Chapter 10

Express

What is in This Chapter ?

This chapter introduces us to the Express module which will simplify the code on our servers. We
discuss the Express request/response cycle and then get into the details about routing and
middleware. We discuss various types of middleware and show how static pages can be served
easily. We then discus details about request/response bodies, queries and request router objects,
response types and shared data. We will then discuss the conversion of our FutureTech Corp.
website to Express. Finally, we will conclude the chapter with a presentation of an example store site
called The Random Rack which has randomly generated data and we will see how to use the
postman.com site to test out our server.

)

COMP 2406 Express Winter 2026

10.1 Express Intro

At this point in the course, we can build useful web applications using Node.js. It allows us to create
a server that listens for incoming requests, examines the request URL and method (e.g.,
GET/POST), and sends back the appropriate response. However, as

our site grows (i.e., more pages, form data, files, headers, etc..) the \

code can quickly become large and difficult to manage. We have to n xl c
manually parse requests, use IF or SWITCH statements to route them, N

and handle responses by setting headers and converting data to JSON ’
by hand. We also need to write our own logic for parsing form data and eXpreSS
request bodies. All of this becomes repetitive and tedious. Thankfully,
there is a useful Node.js module that can simplify our lives:

from https://www.petergirnus.com/blog

Express = a minimal and flexible Node.js framework module that simplifies building web
servers by handling routing, requests, and responses with less code and better
structure.

It doesn't give us abilities beyond what we can already do, but it saves us time, reduces repetition,
and helps us organize code better. Some key features are:

e Routing: Handles different URLs and HTTP methods easily.

« Request/Response Helpers: Simplifies sending responses and accessing request data.
o Middleware: Lets us add reusable functions to process requests.

« Static File Serving: Easily serves CSS, images, and JavaScript files.

e Modular Structure: Helps organize large projects into smaller parts.

To use Express, we install it using NPM: npm install express

Then we use () in our server code: const = () ;
Finally, we create a new Express application: const = ()

This object represents our web server. It is the main tool to build and control our website. Let’s

compare the simplest server using express vs. (http as we did before):
Using Express: Using HTTP:

const express = require("express"); const http
const app = express(); const port
const port = 3000;

require("http");
3000;

// Handles GET request to main page
const server = http.createServer(function (req, res) {
if (req.method === "GET" && req.url === "/") {
// Handles GET request to main page res.writeHead (200, { "Content-Type": "text/plain” });
app.get("/", function(req, res) { res.end("I received your request!");
res.send("I received your request!") } else {
1); res.writeHead(404);
res.end("Not Found");

s

app.listen(port); server.listen(port);
console.log(Server listening at http://localhost:${port}); Jll console.log(Server listening at http://localhost:${port});

- 254 -

COMP 2406 Express Winter 2026

Notice that we don't need to call http.createserver () since the app is our created server. Notice the "GET"
request is handled by its own function now. We can easily see that Express gets rid of quite a few of
those tedious details.

Express follows what is called a ...
Request-Response Cycle = the full sequence of steps that occur from the
moment a client (e.g., browser) makes a request to the moment the server

processes it and sends back a response.

This cycle includes these main steps:

1. Arequest comes in from RBC]UBSt
the browser. GET /products

2. (optional) Middleware

functions are evaluated app.use() | Middleware 1 next ()

(e.g., parsing, logging, ¥

auth). app.use () [Middleware 2

next ()

3. A router calls the function ¥

that matches the path and app.u=e ()| Middleware 3 next ()

method of the request. If

none found, 404 Not AT TS mmm s oo -——o--——o-—-- - -

Found is sent back.

{

|

4. The matched route handler i
function is evaluated. :

1

5. The route handler sends a L=
response (with I
res.send(), i
res.render (), etc.) !

I

app.post ()| POST /contact

H -
O
:
E
R

app-delete () | DEL /profile

We will first look at how the B il g
routing works and then discuss
the optional middleware. We

|

app.put () | PUT /profile i res.send()
I
|

will also discuss how the 404 RBSPOHSB
function calls work (i.e., the Not Found HTML
ones we see in the above

diagram).

The ROUTER in the diagram above, is an internal Express mechanism for ...

Routing = the process of matching an incoming request to a specific piece of
code that handles it.

- 255 -

COMP 2406 Express Winter 2026

A route is a specific URL path and an HTTP request method to which a
callback function is assigned.

When someone visits our website and types a URL like this: http://futuretech/products ... the server
uses routing to figure to decide which code should run and what response to send back. A route's
callback function will have request and response parameters, as well as a next parameter.

The server object has a unique function for each of the request methods (i.e., 0O, O,

0, ())- We will write a bunch of these types of function calls to inform Express how we
would like to deal with particular incoming requests (see inside ROUTER in the image above). Here is
the typical format for these function call specifications:

(, function (,) |

})

Here, is either , , or (although there are other options available that
we will not discuss). This method name will be used during routing as part of the matching process.
Express will look at the incoming request’s method and see which function matches. However, when
doing the matching, it will also look at the parameter as part of the matching process. The
2" parameter lets us specify the function that will get called when Express finds an incoming request
that matches the and . This callback function that we supply, should take at least
a (i.e., incoming request) and (i.e., outgoing response) parameter.

Let’s refer back to our FutureTech Corp. website. Here is how we might set up the routes (using
either function or arrow notation):

.get("/", function (req, res) {
/* send back the Home page */

.get("/about", function (req, res) {
/* send back the About page */

.get("/contact", function (req, res) {

/* send back the Contact Us page */

.get("/products"”, function (req, res) {
/* send back the Products page */

.get("/product”, function (req, res) {
/* send back the Product page */

.get("/", (req, res) => {

/* send back the Home page */

.get("/about", (req, res) => {

/* send back the About page */

.get("/contact", (req, res) => {

/* send back the Contact Us page */

.get("/products"”, (req, res) => {

/* send back the Products page */

.get("/product”, (req, res) => {

/* send back the Product page */

What goes into the callback functions? Well, to send back static content such as plain text, JSON, or
pre-made HTML strings, we would use the () function as follows:

res.send("FutureTech is a cool company."); // Just sending a simple string

If we have some pre-made static/fixed HTML files we use () instead:

res.sendFile(__dirname + "/views/about.html");

- 256 -

COMP 2406 Express Winter 2026

() requires the absolute path to the file we want to send and in the code above, we are

getting the file relative to the server's file location . However, the above code does not
use OS-independent file naming. So, this is a bad approach. Instead, as we did previously, we would
want to use the module and ruse () to piece together the absolute path based on the

proper file separator for that OS:

const path = require("path");

res.sendFile(path.join(__dirname, "views", "about.html"));

The () function in the module will take the root directory of the server and then append
the views folder and then the filename.

