

Chapter 7

Data Structures and Objects

What is in This Chapter ?
Almost all programs require the use of some data as input to the problem being solved. It is
often advantageous to group (or structure) related data together. This chapter discusses the
idea of creating data structures in Processing, which are also known as objects. Objects
are used as a way of keeping your data organized in a logical manner. In a follow-up course,
we will further develop the various concepts of Object-Oriented Programming.

COMP1405 – Data Structures and Objects Fall 2015

 - 205 -

 7.1 Simple Data Structures and Objects

Recall that we used functions and procedures to provide control abstraction in order to hide
low-level conceptual details within our algorithms so that they are simpler to read and
understand. There is another type of abstraction known as data abstraction. In this type of
abstraction we are interested in hiding information (or data) that will unnecessarily clutter up
an algorithm. The idea behind data abstraction is to group simple data values together which
have a well understood relationship.

For example, if we are mailing out an envelope (within Canada), then an address is assumed
to have this information:

1. name
2. street number
3. street name
4. city
5. province
6. postal Code

Whenever most people hear the word “address”, they understand that such information is
actually made up of some smaller, specific kinds of information. The address itself is not
complete unless it is has all of that information. In a sense, the individual pieces of
information make up (or define the structure of) the address.

We can create such “more abstract” types of data (e.g., like an address) simply by combining
or structuring the more primitive (i.e., simpler) pieces of data together in meaningful ways:

A data structure is a particular way of combining, storing and organizing
data so that it may be used more efficiently and in a more abstract manner.

We also use the word data type which is somewhat analogous to the term data structure. In
object-oriented programming languages, such as Java, a data type is also known as a class or
category, and defining a data type is also called defining an object.

A object represents multiple pieces of information that are grouped together.

Recall that a primitive data type represents a single
simple piece of information such as a number or
character. An object, however, is a bundle of data, which
can be made up of multiple primitives or possibly other
objects as well. You can think of an object as a bunch of
small pieces of information with an elastic around it 

COMP1405 – Data Structures and Objects Fall 2015

 - 206 -

Perhaps the simplest data structure is called a string which is a group of one or more
characters with a specific ordering. Characters by themselves are not very interesting.
However, when we group them together, we form a huge variety of words and seemingly
unlimited variety of sentences. Each word in the English language, for example, represents a
string data structure, as does each sentence, paragraph, page of text, etc…

In many programming languages (including JAVA), strings are represented by placing double
quotes around a set of characters like this:

String name;

name = "Patty O. Lantern";

A string is not a primitive data type because it is made up of characters … which themselves
are primitive data types. In fact, we can abstract out the notion of a string even further by
grouping strings together in a meaningful way to create an even more abstract data structure.

For example, consider an address as described above. A full address may be represented
using multiple numbers and strings as follows:

String name, streetNumber, streetName, city, province, postalCode;

name = "Patty O. Lantern";
streetNumber = "187B";
streetName = "Oak St.";
city = "Ottawa";
province = "ON";
postalCode = "K6S8P2";

Together, all of the variables above represent a full address. It would be advantageous if we
could define a single variable, perhaps called address, that can store all of the above
information:

Address myAddress;

myAddress = … ??? …;

Of course, we could combine everything into one big string …

String myAddress;

myAddress = "Patty O. Lantern, 187B Oak St., Ottawa, ON, K6S8P2";

… but then it would be more difficult/cumbersome to extract the needed pieces of information
(e.g., street number or last name).

COMP1405 – Data Structures and Objects Fall 2015

 - 207 -

Many programming languages allow you to “group” variables together into a structure of some
type. The process of defining which variables and types of data should be grouped together is
called defining a data structure (or defining a data type). In object-oriented languages
(such as JAVA) this is also called defining an object (or sometimes defining a class).

When defining such a structure (or class), we need to
use the class keyword and we also need to specify the
name of the new type of data (e.g., Address) as well as
the names and types of data that is contained within it.
The diagram on the right is a visual representation of
the class definition:

We will use the following notation to define this Address
structure/class/object in JAVA:

public class Address {
String name;
String streetNumber;
String streetName;
String city;
String province;
String postalCode;

}

Notice that we capitalized the data type Address. It is proper coding style to ALWAYS
capitalize your class names. Note that the class name should also always be singular
(i.e., Address ... not Addresses).

The above notation shows that an address is made up of 6 pieces of
data with the given labels. It is as if the Address data type is a
“blank form” onto which we can fill in appropriate values. It defines
a kind of template for creating data of this type.

The code should be written all on its own as a new/separate JAVA
file. That is how we will define a new data type.

However, defining a data type does not actually create any variables, it only creates a
definition. When we actually want to use a data type, we need a way of specifying that we
want to create a new instance of this data type.

An instance of a data structure (or object) is a particular group of values for each of
the individual variables that make up the data structure (or object).

That means an instance is a particular object belonging to the category of objects defined by
the data type. For example, each of the following is an instance of the Address data type,
because they represent particular addresses:

COMP1405 – Data Structures and Objects Fall 2015

 - 208 -

Notice in the diagram, that the String values are themselves shown as separate objects. That
is, the value of the name of the first Address object is a String object with the value "Patty O.
Lantern". We use an arrow from one object to another to indicate that the object is inside of
another object. So, in the image above ... we can count the objects simply by counting the
boxes ... 21 in total for all three addresses combined.

In order to create one of these Address objects, we need to tell JAVA to create a new object
for us. This is done by using the new keyword in JAVA as follows:

new Address();

This will create the object by allocating enough memory to hold all of the address’ information..

You may want to think of the Address class as a factory that makes Address objects (i.e.,
makes instances of the Address class). In general, every time we use new, it is as if we go
to the factory for that class and buy a instance of the object. So… the class is the “factory”,
and the instance is the particular “object” that we can start using now in our programs.

The Address Class new Address() Instance of type Address

A Person Class new Person() Instance of type Person

COMP1405 – Data Structures and Objects Fall 2015

 - 209 -

A House Class new House() Instance of type House

Of course, once the object is created, we need to store it
into a variable so that we can access and modify it later.
The variable can have any name, but its type MUST be
declared with the exact same name as the class as
follows:

Address anAddress;

anAddress = new Address();

The anAddress variable now holds an instance of the
Address class.

Just to help you understand how this all works, let us
compare what we just did to what we would have done without the Address class definition.

If we were to define 6 separate String variables to store the information like this:

String name;
String streetNumber;
String streetName;
String city;
String province;
String postalCode;

then we would be reserving space for 6 variables as follows:

COMP1405 – Data Structures and Objects Fall 2015

 - 210 -

However, when creating an instance of an object, although we are actually storing the same
data, we are only defining one variable to hold on to ALL 6 pieces of data. It is as if we are
taking all of the data and putting it into a larger box like this:

There is a term that we use to describe the pieces/variables of a particular instance of a class.
We call them instance variables, since they are just regular variables … that happen to be
grouped together to form a particular instance of the class.

Once we create the object, we can start to use it.

We can access the individual parts (i.e., instance variables)
of an object by using the dot operator as follows:

Address anAddress;

anAddress = new Address();
System.out.println(anAddress.name);
System.out.println(anAddress.streetNumber);
System.out.println(anAddress.streetName);
// ... etc ...

So, instance variables are used just like regular variables,
except that we now precede the variable name by the object's variable name and the dot
operator. The dot operator indicates to "go inside" the data type to get a piece of information.
That is, we are getting more specific as to what particular piece of data we want. Whenever
we use, for example, anAddress.name, it behaves just like any other variable and refers to
the data stored in the "name" part of the address’s memory. The above code, however, will
not print out anything exciting. In fact, it will print out:

null
null
null

dot

COMP1405 – Data Structures and Objects Fall 2015

 - 211 -

Why ? Well, by default, when we create an object using the new keyword, JAVA will allocate
space for the object, but will not assign any values to the instance variables. Any instance
variable which has a primitive type (e.g., int, float, char, etc...) will have a default value of 0.
Any instance variable with an object type (e.g., String) will have the default value null.

Null is a word that represents an undefined value. If a variable has a
value of null, it usually means that it has not yet been given a value.

So, in our example above, we saw null printed 3 times because none of the three String
variables were given a value ... and since Strings are objects (i.e., not primitives), then we see
null displayed. Regardless of what is displayed, the code does not make sense logically
because we are trying to print out the address’s name before we have assigned a value to it.

We can then assign values to the individual instance variables of an object by using the dot
operator again as follows:

Address anAddress;

anAddress = new Address();
anAddress.name = "Patty O. Lantern";
anAddress.streetNumber = "187B";
anAddress.streetName = "Oak St.";
anAddress.city = "Ottawa";
anAddress.province = "ON";
anAddress.postalCode = "K6S8P2";

System.out.println(anAddress.name);
System.out.println(anAddress.streetNumber);
System.out.println(anAddress.streetName);

Now, we will see the output that we expected:

Patty O. Lantern
187B
Oak St.

COMP1405 – Data Structures and Objects Fall 2015

 - 212 -

Sometimes, however, when we create our objects ... some
information may be missing. For example, when we give a local
person our address on a piece of paper, it is likely that we’ll only
give them the street number and name.

In this situation there will be some missing information. Perhaps
the missing information is assumed to be particular values. For
example, we may assume that the
city and province are local to
where we received the piece of
paper.

As mentioned, the value of the
instance variables in this case are
null (or 0 or false in the case of
primitives).

When using the object, we always
want to be aware that there could
be data missing. That is, we
need to be aware of cases where
null may appear.

Why ? Well, null is an undefined object. If we try to use an object that is not defined, then
our program will crash. For example, consider this code:

Address anAddress;

 System.out.println(anAddress.name);

The code will not compile but will instead give you this error:

 Error: variable anAddress might not have been initialized.

JAVA noticed that we are trying to access the address's name attribute ... but that we have not
yet assigned an initial value to our anAddress variable. It is reminding us to do so. We had
forgotten to do new Address();.

