalArray.length; i++)
enl argedArray[i] = original Array[i];

return enl argedArray;

- 136 -

COMP1405 — Arrays and Searching

Fall 2015

public static void main(String[] args) {

int[] nunbers = new int[5];
i nt count = 0;
i nt ent eredVval ue = 0;
while (enteredValue !'= -1) {
Systemout. print("Enter nunber " + (count+1l) + ": ");
ent eredVal ue = new Scanner (Systemin).nextlnt();
if (enteredvalue != -1)
if (count == nunbers.length) {

/1 Change the nunbers variable to point to the new bigger array

nunbers = enl arge(nunbers, CGROMH_SI ZE) ;
}

nunber s[count ++] = ent er edVal ue;

}

/1 Print out the array, as a test

for (int i=0; i<nunbers.length; i++)
System out. print (nunmbers[i] + ", ");

Systemout.println();

We can run the program a few times to see if it works:

Enter nunber 1: 1

Enter nunber 2: 2

Enter nunber 3: -1

1, 2, 0, 0, O, // Notice that it is still size 5

Ent er nunber
Ent er nunber
Ent er nunber
Ent er nunber
Ent er nunber
Ent er nunber
Ent er nunber 7:
1 2 3 45 6 00 0 O /1 It has grown to size 10 now

NoghkwnRe
oM WN R

Ent er nunber
Ent er nunber
Ent er nunber
Ent er nunber
Ent er nunber
Ent er nunber
Ent er nunber
Ent er nunber
Ent er nunber
Enter nunber 10: 10
Enter nunber 11: 11
Enter nunber 12: 12
Enter nunber 13: -1

coNoahrwbE
©CO~NOUDWNE

1 2 3 45 6 7 8 9 10 11 12 0 0 O /1 It has grown to size 15 now

- 137 -

COMP1405 — Arrays and Searching Fall 2015

Example:

Consider having two same-size arrays ... one of names and another !

of the ages of the people with those names. Here are the arrays that

we used previously:

String[] names = {"Bob E. Pins", "SamPull", "Mary M",

"JimdCass", "Patty O Lantern",
"Robi n Banks", "Shelly Fish",
"Barb Wre", "TimBurr", "Dwayne D. Pool", "Hugh Jarns",
“I'l ene Dover", "Frank N. Stein", "Ruth Less"};

int[] ages = {25, 24, 31, 54, 62, 18, 17, 21, 26, 47, 36, 42, 13, 71};

Now, assume that we need to discard (or remove from the arrays) all people below the age of
21. Inthe above example, there are three such people.

How could we do this ? Well, each array has a fixed size, so we cannot
really "remove" any data ... the array will never get smaller. The situation
is analogous to a program recorded on a videotape, we cannot actually f

remove the item but we can only overwrite it (i.e., replace it) with a new
value.

So, to delete a piece of information from an array, we would need to replace it with some value
that is considered invalid data. Perhaps an age of -1 or a name which is either an empty
string "" or null. The array will stay the same size, but the original data will be gone. Here
is code that will do what we want:

for (int i=0; i<ages.length; i++) { Af‘ter
if (ages[i] < 21) {
ages[i] = -1; names ages
nanes[i] = null;
} 0 "Bob E. Pins" 0 | 25
} 1 "Sam Pull" 1 | 24
This will ensure that all names and ages of people 2 "Mary Me" 2 31
under the age of 21 are deleted. Afterwards, 3 “lirm Class” s | sa
however, there will be some locations in the array - -
where the ages are -1 and names are null as can be 4 ['PattyO. Lantem 4

seen here. These are like "holes" in the array. 5 “ 5
& &
These "holes” may present two problems. First, we

don’t know how many people are left in the array. ! Barb Wire /
Second, when looping through the array we will B “Tim Burr" B 26
encounter null objects that we need to deal with o | "DwayneD.Pool” s | a7
properly. 10 "Hugh Jarms" 10 36
To handle the issue regarding the amount of valid data | 11 “llene Dover” 1 42
remaining in the array, we can always maintain a 12 “ 12
variable indicating the number of such valid elements 13 *Ruth Less” 13 -
as follows:

- 138 -

COMP1405 — Arrays and Searching Fall 2015

i nt validPeople = 0;

for (int i=0; i<ages.length; i++) {
if (ages[i] < 21) {
ages[i] = -1,
nanes[i] = null;

}

el se
val i dPeopl e++;

}

This validPeople variable will indicate the number of people who are 21 or over.

Now, although we know how many valid entries are in the array, we still do not know the
positions of these valid entries. Therefore, each time that we go through the array, we need to
consider the possibility that there can be a "hole" at any position in the array. So we need to
check for this each time. For example, if we want to print out the people and their ages, we
would like to do this:

for (int i=0; i<ages.length; i++) {
Systemout.println(ages[i] + " year old " + nanes[i]);
}
but unfortunately, we now have to check for "holes":
for (int i=0; i<ages.length; i++) {

if (ages[i] >0) { // or if (nanmes[i] != null)
Systemout.println(ages[i] + " year old " + nanes[i]);

}

} Cleaner Version
However, it is often unpleasant to continually check names ages
for “holes” in the array like this. In fact, in a typical - —
application we are likely more often going to need to y Fob E. Fins o
traverse through elements of an array for display 1 “Sam Pull” 1 24
purposes than to search through the array to remove 2 "Mary Me" 2 31
data. Therefore, it would be more advantageous to 2 e . ”
“fill-in” the hole each time so that the valid array
elements are at the front-most part of the array at all e 4 | &
times. 5 "Barb Wire" 5 21
Assume that we have such a valid array in which all ° Tim Bu ° ®
the elements are at the front-most part of the array. 7 | "Dwayne D. Pool” LY
Assume also that we always have a count as to how 8 "Hugh Jarms" 8 36
many people are stored in the array at all times. g "llene Dover" g | a2
We will need to always have a variable associated 10 “Ruth Less* e
with the array to indicate its size. It works the same
as the validPeople variable, but we will call it
something more general such as numPeople. Inthe
picture here, numPeople would have a value of 11.

- 139 -

COMP1405 — Arrays and Searching Fall 2015

We will ensure that all valid items in the array would be in positions 0 to numPeople -1,
inclusively ... and all positions from numPeople to the array's length -1 will contain garbage
data (e.g., null or -1).