Both the . () and . () send backa 200 OK status by default.

As we discussed before, when it comes to the POST, PUT & DELETE methods, they make use of a
body, which contains additional information that comes along as part of the request. This information
is often a JSON object and sometimes <form> data. In the case of . (), the body usually
contains information needed to create something (e.g., a new product or user). For an . 0,
the body usually contains information needed to update a record or a resource and an

() has a body that may include an id or metadata.The point is, there is some work to do
before sending back a response.

Here is what it might look like for a simple POST or PUT request:

app.post("/profile", (req, res) => {
const newMember = req.body;
members.push(newMember); // assumes members array exists
res.status(201).send("Member added"); // 201 Created sent back

.put("/profile/:id", (req, res) => { // :id indicates a route parameter
members[req.params.id] = req.body;
res.send("Member updated"); // 200 OK sent back by default

So, if we had only static pages with some client-side JavaScript, we could write our server like this:
path = require("path");
express = require("express");

app = express();
PORT = 3000;

app.get(["/", "/index.html"], (req, res) => {
res.sendFile(path.join(__dirname, "index.html"));

})s

app.get("/about.html", (req, res) => {
res.sendFile(path.join(__dirname, "about.html"));

});

- 257 -

COMP 2406

Express

Winter 2026

app.get("/contact.html"™, (req, res) => {

res.sendFile(path.join(__dirname, "contact.html™));

})s

app.get("/products.html”, (req, res) => {

res.sendFile(path.join(__dirname, "products.html"));

})s

// Explicit routes for individual product pages
app.get("/products/product_01.html", (req, res)
res.sendFile(path.join(__dirname, "products",

})s

app.get("/products/product_02.html", (req, res)
res.sendFile(path.join(__dirname, "products",

})s

app.get("/products/product_03.html", (req, res)

res.sendFile(path.join(__dirname, "products",

})s

app.get("/products/product_04.html", (req, res)
res.sendFile(path.join(__dirname, "products",

})s

app.get("/products/product_05.html", (req, res)
res.sendFile(path.join(__dirname, "products",

})s

app.get("/products/product_06.html", (req, res)
res.sendFile(path.join(__dirname, "products",

})s

// Start server
app.listen(PORT);

=>{

"product_01.

=>{

"product_02.

:>{

"product_03.

:>{

"product_04.

:>{

"product_05.

:>{

"product_06.

html™));

html™));

console.log(Server is listening at http://localhost:${PORT});

This would send all the HTML files, but it would not send any of the images, icons,
() call for each

CSS stylesheets nor JavaScript files. We could make an
of the 41 files we see above, but that seems excessive!

F~ futuretech-site

[TTTT

SITTTT T T
RS EEE TTTTTTOMTTTOTTTT

product 01 .html
product_02.html
product 03 .html
product_04.html
product 05.html
product_06.html
seripts

styles

&' details.css

%’ general-bedy.css

&' header-footer.css
image-slider.css

%' products-style.css
index.html

about.html
contact.html
products.html

[TTTTITTTTOITTITTT

As it turns out, Express has a useful function for sending only static pages. Here is a
working Express server that handles all files in one single line:

const express = require("express");
const app = express();
const PORT = 3000;

app.use(express.static(__dirname));

// Start server
app.listen(PORT);

// Wow! One line handles it all!

console.log(Server is listening at http://localhost:${PORT});

- 258 -

COMP 2406 Express Winter 2026

The . () function is used to tell Express that we want to use some ...

Middleware = a function that intercepts, processes, or handles a request before sending
a response (or passing control forward).

As it turns out, . () is a built-in middleware function in Express that serves any
static files (e.g., html, css, js, jpg, png, etc..). So, this one line of code tells Express that when a
request comes in, we want it to check the specified folder (and its subfolders) for a matching file and
serve it. Since we passed in the absolute path to current folder (i.e.,), it will serve all our
files. It really cannot get any easier than this.

This is so much shorter than this code that we were using before:

const http = require("http");
const fs = require("fs");
const path = require("path");

const PORT = 3000;
const mimeTypes = {
".html": "text/html",
.css": "text/css",
.js": "application/javascript”,
.png": "image/png",
.jpg": "image/jpeg”,
.ico": "image/x-icon"

s

function requestListener(req, res) {
let filePath = req.url === "/" ? "/index.html" : req add index.html
filePath = path.join(__dirname, filePath); get the absolute path to the file

let ext = path.extname(filePath); get the file extension
let contentType = mimeTypes[ext] lookup content type based on ext
|| "application/octet-stream"; if not there, treat as download

fs.readFile(filePath, (err, data) => { read file, set data to contents
if (err) { if error, return 404 Not Found
res.writeHead(404, { "Content-Type": "text/plain" });
return res.end("404 Not Found");
}
res.writeHead(200, { "Content-Type": contentType }); otherwise send 200 OK and the data
res.end(data);
1)
}

http.createServer(requestListener).listen(PORT);
console.log(Server running at http://localhost:${PORT});

- 259 -

COMP 2406 Express Winter 2026

The order of our calls and other routing or middleware methods in an Express
server is important because Express processes incoming requests in the exact
order that the routes and middleware are defined. That is, when a request comes in,
Express starts at the top of our server file and checks each route (or middleware) in
order. As soon as it finds a match, it runs the corresponding callback. If nothing
matches, it moves to the next one.

Middleware functions (e.g., body parsers, static file servers, custom loggers, or
authentication checks) need to be defined before the routes that use them. So, if we call

(route) before . (middleware), that route won’t have access to the
middleware. It is like it never existed for that route.

Route matching in Express follows a top-down or "first match wins" approach. That means
Express checks each route in the order we defined it, and once it finds a match, it stops looking.