However, sometimes java will not catch your error during the compiling stage. Consider the
following code which is supposed to print out the person's first initial:

Address anAddress;

anAddress = new Address();

 System.out.println(anAddress.name.charAt(0));

This code compiles but then crashes with an error that looks something like this:

COMP1405 – Data Structures and Objects Fall 2015

 - 213 -

java.lang.NullPointerException
 at TestCode.main(TestCode.java:12)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
 at java.lang.reflect.Method.invoke(Unknown Source)
 at edu.rice.cs.drjava.model.compiler.JavacCompiler.runCommand(Javac.java:72)

A NullPointerException basically means that we are trying to go inside of an object that has
not been defined. But didn't we already define the Address object ? Yes ... however ... we
did not give an initial value to the name attribute. Notice that we are trying to go inside the
name attribute now to call a function on it ... the charAt(0) function ... which gets the first
character of the String. Since the String itself is null, we cannot call the function on it ... so
JAVA gives us a NullPointerException to tell us that it won't work. It actually, also tells us
the method name as well as the line number that caused the problem so that we can find it and
fix it. In this case, it is an easy fix ... just assign a value to the name attribute of the address:

Address anAddress;

anAddress = new Address();
anAddress.name = "Bob";

 System.out.println(anAddress.name.charAt(0));

At this point, it would be good to mention something about variable bindings. A variable is
bound to (i.e., attached to) a value when we assign something to it using the = operator.

You need to understand that each time we make a new object, we get back a new instance of
that object which is stored in a separate location in memory.

Car myCar, yourCar, bobsCar;

myCar = new Car();
yourCar = new Car();
bobsCar = new Car();

So in the above code, all three variables point to different/unique objects. In fact, it is often
the case that one or more variables may point to (or refer to) the same object.

For example two people may share the same car as in this code:

Car myCar, yourCar;

myCar = new Car();
yourCar = myCar;

In this case, the two variables point to the exact same object.

myCar

bobsCar

yourCar

myCar

yourCar

COMP1405 – Data Structures and Objects Fall 2015

 - 214 -

What would happen if we re-assign a value to an object variable ?

Car myCar;

myCar = new Car();
// ...
myCar = new Car();

In this case, the previous Car
object that was assigned to the
myCar variable is discarded and
the variable simply points to the
new Car object.

 Supplemental Information (The Garbage Collector)
Objects that have been created and are no longer being "pointed to" by anyone are garbage
collected. Garbage collection usually does not happen immediately when you are finished
with an object. It may happen at a later convenient time (decided upon by the Java Virtual
Machine). Note that in the example above, the old car may not be garbage collected
immediately, and so it may actually remain around for a while.

The garbage collector :

• is a low priority process running in the Java Virtual Machine
• is used to free up memory for unused objects
• is necessary to release resources
• runs automatically, programmer need not do anything
• can be forced to run by using System.gc()

Example:

Recall the LoanApplicationProgram from chapter 2. In that example, we asked the user to
enter information as an applicant applying for a loan. We then stored the
information into these four variables:

boolean employed;
boolean hasDegree;
int age;
int yearsWorked;

Since all of this information pertains to the
applicant, we can actually combine all of it into
a Applicant data type by defining an
Applicant class as follows:

public class Applicant {
 boolean employed;
 boolean hasDegree;
 int age;
 int yearsWorked;
}

myCar

myCar

Before After

COMP1405 – Data Structures and Objects Fall 2015

 - 215 -

Then, in the main code, we simply create a single variable ot type Applicant instead of the
four variables:

Applicant applicant;

The following page shows a table with the original code on the left and the code using the
Applicant class on the right. The code has been simplified to fit into the table and some of
the code has been left out completely. Just try to understand the differences:

Using Local Variables Using the Applicant Object

public class LoanQualificationProgram {
 public static void main(String[] arg) {
 char charInput;

 boolean employed, hasDegree;
 int age, yearsWorked;

 // ... some code has been omitted ...

 System.out.print("...");
 charInput = ...;
 employed = ...;

 System.out.print("...");
 charInput = ...;
 hasDegree = ...;

 System.out.print("...");
 age = ...;

 System.out.print("...");
 yearsWorked = ...;

 if (employed) {
 if (hasDegree)
 System.out.println("...");
 else {
 if (age >= 30) {
 if (yearsWorked >= 10)
 ...;
 else
 ...;
 }
 else
 ...;
 }
 }
 else
 ...;
 }
}

public class LoanQualificationProgram {
 public static void main(String[] arg) {
 char charInput;

 Applicant applicant;
 applicant = new Applicant();

 // ... some code has been omitted ...

 System.out.print("...");
 charInput = ...;
 applicant.employed = ...;

 System.out.print("...");
 charInput = ...;
 applicant.hasDegree = ...;

 System.out.print("...");
 applicant.age = ...;

 System.out.print("...");
 applicant.yearsWorked = ...;

 if (applicant.employed) {
 if (applicant.hasDegree)
 System.out.println("...");
 else {
 if (applicant.age >= 30) {
 if (applicant.yearsWorked>=10)
 ...;
 else
 ...;
 }
 else
 ...;
 }
 }
 else
 ...;
 }
}

All of the applicant's information is now packaged into the single Applicant data structure and
stored in the applicant variable. The code seems longer. However, the data is now set up
for more abstract use.

COMP1405 – Data Structures and Objects Fall 2015

 - 216 -

For example, assume that we created a function to get the user’s information and another to
determine whether or not they qualify. Notice the simple main code:

public static void main(String[] arg) {
 System.out.println("Welcome ...");

 Applicant applicant = getUserInformation();
 determineQualifications(applicant);

 System.out.println("Thank you, have a nice day ...");
}

Notice how the Applicant object is created in the getUserInformation() procedure, populated
with information from the user, and then returned to the main algorithm:

public static Applicant getUserInformation() {
 Applicant applicant = new Applicant();

 Scanner keyboard = new Scanner(System.in);

 System.out.print("...");
 char charInput = ...;
 applicant.employed = ...;
 System.out.print("...");
 charInput = ...;
 applicant.hasDegree = ...;
 System.out.print("...");
 applicant.age = ...;
 System.out.print("...");
 applicant.yearsWorked = ...;

 return applicant;
}

Notice how the return type of the function is Applicant and that we are returning an Applicant
object. The determineQualifications() procedure then accepts an incoming Applicant
object (which is labelled as appl) and uses it within the code for making various decisions:

public static void determineQualifications(Applicant appl) {
 if (appl.employed) {
 if (appl.hasDegree)
 System.out.println("Congratulations ...");
 else {
 if (appl.age >= 30) {
 if (appl.yearsWorked >= 10)
 System.out.println("Congratulations ...");
 else
 System.out.println("Sorry..");
 }
 else
 System.out.println("Sorry..");
 }
 }
 else
 System.out.println("Sorry..");
}

COMP1405 – Data Structures and Objects Fall 2015

 - 217 -

Within the determineQualifications() procedure we simply use the dot operator to get at the
specific piece of applicant information that we need.

There are some advantages of using this new data structure:

1) The main algorithm is more abstract and simpler to understand

2) If we add additional qualification parameters (e.g., marital status, # of dependants, credit
history, etc…) then the main program remains unchanged.

The code is thus simpler and more organized with the use of the data structure/object.

However, it is not always obvious to know what kind of information (i.e., attributes/components)
should make up a data structure/object. That is … there is not always a “well defined” set of
data that make up the object. For an Address data structure, it is somewhat obvious.
However, what about a Person data structure … what should “make up” a person ?

Some possible attributes of a Person data structure may be firstName, lastName, age,
gender and retired. Why would we choose these ? In reality, our choice of attributes
depends on the application that we are trying to develop. For example, while the age and
gender may be vital pieces of information for a program that determines players on a team
sport in some league, information about whether a person is retired is not necessary. And for
medical applications, perhaps weight and height are vital pieces of information. If it is to be
an online social network application, perhaps emailAddress is an important piece of
information that all Persons should have. The choice of a data structure’s attributes really
depends on the application.

As another example, consider defining a Car data structure. We should think of what
characteristics we will need to store for each car (e.g., make, model, color, mileage, etc..):

Again, the choice will depend on the program/application you are making. Consider these
possible applications in which a Car data structure may be used:

• a program for a car repair shop
• a program for a car dealership
• a program for a car rental agency
• a program for an insurance company

So, now let us examine what kind of attributes (i.e., instance variables) that we would likely
need to define for a Car in each of these individual applications:

COMP1405 – Data Structures and Objects Fall 2015

 - 218 -

• repair shop
make, model, year, engine size, spark plug type, air/oil filter types, air hose
diameter, repair history, owner etc..
.

• car dealership
model, price, warranty, interior finish (leather/material), color, engine size, fuel
efficiency rating, etc...

• rental agency
sedan or coupe, make, model, license plate, price per hour, mileage, repair
history, etc...

• insurance company
year, make, model, owner, vehicle identification number, insurance type (e.g.,
fire/theft/collision/liability), color, license plate, etc...

So you can see that it is not always straight forward to identify the components of a data
structure. You need to always understand how it fits into the application.

Example:

Recall our FireSpreadSimulation program which created three arrays to store the points
along the fire border as follows:

 public static int[] borderX; // x values along border of fire
 public static int[] borderY; // y values along border of fire
 public static float[] borderCost; // costs along border of fire

 borderX = new int[1000];
 borderY = new int[1000];
 borderCost = new float[1000];

Instead of doing things this way, we can define a class called FirePoint as follows:

public class FirePoint {
 int x;
 int y;
 float cost;
}

Then, we can replace all three arrays with just one as follows:

 public static FirePoint[] border; // points along border of fire

 border = new FirePoint[1000];

How will this affect the code in the program ? Well, notice below how the code for starting the
first three fires will change. The old code is on the left compared to the new code on the right
which uses the new class.

COMP1405 – Data Structures and Objects Fall 2015

 - 219 -

You will notice that the array name is consistent now (i.e., only one array) and that we use the
dot operator to go into each FirePoint to set the x, y and cost. It is important to create a new
FirePoint each time, otherwise space is not reserved for the data and we would get a
NullPointerException when trying to set the x, y & cost values.

borderX[0] = 85;
borderY[0] = 70;
borderCost[0] = 0;

borderX[1] = 120;
borderY[1] = 30;
borderCost[1] = 0;

borderX[2] = 20;
borderY[2] = 20;
borderCost[2] = 0;

border[0] = new FirePoint();
border[0].x = 85;
border[0].y = 70;
border[0].cost = 0;

border[1] = new FirePoint();
border[1].x = 120;
border[1].y = 30;
border[1].cost = 0;

border[2] = new FirePoint();
border[2].x = 20;
border[2].y = 20;
border[2].cost = 0;

In the main loop for spreading the fire, notice

 int pX = borderX[borderSize-1];
 int pY = borderY[borderSize-1];
 float pCost = borderCost[borderSize-1];

 terrain[pY][pX] = BURNED;

 if ((pX > 0) && isBurnable(pY,pX-1)) {
 terrain[pY][pX-1] = FIRE;
 borderX[borderSize] = pX-1;
 borderY[borderSize] = pY;
 borderCost[borderSize] = pCost + 1 + (int)(Math.random()*3);
 borderSize++;
 }
 // etc ...