Consider a procedure that takes the name and age of a person and adds them to the existing
arrays:

public static void add(String newName, int newAge) {
/1 Put the person in the arrays
i f (numPeopl e < nanes.|length) {
nanes[nunPeopl e] = newNane;
ages[nunPeopl e] = newAge;
nunPeopl e++;

}

First we make sure that there is room, and then simple add the person to the end of the arrays,
making sure to increase the total count of numPeople. This code assumes that the arrays
and the numPeople counter are defined as static variables. How though do we remove a
person ? Well, could simply move the last person in the array to fill-in the "hole" that is
created by the deletion of the person. Then erase the data from the last position in the array:

public static void renpoveUnderagePeopl e() {
for (int i=0; i<nunPeople; i++) {
if (ages[i] < 21) {
ages[i] = ages[nunPeopl e-1];
nanes[i] = nanes[nunPeopl e-1];

ages[nunPeopl e-1] = -1;

nanes[nunPeopl e-1] = nul | ;

nunPeopl e- -;

}
) Before After
}
names ages names ages
We need to make sure 0 "Bob E. Pins" 0 25 0 "Bob E. Pins" 0 25
that we reduce our 1 "Sam Pull” 1 | 24 1 "Sam Pull" 1 | 24
_COL!nter by one to 7 "Mary Me" 7 | 31 2 "Mary Me" 2 | 31
indicate th_at we have 3 "Jim Class" 3 54 3 "Jim Class" 3 | 54
one less piece of data.
4 | "Patty O. Lantern™ 4 62 4 | "Patty Q. Lantern" 4 62

However, it is possible E ‘BarbWire” |4 5 | 10 4] S futh Less” N
that the last person in B "Tim Burr” B | 26 B "Tim Burr” B | 26
the array that we try to 7 | "Dwayne D. Pool" 7 | a7 7 | "Dwayne D.Pool” 7 | a7
move over is also 8 | "Hugh larms" s | 36 8 | “Hugh larms" 8 | 36
Underage. Therefore’ 0 "llene Dover" 0 42] "llene Dover"] 42
we could go ahead and
move it over, but make el I e IR 0
sure to check the age of 11 11 1 11
the person that we 12 12 12 12
moved over as well 13 13 13 13
before we move on to
the next index in the numPecple = 11 numPeople = 10

- 140 -

COMP1405 — Arrays and Searching Fall 2015

array. We just need to make sure that we do not move to the next index in the loop until we
also check the location that we just inserted into. Basically, we can just subtract one from the
loop index so that when we go to the next round of the loop, the i++ will counter act the i--,
leaving i as the same value that we just checked. That will ensure that the "hole" position is
checked a second time, in case we moved an invalid person in there:

public static void renoveUnderagePeopl e() {
for (int i=0; i<nunPeople; i++) {
if (ages[i] < 21) {

ages[i] = ages[nunPeopl e-1];
nanes[i] = nanes[nunPeopl e-1];
ages[nunPeopl e-1] = -1;
nanes[nunPeopl e-1] = nul|;
nunPeopl e- -;
i--; /] ensure that sanme position is checked another tine

}

On the following page, there is a diagram showing what happens as the index i moves through
the array. It shows how the items are inserted to fill the holes and how the numPeople
variable decreases as the items are removed.

Note that it is not actually necessary to move the item to the open “holes”. The item may
simply be copied over, leaving “garbage” at the end of the array:

good data | garbage data
(0 toe nunPecple-1) (numPecple to length-1)

F 3

25 24 i1 54 62 7l 42 21 26 47 I 36 I 42 13 il
a 1 2 3 4 5 & 7 g8 9 10 11 12 13

Homework:

The solution that we just came up with for keeping the data contiguous has one small issue ...
it alters the ordering of the original data. That is, suppose that the data came in on a first-
come-first-served basis. We want to ensure that we maintain the fair ordering of the data.
With our current solution, after we remove the underage people, the original data order is lost.
Try to re-do the removeUnderagePeople() method so that it maintains the items in the
original order at all times. (see below)

nrigin al 25 24 i1 54 6.2 18 17 21 26 47 36 42 13 7l

solution | 25 | 24 | 31 | 54 | 62 | 71 | 42 | 21 | 26 | 47 | 3 | -1 | -1 | 1

homework | 25 | 24 | 31 | 54 | 62 | 21 | 26 | 47 | 36 | 4 | 71 | 1 | 1 | 1

- 141 -

COMP1405 — Arrays and Searching Fall 2015

Here is the diagram for the example that we just did (not the homework part):

i numPeople
25 24 31 54 B2 18 17 21 26 47 36 42 13 7l f
0 1 2 3 4 5 5] 7 B] 10 11 12 13
25 24 31 54 B2 18 17 21 26 47 36 42 13 7l
0 1 2 3 4 5] 7] =] 10 11 12 13
25 24 31 54 62 18 17 21 26 a7 36 42 13 7l
0 1 2 3 4 5] 7] =] 10 11 12 13
25 24 31 54 62 18 17 21 26 a7 36 42 13 7l
0 1 2 3 4 5] 7 B] 10 11 12 13
25 24 31 54 62 18 17 21 26 47 36 42 13 7l
0 1 2 3 4 5] 7 B] 10 11 12 13
25 24 31 54 62 18 17 21 26 47 36 42 13 7l
0 1 2 3 4 5 =] 7 B] 10 11 12 1B
w
25 24 31 54 62 7l 17 21 26 47 36 42 13 -1
0 1 2 3 4 5 B 7 B] 10 11 12 13
25 24 31 54 62 7l 17 21 26 47 36 42 13 -1
0 1 2 3 4 5] 7 B =] 10 11 1I2 13
w
25 24 31 54 62 7l 13 21 26 47 36 42 -1 -1
0 1 2 3 4 5] 7 B =] 10 1|1 12 13
w
25 24 31 54 62 7l 42 21 26 47 36 -1 -1 -1
0 1 2 3 4 5 6 7 B C] 10 11 12 13
25 24 31 54 62 71 42 21 26 47 36 -1 -1 -1
0 1 2 3 4 5 6 7 B C] 10 11 12 13
25 24 31 54 62 71 42 21 26 47 36 -1 -1 -1
0 1 2 3 4 5 B 7 B g 10 11 12 13
25 24 31 5 62 7l 42 21 26 47 36 -1 -1 -1
0 1 2 3 4 5 B 7 B g 10 11 12 13
25 24 31 5 62 7l 42 21 26 47 36 -1 -1 -1
0 1 2 3 4 5 ¥ 7 8 g 10 11 12 13
Example:

Assume that we already had a list of people sorted by their ages. How can we write code that
will insert a new person into the appropriate location in the array so that it remains sorted ?