Consider this example:

app.get("/products", (req, res) => {
res.send("All products");

1)

app.get("/products/:id", (req, res) => {
res.send(Product ID: ${req.params.id});

})s

A request to /products matches the first route, because it is an exact match. A request to
/products/6 does not match the first route (because ethe first one does not expect an id), so it
continues and matches the second route, where id becomes 6. In this case, the order doesn’t
matter because the two paths are clearly different. Now consider this example:

app.get("/products/:id", (req, res) => {
res.send(Product ID: ${req.params.id});
1)

app.get("/products/:name", (req, res) => {
res.send(Product Name: ${req.params.name});

})s

Here, both routes match any /products/xxx pattern ... whether it's a number or a name. So, a
request to /products matches neither because there is no value for id or name. A request to
/products/6 matches the first route, which has an id as expected. But a request to
/products/bob also matches the first route because Express doesn’t know the difference between
an id and a name just from the URL. This means the second route will never be reached, no matter
what value is passed, because the first one already catches all cases. It is best to avoid defining
multiple conflicting dynamic segments at the same level like this.

It is important use more specific routes first (e.g., /products/details/ before /products/:id)
because Express matches routes based on the number and position of path segments, not the
parameter names ... and it uses the first matching route it finds.

- 260 -

COMP 2406 Express Winter 2026

So, there is a problem here:

app.get("/products/:id", (req, res) => {
res.send(Product ID: ${req.params.id});
})s

app.get("/products/details/", (req, res) => {
res.send("Product Info");

1)

A request to /products/6 correctly matches the first route. However, a request to
/products/details also matches the first route, because Express sees details as a value for id
since the number of path segments is the same. As a result, the second route is never reached. To fix
this, the more specific route (/products/details) should be placed before the general route
(/products/:id).

We can attach multiple callback functions to a route so that they run in sequence when the route is
matched:
app. (<path>,
functionl (req, res,
function2 (req, res,
function3 (req, res,

N "
L B W Y
~ ~ ~

})

Each callback behaves like middleware and can perform tasks such as logging, validation,
authentication, etc. Every function receives three arguments: req, res, and . Calling ()
passes control to the next function in the chain.

One last point ... we can leave out the <path> parameter in app. (), app. () etc.:
app. (function(req, res, Y{}});
app. (

function(req, res,
function(req, res,
function(req, res,

N Nt
L B e W)
oyt gt gt
~ ~ ~

})

When we do this, the route will match any path as long as the HTTP method matches (GET, POST,
etc.). It acts almost like middleware that runs for all URLs of that method.

- 261 -

COMP 2406 Express Winter 2026

10.2 More About Middleware

We saw in the previous section, that app.use () lets us tell Express to apply
some middleware after it receives a request but before it returns a response. In
Express, when a request comes into the server, it doesn't just go straight to a
route handler. Instead, it can pass through a chain of middleware functions first.
Middleware functions are like steps in an assembly line. Each one can do
something useful with the request (like logging, authentication, or parsing data)
and then pass it along to the next step.

When we call app .use (), we are merely telling Express to register this middleware function to be
executed in the request-response cycle. It tells Express to run a given middleware function every
time a request comes in (unless it is limited to certain paths). The middleware functions are executed
in the order that they are listed from top-to-bottom in the server code.

Middleware functions have access to the request object, the response
object, and the next middleware function in the application’s request-
response cycle. This means they can read or change the request, prepare
a response, end the request-response cycle or pass control to the next
function in the chain ... ultimately leading to a final response being sent.

If the current middleware function does not end the request-response cycle
(i.e., by sending back a response to the browser), it must call next () to
pass control to the next middleware function. Otherwise, the request will be
left hanging ... which means that the browser will not get a reply from the
server and will sit their waiting ... eventually timing out.

Just as with the route functions (e.g., app.get (), app.post()), acallto app.use () can have a
variety of parameters:

// Register middleware function for all paths
app.use (midFunc)

// Register multiple middleware functions for all paths
app.use (midFuncl, midFunc2, midFunc3, ..)

// Register middleware function for a specific path (and its subpaths)
app.use (<path>, midFunc)

// Register multiple middleware functions for a specific path (and its subpaths)
app.use (<path>, midFuncl, midFunc2, midFunc3, ..)

There are three categories of middleware:

1. Built-in - included with Express

e express.static() - serves static files (e.g., .css, .jpg, .js)
e express.json() - parses incoming JSON objects (e.g., { "name": "Bob", "age": 30 1})
e express.urlencoded() - parses URL-encoded data (e.g., form submissions)

- 262 -

COMP 2406 Express Winter 2026

2. Third-Party - hundreds available, installed from NPM

o - logs HTTP request information
o - parses the cookie header in an HTTP request
- handles Cross-Origin Resource Sharing
- sets security-related HTTP headers
- manages user sessions data on the server
- does legacy body parsing (now built into Express)
- helps with debugging during development
- protects against cross-site request forgery (CSRF)
- compresses response bodies

3. Custom - functions that we write ourselves to ...

add properties to or
check authentication

log requests

block certain IPs, etc.

Let’s talk a little about writing our own custom middleware. Looking back at our static version of the
FutureTech Corp. site, we had a simple server that served the static files with one line. Let’s add
some middleware to do three things:

¢ log some information for the incoming requests
¢ log the date and time
e log the number of requests handled so far

Later, we will see how to do other interesting things other than log information, but these simple
examples should be sufficient as proof-of-concept.

Here is the code that we will add to our FutureTech Corp. expressServer.js:

const express = require("express");
const app = express();
const PORT = 3000;

// Log some information for any requests
app.use(function(req, res, next) {
console.log(req.method);
console.log(req.url);
console.log(req.query);
console.log("Body: ", req.body); // req.body is a JavaScript object

next(); // go to the next registered handler/middleware
})s

// Log the date and time

app.use(function(req, res, next) {
const now = new Date();
console.log([${now.toLocaleString()}] ${req.method} ${req.url});
next(); // go to the next registered handler/middleware

- 263 -

COMP 2406 Express Winter 2026

// Log the number of requests handled so far

let requestCount = 0;

app.use(function(req, res, next) {
requestCount++;

console.log("Request count = " + requestCount);
next(); // go to the next registered handler/middleware

1)

// Serve all files
app.use(express.static(__dirname));

// Start server
app.listen(PORT);
console.log(Server is listening at http://localhost:${PORT});

Notice that we are making a call to () at the end of each of our middleware functions that we
created. This will tell Express to evaluate all three of these middleware functions in sequence,
followed by the final built-in middleware function to serve the static files. Can you answer these
questions:

What would happen if we forgot one of the calls to)7

2. What would happen if | moved the middleware that logs the date & time
to appear AFTER the middleware that serves static files?