The new code with the single border array of FirePoints looks like this:

 FirePoint fire = border[borderSize-1];

 terrain[fire.y][fire.x] = BURNED;

 if ((fire.x > 0) && isBurnable(fire.y,fire.x-1)) {
 terrain[fire.y][fire.x-1] = FIRE;
 border[borderSize] = new FirePoint();
 border[borderSize].x = fire.x-1;
 border[borderSize].y = fire.y;
 border[borderSize].cost = fire.cost + 1 + (int)(Math.random()*3);
 borderSize++;
 }
 // etc ...

Note that we no longer need pX, pY and pCost variables but just the fire variable now.
There are other similar changes to the code ... see if you can get it all working with the new
FirePoint data structure.

COMP1405 – Data Structures and Objects Fall 2015

 - 220 -

Example:

Let us write a program that will simulate some balls bouncing around in a window. To begin,
we will create a Ball class to represent a ball. Each ball will have a different size, and will
have a unique location within the window and will be moving towards some direction at some
specific speed. So, here is the class that we will use:

public class Ball {
 int x;
 int y;
 float direction;
 float speed;
 int radius;
}

Here will be the code that will represent the panel that
will draw the balls (do not worry about understanding
it). It is similar to the TerrainPanel from our
FireSpreadSimulation example:

import java.awt.*;
import javax.swing.*;

public class BallPanel extends JPanel {
 public static final int WIDTH = 800;
 public static final int HEIGHT = 600;

 private static Ball[] balls;

 public BallPanel(Ball[] b) {
 balls = b;
 setPreferredSize(new Dimension(WIDTH, HEIGHT));
 }

 public void paintComponent(Graphics g) { // Display the image
 super.paintComponent(g);
 for (int i=0; i<balls.length; i++) {
 g.setColor(Color.RED);
 g.fillOval(balls[i].x-balls[i].radius,
 balls[i].y-balls[i].radius,
 balls[i].radius*2,
 balls[i].radius*2);
 g.setColor(Color.BLACK);
 g.drawOval(balls[i].x-balls[i].radius,
 balls[i].y-balls[i].radius,
 balls[i].radius*2,
 balls[i].radius*2);
 }
 }
}

The above code requires us to pass in an array of Ball objects to the panel so that it can
display them each time we repaint the window. Consider now the code to create the window
and add three balls:

COMP1405 – Data Structures and Objects Fall 2015

 - 221 -

import java.awt.*;
import javax.swing.*;

// This application simulates balls bouncing in a window
public class BallSimulation {
 public static BallPanel ballPanel;

 // Create a window with a BallPanel, add 3 balls and start the simulation
 public static void main(String args[]) {
 Ball[] balls = new Ball[3];
 balls[0] = new Ball();
 balls[0].x = 100;
 balls[0].y = 100;
 balls[0].direction = (float)(Math.random()*2*Math.PI);
 balls[0].speed = 15;
 balls[0].radius = 20;

 balls[1] = new Ball();
 balls[1].x = 400;
 balls[1].y = 300;
 balls[1].direction = (float)(Math.random()*2*Math.PI);
 balls[1].speed = 10;
 balls[1].radius = 30;

 balls[2] = new Ball();
 balls[2].x = 600;
 balls[2].y = 400;
 balls[2].direction = (float)(Math.random()*2*Math.PI);
 balls[2].speed = 5;
 balls[2].radius = 50;

 JFrame frame = new JFrame("Ball Simulation");
 frame.add(ballPanel = new BallPanel(balls));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);

 startSimulation(balls);
 }
}

The code for creating the array of balls and adding three balls is straight forward. The only
method missing is the startSimulation() procedure which will perform the simulation by
moving the balls around properly. Here is the idea behind what we need to do:

public static void startSimulation(Ball[] balls) {
 while(true) {
 for (int i=0; i<balls.length; i++) {
 // ... move ball forward ...
 // ... check if ball collides with borders and adjust accordingly ...
 }
 ballPanel.repaint();
 try{ Thread.sleep(10); } catch(Exception e){}; // To slow things down
 }
}

COMP1405 – Data Structures and Objects Fall 2015

 - 222 -

The code will run in an infinite loop (i.e., the program won't end on its own). Each time, it goes
through the balls one at a time, updates them and then repaints the window and delays a bit.

It seems fairly straight forward, but two questions arise:

1) How do we “move the ball forward in its current direction” ?
2) How do we “change the direction accordingly” ?

The first is relatively simple, since it
is just based on simple trigonometry.
Given that the ball at location (x,y)
travels distance d in direction θ, the
ball moves an amount of d•cos(θ) horizontally

and d•sin(θ) vertically as shown in the diagram.

So, to get the new location, we simply add the
horizontal component to x and the vertical
component to y to get (x + dcos(θ) , y + dsin(θ)).

Here is the code to move the ball forward d pixels:

balls[i].x = balls[i].x + d * Math.cos(balls[i].direction);
balls[i].y = balls[i].y + d * Math.sin(balls[i].direction);

However, the value of d, will depend on how fast the ball is moving, so this is what we want:

balls[i].x = balls[i].x + balls[i].speed * Math.cos(balls[i].direction);
balls[i].y = balls[i].y + balls[i].speed * Math.sin(balls[i].direction);

Now what about changing the direction when the ball encounters a window “wall” ? Well, we
would probably like to simulate a realistic collision. To do this, we must understand what
happens to a real ball when it hits a wall.

You may recall the law of reflection from science/physics class.
It is often used to explain how light reflects off of a mirror. The
law states that the angle of reflection is the same as the angle
of incidence, under ideal conditions. That is, the angle at which
the ball bounces off the wall (i.e., θr in the diagram), will be the
same as the angle at which it hit the wall (i.e., θi in the diagram).

However, where do we get the angle of incidence from ?

Well, we have the direction of the ball stored in its direction
attribute. This direction will always be an angle from 0 to 360° (or
from 0 to 2π radians).

COMP1405 – Data Structures and Objects Fall 2015

 - 223 -

So, our ball’s direction (called α for the purpose of this
discussion) is always defined with respect to 0° being
the horizontal vector facing to the right. 360° is the
same as 0°. As the direction changes counter-
clockwise, the angle will increase. If the direction
changes clockwise, the angle decreases. It is also
possible that an angle can become negative. This is
ok, since 330° is the same as -30°.

Now, if you think back to the various angle theorems
that you encountered in your math courses, you may
remember these two:

1) the opposite angles of two straight crossing lines are equal

2) the interior angles of a triangle add up to 180°

So, in the diagram on the right, for example, the
1st theorem above tells us that opposite angles β2 and β3
are equal. From the law of reflection, we also know that
β1 and β3 are equal. Finally, α and β3 add up to 90°.

What does all this mean ? Well, since α is the ball’s
direction, then to reflect off the wall, we simply need to
add β1 and β2 to rotate the direction counter-clockwise.
And since β1, β2 and β3 are all equal … and equal to
90° - α, then to have the ball reflect we just need to
do this:

direction = direction + (β1 + β2)
 = direction + (90° - α + 90° - α)
 = direction + (180° - 2 x direction)
 = 180° - direction

The vertical bounce reflection is similar. In the
diagram here, it is easy to see that β1 = 90° - α.
To adjust for the collision on the top of the
window, we simply need to subtract 2α from the
direction:

direction = direction - 2 x direction)
 = - direction

To summarize then, when the ball reaches the
left or right boundaries of the window, we
negate the direction and add 180°, but when it
reaches the top or bottom boundaries, we just negate the direction.

Here is how we do it:

COMP1405 – Data Structures and Objects Fall 2015

 - 224 -

if ((balls[i].x >= BallPanel.WIDTH) || (balls[i].x <= 0))
 balls[i].direction = (float)(Math.PI - balls[i].direction);

if ((balls[i].y >= BallPanel.HEIGHT) || (balls[i].y <= 0))
 balls[i].direction = - balls[i].direction;

Our calculations made the assumption that the window boundaries are horizontal and vertical.
Similar (yet more complex) formulas can be used for the case where the ball bounces off walls
that are placed at some arbitrary angle. Also, all of our calculations assumed that the ball was
a point. In reality though, the ball has a shape. If, for example, the ball was drawn as a circle
centered at (x,y), then it would only detect a collision when the center of the ball reached the
border. How could we fix this ?

We just need to account for the ball’s radius during our collision checks:

if ((balls[i].x + balls[i].radius >= BallPanel.WIDTH) ||
 (balls[i].x - balls[i].radius <= 0))
 balls[i].direction = (float)(Math.PI - balls[i].direction);

if ((balls[i].y + balls[i].radius >= BallPanel.HEIGHT) ||
 (balls[i].y - balls[i].radius <= 0))
 balls[i].direction = - balls[i].direction;

Here is the completed method:

public static void startSimulation(Ball[] balls) {
 while(true) {
 for (int i=0; i<balls.length; i++) {
 // Move the ball forward
 balls[i].x = balls[i].x + (int)(balls[i].speed*Math.cos(balls[i].direction));
 balls[i].y = balls[i].y + (int)(balls[i].speed*Math.sin(balls[i].direction));

 // Check if ball collides with borders and adjust accordingly
 if ((balls[i].x + balls[i].radius >= BallPanel.WIDTH) ||
 (balls[i].x - balls[i].radius <= 0))
 balls[i].direction = (float)(Math.PI - balls[i].direction);

 if ((balls[i].y + balls[i].radius >= BallPanel.HEIGHT) ||
 (balls[i].y - balls[i].radius <= 0))
 balls[i].direction = -balls[i].direction;
 }
 ballPanel.repaint();
 try{ Thread.sleep(10); } catch(Exception e){};
 }
}

The use of the Ball data structure helps to limit the number of variables being declared and
passed around. It also allows us to hide details, making the code cleaner and more logical in
the way the code reads.