Well, to insert at some index position (e.g., i) we must shift all array items from indices i
onwards one position further in the array:

- 142 -

COMP1405 — Arrays and Searching Fall 2015

For example, assume that we need to add "Sandy Beach" to the list who happens to be 33
years old. Here is what we need to do:

Before After
names dges names dges
1] "Frank M. Stein" 1] 13 1] "Frank M. Stein" 1] 13
1 "Shelly Fish" 1 17 1 "Shelly Fish" 1 17
2 "Robin Banks" 2 18 2 "Robin Banks" 2 18
3 "Barh Wire" 3 21 3 "Barh Wire" 3 21
4 "Sam Pull" 4 24 4 "Sam Pull" 4 24
5 "Bob E. Pins" 5 25 5 "Bob E. Pins" 5 25
& "Tim Burr" & 26 & "Tim Burr" & 26
7 "Mary Me" 7 31 7 "Mary Me" 7 31
] “llene Dover"] 42] "Hugh Jarms" a8 36
10 "Dwayne D. Pool" 10 47 10 “llene Dover"] 42
11 "lim Class" 11 54 11 "Dwayne D. Pool" 10 47
12 "Patty O. Lantern" 12 62 12 "lim Class" 11 54
13 "Ruth Less" 13 13 "Patty O. Lantern" 12 62
14 14 14 "Ruth Less" 13 71

To complete this task, let us write a method called insertPerson() that takes the name and
age of the person and adds them to the arrays, while keeping them sorted. First, we must
determine the location to insert. To do this, we need to find the first person whose age is
above the age of the new person. In the diagram above, this would be "Hugh Jarms" who is
36 years old at position 8 in the arrays. That will be the location to insert the new person. We
can do this with a FOR loop:

public static void insertPerson(String newNane, int newAge) ({
/1 Determne the position to insert the new person at in the arrays
i nt i nsertPosition = 0;
for (int i=0; i<nunPeople; i++) {
if (ages[i] > newAge) {
insertPosition = i;
br eak;

}

Now we need to actually insert the person. However, we cannot simply place the newName
and newAge at the specified position in the array because there is valid data there that would

- 143 -

COMP1405 — Arrays and Searching Fall 2015

be overwritten (i.e., lost) if we do that. First, we must move all the others down in the array,
then we can insert. Do you understand what is wrong with this code ?

/1 NMake space by moving the remaining data down
for (int i=insertPosition; i<numPeople-1; i++) {
ages[i +1] = ages[i];
nanes[i +1] = nanes[i];

}

This code will not produce what we want. The problem is that when we move "Hugh Jarms"
down from position 8 to position 9, we erase "llene Dover". Then when we copy from position
9 to 10, we are copying "Hugh Jarms" again! The code will simply copy "Hugh Jarms" to all
the array locations past index 8.

To fix this, we simply need to start shifting things down by starting from the bottom:

/1 Make space by moving the remaining data down
for (int i=nunPeople; i> nsertPosition; i--) {
ages[i] = ages[i-1];
nanes[i] = nanes[i-1];

}

Finally, we need to do the insertion, remembering to increase the array count. Here is the final
version of the code:

public static void insertPerson(String newNane, int newAge) ({
/1 Determine the position to insert the new person at in the arrays
i nt i nsertPosition = 0;
for (int i=0; i<nunPeople; i++) {
if (ages[i] > newAge) {
insertPosition = i;

br eak;
}
}
/1 Make space by noving the remaining data down
for (int i=nunPeople; i> nsertPosition; i--) {
ages[i] = ages[i-1];
nanes[i] = nanes[i-1];

}
/1 Now add the person

ages[insertPosition] = newAge;
nanes[insertPosition] = newNane;
nunPeopl e++
}
Example:

Here is a tougher one now. Consider an autoshow, where there are
many cars, each with some uniform color (we will assume no multi-
colored cars). What if we were on our way to the autoshow but before
we left, our roommate asked us (for some strange/unknown reason) to
determine the most popular color of car at the autoshow. How do we
approach the problem ?

- 144 -

COMP1405 — Arrays and Searching Fall 2015

Well think of real life. Assuming that there were hundreds of cars and that your memory is not
perfect, you would likely bring with you a piece of paper (perhaps on a clipboard) so that you
can keep track of the colors of cars that you find.

When you enter the autoshow and see the first car, you would look at its color and then likely
write down the color on the paper and maybe put the number 1 beside it.

Assume that you went to the next car and that it was a different color. You would write that
new color down too along with a count of 1. If you find a car with the same color again, you
would just increment its count.

Below is a picture showing how your clipboard gets updated as you encounter car colors in the
order of red, white, white, blue, etc..:

A | | ‘
. ._Eéj_“" ﬂjt—n-_:: 5 - m .
u £ etc..

;Dl ;Dl gﬁl ;Dl

WHITE 1 WHITE 2 WHITE 2
BLUE 1

etc..

Let us assume that we have a program that lets us repeatedly enter car colors and it keeps
track of theses colors in the manner above. As we enter the colors, each color will have a
single number associated with it at all times (representing the count of the number of times
that color appeared).

Since we need a list of counts along with the list of colors, we will need two arrays... one to
store the colors and one to store the count for that color. But how big should we make the
arrays ? Well, it depends on how many unique colors that we would expect to find. Let us
set it at 25.

colors|] “Red” “White"” “Blue” “Yellow" null AUl o o o e null
0 1 2 3 4 5 24
counts| 1 2 1 1 0 [D e — 0
0 1 2 3 4 5 24

Here are the arrays and the counters for each that keep track of how many are in each array:

public static final int MAX COLORS = 25;
String[] colors = new String[MAX_COLORS] ;
int[] counts = new i nt[MAX_COLCRS];
i nt uni queCol ors = 0;

- 145 -

COMP1405 — Arrays and Searching Fall 2015

Here uniqueColors will increase each time we find a new color. Here is the basic code for
getting the information from the user and storing it in the arrays as described:

i mport java.util.Scanner;

public class Car Col or Count Program {
public static final int MAX COLORS = 25;

public static void main(String[] args) {
String[] colors = new String[MAX_COLCRS] ;
int[] counts = new i nt[MAX_COLCRS] ;
i nt uni queCol ors = 0O;

Systemout.print("Enter car color: ");
String enteredCol or = new Scanner (System i n). nextLine();

/1 Keep going until no nore colors are entered
while (!enteredCol or.equal s("")) {
/1 Determine if the color is already there
int colorlndex = -1;
for (int i=0; i<uniqueColors; i++) {
if (colors[i].equal s(enteredColor)) {
colorlndex =i;

br eak;
}
/1 1f the color is not there, then add it
if (colorlndex == -1) {

col orl ndex = uni queCol ors;
col ors[col orl ndex] = enteredCol or;
uni queCol or s++;

