

Chapter 11

RESTful Web Design

What is in This Chapter ?

This chapter explains how to follow RESTful web design guidelines. RESTful web design is like fine
dining compared to fast food. Both will “feed” you data, but in very different ways. A fast-food API
might give you what you need quickly, but it’s usually messy, inconsistent, and not designed for long-
term use. REST, on the other hand, is like fine dining: every course (resource) is well-presented, the
menu (URLs) is organized and predictable, and the service (HTTP methods) follows clear rules. The
experience is structured, scalable, and meant to be appreciated … not just consumed in a hurry.

COMP 2406 RESTful Web Design Winter 2026

 - 286 -

 11.1 RESTful APIs

As we have seen in this course so far, web applications are not limited to delivering static HTML
pages. Instead, they often need to send and receive data between the browser (or another client) and
the server in real time. This is where web APIs come in.

A Web API is an interface that allows different software applications to communicate
and exchange data over the web, typically using HTTP.

It provides a clearly-defined way for clients (e.g., web browsers, mobile
apps, smartwatch apps, other servers) to request, modify, and work with
application data. To design these APIs effectively, developers often use
REST (REpresentational State Transfer).

REST is not a protocol, format, or strict rulebook … it is really just some
guiding principles to follow when designing our app. A RESTful API is one
that follows three main principles of how web components should interact
over the internet:

• Stateless Communication - every request is independent and contains all the information the
server needs.

• Resource-based Structure - data and functionality are organized into distinct resources, each
with a unique URL.

• Use of HTTP Methods - standard HTTP verbs (GET, POST, PUT, DELETE, etc.) indicate the
desired action on a resource.

Consider, for example, what happens when a client requests some song data from a server. Look at
the diagram below and see if you can verify the three principles mentioned above:

COMP 2406 RESTful Web Design Winter 2026

 - 287 -

In the above diagram, the resource is the song data. The URL supplied by the browser specifies the
song ID indicating the unique resource. Notice that all the information it needs is in the GET and the
supplied URL, since it indicates: “Get me this exact song”. Of course, for this to work, the client must
know what it is able to ask for.

A RESTful web API presents all the server’s available resources in a clear and structured way,
making it obvious what clients can access and how to interact with them. Each resource is identified
by a unique URL and can be manipulated using standard HTTP methods such as GET, POST, PUT,
and DELETE. The resources themselves can take various forms, such as:

• JSON – for structured data exchange

• HTML – for web pages

• Plain text or XML – for simpler or legacy data formats

• Images, videos, or other files – for media content

While some resources may require authentication or permissions to access
certain data, the API’s structure and available endpoints are fully visible, so clients can see what is
possible, even if they cannot access everything. This clarity helps developers understand the system,
know which actions are allowed, and integrate with it reliably.

In a RESTful API, data is presented as resources that can be created, retrieved, updated, or deleted.
These operations are collectively known as CRUD:

• Create a resource (i.e., POST request)

• Read a resource (i.e., GET request)

• Update a resource (i.e., PUT or PATCH request)

• Delete a resource (i.e., DELETE request)

For example, in a RESTful API for a site with songs, we might see requests/responses like this:

Method URL Resource Interaction Response
GET /songs get a list of all songs 200 OK

GET /songs?genre=pop get all songs in the pop genre 200 OK

GET /songs?artist=Taylor+Swift get all songs by artist “Taylor Swift” 200 OK

GET /songs?genre=rock&year=2020 get all rock songs from 2020 200 OK

GET /songs/234 get song with ID 234 200 OK

GET /songs/9999999 get non-existing song with ID 9999999 404 Not Found

GET /songs/234/lyrics get lyrics for song 234 200 OK

GET /songs/234/comments get comments for song 234 200 OK

POST /songs create a new song 201 Created

PUT /songs/234 update song with ID 234 204 No Content

DELETE /songs/234 delete song with ID 234 204 No Content

POST /songs/234/comments add a comment to song 234 201 Created

DELETE /songs/234/comments/10 delete comment 10 on song 234 204 No Content

GET /songs/top?limit=10 get top 10 songs 200 OK

GET /artists/45/songs get all songs by artist with ID 45 200 OK

COMP 2406 RESTful Web Design Winter 2026

 - 288 -

By looking at the request method and URL in the above table, the resulting resource interaction and
response is somewhat intuitive. It shows that by following REST principles, APIs become predictable,
easier to understand, and simpler to integrate across platforms. This is why REST is commonly used
in web service design.