COMP1405 – Data Structures and Objects Fall 2015

 - 225 -

 7.2 Objects Within Objects

In real life, objects are contained within other objects.
For example, a car is an object which contains an
engine object and an engine contains other object parts
... etc... There can be many parts to a car, yet when it
is all assembled we end up with a single object, called a
car, which contains all the parts.

In JAVA, we can also create and store objects within
other objects without difficulties. This is often done in
order to design our objects similar to real life objects.

For example, consider the address’s instance variable
to store the name as a single string as follows:

anAddress.name = "Patty O. Lantern";

It is sometimes desirable to be able to distinguish
between the first, middle and last names of a person.
To do this, we would need to separate the names into
different variables as follows:

anAddress.firstName = "Patty";
anAddress.middleName = "O.";
anAddress.lastName = "Lantern";

Then we can choose which portion of the person’s name that we want to use at any time. A
downside is that we now have to use 3 variables instead of 1. We could re-define the
Address data type as shown in the picture. This would suffice.

However, it is possible that
there are many objects for
which we would like to store a
first, middle and last name.
For example, insurance forms,
mortgage papers, business
contracts, ownership papers,
etc.. It is quite easy to simply
duplicate all three pieces of
data in each object as follows:
Rather than duplicate all three
pieces of data each time, it
would be better to merge them
into one object.

COMP1405 – Data Structures and Objects Fall 2015

 - 226 -

We can combine the first, middle and last names into their own
unique data structure (or class) as follows:

public class Name {
String firstName;
String middleName;
String lastName;

}

Then we could make use of this new object within our Address data structure as shown here.

From the picture you can see that the name stored in the Address structure is no longer a
simple string of characters. Now it is a different kind of data structure (i.e., object) of type
Name. Other objects can now make use of this Name class as well:

COMP1405 – Data Structures and Objects Fall 2015

 - 227 -

The code for setting the name of anAddress would be as follows:

Address anAddress;

anAddress = new Address();

anAddress.name = new Name();
anAddress.name.firstName = "Patty";
anAddress.name.middleName = "O.";
anAddress.name.lastName = "Lantern";

anAddress.streetNumber = "187B";
anAddress.streetName = "Oak St.";
anAddress.city = "Ottawa";
anAddress.province = "ON";
anAddress.postalCode = "K6S8P2";

Notice now that the dot operator is used twice: once to go into the address to get the name,
then again to get into the name to set the first, middle and last names.

The fun does not stop here. In fact, it is often the case that data structures use multiple layers
of other data structures within them. For example, consider the diagram below . Can you
create the class definition for the BankAccount object ... and then write the code that
produces the diagram itself ?

If you cannot figure it out, spend some time with a TA or the instructor. It is important to
understand this stuff.

COMP1405 – Data Structures and Objects Fall 2015

 - 228 -

 7.3 Constructors

Creating an instance of a data structure that has many instance variables, may require many
lines of code. For example, creating and initializing a Ball object from our previous example
takes 6 lines of code as follows:

Ball b = new Ball();
b.x = 100;
b.y = 100;
b.direction = (float)(Math.random()*2*Math.PI);
b.speed = 15;
b.radius = 20;

Here, we supplied the initial values for our ball’s instance variables. In JAVA, we can
significantly reduce the amount of code that we need to write when we create and initialize
objects by making use of something called a constructor.

A constructor is a special function that is automatically called to initialize a
new object.

The parentheses that appear when we do new Ball() gives us a clue that Ball() is in fact a kind
of procedure or function. In fact, this is actually a special kind of function known as a default
constructor … which creates and returns a new fully-initialized object. That is, it reserves
space for the data structure’s attributes and sets all those with primitive types (e.g., int) to a
value of “zero” and all those with object types (e.g., String) to a value of null.

In our above example, however, we wanted to set the speed value of the ball to 15 and the
radius to 20 … we did not want zeroes. In fact, each object that we create will often have its
own unique initial values.

In a way, the idea is analogous to buying a car … we would like to have control to configure
our own car with our choice of various options (i.e., we often get to pick the engine size,
transmission type, car color, seat style, wheel size, accessories, etc..).

In JAVA, we may write our own constructor procedures so that we can ensure that our new
objects to have whatever initial values that we want. Making a constructor is almost identical
to defining a function that takes a bunch of parameters (i.e., one for each of the data
structure’s instance variables) and then uses these parameters to set the instance variables.

A constructor must be written within the data structure’s class definition as shown on the next
page. You will notice that the constructor’s name is identical to the class name (always
starting with an uppercase letter). Also, notice in this case, how there is one parameter for
each of the 5 instance variables. The types of the parameters must match the types of the
instance variables. The names of the parameters (i.e., p1, p2, p3, p4 and p5) are arbitrary,
but they must be unique from one another and SHOULD NOT be the same as any instance
variable names.

COMP1405 – Data Structures and Objects Fall 2015

 - 229 -

public class Ball {
 int x;
 int y;
 float direction;
 float speed;
 int radius;

 // This is a constructor
 public Ball(int p1, int p2, float p3, float p4, int p5) {
 x = p1;
 y = p2;
 direction = p3;
 speed = p4;
 radius = p5;
 }
}

The code for the body of the constructor is simple. It simply sets each instance variable to
have the value of its corresponding parameter.

So what does this all mean ? It means that once we define this constructor, we can then call
the constructor with the parameter values that we want to have set in the instance variables.
So our previous 6 lines of code shrinks down to this:

Ball b = new Ball(100, 100, (float)(Math.random()*2*Math.PI), 15, 20);

Notice, it is as if we are simply calling a function that will set all the attribute values. The code
inside the constructor just takes the 5 values that we pass in and assigns them to each of the
instance variables. So, we actually have the same amount of code … but the code has been
moved into (i.e., hidden inside) the constructor. The real advantage becomes evident when
we create multiple balls. Here is what I mean. Consider the code for making an array of
three Ball objects both with and without the use of a constructor:

Without the constructor:

Ball[] balls = new Ball[3];

balls[0] = new Ball();
balls[0].x = 100;
balls[0].y = 100;
balls[0].direction = (float)(Math.random()*2*Math.PI);
balls[0].speed = 15;
balls[0].radius = 20;

balls[1] = new Ball();
balls[1].x = 400;
balls[1].y = 300;
balls[1].direction = (float)(Math.random()*2*Math.PI);
balls[1].speed = 10;
balls[1].radius = 30;

balls[2] = new Ball();
balls[2].x = 600;
balls[2].y = 400;
balls[2].direction = (float)(Math.random()*2*Math.PI);
balls[2].speed = 5;
balls[2].radius = 50;

COMP1405 – Data Structures and Objects Fall 2015

 - 230 -

With the constructor:

Ball[] balls = new Ball[3];

balls[0] = new Ball(100, 100, (float)(Math.random()*2*Math.PI), 15, 20);
balls[1] = new Ball(400, 300, (float)(Math.random()*2*Math.PI), 10, 30);
balls[2] = new Ball(600, 400, (float)(Math.random()*2*Math.PI), 5, 50);

Notice the significant reduction of code.

We can reduce this code even further by noticing some duplication in the code. Do you
understand though, why the following is NOT a solution to reduce the code ?

Ball[] balls = new Ball[3];

float dir = (float)(Math.random()*2*Math.PI);

balls[0] = new Ball(100, 100, dir, 15, 20);
balls[1] = new Ball(400, 300, dir, 10, 30);
balls[2] = new Ball(600, 400, dir, 5, 50);

The code above will give all balls the same direction :(. A proper way to reduce the code is to
create another constructor. JAVA allows you to actually define multiple constructors, provided
that they have different parameters. A second constructor would be written below the first
one. For example, consider this:

public class Ball {
 int x;
 int y;
 float direction;
 float speed;
 int radius;

 // This is a constructor
 public Ball(int p1, int p2, float p3, float p4, int p5) {
 x = p1;
 y = p2;
 direction = p3;
 speed = p4;
 radius = p5;
 }
 // This is another constructor
 public Ball(int p1, int p2, float p3, int p4) {
 x = p1;
 y = p2;
 direction = (float)(Math.random()*2*Math.PI);
 speed = p3;
 radius = p4;
 }
}

Notice the second constructor. It takes 4 parameters now. There is no parameter for the
direction attribute. Instead, the direction is calculated each time the constructor is called, as
it is hard-coded within the constructor itself.

COMP1405 – Data Structures and Objects Fall 2015

 - 231 -

So, notice how we would use this constructor now:

With the 2nd constructor:

Ball[] balls = new Ball[3];

balls[0] = new Ball(100, 100, 15, 20);
balls[1] = new Ball(400, 300, 10, 30);
balls[2] = new Ball(600, 400, 5, 50);

That sure looks simple, doesn’t it ? The only thing that we would need to remember is what
all the numbers mean. We need to remember that the order of the parameters is x, y, speed,
radius.

In fact, if we wanted all balls to begin at the same speed and of the same size, we could do the
following:

Ball[] balls = new Ball[3];

balls[0] = new Ball(100, 100, 10, 30);
balls[1] = new Ball(400, 300, 10, 30);
balls[2] = new Ball(600, 400, 10, 30);

But this causes us to duplicate data again. Instead, we could define another constructor:

 // This is a 3rd constructor
 public Ball(int p1, int p2) {
 x = p1;
 y = p2;
 direction = (float)(Math.random()*2*Math.PI);
 speed = 10;
 radius = 30;
 }

Now all balls created with this constructor will have a speed of 10 and radius of 30 … so our
code becomes reduced now as follows:

Ball[] balls = new Ball[3];

balls[0] = new Ball(100, 100);
balls[1] = new Ball(400, 300);
balls[2] = new Ball(600, 400);

By looking solely at this code, however, we do not know the default direction, speed and
radius. We would have to go look at the constructor code to determine that. We could then
add a nice comment in the code:

 // Create 3 balls, each with a speed of 10, radius of 30 and random direction

Ball[] balls = new Ball[3];

balls[0] = new Ball(100, 100);
balls[1] = new Ball(400, 300);
balls[2] = new Ball(600, 400);

COMP1405 – Data Structures and Objects Fall 2015

 - 232 -

It is a good idea to create a variety of constructors This would be
analogous to the situation in real life where someone fills out a
form but leaves some information blank. When information has
been left out, we must decide what values to use ... so we need to
choose some kind of “default” values for the blank parts (i.e.,
make some assumptions by filling in something appropriate).