}

/1 Now add one to the color

count s col or | ndex] ++;

/1 Get the next color fromthe user
Systemout.print("Enter car color: ");
ent eredCol or = new Scanner (System i n). next Li ne();

}

/1 Print out the arrays, as a test

for (int i=0; i<uniqueColors; i++)
Systemout.println(colors[i] + "[" + counts[i] + "]");

Systemout.println();

Now, to find the most popular color, we simply need to find out which of these color counts has
the largest value (i.e., the maximum count). We will assume that there are no duplicates (or
that only the first one with the maximum count is the answer):

/1 Now determ ne the npbst popul ar col or
i nt best Count | ndex = O;
for (int i=0; i<uniqueColors; i++)
if (counts[i] > counts[bestCountlndex])
best Count | ndex = i;
}

Systemout. println("The nost popular color is: " + colors[bestCountlndex]);
- 146 -

COMP1405 — Arrays and Searching Fall 2015

5.5 Multi-Dimensional Arrays

JAVA allows arrays of multiple dimensions (2 or more). 2-dimensional (i.e., 2D) arrays are

often used to represent data tables, game boards, mazeSﬁictures, terrains, etc...
¥ =

In these cases, the information in the array is arranged by rows and columns. Hence, to
access or modify something in the table/grid, we need to specify which row AND column the
item lies in. Therefore, instead of using just one index as with simple arrays, a 2D array
requires that we always supply two indices ... row and column.

Therefore, in JAVA, we specify a 2D array by using two sets of square brackets [] [].
Therefore, our variables should have both sets of brackets when we declare them:

int[][] schedule; // a 2D array
int[] list; /[l a 1D array
i nt age; /!l not an array, just an int

Also, when creating the arrays, we must specify the number of rows as well as the number of
columns. Remember, the arrays cannot grow, so these should represent the maximum
number of rows and columns that we want to have:

schedule = new int[10][10]; /1l table with 10 rows and 10 col umms
i mmge = new byte[1024][768]; /1 a 1024x768 pixel imge
mat chups = new String[12][4]; /1l 12x4 table of Strings

Usually, intuitively, the first length given represents the number of rows while the second
represents the number of columns, but this need not be the case. For example, the following
line of code creates an array that can hold 15 items:

. . 3 columns
gridl = new int[3][5]; 5 columns
You can think of it as being either a 3x5 (\
array or a 5x3 array. Itis up to you as
to whether the 3 is the rows or the 5 is 3 5

the rows. You just need to make sure rows
that you are consistent.

rows

As with regular arrays, the elements each have a location. However,
for 2D arrays, the location is a pair of indices instead of a single index.
The rows and columns are all numbered starting with O.

- 147 -

COMP1405 — Arrays and Searching Fall 2015

Therefore, we access and modify elements from the array by specifying both row and column
indices as follows:

schedul e[0][0] = 34; /1l row 0, colum O
schedul e[0] [1] = 15; /!l row 0, colum 1
schedul e[1] [3] = 26; /!l row 1, colum 3

Sometimes, there is confusion, for example, when we create

grids with (x,y) coordinates because when dealing with

coordinates we always specify x before y. But visually, y
X represents the number of columns in a grid, while y

represents the number of rows ... hence (x, y) corresponds

to (columns, rows) which seems counter-intuitive. a_}

poi nts[0][0] = 34; /1 (x,y)=(0,0) = row 0, colum 0 X
poi nts[0][1] = 15; Il (x,y)=(0,1) =row 1, colum O
poi nts[1][3] = 26; Il (x,y)=(1,3) =row 3, colum 1

Example:

You are probably familiar with the game Sodoku. The objective is to fill a 9x9 grid with digits
so that each column, each row, and each of the nine 3x3 sub-grids that compose the grid (also
called "boxes", "blocks", "regions", or "sub-squares") contains all of the digits from 1to 9. The
game begins with a starting board, where many of the spaces are not filled in (below left) and
the user must complete the puzzle (below right):

5|3 7 513[4]6(7]8]9]1]|2
6 1(9]|5 617(2]1119|5]3|4]|8
9|8 6 1{9(8]|3|4|2]5[|6]7
8 6 3118|5]9)7|6|1|4(2]|3
4 8 3 111412[|6]18[5(3]7(9]1
7 2 6J|711[(3]19|2]4]8|5]6
6 2|8 916|1|5(3|7]12|8|4
4111|9 511218[7]14|1|9]|6(|3]|5

8 7191134512 (8|6]1]7]|9

How can we represent the above Sodoku boards with 2D arrays ? Well, it is really just a 2D
array of numbers from 1 through 9 ... perhaps using 0 as an incomplete square.

Notice how we can represent the 2" completed board by using the quick array declaration with
the braces { } as we did with 1D arrays:

- 148 -

COMP1405 — Arrays and Searching Fall 2015

byte[]]] board = {{5, 3, 4, 6, 7, 8, 9, 1, 2},
{6, 7, 2, 1, 9, 5, 3, 4, 8},
{1, 9, 8, 3, 4, 2, 5 6, 7},
{8, 5, 9, 7, 6, 1, 4, 2, 3},
{4, 2, 6, 8, 5, 3, 7, 9, 1},
{7, 1, 3, 9, 2, 4, 8, 5, 6},
{9, 6, 1, 5, 3, 7, 2, 8, 4},
{2, 8, 7, 4, 1, 9, 6, 3, 5},
{3, 4, 5, 2, 8, 6, 1, 7, 9}};

Notice that there are more brace characters than with 1D arrays. Each row is specified by its
own unique braces and each row is separated by a comma. In fact, each row is itself a 1D
array. Interestingly, the length field of a multi-dimensional array returns the length of the first
dimension only.

Consider this code:

int[][] ages = new int[4][7];
System out. println(ages.|ength); /1 displays 4, not 28!

In fact, we can actually access the separate arrays for each dimension:

int[][] ages = new int[4][7];
int[] firstArray = ages[O0]; /1 gets 1° row from ages array
Systemout.println(ages.length * firstArray.length); // displays 28

Therefore, as you can see, a 2D array is actually an array of 1D arrays.