3. Can we combine our three middleware functions with one call to ()
as shown below?

4. Can we also combine the static-serving middleware function in there as well?

let requestCount
app.use(
function(req, res, next) { // Log some information for any requests
console.log(req.method);
console.log(req.url);
console.log(req.query);
console.log("Body: ", req.body); // req.body is a JavaScript object
next(); // go to the next registered handler/middleware
}s
function(req, res, next) { // Log the date and time
const now = new Date();
console.log([${now.toLocaleString()}] ${req.method} ${req.url});
next(); // go to the next registered handler/middleware

}s

function(req, res, next) { // Log the number of requests handled so far
requestCount++;

console.log("Request count =

next(); // go to the next registered handler/middleware

}

+ requestCount);

)5

- 264 -

COMP 2406 Express Winter 2026

5. Why not combine all of these middleware functions into one function as shown below?

let requestCount
app.use(
function(req, res, next) { // Log some information for any requests
console.log(req.method);
console.log(req.url);
console.log(req.query);
console.log("Body:

, reqg.body); // req.body is a JavaScript object

const now = new Date();
console.log([${now.toLocaleString()}] ${req.method} ${req.url});

requestCount++;
console.log("Request count = " + requestCount);

As mentioned earlier, we are doing some basic things in our middleware by just logging some
information. As it turn out, somebody already realized that this kind of middleware can be useful for
development. The third-party middleware known as morgan, can do this for us, so that we do not
have to do this on our own.

To use morgan, we install it using NPM: npm install morgan
Then we use require in our server code: const = () ;
Then we just do this to use it:

// Log some information for any requests

app.use(morgan(“"dev"));

On our FutureTech Corp site we would see this logged with this option
GET / 3.951 ms - -
GET /styles/image-slider.css 0.671 ms - -
GET /styles/general-body.css 0.521 ms - -
GET /styles/header-footer.css 1.306 ms - -
GET /images/logo.jpg 1.796 ms - -
GET /images/news/scientists.jpg 2.225 ms - -
etc..
The parameter just specifies one format. There are a few options available:
o - concise colored output (great for dev)
o - minimal output
J - standard Apache combined log format
o - standard Apache common log format

we can define our own format

- 265 -

COMP 2406

Express

Winter 2026

Now, let’s talk a little more about directory structure and serving static files. Consider these three
directory structures for our static FutureTech Corp. website:

= futuoretech-site = futuretech-site = futoretech-site
— B icons — E= icons — E public
| L— B logo-icon.png | L— B logo-icon.png | — E= icons
— B images — E= images | | L— H logo-icon.png
| — B 1large | — &= large | — E= images
| | — ma cloakingSuit.jpg | | |— mi cloakingSait. jp: | | — B 1large
| | L— | | L g ... | | | — @i cloakingSuit.ipg
| — E= news | — B news | | | L— e
| | — ma android.ijpg | | I— m android.jpg | | — E= news
| | L— | | L g ... | | | — wi android.ipg
| — E small | — &= small | | | L ger .
| | [— ma cloaki small.jpg | | |— mi cloaki small.]jp: | | — B small
| | — | | L— m | | | |— m cloaki small.jpg
| — ma headguarters.ijpg | — @i headguarters.ipg | | | L—
| L— m | L— | | — ma headguarters.ijpg
— E products — E= scripts | | L— o ...
| — product 01.html | — | — E prodocts
| L - | L | | — product 01.html
— E scripts — E= styles | | L .
| — | — & details.css | — E scripts
| — | — . I
— E styles — E= pages | | L
| — & details.css | — index.html | — = styles
| L— g ... | — about.html | | — # details.css
— index.html | — contact.html | | L& ..
— about.html | — products.html | — index.html
— contact.html | L — F~ products | — about.html
— prodocts.html | — product 01.html | — contact.html
L | L | L products.html
L L
(A) (B) (C)

As it turns out, we have to make some slight changes in our code to serve the files so that the path
structure matches. We saw originally, that for structure (A), we used this code:

app.use(express.static(__dirname));

This worked when we went to http://localhost:3000 because the index.html file that we want to
serve is in the same folder as the server. But for structure (B) there is no index.html file in the folder
that the server is in. So, we would have to change the web address to http://localhost:3000/pages
because the index.html file is in the pages subfolder.

Alternatively, we could add a separate middleware function to handle the HTML pages by specifying
that they are in the pages subfolder:

// Serve all static files from the server's current folder and inward
app.use(express.static(__dirname));

// Serve static pages from the pages subfolder
app.use(express.static(path.join(__dirname, "pages")));

- 266 -

COMP 2406 Express Winter 2026

Structure (C) is the easiest of all. Since we put all the webpage files in a public folder at the same
level as the server code, we can just do this ... without needing to know the path nor current working
directory:

app.use(express.static("public"));

Here, public is assumed to be a subfolder of the folder in which we launched the server using
node.js.

As our site grows, we will often need to serve static files (e.g., images, stylesheets, scripts). These
files are commonly accessed directly from folders such as /images, /styles, /scripts efc..
When we serve such static files directly from folders named /images or /styles, those paths
become part of our website’s URL structure (e.g., an image might be accessible at
/images/logo.png and a stylesheet at /styles/main.css).

While this works fine for small sites, as our application grows and we add many dynamic routes (e.qg.,
/about, /contact, /products, etc..), having many static asset paths directly under the root can
make the URL space crowded and harder to manage. This clutter can cause confusion or conflicts if
a future dynamic route uses the same path segment (e.g., if we later want a route called /images to
show an image gallery page, it will clash with our static /images folder).

To avoid this, Express lets us define a virtual path prefix ... which is a custom URL prefix
that doesn’t exist on our file system but helps organize how static files are accessed.

For example, using a virtual path (such as /static) allows us to load our CSS file
from /static/styles/header-footer.css instead of /styles/header-
footer.css, keeping our URLs clean, predictable, and separate from our main routes.