It is also good to make a default constructor (i.e., one that has
no parameters). That way, we can make an object without
needing to supply any parameters ... since we might not know
what we want. We will need to decide upon the default/initial values for ALL of the instance
variables. Here we make random speeds and sizes as well but all balls will start at (100,100):

 // This is a zero-parameter constructor
 public Ball() {
 x = 100;
 y = 100;
 direction = (float)(Math.random()*2*Math.PI);
 speed = 5 + (int)(Math.random()*20);
 radius = 5 + (int)(Math.random()*20);
 }

We can test it easily:

 // Create 3 balls, each with a location of (100, 100),
 // speed between 5 and 24, radius between 5 and 24
 // and random direction

Ball[] balls = new Ball[3];

balls[0] = new Ball();
balls[1] = new Ball();
balls[2] = new Ball();

We could even use a loop to fill up the array with a lot of random balls quite easily:

 // Create 100 balls, each with a location of (100, 100),
 // speed between 5 and 24, radius between 5 and 24
 // and random direction

Ball[] balls = new Ball[100];

for (int i=0; i<100; i++)
 balls[i] = new Ball();

Remember, though, that the constructors are only used to assign initial values to the objects.
We can change the values at any time:

Ball[] balls = new Ball[100];

for (int i=0; i<100; i++) {
 balls[i] = new Ball();
 balls[i].x = 50 + (int)(Math.random() * 500);
 balls[i].y = 50 + (int)(Math.random() * 400);
}

COMP1405 – Data Structures and Objects Fall 2015

 - 233 -

The saving in code space can be much more noticeable when multiple kinds of objects are
used together. For example, consider creating constructors for Name, Address and
BankAccount objects as follows:

public class Name {
 String firstName, middleName, lastName;

 public Name(String p1, String p2, String p3) {
 firstName = p1;
 middleName = p2;
 lastName = p3;
 }
}

public class Address {
 Name name;
 int streetNumber;
 String streetName, city, province, postalCode;

 public Address(Name p1,String p2, String p3, String p4, String p5, String p6){
 name = p1;
 streetNumber = p2;
 streetName = p3;
 city = p4;
 province = p5;
 postalCode = p6;
 }
}

public class BankAccount {
 Address owner;
 int accountNumber;
 float balance;

 public BankAccount(Address p1, int p2, float p3) {
 owner = p1;
 accountNumber = p2;
 balance = p3;
 }
}

Once we make such definitions, notice the significant simplification in code:

COMP1405 – Data Structures and Objects Fall 2015

 - 234 -

Without constructors:

BankAccount b;
Address a;
FullName n;

n = new Name();
n.firstName = "Patty"
n.middleName = "O."
n.lastName = "Lantern"

a = new Address();
a.name = n;
a.streetNumber = "187"
a.streetName = "Oak St."
a.city = "Ottawa"
a.province = "ON"
a.postalCode = "K6S8P2"

b = new BankAccount();
b.owner = a;
b.accountNumber = 829302
b.balance = 2319.67f

With constructors:

BankAccount b;
Address a;
Name n;

n = new Name("Patty", "O.", "Lantern");
a = new Address(n, "187", "Oak St.", "Ottawa", "ON", "K6S8P2");
b = new BankAccount(a, 829302, 2319.67f);

So, constructors can be a significant factor in keeping your code simple. We will discuss
constructors in more detail in COMP1406.

 7.4 Static/Class Variables

Recall that an instance variable stores an attribute of a particular object. You should now
know that an object can have many attributes, and thus many instance variables. The values
of the instance variables will vary from object to object.

For example, all Car objects may have a color attribute, but the color of different cars will likely
be different:

COMP1405 – Data Structures and Objects Fall 2015

 - 235 -

In some situations, however, there may be an attribute for an object in which the value does
not differ between objects of that class. That is, each object that we make of that type would
have the same value for that particular attribute. For example, all Car objects may have 4
wheels. We could define an instance variable for that attribute (e.g., numWheels) and simply
set all the values to 4 in the constructor as follows …

public class Car {

String color;
int numWheels;

public Car() {
 color = "";
 numWheels = 4;
}

}

"Green"
”

"Red" "Blue"

 color

myCar

yourCar

bobsCar

numWheels 4 color

numWheels 4 color

numWheels 4

 color

"Green"
”

 color

"Red"

 color

"Blue"

myCar

yourCar

bobsCar

COMP1405 – Data Structures and Objects Fall 2015

 - 236 -

Thus, if we were to access this numWheels variable for any of our cars, we would get the
value 4:

Car myCar, yourCar, bobsCar;

myCar = new Car();
yourCar = new Car();
bobsCar = new Car();

System.out.println(myCar.numWheels); // displays 4
System.out.println(yourCar.numWheels); // displays 4
System.out.println(bobsCar.numWheels); // displays 4

This strategy works fine and correctly stores the proper number of wheels for each Car that we
make. However, think about the duplication involved.

Every Car object that we create will store the number 4 inside of it. This takes up
space in the computer’s memory. It is wasteful to have the same value stored over and over
again when we know already that the value is the same for all cars.

For situations like this … in which all instances of a class (i.e., all objects created of one type)
will share the same attribute value, you should create what is called a class variable (also
known as static variable). Class variables are "a little like" instance variables in that you can
access them as part of your object. However, they are actually stored in one location in
memory and all objects share that location.

In this example, we could create a class variable called NUM_WHEELS to store the value 4.
(Although it is not necessary, class variables names are often chosen as uppercase characters
with an underscore character _ separating the words).

 color

numWheels 4

 color

numWheels 4

 color

numWheels 4

Duplicated!
(wasted space)

the Car class

 color

numWheels 4

 color

numWheels 4

 color

numWheels 4

COMP1405 – Data Structures and Objects Fall 2015

 - 237 -

NUM_WHEELS 4

the Car class

class variable
Better Now!
(no wasted space)

 color color color

 color color color

To create a class variable, we write it at the top of our class definition (usually before the
instance variables) and put the word static in front of it as follows:

public class Car {

static int NUM_WHEELS = 4; // a class variable (static)

String color; // an instance variable (not static)

public Car() {
 color = "";
}

}

Normally, for static variables, we supply an initial value for it when we create it. In this case,
we assign it the value of 4 as needed. Here is a diagram showing how the storage has now
changed …

Notice that the number 4 is now stored in only one location … it is not duplicated every time
that a Car object is created. We can also perhaps imagine creating classes to store other
kinds of vehicles in which we declare a similar NUM_WHEELS variable as follows:

public class Motorcycle {
static int NUM_WHEELS = 2;
// ...

}

public class Unicycle {

static int NUM_WHEELS = 1;
// ...

}

public class Boat {

static int NUM_WHEELS = 0;
// ...

}

COMP1405 – Data Structures and Objects Fall 2015

 - 238 -

The NUM_WHEELS variable is a variable just like any other. We can access it at any time
and change its value. You can access static/class variables anywhere in your program by
preceding them by the class name that they are defined in, followed by the dot . operator. The
following code would produce the values 4, 2, 1, 0 and 6 …

System.out.println("A car has " + Car.NUM_WHEELS + " wheels");
System.out.println("A motorcycle has " + Motorcycle.NUM_WHEELS + " wheels");
System.out.println("A unicycle has " + Unicycle.NUM_WHEELS + " wheels");
System.out.println("A boat has " + Boat.NUM_WHEELS + " wheels");

Car.NUM_WHEELS = 6;
System.out.println("A car now has " + Car.NUM_WHEELS + " wheels");

With regards to the NUM_WHEELS static/class variable that we defined above, it is likely that
we would never change the value from 4 to 6 in a real system. Likely, the NUM_WHEELS
variable should remain constant. In this case, we use the term static constant (or class
constant) instead of static variable … since its value will never vary but instead remain the
same over time. In JAVA, whenever we want to prevent a value from being changed (i.e., to
make it a constant), we use the final keyword when we declare the variable as follows:

public class Car {

static final int NUM_WHEELS = 4; // a static(class) constant

...

}

After we do this, we are no longer allowed to change the value of this variable in our program:

Car.NUM_WHEELS = 6;

Static/class variables are sometimes used to store a commonly accessed value that is shared
between many objects, such as a global counter. For example, consider a BankAccount
object, where each account is assigned a unique accountNumber. When creating a new
BankAccount, it is unlikely in real life that we would be able to specify the accountNumber.
Usually, these are assigned automatically to the customer. What accountNumber should a
new BankAccount receive? It's up to us to decide (In real life however, the bank that is hiring
you to write their program would specify their account numbering strategy).

Let us assume that the first created account is assigned the account number 100001, the
second gets 100002, the third 100003 and so on. In this scenario, we can simply keep a
counter that starts at 100001 and increases each time a new account is created.

To do this, we can create a class variable in the BankAccount class to represent this
counter. We can call it LAST_ACCOUNT_NUMBER which will store the account number that
was last given out. We can give this variable an initial value of 100000 as follows …

COMP1405 – Data Structures and Objects Fall 2015

 - 239 -

public class BankAccount {

static int LAST_ACCOUNT_NUMBER = 100000;

int accountNumber; // instance variable
String owner; // instance variable
float balance; // instance variable

// ...

}

Then, when a new BankAccount is created, we can give it an accountNumber which is one
more than the LAST_ACCOUNT_NUMBER and then increment this counter to get it ready for
the next time. This counter of ours will work exactly like one of those ticket dispensers when
you wait in line at a store.

This can be done by adjusting all of the BankAccount constructors so that they do not allow
the user to "specify" the accountNumber. But rather set it to the next available number and
then increment the counter. Here is the code that we would need to write:

public class BankAccount {

static int LAST_ACCOUNT_NUMBER = 100000;

int accountNumber;
String owner;
float balance;

// This is the 0-parameter constructor
public BankAccount() {
 owner = "";
 LAST_ACCOUNT_NUMBER = LAST_ACCOUNT_NUMBER + 1;
 accountNumber = LAST_ACCOUNT_NUMBER;
 balance = 0;
}

// This is a 2-parameter constructor
public BankAccount(String n, float b) {
 owner = n;
 LAST_ACCOUNT_NUMBER = LAST_ACCOUNT_NUMBER + 1;
 accountNumber = LAST_ACCOUNT_NUMBER;
 balance = b;
}

//...