Iterating through a 2D array is similar to a 1D array except that we usually use 2 nested for
loops. Here is some code to print out the board that we created above:

for (int i=0; i<board[O].length; i++) {
for (int j=0; j<board.length; j++) {
Systemout. print(board[i][]j]);
}

Systemout.println();
}

This will produce the following output:

534678912
672195348
198342567
859761423
426853791
713924856
961537284
287419635
345286179

Of course, the output is not pretty because we cannot see the groupings into subgrids.

Here is a program that creates both boards with a pleasant output. It is a bit tricky to get the
spacing right:

- 149 -

COMP1405 — Arrays and Searching Fall 2015

public class SodokuBoar dDi spl ayProgram {

public static void displayBoard(byte[][] aBoard) {
for (int i=0; i<aBoard[O0].length; i++) {
if (i98 ==0)
Systemout.println("+---+4---+---4");
for (int j=0; j<aBoard.length; j++) {
if (j¥8 ==0)
Systemout.print('|"');
if (aBoard[i][j] == 0)
Systemout.print(' ');
el se
Systemout. print(aBoard[i][j]);
}
Systemout.printin('|");
}

Systemout.println("+---+---+---+");

}

public static void main(String[] args) {

byte[]1]] boardl = {{5, 3, 0, 0, 7, 0, 0, 0, O},
{6, 0, 0, 1, 9, 5, 0, 0, 0},
{o, 9, 8 0, O, 0, O, 6, 0},
{8, o, o, o, 6, 0, O, O, 3},
{4, o, o, 8 0O, 3, O, O, 1},
{7, o, o, 0o, 2, 0, O, O, 6},
{o, 6, 0, o, 0, 0, 2, 8, 0},
{o, 0, o, 4, 1, 9, 0, 0, 5},
{o, o, o, o, 8 0O, O, 7, 9}};
byte[]]] board2 = {{5, 3, 4, 6, 7, 8, 9, 1, 2},
{6, 7, 2, 1, 9, 5, 3, 4, 8},
{1, 9, 8, 3, 4, 2, 5, 6, 7},
{8, 5, 9, 7, 6, 1, 4, 2, 3},
{4, 2, 6, 8 5, 3, 7, 9, 1},
{7, 1, 3, 9, 2, 4, 8, 5, 6},
{9, 6, 1, 5, 3, 7, 2, 8, 4},
{2, 8 7, 4, 1, 9, 6, 3, 5},
{3, 4, 5 2,8, 6, 1, 7, 9}};

Systemout.println("Start:");

di spl ayBoar d(boar dl);

Systemout. println("\n\nConpl eted:");
di spl ayBoar d(boar d2) ;

}

The code will produce the following more pleasant output:

- 150 -

COMP1405 — Arrays and Searching

Fall 2015

Start:

B LI
|53 | 7 | I
|6 | 195] |
| 98| | 6|
B LI
|8 | 6 3|
|4 |8 3] 1f
|7 | 2] 6]
B T
| 6 | | 28 |
| | 419] 5]
| | 8 [79|
B T

Conpl et ed:

B g
534	678	912
672] 195	348]	
198] 342	567	
B g		
859	761	423]
426] 853	791]	
713] 924	856]	
B g		
961	537	284]
287] 419	635]	
345	286	179]
B e

Interestingly, you can create even higher dimensional arrays. For example, an array as follows

may be used to represent a cube of colored blocks:

int[][]1[] cube

Notice that there are now 3 sets of square brackets.
Using 3D arrays works the same way as with 2D arrays
except that we now use 3 sets of brackets and 3 indices
when referring to the elements of the array.

3-dimensional arrays are often used in the real world to

model various objects:

new String[5][5][5];

- 151 -

COMP1405 — Arrays and Searching Fall 2015

Example:

Consider representing the following maze by using
arrays. We could represent this maze by

using a 2D array of bytes indicating whether or not
there is a wall at each location in the array

(i.e., 1 for wall, O for open space).

We can create the maze in a similar manner to our
Sodoku board by making a quick array declaration
with the braces { }:

~N o o W N - O

012 3 456 7809

byte[][] maze = {{1,1,1,1,1,1,1,1,1, 1},
{1,0,0,1,0,0,0,0,0, 1},
{1,0,1,1,1,0,1,1,0,1},
{1,0,1,0,0,0,1,0,0, 1},
{1,0,1,0,1,1,1,0,1, 1},
{1,0,0,0,1,0,1,1,1, 1},
{1,0,1,0,0,0,0,0,0, 1},
{1,1,1,1,1,1,1,1,1, 1}};

This array represents a grid with 8 rows and 10 columns. We could display this array quite
simply by iterating through the rows and columns:

for (int row=0; row<8; rowt+) {
for (int col=0; col<10; col ++) {
if (maze[row][col] == 1)
Systemout.print ('*');

*kkkk*kkkk*x*k
*
*
*
el se
*
*
*
*

* *

Systemout.print (' ');

}
Systemout.println();

* *

kkkkkkkkk

Some mazes contain “dead-ends”. A “dead-end” is any location in the maze that has only one
way to get into it (i.e., it is surrounded by 3 walls). There are 6 dead-ends in our maze above.
How can we adjust the code so that dead-ends are indicated with a ‘@' character ?

We need to identify a dead-end by checking the
grid locations around it. There are exactly 4 cases
that we should check as shown here >

Given a particular grid location, we can determine if it is a dead end by checking the locations
around it as follows:

- 152 -

COMP1405 — Arrays and Searching Fall 2015

if (the location is an open space) {
if ((the locations left AND above AND right are all walls) OR
(the locations above AND right AND below are all walls) OR
(the locations left AND right AND below are all walls) OR
(the locations left AND above AND below are all walls)) {
mark this location as a dead end

}

The logic follows the 4 cases shown in the diagram. However, how do we write this using the
maze array ? Well, let us assume that we are looking at the location in the maze at a specific
row r and column c. We need to access the array to check each location left, right, above and
below by varying the row and column with respect to r and c. Also, we need to decide how to
"mark" the location as a dead end. Perhaps we can place a value of 2 there. Here is the code:

if (maze[r][c] == 0) {
if (((maze[r][c-1] == 1) && (maze[r-1][c] == 1) && (maze[r][c+l] == 1)) ||
((maze[r-1][c] == 1) && (maze[r][c+l] == 1) && (maze[r+1][c] == 1)) ||
((maze[r][c-1] == 1) && (maze[r][c+l] == 1) && (maze[r+1][c] == 1)) ||
((maze[r][c-1] == 1) && (maze[r-1][c] == 1) && (maze[r+1][c] == 1))) {
maze[r][c] = 2;

}

Notice that the AND and OR operators from our pseudocode are replaced with the Java
operators && and ||.