If we want the browser to specify a virtual path prefix (i.e., one that does not really exist in the file
system), we can do this:

app.use("/static", express.static("public"));

Then, to access the pages, we would use http://localhost:3000/static as our starting point so that
we access pages like this:

http://localhost:3000/static/index.html
http://localhost:3000/static/about.html
http://localhost:3000/static/products.htmi
http://localhost:3000/static/products/product_02.html
http://localhost:3000/static/contact.html

- 267 -

COMP 2406 Express Winter 2026

10.3 Bodies and Query Strings

Looking back at our Date-a-Science server, this is how we handled requests before:

// Listener for incoming client requests

function handleRequest(req, res) {
const parsed = url.parse(req.url, true); // get the query params (for profile pages)
const pathname = parsed.pathname; // get path without query

if (reg.method === "GET") {
if (pathname === "/" || pathname === "/home") {// Return the main page

eléé'if (pathname.startsWith("/profile™)) { Return a specific profile

eléé'if (pathname.startsWith("/about")) { Return the about page

eléé'if (pathname === "/clientscript.js") { Return the client-side javascript
eléé.if (pathname.startsWith("/images/")) { Return an image for a page

else if (pathname === "/style.css") { Return the style file

else { // If anything else ... respond with 404 error

} else if (req.method === "PUT" && pathname === "/newprofile") {
} else if (req.method "POST" && pathname === "/message") {
} else {

res.writeHead(405);

res.end("Unsupported method");

}

http.createServer(handleRequest).listen(3000);
console.log("Server running on http://localhost:3000");

When we convert this to Express, all the , and handling will NOT be merged in
a () function since that function will no longer exist. Instead, they will each appear
one after the other, with the middleware set up to serve the static files as follows:

.use(express.static(__dirname));

.get(["/", "/home"], (req, res) => {...});
.get("/about", (req, res) => {...});
.get("/profile", (req, res) => {...});
.put("/newprofile"”, (req, res) => {...});

.post("/message", (req, res) => {...});

.use((req, res) => {...}); // Catch others as 404 Not Found

So, already, we can see the benefits of the Express server in the way it
gets rid of clutter.

- 268 -

COMP 2406 Express Winter 2026

There are some simplifications as well in the code for handling the : and
requests. Typically, we would write code like this to send responses:

// Sending "Error 404: Resource not found." response
response.writeHead (404, {"Content-Type": "text/plain"});
response.end("Error 404: Resource not found.");

// Sending "200 OK" response with static file in body
res.writeHead(200, { "Content-Type": getMimeType(filePath) });

res.end(data);

// Sending "200 OK" response with html page in body
res.writeHead(200, { "Content-Type": "text/html" });
res.end(html);

What’s nice about Express, is that it does a few things for us by allowing default assumptions on
content type and response texts. There are different options for sending customized error responses:

// Sending customized "Error 404: Resource not found." response
res.status(404).send("Error 404: Resource not found.");

// Sending default "404 Not Found" response
res.sendStatus(404);

// Sends status "404" but no body ... so browser will timeout
res.status(404);

When it comes to sending back 200 (i.e., “ok”) responses, we have a few ways to do it. If we are just
sending back a response to a , or to let the browser know that all was ok, we
usually send back a simple text body:

// sends only status, no body ... browser will timeout
res.status(200);

// sends customized text
res.status(200);
res.send("200 Got it!");

// more compact version
res.status(200).send("200 Got it!");

// easiest ... sends default "OK" text
res.sendStatus(200);

For requests that require a body of data to be sent back (e.g., requests that need an HTML or
particular static file sent back), we typically do this in Express to send back the content stored in a
variable:

res.status(200).send(body);

- 269 -

COMP 2406 Express Winter 2026

Express will automatically set the Content-Type accordingly. Here is what it is set to based on the
type of the variable:

e string =Content-Type: text/html

e buffer =Content-Type: application/octet-stream

e object =Content-Type: application/json

e array =Content-Type: application/json <same as object

If we want a different Content-Type, we can set it by calling () before calling O:

res.status(200);

res.set("Content-Type", "text/plain");
res.send(body);

However, if we know that we want to send a JSON object, then we should use the () function
instead of () as follows:

res.status(200).json(body);

Express also makes things a little easier when accessing queries. Recall that if we specified an
address something like this:

http://localhost:3000/index.html|? = & =

... then we would write code to process it like this within the appropriate GET route:

const parsed = url.parse(req.url, true); // get the query params

let month = parsed.query.month; // get the month from the query
let year = parsed.query.year; // get the year from the query

But in Express, the query is parsed by default. So, we just need to ask the request for the parameter
that we want:

let month = req.query.month; // get the month from the query

let year = req.query.year; // get the year from the query

Now, lets talk about POST bodies. Recall this HTML form from our FutureTech Corp. site:

Name:
Mark Lanthier

<form action="/contact/message" method="POST" target="">
<label for="name">Name:</label>
 bt s creon
<input type="text" id="name" name="name" required>

 Message

T got stuck in a few walls with my Phasing suit for 10 minutes or so
... is this a glitch in the softwarel|

Email

<label for="email">Email:</label>

<input type="email" id="email" name="email" required>

<label for="message">Message:</label>

<textarea id="message" name="message" rows="5" required></textarea>

<button type="submit">Send Message</button>
</form>

- 270 -

COMP 2406 Express Winter 2026

When this form is submitted, its data is sent in the request body as a URL-encoded string. Express
provides convenient middleware that automatically parses request bodies when the

header is set to . To use it, we include the following near
the top of our server code:

app.use(express.urlencoded({ extended: false }));

As long as this is included, then we can simply use . to access the body as a JavaScript
object. The code is much simpler now:

// Route: contact/message post
app.post("/contact/message”, (req, res) => {
messages.push(req.body);

messageCount++;
res.status(200).send("Your message has been received.");

So, whether the action is GET, POST, PUT, or DELETE, our code will be much simpler in Express.

For situations requiring a variety of actions (i.e., not just GET and POST), Express offers a way to
combine multiple handlers into a single route definition, keeping related logic together and making the
code more organized. This approach simplifies route management by grouping all HTTP methods for
a resource in one place, making our code easier to read and maintain.