}

Here is some testing code:

COMP1405 – Data Structures and Objects Fall 2015

 - 240 -

public class BankAccountTestProgram {
 public static void main(String args[]) {
 BankAccount b, m, j;

 b = new BankAccount("Bob", 250.00f);
 m = new BankAccount("Mary", 6387.27f);
 j = new BankAccount("Jay", 915.45f);

 System.out.println(b.accountNumber);
 System.out.println(m.accountNumber);
 System.out.println(j.accountNumber);
 }
}

The account numbers printed will be 100001, 100002 and 100003.

 7.5 Displaying Objects

Do you know what happens when we display one of our objects to the System console ?

public class MyObjectsTestProgram {
 public static void main(String args[]) {
 System.out.println(new Name());
 System.out.println(new Address());
 System.out.println(new Applicant());
 System.out.println(new Ball());
 }
}

The result on the screen would be something like this:

Name@3b4766
Address@37601e
Applicant@12345a0
Ball@179a711

JAVA displays all of the objects that you make in this manner. The numbers and letters after
the @ symbol will vary from program to program, as they are values that refer to the storage
location of the object. JAVA happens to be converting our objects to String objects first and
then displaying the resulting characters to the screen. In fact, every object in JAVA has, by
default, a method called toString() which will convert the object to a String. Hence, the
following code will take a Address and a Ball object, convert them to String objects and then
display the resulting String objects:

COMP1405 – Data Structures and Objects Fall 2015

 - 241 -

Address a;
Ball b;
String s1, s2;

a = new Address();
b = new Ball();
s1 = a.toString(); // s1 will be "Address@37601e"
s2 = b.toString(); // s2 will be "Ball@179a711"

System.out.println("The Address as a String is " + s1);
System.out.println("The Ball as a String is " + s2);

Notice that the output will be:

The Address as a String is Address@37601e
The Ball as a String is Ball@179a711

The String objects have the exact same characters that are displayed when we just display
the objects directly using System.out.println(). That is because when JAVA attempts to
display anything to the console, it automatically calls the toString() method for the object to
convert it to characters before displaying. So, the following two lines of code do exactly the
same thing:

System.out.println(b);
System.out.println(b.toString());

Why do we care ? Well, we can actually replace the default toString() behavior by writing our
own toString() method for all of our own objects that defines exactly how to convert our object
to a String. That is, we can control the way our object “looks” when we print it on the screen.

Consider the following Person class definition:

public class Person {
 public String name;
 public int age;
 public float height;
 public char gender;
 public boolean retired;
}

Suppose that we wanted our Person object to display something like this:

Person named Bob

You should notice that the first two words of this String will not change but the last part will vary
from person to person. We can make this to be the standard output format for all Person
objects simply by writing the following toString() method in the Person class:

COMP1405 – Data Structures and Objects Fall 2015

 - 242 -

public class Person {
 public String name;
 public int age;
 public float height;
 public char gender;
 public boolean retired;

 public Person(String p1, int p2, float p3, char p4, boolean p5) {
 name = p1;
 age = p2;
 height = p3;
 gender = p4;
 retired = p5;
 }

 public String toString() {
 return ("Person named " + name);
 }
}

Notice that the method is called toString() with no parameters and that it has a return type of
String. This is important in order for the method to be used properly by JAVA. Even the
spelling and upper/lower case letters must match exactly. Then, you may notice that the
method returns an actual String object that is made up of the letters "Person named " and
then followed by the value of this Person object’s name attribute. What would therefore be
the output of the following code ? ...

Person p1, p2, p3;

p1 = new Person(); // assume name is set to "" within constructor
p2 = new Person("Holly Day", 15, 5.6. 'F', false);
p3 = new Person("Hank Urchiff", 89, 5.4, 'M', true);

System.out.println(p1);
System.out.println(p2);
System.out.println(p3);

Here is the output … were you correct ?

Person named
Person named Holly Day
Person named Hank Urchiff

Now what if we wanted the output to be in this format instead:

19 year old Person named Hank Urchif

To write an appropriate toString() method, we need to understand what is fixed in this output
and what will vary. The number 19 should vary for each person as well as the name. Here is
how we could write the code (replacing our previous toString() method):

COMP1405 – Data Structures and Objects Fall 2015

 - 243 -

public String toString() {
 return (age + " year old Person named " + name);
}

Notice that the basic idea behind creating a toString() method is to simply keep joining
together String pieces to form the resulting String.

Now here is a harder one. Let's see if we can make it into this format:

19 year old non-retired person named Hank Urchif

Here we have the age and names being variable again but now we also have the added
variance of their retirement status and gender. Here is one attempt:

public String toString() {
 return (age + " year old " + retired + " person named " + name);
}

However, this is not quite correct. This would be the format we would end up with:

19 year old false person named Hank Urchif

Notice that we cannot simply display the value of the retired attribute but instead need to write
“retired” or “non-retired” for the retired status.

To do this then, we will need to use an IF statement. However, in JAVA, we cannot write an IF
statement in the middle of a return statement. So we will need to do this using more than one
line of code.

Let's make an answer variable to hold the result and then break down our method into logical
pieces that append to this answer:

public String toString() {
 String answer;

 answer = age + " year old ";
 answer = answer + retired;
 answer = answer + " person named " + name);

 return answer;
}

Now we can insert the appropriate IF statements as follows:

COMP1405 – Data Structures and Objects Fall 2015

 - 244 -

public String toString() {
 String answer;

 answer = age + " year old ";

 if (retired)
 answer = answer + "retired";
 else
 answer = answer + "non-retired";
 answer = answer + " person named " + name;

 return answer;
}

The result is what we wanted. Note however, that we can simplify this code a little further:

public String toString() {
 String answer = age + " year old ";

 if (!retired)

 answer = answer + "non-";

 return (answer + "retired person named " + name);
}

So, you can see that the toString() method may be more than one line of code but again …
the main idea is to simply keep appending to the String as you go … building it up.

 7.6 Team/League Example

Let's consider a larger example in which we create classes called
Team and League ... where a League object will contain a bunch of
Team objects. That is, the League object will have an instance
variable which is an array of multiple Team objects within the league.

Consider first the creation of a Team class that will represent a single
team in the league. For each team, we will maintain the team’s name
as well as the number of wins, losses and ties for the games that
they played. Here is the basic class with attributes, a constructor
and a toString() method:

COMP1405 – Data Structures and Objects Fall 2015

 - 245 -

public class Team {
 String name; // The name of the Team
 int wins; // The number of games that the Team won
 int losses; // The number of games that the Team lost
 int ties; // The number of games that the Team tied

 public Team(String aName) {
 name = aName;
 wins = 0;
 losses = 0;
 ties = 0;
 }

 public String toString() {
 return("The " + name + " have " + wins + " wins, " +
 losses + " losses and " + ties + " ties.");
 }
}

We can test out our Team object with the following test code, just to make sure it works:

public class TeamTestProgram {

 public static int totalPoints(Team t) {
 return (t.wins * 2 + t.ties);
 }

 public static int gamesPlayed(Team t) {
 return (t.wins + t.losses + t.ties);
 }

 public static void main(String args[]) {
 Team teamA, teamB;

 teamA = new Team("Ottawa Senators");
 teamB = new Team("Montreal Canadians");

 // Simulate the playing of a game in which teamA beats teamB
 System.out.println(teamA.name + " just beat " + teamB.name);
 teamA.wins++;
 teamB.losses++;

 // Simulate the playing of another game in which they tied
 System.out.println(teamA.name + " just tied " + teamB.name);
 teamA.ties++;
 teamB.ties++;

 // Now print out some statistics
 System.out.println(teamA);
 System.out.println(teamB);
 System.out.print("The " + teamA.name + " have ");
 System.out.print(totalPoints(teamA) + " points and played ");
 System.out.println(gamesPlayed(teamA) + " games.");
 System.out.print("The " + teamB.name + " have ");
 System.out.print(totalPoints(teamB) + " points and played ");
 System.out.println(gamesPlayed(teamB) + " games.");
 }
}

COMP1405 – Data Structures and Objects Fall 2015

 - 246 -

name

“Ottawa Senators”

 wins 1

losses 0

ties 1

teamA

name

“Montreal Canadians”

 wins 0

losses 1

ties 1

teamB

Here is what the Team objects look like after playing the two games:

Here is the output from our little test program:

Ottawa Senators just beat Montreal Canadians
Ottawa Senators just tied Montreal Canadians
The Ottawa Senators have 1 wins, 0 losses and 1 ties.
The Montreal Canadians have 0 wins, 1 losses and 1 ties.
The Ottawa Senators have 3 points and played 2 games.
The Montreal Canadians have 1 points and played 2 games.

Now let's implement the League class. A league will also have a name as well as an array
(called teams) of Team objects. Here is the basic class structure:

public class League {
 String name;
 Team[] teams;

 public League(String n) {
 name = n;
 teams = new Team[8]; // Doesn’t make any Team objects
 }

 // This specifies the appearance of the League
 public String toString() {
 return ("The " + name + " league");
 }
}

Notice that the array is created within the constructor and that it is initially empty. That means,
a brand new league has no teams in it, but currently has the capacity to store 8 teams in total.
It is important to note also that there are no Team objects created at this time. That is, we just
reserved space for 8 pointers/references to Team objects that will be created later.

COMP1405 – Data Structures and Objects Fall 2015

 - 247 -

At this point, we have defined two objects: Team and League. One thing that we will need to
do is to be able to add teams to the league. Here is an example of how we can create a
league with three teams in it:

League nhl;

nhl = new League("NHL");
nhl.teams[0] = new Team("Ottawa Senators");
nhl.teams[1] = new Team("Montreal Canadians");
nhl.teams[2] = new Team("Toronto Maple Leafs");

Here is a diagram showing how the League object stores the 3 Teams …

Suppose now that we wanted to print out the teams in the league. Let's write a static method
to do this. The method will need to go through each team in the teams array and display the
particular team’s information … perhaps using the toString() method from the Team class.