The code looks a little long and there is quite a bit of potential for making mistakes with the +1,
-1 array indexing. Can we do this in a simpler way, given that all maze locations are
represented as numbers either O or 1 ?

Yes. You may have noticed that the dead-end locations have exactly 3 walls around them. If
we were to add up the values in the maze locations in the 4 directions around (r,c), for dead-
ends therefore, we should obtain a count of 3. All other non-dead-end locations will have
values of 0, 1, 2 or 4. Therefore, we can simplify the code as follows:

if (maze[r][c] == 0) {
int count = maze[r][c-1] + maze[r][c+1l] + maze[r-1][c] + maze[r+1][c];
if (count == 3)
maze[r][c] = 2;

}

| am sure that you will agree that this code is simpler and still easy to understand. So, then,
we can write a procedure called mar kDeadEnds(byte[][] aMaze) that takes the maze and
marks the dead ends as follows:

- 153 -

COMP1405 — Arrays and Searching Fall 2015

public static void markDeadEnds(byte[][] m {
for (int r=0; r<mlength; r++) {
for (int c=0; c<nO0].length; c++) { // n{0] is the first row
it (nfr]fc] ==0) {
int count = mr][c-1] + nmfr][c+l] + n{r-1][c] + nmfr+1][c];
if (count == 3)
nfrlfec] = 2
}
}
}
}

What do you think of the above code ? Is it simple and logical ? Are there any problems ?

There could potentially be a problem with the boundaries. Our code assumes that (r,c) is not
along the border, otherwise we may be trying to examine locations that are outside of the
maze boundaries. For example, consider the first values of r and c¢ ... which are both zeroes.
This represents the top left corner wall of the maze. Our code attempts to count the values at
mr][c-1], nir][c+1],nmr-1][c],and nir+1][c]. Forthe case when r=0 and c=0, the values
of c-1 and r-1 are -1. So we will be trying to access the array maze[0][-1] and maze[-1][0].

Fortunately, our maze was constructed with walls all around the outside, so this condition will
never occur because m[r][c] will never be 0 on the border locations ... so the if statement
ensures that we never try to access outside of the array.

If however, the maze had openings along the border, we would have to check for such
boundary issues by adjusting our FOR loops so that the first and last rows and columns are
ignored:

for (int r=1; r<mlength-1; r++) {
for (int c=1; c<nf0].length-1; c++) { // nf0] is the first row
1.,
}

}

We will need to add something to our display routine so that the @ symbols is displayed at a
dead-end:

for (int row=0; row8; rowt++) {
for (int col=0; col<10; col ++) {
if (maze[row][col] == 2) /'l Checks for dead-ends
Systemout.print ('@);
else if (maze[row][col] == 1)
Systemout.print ('"*");
el se
Systemout.print (" ');
}
Systemout. println();

}

Now, if we run the code ... here is the result ...

- 154 -

COMP1405 — Arrays and Searching Fall 2015

khkkkkhkkkkkx

@@ -~
* *kk **k *

* % * *

* % ***@*
* *@***
@ @ @

khkkkkhkkkkkx

There is a problem. It is showing 8 dead-ends instead of 6. Two of them are wrong. What
happened ? Why are these extra dead-ends showing up as dead-ends ?

Well, take a look at the topmost wrong one. There is a wall above ... nothing to the right or
below ... and a dead-end to the left. So ... 1 for the wall and 2 for the dead-end adds to 3.
That is why the dead-end is showing up ... because the total count around it is 3, even though
there is only one wall.

The problem is a result of our code simplification and our choice to use the number 2 as a
dead-end value. Perhaps we should choose a larger value (above 3) so that the total count
will never be 3. We can make this change in our code:

if (count == 3)
nrifc] =5;

And of course, alter our display routine as well by displaying @ when 5 is there, not 2:

if (maze[row][col] == 5) /'l Checks for dead-ends
Systemout.print ('@);

When we run the code now, we obtain the proper result:

kkkkhkkhkkhkk*k
@@ -~
*kk k*k %

* * *

* ***@*
*@***
@ @

kkkkhkkhkkhkk*k

* % kX X

The completed code can be found online in the class MazeTestProgram.java.

- 155 -

COMP1405 — Arrays and Searching

Fall 2015

Example:

How can we write code to simulate a robot travelling
through the maze ? Assume that we simply want the
robot to continuously travel around the maze without

stopping. How can we do this ?

One well-known method of traveling through a maze is . TP
that of using the “right-hand rule” ... which says that as
long as we keep our right hand touching a wall as we B s Y

walk, we will find a solution through the maze.

Does this work for all mazes ?
what we call a “maze”.

| guess it depends on

Mazes with inner loops cannot necessarily be solved using this strategy ... it would depend on
where the robot began following the walls. We will assume, however, that we have mazes

with no inner loops.

Let us consider how the robot will move
around in the maze to follow the “right-hand
rule”. Assume that the robot has its right
"hand" on a wall. Ifitis able to move forward,
it should simply do so as shown here —

If however, the robot encounters a wall in front
of it, then it should turn left —

Then the robot should continue moving
forwards as it now has its right hand on the
wall again. It is possible that while traveling
along it may lose contact with the wall —

In this case, notice that the robot needs to
regain contact again with the wall on its right.
First, it must turn right. However, the wall will

still not be on the right of the robot after turning.

o T
] - -
L& L35
l‘\.\ | 8
] - —
= :j
0. sl "i:
) i)

Therefore it also needs to move forward.

- 156 -

COMP1405 — Arrays and Searching Fall 2015

Then, it will be back-on-track again. These three cases actually encompass all situations.
For example, if the robot ends up in a “dead-end”, these three cases will get it out again.

fopt i) »

— i

.

P

So, how can we write an algorithm for traveling through this maze based on our understanding
of the right-hand rule ? We simply follow the wall-following model that we developed and
produce a state diagram. Basically, the robot can be in one of 3 states at all times ... moving
forward, turning left or turning right (we will assume that the robot never stops). A state
diagram will indicate when (i.e., what condition must occur) we need to switch from one state
to another. Notice here how the various conditions cause changes to the three states:

no wall in front no wall on right
.____..-"'""'_'_ . ._____,.--r"'"_'_ .

wallin front

wallin front

Here is the algorithm, which assumes that each move operation moves the robot one square:

repeat {
if (there is a wall on the right) then {
if (there is a wall in front) then

turnLeft()
otherwise
moveForward()
}
otherwise {
turnRight()
moveForward()
}

}

The code is straight forward. However, some details have been left out. For example, how
do we know if there is a wall on the right or not ?