For example, suppose we have a web API that manages books at a bookstore. We might define
actions like this:

e« GET - show me a book (available to all clients)

o« POST - add a book (available to all clients)

e PUT - replace/update this book (for authorized clients only)
o« DELETE - remove a book (for authorized clients only)

We could use the function as shown on the left below (on the right is a comparison of what we
would do without the function). It is better because we don’t need to re-write the route
each time and we save writing out and the use of a few semicolons.

app.route("/book™)
.get((req, res) => {
// Retrieve & return a book
1)

.post((req, res) => {
// Add a new book

.get("/book", (req, res) => {
// Retrieve and return a book

.post("/book", (req, res) => {
// Add a new book
})
.put((req, res) => {
// Update an existing book

.put("/book"™, (req, res) => {

// Update an existing book

}

.delete((req, res) => {
// Delete a book

s

.delete("/book", (req, res) => {
// Delete a book

COMP 2406 Express Winter 2026

Express Router Objects

When building a web server with Express, as our project grows, we will likely have many different
routes to handle (e.g., routes for users, products, or contact forms). Instead of putting all our route
code in one big file, Express lets us create Router objects. These

routers act like mini-servers that group related routes together in their

own files. Using routers helps keep our code organized, easier to US_‘_%FS ,
read, and simpler to maintain, especially as our app gets bigger and Products (F
more complex. o
_ Locations

Suppose we have a server that manages information about both users S =

. . Reviews
and products. For example, an online store may want to show lists of o
products and user profiles, and also provide details about each Orderss
individual product or user. At a very basic level, the server may look r
like this:

const express = require("express");
const app = express();
const PORT = 3000;

// Users routes is a placeholder (i.e. parameter) that we
app.get("/users", (req, res) => { can access by doing this:

. "3 £ .. .
1; res.send("List of users®); So, for a routed request like users/367,

would be 367
app.get("/users/:id", (req, res) => {
res.send(User details for ID: ${req.params.id});
1) Here we use two placeholders in the
route (i.e., and). So, for a routed
request like products/23789/size/large,

Product t
// Products routes would be 23789 and sz would be

app.get("/products", (req, res) => {

res.send("List of products"); . By using the ? on the
1) parameter, we indicate that the size is

optional. So, a routed request like
app.get("/products/:id/size/:sz?", (req, res) => { products/23789, will match but the size
const size = req.params.sz || "default size"; will be undefined
res.send(Product ${req.params.id}, Size: ${size});

})s

// Root route
app.get("/", (req, res) => {
res.send("Welcome to the home page!");

1)

app.listen(PORT);
console.log("Server listening at http://localhost:" + PORT);

We could create a router object for the user-specific routes and one for the product-specific routes
and place them both in a routes/ directory.

-272 -

COMP 2406 Express Winter 2026

Here is a routes/users.js file:

const express = require("express");
const router = express.Router(); // creates a router object

router.get("/", (req, res) => { // the paths are relative to where the router is mounted
res.send("List of users");

1)
router.get("/:id", (req, res) => {
res.send(User details for ID: ${req.params.id});

1)

module.exports = router; // export it

And here is a routes/products.js file:

const express = require("express");
const router = express.Router(); // creates a router object

router.get("/", (req, res) => { // the paths are relative to where the router is mounted
res.send("List of products");

})s

router.get("/:id/size/:sz?", (req, res) => {
const size = req.params.sz || "default size";
res.send(Product ${req.params.id}, Size: ${size});

})s

module.exports = router; // export it

Then we can use these routers in a simplified server file as follows:

const express = require("express");
const app = express();
const PORT = 3000;

const userRouter = require("./routes/users"); // import users router
const productRouter = require("./routes/products™); // import products router

// Mount routers on specific URL prefixes
app.use("/users", userRouter); // route everything in the /users path
app.use("/products"”, productRouter); // route everything in the /products path

// Root route

app.get("/", (req, res) => {
res.send("Welcome to the home page!");

})s

app.listen(PORT);
console.log(Server is listening at http://localhost:${PORT});

When someone visits /users or /users/123, they are handled by the , While visits to
Iproducts, /products/43423 or /products/43423/size/small are handled by the .
The routers keep all user-related routes in one file and product-related routes in another ... making
our app nice and organized.

-273 -

COMP 2406 Express Winter 2026

Express Response Types

When creating a website, the same route might receive requests from different types of clients, each
expecting to receive a different type of response:

e A web browser expects an HTML response that it can display. ‘;_,c“’ 05
e A mobile app might want JSON it can parse into native Ul. - = '- I ,
e A command-line script might want plain text for logging. | n

Instead of creating three separate routes (i.e., /product/html,
Iproduct/json and /product/text), Express has a function called () that lets us serve all

versions from the same route, automatically picking the right one based on the client’'s Accept
header. It’s like a waiter who says: “Would you like your meal in a plate, a takeout box, or a cup?”

We use the () function within a route listener as shown below. We simply specify the MIME
format, followed by a colon : and then an anonymous function that returns the specific reply ... which
could be HTML, a JSON object or a plain text, for example.

app.get("/products/:id/size/:sz", (req, res)
const product = {
id: req.params.id,
name: "Neural Booster",
size: req.params.sz
}s5
res.format ({
"text/html": () => { // for a browser
res.send ("
<h1>${product.name}</h1>
<p>ID: ${product.id}</p>
<p>Size: ${product.size}</p>
)
¥
"application/json": () => { // for a mobile app
res.json(product);
¥
"text/plain": () => { // for a command-line-interface
res.send(" ${product.name} (ID: ${product.id}) - Size: ${product.size});

¥
default: () => { res.status(406).send("Not Acceptable"); }

With the above code, a visit to /products/43423/size/large we would get a different reply (as shown
below) depending on the device and what is in the Accept header of the HTTP request:

Accept: text/html | Accept: application/json Accept: text/plain

{
Neural Booster .
ID: 43423 . Neural Booster (ID: 43423) - Size: Large

Size: Large

- 274 -

COMP 2406 Express Winter 2026

Express Shared Data

In many web applications and websites, it's important to assign unique
identifiers (IDs) to new users, products, orders, or other items as they are
created. For example, the first user might receive ID 1, the next user ID

2, and so on. The same goes for products or orders. However, if our app
restarts or is used by many visitors over time, it must remember the last

ID it assigned so that it can continue incrementing from that number

without accidentally reusing an ID. If it doesn't, the app risks assigning
duplicate IDs to different users or products, which can lead to bugs, data
corruption, and confusion.)

Where do we keep this information? If we just keep it in a variable inside our code, it resets every
time we restart the server ... so that doesn’t work. Ideally, we can keep this in a database ... but that
can be complicated to set up. A simple and common strategy for small or mid-sized apps is to keep
this info in a JSON file, which is commonly called config.json.