Hopefully, you “sense” that printing out all the teams involves repeating some code over and
over again. That is, you should realize that we need a loop of some type.

nhl

name
teams

“NHL”

name “Ottawa Senators”
wins 0

losses 0

ties 0

name “Montreal Canadians”
wins 0

losses 0

ties 0

name “Toronto Maple Leafs”
wins 0

losses 0

ties 0

0 1 2
nhl.teams Array

COMP1405 – Data Structures and Objects Fall 2015

 - 248 -

public static void displayTeams(League aLeague) {
 for (int i=0; i<aLeague.teams.length; i++)
 System.out.println(aLeague.teams[i]);
}

Let us test our method out using the following test program:

public class LeagueTestProgram {

 // Displays a league's teams to the system console
 public static void displayTeams(League aLeague) {
 for (int i=0; i<aLeague.teams.length; i++)
 System.out.println(aLeague.teams[i]);
 }

 public static void main(String args[]) {
 League nhl;

 nhl = new League("NHL");

 //Add a pile of teams to the league
 nhl.teams[0] = new Team("Ottawa Senators");
 nhl.teams[1] = new Team("Montreal Canadians");
 nhl.teams[2] = new Team("Toronto Maple Leafs");
 nhl.teams[3] = new Team("Vancouver Canucks");
 nhl.teams[4] = new Team("Edmonton Oilers");
 nhl.teams[5] = new Team("Washington Capitals");
 nhl.teams[6] = new Team("New Jersey Devils");
 nhl.teams[7] = new Team("Detroit Red Wings");

 //Display the teams
 System.out.println("\nHere are the teams:");
 displayTeams(nhl);
 }
}

Here is the output so far:

Here are the teams:
The Ottawa Senators have 0 wins, 0 losses and 0 ties.
The Montreal Canadians have 0 wins, 0 losses and 0 ties.
The Toronto Maple Leafs have 0 wins, 0 losses and 0 ties.
The Vancouver Canucks have 0 wins, 0 losses and 0 ties.
The Edmonton Oilers have 0 wins, 0 losses and 0 ties.
The Washington Capitals have 0 wins, 0 losses and 0 ties.
The New Jersey Devils have 0 wins, 0 losses and 0 ties.
The Detroit Red Wings have 0 wins, 0 losses and 0 ties.

Notice that all the teams have no recorded wins, losses or ties. Let's write a method that will
record a win and a loss for two teams that play together, and another method to record a tie
when the two teams play and tie.

COMP1405 – Data Structures and Objects Fall 2015

 - 249 -

public static void recordWinAndLoss(Team winner, Team loser) {
 winner.wins++;
 loser.losses++;
}

public static void recordTie(Team teamA, Team teamB) {
 teamA.ties++;
 teamB.ties++;
}

If we wanted to test these methods now, we could write test code like this:

League nhl;

nhl = new League("NHL");
nhl.teams[0] = new Team("Ottawa Senators"));
nhl.teams[1] = new Team("Montreal Canadians"));
nhl.teams[2] = new Team("Toronto Maple Leafs"));
...
recordWinAndLoss(nhl.teams[0], nhl.teams[1]);
recordTie(nhl.teams[0], nhl.teams[1]);
recordWinAndLoss(nhl.teams[2], nhl.teams[1]);
...

You should now notice something tedious. We would have to remember the location of each
team in the array if we want to record wins, losses and ties among them. Why ? Because the
recording methods require Team objects ... the same Team objects that we added to the
League. Perhaps a better way to record wins, losses and ties would be to do something like
this:

League nhl;

nhl = new League("NHL");
nhl.teams[0] = new Team("Ottawa Senators"));
nhl.teams[1] = new Team("Montreal Canadians"));
nhl.teams[2] = new Team("Toronto Maple Leafs"));
...
recordWinAndLoss(nhl, "Ottawa Senators", "Montreal Canadians");
recordTie(nhl, "Ottawa Senators", "Montreal Canadians");
recordWinAndLoss(nhl, "Toronto Maple Leafs", "Montreal Canadians");
...

However, we would have to make new recording methods that took Strings (i.e., the Team
names) as parameters instead of Team objects. A League object is also required as a
parameter because it contains the teams that we need to access and modify. Here are the
methods that we would need to implement (notice the difference in the parameter types):

COMP1405 – Data Structures and Objects Fall 2015

 - 250 -

public static void recordWinAndLoss(League aLeague, String nameW, String nameL) {
 …
}

public static void recordTie(League aLeague, String nameA, String nameB) {
 …
}

To make this work, however, we still need to get into the appropriate Team objects and update
their wins/losses/ties. Therefore, we will have to take the incoming team names and find the
Team objects that correspond with those names. We would need to do this 4 times: once for
nameW, once for nameL, once for nameA and once for nameB. Rather than repeat the
code 4 times, we will make a method to do this particular sub-task of finding a team with a
given name. Here is the method that we will write:

public static Team teamWithName(League aLeague, String nameToLookFor) {
 Team answer;
 ...
 return answer;
}

Notice that it will take the team’s name as a parameter and then return a Team object. How
would we complete this method ? We can use a for loop to traverse through all the teams
and find the one with that name as follows:

public static Team teamWithName(League aLeague, String nameToLookFor) {
 Team answer = null;

 for (int i=0; i<aLeague.teams.length; i++) {
 if (aLeague.teams[i].name.equals(nameToLookFor))
 answer = aLeague.teams[i];
 }

 return answer;
}

Notice a few points. First, we set the answer to null. If we do not find a Team with the given
name, the method returns null … which is the only appropriate answer. Next, notice that for
each team, we compare its name with the incoming string nameToLookFor and if these two
strings are equal, then we have found the Team object that we want, so we store it in the
answer variable to be returned at the completion of the loop.

This method can be shortened as follows:

COMP1405 – Data Structures and Objects Fall 2015

 - 251 -

public static Team teamWithName(League aLeague, String nameToLookFor) {
 for (int i=0; i<aLeague.teams.length; i++) {
 if (aLeague.teams[i].name.equals(nameToLookFor))
 return aLeague.teams[i];
 }
 return null;
}

Now that this method has been created, we can use it in our methods for recording wins/losses
and ties as follows:

public static void recordWinAndLoss(League aLeague, String nameW, String nameL) {
 Team winner, loser;

 winner = teamWithName(aLeague, nameW);
 loser = teamWithName(aLeague, nameL);
 winner.wins++;
 loser.losses++;
}

public static void recordTie(League aLeague, String nameA, String nameB) {
 Team teamA, teamB;

 teamA = teamWithName(aLeague, nameA);
 teamB = teamWithName(aLeague, nameB);
 teamA.ties++;
 teamB.ties++;
}

The methods work as before, but there are potential problems. What if we
cannot find the Team object with the given names (e.g., someone spelt the name
wrong) ?

In this case, perhaps winner, loser, teamA or teamB will be null and we will get
a NullPointerException when we try to access the team’s attributes. We can
check for this with an IF statement as follows:

public static void recordWinAndLoss(League aLeague, String nameW, String nameL) {
 Team winner, loser;

 winner = teamWithName(aLeague, nameW);
 loser = teamWithName(aLeague, nameL);
 if ((winner != null) && (loser != null)) {
 winner.wins++;
 loser.losses++;
 }
}

COMP1405 – Data Structures and Objects Fall 2015

 - 252 -

public static void recordTie(League aLeague, String nameA, String nameB) {
 Team teamA, teamB;

 teamA = teamWithName(aLeague, nameA);
 teamB = teamWithName(aLeague, nameB);
 if ((teamA != null) && (teamB != null)) {
 teamA.ties++;
 teamB.ties++;
 }
}

Now the games are only recorded when we have successfully identified the two Team objects
that need to be updated as a result of the played game. Interestingly though, the same
problem may occur in our previous recording methods … that is … the Team objects passed in
may be null. Also, in our code, we already have a method for recording the wins/losses/ties
in the case where we have the Team objects, so we should call those methods from here.
We can simply call the previous recording methods from these two new ones and move the
null-checking in there instead as follows:

public static Team teamWithName(League aLeague, String nameToLookFor) {
 for (int i=0; i<aLeague.teams.length; i++) {
 if (aLeague.teams[i].name.equals(nameToLookFor))
 return aLeague.teams[i];
 }
 return null;
}
public static void recordWinAndLoss(Team winner, Team loser) {
 if ((winner != null) && (loser != null)) {
 winner.wins++;
 loser.losses++;
 }
}
public static void recordTie(Team teamA, Team teamB) {
 if ((teamA != null) && (teamB != null)) {
 teamA.ties++;
 teamB.ties++;
 }
}
public static void recordWinAndLoss(League aLeague, String nameW, String nameL) {
 Team winner, loser;

 winner = teamWithName(aLeague, nameW);
 loser = teamWithName(aLeague, nameL);
 recordWinAndLoss(winner, loser);
}
public static void recordTie(League aLeague, String nameA, String nameB) {
 Team teamA, teamB;

 teamA = teamWithName(aLeague, nameA);
 teamB = teamWithName(aLeague, nameB);
 recordTie(teamA, teamB);
}

COMP1405 – Data Structures and Objects Fall 2015

 - 253 -

In fact, we can even shorten the last two methods by noticing that the variables are not really
necessary:

public static void recordWinAndLoss(League aLeague, String nameW, String nameL) {
 recordWinAndLoss(teamWithName(aLeague, nameW), teamWithName(aLeague, nameL));
}

public static void recordTie(League aLeague, String nameA, String nameB) {
 recordTie(teamWithName(aLeague, nameA), teamWithName(aLeague, nameB));
}

Consider a method called totalGamesPlayed() which is supposed to return the total number
of games played in the league. All we need to do is count the number of games played by all
the teams (i.e., we will need some kind of counter) and then divide by 2 (since each game was
played by two teams, hence counted twice). Here is the format:

public static int totalGamesPlayed(League aLeague) {
 int total = 0;
 …
 return total/2;
}

We will also need a FOR loop to go through each team:

public static int totalGamesPlayed(League aLeague) {
 int total = 0;
 for (int i=0; i<aLeague.teams.length; i++) {
 …
 }
 return total/2;
}

To determine the answer, we can ask each team how many games they played by adding up
their wins, losses and ties. So we can use this method that we wrote earlier:

public static int gamesPlayed(Team t) {
 return (t.wins + t.losses + t.ties);
}

Here is how to use it:

COMP1405 – Data Structures and Objects Fall 2015

 - 254 -

public static int totalGamesPlayed(League aLeague) {
 int total = 0;

 for (int i=0; i<aLeague.teams.length; i++)
 total += gamesPlayed(aLeague.teams[i]);

 return total/2; // Divide by two since a game is counted by both teams
}

Notice that the method is quite simple, as long as you break it down into simple steps like we
just did. For more practice, let's find the team that is in first place (i.e., the Team object that
has the most points).