- 157 -

COMP1405 — Arrays and Searching Fall 2015

It depends on the robot's current location in the maze as well as its current direction. So, we
need to know at all times which direction the robot is facing and which maze location it is in.
The values for the row and column will have to be valid locations in the maze. Assume that
the maze has either 1 or 0 at each (row, column) location representing walls or open spaces,
respectively:

public static byte[]][] maze ={{1,21,1,1,1,1,1,1,1, 1},
{10, 1.0,0,00,0, 1},
{1,0,1,1,1,0,1,1,0, 1},
{1,0,1,0,0,0,1,0,0, 1},
{1,0,1,0,1,1,1,0,1, 1},
{1,0,0,0,1,0,1,1,1, 1},
{1,0,1,0,0,0,0,0,0, 1},
{1,1,1,1,1,1,1,1,1, 1}};

We could then perhaps start the robot in the top left corner at row 1, column 1 (i.e., (1,1) as
shown red in the array above). So, we can store the robot's location as follows:

public static int robotRow
public static int robot Col

1;
1;

The direction of the robot will need to be stored as well. We can define a unique constant for
each of the 4 directions as follows:

public static final byte EAST = 0;
public static final byte NORTH = 1;
public static final byte WEST = 2;
public static final byte SOUTH = 3;

Then to start, we could set the robot's direction to SOUTH so that it has its hand on the outside
wall and is facing downwards.

public static int direction = SOUTH;

How do we determine whether or not there is a “wall on the right” of the robot ? We would
need to look at the position to its right in the maze. Let's write a function to do this. We will
need to consider the maze, the robot's current location and its direction. Then the method
could return true or false indicating whether or not there is a wall on the right of the robot:

public static boolean wall OnRi ght () {
/1
}

Assuming that the robot is at position (r, c), then the locations (r-1,c)
around the robot are determined as shown here > tTE

]
To complete the wallOnRight() function, we will need to consider (re-1) | (re) |(rec+l)

all 4 directions separately. The code follows from the diagram
here. We simply consider each direction and look in the maze on
the right hand side of the robot to see if there is a wall there: (r+l,c)

- 158 -

COMP1405 — Arrays and Searching Fall 2015

if (((d is EAST) AND (maze[r+1][c] is a wall)) OR
((d is NORTH) AND (maze][r][c+1] is a wall)) OR
((d is WEST) AND (maze[r-1][c] is a wall)) OR
((d is SOUTH) AND (maze][r][c-1] is a wall))) then {
return true;

else
return false;

This code can be simplified by using a switch statement as follows:

public static boolean wall OnRi ght () {
swi tch(direction) {

case EAST: return (nmaze[robot Row+l][robotCol] == 1);
case NORTH:. return (naze[robotRow] [robot Col +1] == 1);
case WEST: return (naze[robotRow 1][robotCol] == 1);
case SQUTH: return (nmaze[robotRow] [robot Col -1] == 1);

return fal se;

}

A similar check can be made for walls in front of the robot. We just need to adjust the
directions in our above code. Here is a function that checks if a wall lies ahead:

public static bool ean wal | Ahead() {
swi tch(direction) {

case SQUTH: return (nmaze[robot Row+l][robotCol] == 1);
case EAST: return (maze[robot Rowj[robot Col +1] == 1); (1,0)
case NORTH: return (maze[robot Row 1][robotCol] == 1); s
case WEST: return (naze[robotRow] [robotCol-1] == 1); (r,e-1) tr:\cl (r,c+1)
return false;
} {r+1,c)

To move the robot forward, we need to make a similar check so that we alter the row and
column of the robot based on the current direction. Here is the code. | believe that it should
be straight forward:

public static void nmoveForward() {
swi tch(direction) {
case SOUTH: robot Row

robot Row + 1; return;

case EAST: robotCol = robotCol + 1; return; (r-1,c)
case NORTH: robot Row = robotRow - 1; return; *:
case WEST: robotCol = robotCol - 1; return, ed) | (re) | (rest)

}

{r+1,c)

Now, how do we make a turn ? Turning does not change the location of the robot, it just
changes the direction. Let's assume that each turn makes a 90 degree change in direction
(e.g., from EAST to NORTH or from EAST to SOUTH, but never from EAST to WEST).

Recall that our directions are simply numbers:

- 159 -

COMP1405 — Arrays and Searching Fall 2015

public static final byte EAST = 0;
public static final byte NORTH = 1;
public static final byte WEST = 2;
public static final byte SOUTH = 3;

Look at the order of these direction numbers. Hopefully you can see that they were chosen
carefully so that increasing one of these numbers by 1 represents a left turn and decreasing
the number by 1 results in a right turn. So then, turning left or right is as simple as:

direction + 1; /1 left turn
direction - 1; /1 right turn

direction
direction

The only issue with the above formula is when we want to go from SOUTH to EAST or from
EAST to SOUTH. The formula would change the direction to 4 and -1 in these two cases ...
which are invalid directions.

We can add two IF statements to handle this as follows:

if (direction == -1)
direction = 3;
if (direction == 4)
direction = 0;

But we can improve this. Whenever we have such a situation, where we are
increasing/decreasing a value and need to have it wrap around to the beginning/end again,
the modulo operator becomes quite useful. You may recall that the modulo operator returns
the remainder after dividing by some number. So whenever we need to count from 0 to some
number N, if we always let our counter be "modulo N", then it will always count from O to N-1.

For example, consider a counter d which goes from 0 to 15. Notice the result when we
determine the value of d modulo 4 (which is d%4 in JAVA).

d o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
dog o 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
(d+1) % 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0

In this case, the modulo operator simply discards multiples of 4 from the counter and gives us
the remainder each time. This is exactly what we want to do! Notice how the 4 becomes 0.
We can therefore do the following for turning left:

direction = (direction + 1) % 4;
Notice how it will work for our left direction:

d 0 1 2 3
(d+1) & 1 2 3 0 /1 Left Turn

But now look for the right direction. We need to add 4 to avoid the -1:

d 0 1 2 3
(d-1)9« -1 0 1 2 /1 Right Turn ... not quite right
(d-1+4) % 3 0 1 2 /1 Right Turn ... correct now

- 160 -

COMP1405 — Arrays and Searching Fall 2015
So turning right will be as follows:

direction = (direction + 3) % 4;
Now we can merge all of this code together to come up with a complete solution. Here is the

resulting JAVA code which makes use of the methods and turning formulas that we just
finished discussing. As a reminder, the pseudocode for travelling the maze is on the left:

repeat { while (true) {
if (there is a wall on the right) then { if (wall OnRight()) {
if (there is a wall in front) then i1 (wall Ahead()) . o .
turnLeft() | direction = (direction + 1) % 4;
: el se
otherwise nmoveFor war d() ;
moveForward()
} el se {
otherwise { direction = (direction + 3) % 4;
turnRight() moveFor war d() ;
moveForward() }
} }
}