Let’s consider creating a config.json file that contains only this JSON information:

"nextUserID":72,
"nextProductID":1002213

We could then load this file each time that we need to access either of these values and then re-write
it again once we increment them as follows:

const fs = require("fs");
const configPath = "./config.json";

// Load up the config values and return them

function loadConfig() {
const data = fs.readFileSync(configPath, "utf-8");
return JSON.parse(data);

}

// Re-write the config values to the file
function saveConfig(config) {
fs.writeFileSync(configPath, JSON.stringify(config, null, 2));

}

function createProduct(req, res, next) {

try {
const config = loadConfig();

let p = {
id: config.nextProductlID,
name: req.body.name,
size: req.body.size,
price: req.body.price

- 275 -

COMP 2406 Express Winter 2026

config.nextProductID++;
saveConfig(config);

res.status(201).send(p);

} catch (err) {
next(err);

}
We use () and () so that there are no race conditions (i.e., other
threads trying to read or change these values while we are as well). There are extra parameters on
the () function. The null indicates that we don’t want to filter or modify any keys. The 2

indicates spacing indentation, which allows for a nicer, "spaced out" printing in the file.

- 276 -

COMP 2406 Express Winter 2026

10.4 A FutureTech Corp. Express PUG Server

How do we make an express version of our FutureTech Corp. PUG server? Below
is what we have at the top and bottom of our current PUG server. The red
highlighted lines are no longer needed because express handles a lot of that for us:

const http = require("http");

const fs = require("fs");

const url = require("url");

const pug = require("pug");

const querystring = require("querystring");

const path = require("path");

const { products } = require("./data/product-data.js");
let { messages, messageCount } = require("./data/product-data.js");

const PORT = 3000;
// Handle incoming requests

function requestListener(req, res) {
. routing stuff is here ...

}

http.createServer(requestListener).listen(PORT);
console.log(Server running at http://localhost:${PORT});

But we do have to add a couple of lines to get the Express object. Then we need to tell Express
that we will be using PUG as the view engine and we also need to tell it where to find the views.

We do this by setting Express’s and attributes:
const path = require("path");

const { products } = require("./data/product-data.js");
let { messages, messageCount } = require("./data/product-data.js");

const PORT = 3000;

// Get the Express object

const express = require("express");

const app = express(); // Get the Express object

app.set("view engine", "pug"); // Set up PUG as the view engine

app.set("views", path.join(__dirname, "views")); // Tell Express where the views are
. routing stuff is here ...

// Start server

app.listen(PORT);
console.log(Server is listening at http://localhost:${PORT});

Notice again, that we are NOT creating the server ... that was done when we called

- 277 -

COMP 2406 Express Winter 2026

Now, what about the routing stuff? It is similar to what we did with the Date-a-Science site. We don’t
have the () function, so we just list all the routes one after another and render
each page accordingly:

// Handle URL-encoded request queries (needed for the contact/message post requests)
app.use(express.urlencoded({ extended: false }));

// Serve static files
app.use(express.static(__dirname));

// Route: Home
app.get(["/", "/home", "/index"], (req, res) => {
res.render("pages/index", { products, currentPage:

})s

// Route: About
app.get("/about", (req, res) => {
res.render("pages/about"”, { products, currentPage: "about" });

})s

// Route: Contact
app.get("/contact", (req, res) => {
res.render("pages/contact”, { products, currentPage: "contact" });

})s

// Route: Products
app.get("/products", (req, res) => {
res.render("pages/products”, { products, currentPage: "products" });

})s

// Route: Individual Product (via query string ?id=1)
app.get("/product”, (req, res) => {

const id = parseInt(req.query.id);

const prod = products[id - 1];

if (!prod) {
return res.status(404).send("Product not found");

}

res.render("pages/product"”, { prod, currentPage: "products" });

})s

// Route: contact/message post
app.post("/contact/message", (req, res) => {
messages.push(req.body);
messageCount++;
res.render("pages/messageReceived");

})s

// 404 fallback

app.use((req, res) => {
res.status(404).send("Not Found");

1)

The code seems greatly simplified. We simply handle the static files, then our individual routes and
we add one more middleware at the end that will get called when no routes match.

- 278 -

COMP 2406 Express Winter 2026

10.5 Sample Store Site and the Postman Tool

In this section we will describe an express server site that has been set up for a fake store called The
Random Rack. Try it out, examine the code and test the API interface. It may give you ideas for
future assignments and projects. We will also discus briefly a useful tool from http://postman.com
that can help us test out our web APIs without needing to make a whole bunch of client pages.

The postman.com tool is useful for directly interacting with an API or server without needing a front-
end interface (i.e., client-side browser pages). For Express development, it allows us to send various
types of HTTP requests (i.e., GET, POST, PUT, DELETE, etc.) to our server endpoints, include query
parameters or request bodies, and then view the exact responses returned. This makes it easier to
verify that routes are functioning correctly, test different input scenarios, and debug issues before
integrating with a client-side application.

We will see how to use it in a moment, but let’'s describe our The Random Rack store site first.

The site structure is set up as shown here on the right > The Random Rack store

I~ random-rack-store

The server file is random-rack-express-server.js which we can — 7 images

run with node.js. There is a data-generator.js file that needstobe | | — ...

run first, which generates random fake data by using an NPM [O _nodamodules
module called faker. In the given files, some random data has — 7 products
already been generated and is sitting in the products, reviews L_ 'g eiews

and users folders ... so we should not have to run the generator. | — ...

— = routers

— products-router.js
— reviews-router.js
L user-router.js

[~ styles

I_ .

There are various also PUG page files as well as some router files.