We can make use of this method that we wrote earlier:

public static int totalPoints(Team t) {
 return (t.wins * 2 + t.ties);
}

Let's start again as follows:

public static Team firstPlaceTeam(League aLeague) {
 Team teamWithMostPoints = null;

 for (int i=0; i<aLeague.teams.length; i++) {
 ...
 }
 return teamWithMostPoints;
}

Notice that it returns a Team object. Now, we can make use of our totalPoints() method
which returns the number of points for a particular team:

public static Team firstPlaceTeam(League aLeague) {
 Team teamWithMostPoints = null;

 for (int i=0; i<aLeague.teams.length; i++) {
 int points = totalPoints(aLeague.teams[i]);
 }
 return teamWithMostPoints;
}

But now what do we do ? The current code will simply grab each team’s point values one at
a time. We need to somehow compare them. Many students have trouble breaking this
problem down into simple steps. The natural tendency is to say to yourself “I will compare the
1st team’s points with the 2nd team’s points and see which is greater”. If we do this however,
then what do we do with that answer ? How does the third team come into the picture ?

COMP1405 – Data Structures and Objects Fall 2015

 - 255 -

Hopefully, after some thinking, you would realize that as we traverse through the teams, we
need to keep track of (i.e., remember) the best one so far.

Imagine for example, searching through a basket of apples to find the best one.
Would you not grab an apple and hold it in your hand and then look through the
other apples and compare them with the one you are holding in your hand ?
If you found a better one, you would simply trade the one currently in your hand
with the new better one. By the time you reach the end of the basket, you are
holding the best apple.

Well we are going to do the same thing. The teamWithMostPoints variable
will be like our good apple that we are holding. Whenever we find a team that is better
(i.e., more points) than this one, then that one becomes the teamWithMostPoints. Here is
the code:

public static Team firstPlaceTeam(League aLeague) {
 Team teamWithMostPoints = null;

 for (int i=0; i<aLeague.teams.length; i++) {
 if (totalPoints(aLeague.teams[i]) > totalPoints(teamWithMostPoints))
 teamWithMostPoints = aLeague.teams[i];
 }
 return teamWithMostPoints;
}

Does it make sense ? There is one small issue though. Just like we need to begin our apple
checking by picking up a first apple, we also need to pick a team (any Team object) to be the
“best” one before we start the search. Currently the teamWithMostPoints starts off at null so
we need to set this to a valid Team so start off. We can perhaps take the first Team in the
teams array:

public static Team firstPlaceTeam(League aLeague) {
 Team teamWithMostPoints = teams[0];

 for (int i=0; i<aLeague.teams.length; i++) {
 if (totalPoints(aLeague.teams[i]) > totalPoints(teamWithMostPoints))
 teamWithMostPoints = aLeague.teams[i];
 }
 return teamWithMostPoints;
}

We are not done yet! It is possible, in a weird scenario, that there are no teams in the league!
In this case teams[0] will return null and we will get a NullPointerException again when we
go to ask for the totalPoints(). So, we would need to add a special case to return null if the
teams list is empty. Here is the new code …

COMP1405 – Data Structures and Objects Fall 2015

 - 256 -

public static Team firstPlaceTeam(League aLeague) {
 Team teamWithMostPoints = aLeague.teams[0];

 if (aLeague.teams[0] == null)
 return null;

 for (int i=0; i<aLeague.teams.length; i++) {
 if (totalPoints(aLeague.teams[i]) > totalPoints(teamWithMostPoints))
 teamWithMostPoints = aLeague.teams[i];
 }
 return teamWithMostPoints;
}

What would we change in the above code if we wanted to write a method called
lastPlaceTeam() that returned the team with the least number of points ? Try to do it.

For the purpose of a summary, here is the entire League class as we have defined it:

public class LeagueTestProgram {

 // Determine the number of games played by the given team
 public static int gamesPlayed(Team t) {
 return (t.wins + t.losses + t.ties);
 }

 // Determine the number of points that the given team has
 public static int totalPoints(Team t) {
 return (t.wins * 2 + t.ties);
 }

 // Displays a league's teams to the system console
 public static void displayTeams(League aLeague) {
 for (int i=0; i<aLeague.teams.length; i++)
 System.out.println(aLeague.teams[i]);
 }

 // Record a win and a loss between the given Teams
 public static void recordWinAndLoss(Team winner, Team loser) {
 if ((winner != null) && (loser != null)) {
 winner.wins++;
 loser.losses++;
 }
 }

 // Record a tie between the given Teams
 public static void recordTie(Team teamA, Team teamB) {
 if ((teamA != null) && (teamB != null)) {
 teamA.ties++;
 teamB.ties++;
 }
 }

 // Record a win and a loss between the teams in the League with the given names
 public static void recordWinAndLoss(League aLeague, String nmW, String nmL) {
 recordWinAndLoss(teamWithName(aLeague, nmW), teamWithName(aLeague, nmL));
 }

COMP1405 – Data Structures and Objects Fall 2015

 - 257 -

 // Record a tie between the teams in the League with the given names
 public static void recordTie(League aLeague, String nameA, String nameB) {
 recordTie(teamWithName(aLeague, nameA), teamWithName(aLeague, nameB));
 }

 // Find a Team with the given name in the given League
 public static Team teamWithName(League aLeague, String nameToLookFor) {
 for (int i=0; i<aLeague.teams.length; i++) {
 if (aLeague.teams[i].name.equals(nameToLookFor))
 return aLeague.teams[i];
 }
 return null;
 }

 // Determine the total number of games played in the league
 public static int totalGamesPlayed(League aLeague) {
 int total = 0;

 for (int i=0; i<aLeague.teams.length; i++)
 total += gamesPlayed(aLeague.teams[i]);

 return total/2; // Divide by two since a game is counted by both teams
 }

 // Return the team that has the most points
 public static Team firstPlaceTeam(League aLeague) {
 Team teamWithMostPoints = aLeague.teams[0];

 if (aLeague.teams[0] == null)
 return null;

 for (int i=0; i<aLeague.teams.length; i++) {
 if (totalPoints(aLeague.teams[i]) > totalPoints(teamWithMostPoints))
 teamWithMostPoints = aLeague.teams[i];
 }
 return teamWithMostPoints;
 }

 // Return the team that has the least points
 public static Team lastPlaceTeam(League aLeague) {
 Team teamWithLeastPoints = aLeague.teams[0];

 if (aLeague.teams[0] == null)
 return null;

 for (int i=0; i<aLeague.teams.length; i++) {
 if (totalPoints(aLeague.teams[i]) < totalPoints(teamWithLeastPoints))
 teamWithLeastPoints = aLeague.teams[i];
 }
 return teamWithLeastPoints;
 }

COMP1405 – Data Structures and Objects Fall 2015

 - 258 -

 public static void main(String args[]) {
 League nhl = new League("NHL");

 //Add a pile of teams to the league
 nhl.teams[0] = new Team("Ottawa Senators");
 nhl.teams[1] = new Team("Montreal Canadians");
 nhl.teams[2] = new Team("Toronto Maple Leafs");
 nhl.teams[3] = new Team("Vancouver Canucks");
 nhl.teams[4] = new Team("Edmonton Oilers");
 nhl.teams[5] = new Team("Washington Capitals");
 nhl.teams[6] = new Team("New Jersey Devils");
 nhl.teams[7] = new Team("Detroit Red Wings");

 // Now we will record some games
 recordWinAndLoss(nhl, "Ottawa Senators", "New Jersey Devils");
 recordWinAndLoss(nhl, "Edmonton Oilers", "Montreal Canadians");
 recordTie(nhl, "Ottawa Senators", "Detroit Red Wings");
 recordWinAndLoss(nhl, "Montreal Canadians", "Washington Capitals");
 recordWinAndLoss(nhl, "Ottawa Senators", "Edmonton Oilers");
 recordTie(nhl, "Washington Capitals", "Edmonton Oilers");
 recordTie(nhl, "Detroit Red Wings", "New Jersey Devils");
 recordWinAndLoss(nhl, "Vancouver Canucks", "Toronto Maple Leafs");
 recordWinAndLoss(nhl, "Toronto Maple Leafs", "Edmonton Oilers");
 recordWinAndLoss(nhl, "New Jersey Devils", "Detroit Red Wings");

 // This one will not work
 recordWinAndLoss(nhl, "Mark's Team", "Detroit Red Wings");

 // Now display the teams again and some statistics
 System.out.println("\nHere are the teams after recording the " +

 "wins, losses and ties:\n");
 displayTeams(nhl);

 System.out.println("\nThe total number of games played is " +
 totalGamesPlayed(nhl));
 System.out.println("The first place team is " + firstPlaceTeam(nhl));
 System.out.println("The last place team is " + lastPlaceTeam(nhl));
 }
}

Here would be the output (make sure that it makes sense to you) …

 Here are the teams after recording the wins, losses and ties:

 The Ottawa Senators have 2 wins, 0 losses and 1 ties.
 The Montreal Canadians have 1 wins, 1 losses and 0 ties.
 The Toronto Maple Leafs have 1 wins, 1 losses and 0 ties.
 The Vancouver Canucks have 1 wins, 0 losses and 0 ties.
 The Edmonton Oilers have 1 wins, 2 losses and 1 ties.
 The Washington Capitals have 0 wins, 1 losses and 1 ties.
 The New Jersey Devils have 1 wins, 1 losses and 1 ties.
 The Detroit Red Wings have 0 wins, 1 losses and 2 ties.

 The total number of games played is 10
 The first place team is The Ottawa Senators have 2 wins, 0 losses and 1 ties.
 The last place team is The Washington Capitals have 0 wins, 1 losses and 1 ties.