It sure is easy to write once we have the pseudocode! You should always get used to writing
pseudocode beforehand to make sure that your logic is correct. Here is the final code. Notice
that we added an extra IF statement in the displayMaze() procedure so that it draws the robot
as an 'R'. The main method runs in an infinite loop. If you do not like this, you can create a
counter so that the robot only moves a specific number of times.

public class MazeTravel Program {

public static final byte EAST = 0;
public static final byte NORTH = 1;
public static final byte WEST = 2;
public static final byte SOUTH = 3;
public static byte[][] maze = {{1,1,1,1,1,1,1,1,1,1},
{1,0,0,1,0,0,0,0,0, 1},
{1,0,1,1,1,0,1,1,0,1},
{1,0,1,0,0,0,1,0,0, 1},
{1,0,1,0,1,1,1,0,1, 1},
{1,0,0,0,1,0,1,1,1, 1},
{1,0,1,0,0,0,0,0,0, 1},
{1,1,1,1,1,1,1,1,1, 1}};
public static int robotRow = 1;
public static int robotCol = 1;
public static int direction = SOUTH,
public static void displayMaze(byte[][] m {
for (int row=0; row8; rowt+) {
for (int col=0; col<10; col ++) {
if ((row == robotRow) && (col == robotCol))

Systemout.print ('"R);
el se {
if (mrow[col] 5)
Systemout.print (' @);

- 161 -

COMP1405 — Arrays and Searching Fall 2015

else if (mMrow[col] == 1)
Systemout.print ('*");
el se
Systemout.print (' ');

}
}
Systemout. println();

}

public static boolean wall OnRi ght() {
swi tch(direction) {

case EAST: return (nmaze[robot Row+l][robotCol] == 1);
case NORTH: return (nmaze[robot Rowj[robot Col +1] == 1);
case WEST: return (naze[robotRow 1][robotCol] == 1);
case SQUTH:. return (naze[robotRow] [robot Col -1] == 1);

}

return fal se;

}

public static bool ean wal | Ahead() {
swi tch(direction) {

case SQUTH: return (nmaze[robot Row+l][robotCol] == 1);
case EAST: return (nmaze[robotRow] [robot Col +1] == 1);
case NORTH:. return (naze[robotRow 1][robotCol] == 1);
case WEST: return (naze[robotRow] [robotCol-1] == 1);

return fal se;

}

public static void noveForward() {
swi tch(direction) {
case SOUTH robot Row
case EAST: robot Col
case NORTH: robot Row
case WEST: robot Col

robot Row + 1; return;
robotCol + 1; return;
robot Row - 1; return;
robot Col - 1; return;

}

public static void main(String[] args) {
di spl ayMaze(maze);
while (true) {
if (wallOnRight()) {
if (wall Ahead())
direction = (direction + 1) % 4;
el se
nmoveForwar d() ;

el se {
direction = (direction + 3) % 4;
noveForwar d() ;

}
di spl ayMaze(maze);

Here are the first 20 maze printouts of the running code, showing the robot location in red and
the wall on its right in blue:

- 162 -

COMP1405 — Arrays and Searching

kkkkkkkkk *kkkkhkkkk* *kkkkkkkk* *kkkkikkk*k* *kkkkhkkkk*
*R * * * * * * * * * * * * * *
* ***% ** * *Rk** * % * * **x%* ** * * **x%* ** * * **x%* ** *
* * * * * % * * *Rk * * * % * * * % * *
* * **% ** * * k%% k% * * k%% k% *Rk *k*k* ** * * k%% k%
* * ** k% * * **k*%**%x * * ***%**%x * * ***%**%x *R * * k%%
* * * * * * * % * L * L *
kkhkkkkikkhkk*k kkhkkkhkkkikk*k kkhkkkhkkkhkk*k kkhkkkhkkkikk*k kkkkhkkkikk*k
kkkkkkkkk *kkkkkkkk* *kkkkkkkk* *kkkkhkkk*k* *kkkkhkkkk*
* * * * * * * * * * * * * * *
* **k* ** * * *k%k* k(% * * k*k%k** k(% * * *k%k* k(% * * *k%k* k(% *
* * * * * % * * * % * * * % * * * % * *
* * **% ** * * k%% k% * * k%% k% * * k%% k% * * k%% k%
* * * k%% * * k*k*k*% * * k*kk*k*% *R * *k*k*%x * R* *k k%
R * *Rk * *Rk * * % * * * *
kkhkkkkikkhkk*k *kkkkikkkk* kkhkkkhkkkikkh*k kkhkkkhkkkikkh*k kkhkkkkhkkkk*%
kkhkkkkkkhkk*k kkhkkkhkkkikk*k kkhkkkhkkkikk*k kkhkkkhkkkikk*k kkhkkkhkkkikk*k
* * * * * * * * * * * * * * *
* k%% ** * * *k%k*k k(% * * k*kk*k k(% * * *k%k*k k% * * k*k%k* k(% *
* * * * * % * * * % * * * % * * * % * *
* * *%*x%* ** * * **%* ** * * **%* ** * * **%* ** * * **%* **
* R* * k k% * * kk*k*%x * * k**k*k*% * * k*k*k*% * * **k k%
* * * * *R * * *R * * % R * L R *
kkkkkkkkk *kkkkikkk*k* kkhkkkkhkkkk*% kkhkkkhkkkikkh*k kkhkkkhkkkikk*k
kkhkkkkikkhkk*k kkkkhkkkhkk*k kkhkkkhkkkikkh*k kkkkhkkkikkh*k kkkkhkkkikkh*k
* * * * * * * * * * * * * * *
* ***% ** * * **x%* ** * * **x%* ** * * **x%* ** * * **x%* ** *
* % * * * % * * * % * * * % * * * % * *
* * *%*x% ** * * **%* ** * * **%* ** * * **%* ** * * **%* **
* * * k%% * * kk*k*% * * k*k*k*% * * k**k*k% * * ***%**%x
* * R * * % R* * % Rk * % Rk * % Rk
kkhkkkkikkhkk*k kkhkkkhkkkikkh*k kkhkkkkhkkkk* *kkkkkkk*k*% *kkkkhkkkk*

- 163 -