When we run the server, the home page looks as shown below
(rendered from the views/pages/index.pug file):

users

1717

}— index.pug

}— product.pug

}— products.pug

}— review-profile.pug
— reviews.pug

— user-profile.pug

Home Users Products Reviews

L users.pug

7 partials

j}— footer.pug

L header.pug

Welcome to the Store Manager APl access page. — config.json

I— package.json

— package-lock.json

— data-generator.js

© 2026 COMP2408 Fundamentals of Web Applications (modified from Alina Shaikhet's 2023 version) (I random-rack- express-server. J s

=

L

7 views
— = pages
|

|

|

|

|

|

|

L

We can browse around at the data by using the navigation buttons, which will produce the pages
shown on the next page. Functionality is limited, however, from these browser pages. However,
through the postman.com site, we can test the following additional features of the site’s API: adding
a user, a product or a review ... and changing a user, a product and a review. Here are the pages:

- 279 -

http://postman.com/

COMP 2406 Express Winter 2026

views/pages/users.pug

views/pages/products.pug views/pages/reviews.pug

Home Users Products Reviews Home Users Products Reviews

Home Users Products Reviews

Users Products Reviews
Kim Kerluke Awesome Granite Ball 2 Stars: Non vero enim et omnis suscipit ipsum nam non eaque.
Lolita Graham Gorgeous Frozen Chips 4 Stars: Debitis temporibus tempora voluptate.
Lindsey Treutel Tasty Soft Computer 5 Stars: Vitae eligendi debitis enim
Harmon Hagenes ntelligent Steel Fish 1 Stars: Nostrum cum dolores provident deserunt officia au!

ssimos guia et omnis nobi:

Gennare Schroeder Well-seasoned Wooden Chicken 4 Stars, rit qui recusandae at qui

Devente Ortiz Gorgeous Cotton Ball 1 Stars: Non perspiciatis dolorem et quaerat voluptatem

Arturo Jenking 5 Stars: Fuga modi dolor nesciunt maieres

Theresia Keebler 4 Stars: Ullam ipsam non untur.

Hill 1 Stars: Modi tempora itag simos animi expedila et voluptate pariatur consectetur.

ntelligent Steel Car 4 Stars: Eum velit sunt consectetur ut

© 2026 COMP2406 Fundamentals of Web Applicalions {(modified from Alina Shaikhet's 2023 version) © 2026 COMP2406 Fundamentals of Web Applications (medified from Alina Shaikhet's 2023 version) © 2026 COMP2406 Fundamentals of Web Applications (modified from Alina Shaikhet's 2023 version)

views/pages/review-profile.pug

T “ 9

Home Users Products Reviews Home Users Products Reviews

Home Users Products Reviews

Reviewer: htf

Arturo Jenkins Name: Gorgeous Frozen Chips Broduct: hitp
Price: 893.00 Rating: 2
Address: 75857 Senger Lake, West Meghanfurt, Indiana, 84346-9505 1D:1
1D: 103 Summary: Non voluptatem in qui sunt omnis amet non incidunt
B Purchased By: Rev:ew: Quasi cnnseq|uatuf ;/u\up:adtu‘m n:m est seuu‘l qul‘ums cu:‘ Lu‘slu nulla :nagm Aut ma:
t: to et
Products Bought similique eum praesentium placeat delenit ex sapiente voluptas. Architecto et ut rerum esse. Quo

officils aut vitae sapiente similique odit molestiae omnis.

© 2026 COMP2406 Fundamentals of Web Applications (modified from Alina Shaikhet's 2023 version)

« hitp:ifiocalhost
Reviews: Reviews:

« http:/Alocalhost:300 « httpHocalhost:-3000/eviews/810

© 2026 COMP2406 Fundamentals of Web Applications (modified from Alina Shaikhet's 2023 version) (21 BT AT e LS A D e s (e 2 A i e e s 2 e)

To use the postman, download it from Postman on the web
http://postman.com . There is a simple free version. Access the Postman API Platform through your web
We Can alSO try |t from the Web by Selectlng the browser. Create a free account, and you're in.
appropriate link from the download page. Even though

we use it from the web, since we need to access our
site locally, we are also required to download the postman agent to our laptop/pc.

Just follow the instructions. You will need to create an account. | just did a “Sign Up with Google” to
get started (strangely, it is the same link name after you sign up).

Once you log in, there is a lot of stuff everywhere. Just select Workspaces to your workspace (you
can create one if you don't have one) ... then press the New button and select HTTP as shown here:

- 280 -

http://postman.com/

COMP 2406 Express Winter 2026

Home Workspaces ~ APl Network

F£A Mark A. Lanthier's Workspace

o

Collections
> APl Documentation #reference

» My Collection

> RESTful AP| Basics #bluaprint

To start sending requests, first, we should make sure that our server is running already on our local
host. Then select the request type from the dropdown box (i.e., GET, POST, PUT, DELETE), enter
the URL in the text box and press the blue Send button:

FA Mark A, Lanthier's Workspace t titled GET Untitled Reques!

) t ‘ i Untitled Request
Collections
> API Documentation #reference
> My Collection

> RESTful API Basics #blueprint
rarams

Query Params

Key

Response

For example, if we do a GET to localhost:3000, we should get the main page back:

COMP 2406 Express Winter 2026

localhost:3000

Headers (8

= HTML ~

The Random Rack - Store Manager API Access Page

If we do a GET with this URL: localhost:3000/products/3 we will see something like this (although
our products were generated randomly, so what you see will be different):

It is a JSON object. We can test the changing of a product by editing this data and sending it back
with a PUT request as follows:

1. Set the request type to PUT, keep the same URL
2. Select the Body tab from the request header

- 282 -

COMP 2406 Express Winter 2026

3. Select raw from the body
type

4. Copy the JSON ObjeCt PUT localhost:3000/products/3
from the response body
(i.e., copy from the
response body we just
received) into the request
body.

. Change the price (for
example).

6. Press Send.

HiiE localhost:3000/products/3

ders (10) Body

You should see Product saved.

. {} Json v
in the response:

1 1

How do we Body D 28ms « 2418
know if it

worked ... % HTML ¥ [> Preview @ Visualize ~ =

that we really
changed the
price?

1 Product saved.

Well, do the same GET with URL: localhost:3000/products/3 that we did before and see if the
price is what we changed it to (i.e., 179.99). We should see that it indeed worked.

Let’s try adding a new user. We just need to do a POST to localhost:3000/users. Our server code
will generate a new user with a new unique ID:

201 Created 12ms - 400B - @&

With the JSON response body data in this format (although yours may differ):

. 250,
"Samara Hackett",
{
"85340 Eduardo Pines",
: "Homestead",
"Iowa",
"06462-9196"

L1,
[]

COMP 2406 Express Winter 2026

Of course, we can copy this data into a PUT request body and alter the name and address however
we would like. The steps below should result in a User Saved. response:

localhost:3000/users/250/

ers (10) Body

The postman can be a useful tool for testing out proper server functionality without requiring us to
produce client pages/forms.

- 284 -