A truly RESTful API is designed according to six architectural constraints defined by Roy Fielding
(https://ics.uci.edu/~fielding/pubs/dissertation/top.htm). These are:

1. Client–Server:

In REST, the client and server have separate responsibilities, so changes on one side don’t
directly affect the other.

Server: Stores the data, rules, and logic, and provides information (i.e., representations
of resources) in response to client requests.

Client: Makes requests to the server and does something useful with the response.

Ideally, the client and server see each other as “black boxes” where each knows the API (the
interface) but not the internal implementation of the other. In some cases, the client may even
learn about the API dynamically from the server.

This separation provides flexibility:

o Different types of clients (e.g., browser, mobile app, bots) can interact with the same
server.

o The server can change how it stores or manages data without affecting clients.

o New components or services can be added without disrupting the system.

2. Stateless:

In REST, each request from the client must include all the information the server needs to
process it and respond. The server does not keep any memory of previous requests or client
session state … it treats every request as independent. This makes it easy to add more
servers to handle additional requests, which improves scalability.

For example, imagine a product search: GET /products?type=book

The server might return only the first 10 results. If the client wants more, it must include all
necessary information to get the next set, such as one of these:

GET /products?type=book&start=25
GET /products?type=book&page=2
GET /products?type=book&num=25&offset=25

We can see that each request is independent in that the server does not remember what the
client requested previously.

In contrast, non-RESTful systems often rely on server-side session state. The server
remembers what the client was doing, allowing requests like:

https://ics.uci.edu/~fielding/pubs/dissertation/top.htm

COMP 2406 RESTful Web Design Winter 2026

 - 289 -

GET /products?type=book
GET /nextPage
GET /nextPage

Here, the server keeps track of the client’s progress, which violates statelessness. If that
server crashes, the client may lose its session and have to start over. A stateless system, on
the other hand, is more robust and scalable. Since each request contains all the information
the server needs, any server can handle any request. If one server fails, another can take over
without interrupting the client’s interactions.

Even for something like a back-and-forth chat session, REST can remain stateless, despite the
existence of chat history. Each request from the client must include all the information the

server needs to process it, such as an authentication token, the message
content, or the chat room ID.

But the chat history itself is data, not session state. The server can store
messages in a database and return past messages on request. This does

not violate statelessness because the server is not keeping any temporary
memory of the client’s ongoing session. Each request is handled independently, so if the client
disconnects and reconnects, the server can still process requests correctly.

3. Cacheable:

In REST, the server explicitly indicates whether a response can be cached. This is
done using HTTP headers (like Cache-Control or Expires). If a response is

cacheable, the server can also specify how long it remains valid.

When a client has a valid cached copy, it can reuse it instead of making a new
request, which reduces network traffic and server load. This makes the system more scalable
and efficient.

As an example, consider an image-hosting website. The server stores both images and
metadata (e.g., filename, upload date, tags, or description). While metadata may change, the
image files themselves usually do not. The server can mark the images as cacheable for
longer periods, while metadata may have shorter cache times or no caching at all. This way,
clients and intermediaries can reuse large, unchanging resources efficiently.

4. Uniform Interface:

A RESTful system uses a uniform interface to ensure consistent communication between
clients and servers. This makes APIs predictable, easy to understand, and interoperable
across different systems. The uniform interface has several key aspects:

(a) Identification of Resources

REST is centered around resources, which are any entities that can be named (e.g.,
images, user profiles, orders, or real-time data streams). While each resource may be
dynamically generated by the server, each resource must be uniquely identifiable by a URL
that remains constant for its lifetime.

COMP 2406 RESTful Web Design Winter 2026

 - 290 -

For example …

http://myapi.com/products ← collection of products
http://myapi.com/products/28812 ← a specific product
http://myapi.com/products/28812/reviews ← reviews for that product

URLs usually represent nouns, not verbs. APIs that use verbs in URLs (e.g.,
/removeProduct or /updateAccount) are generally not RESTful).

(b) Manipulation of resources through representations:

In REST, the client interacts with information about the resource, not the resource itself or
its storage mechanism. This information, often formatted as JSON, contains all the data
needed to understand and work with it. The server handles the actual storage and
management of the resource (e.g., by using a database, files, or even other servers) but
the client doesn’t need to know how this is done. This separation allows the server to
change its internal implementation without affecting the client.

For example, suppose the server stores product
information in a database. Internally, a product
record might look like this →

id: 28812
name: "Wireless Mouse"
price: 29.99
stock: 12
supplierId: 451
barCode: "WM-122-XY"

The client (e.g., a web app or mobile app) doesn’t
need to know how the server stores this data.
Instead, the client requests the product and
receives a representation of it, usually in JSON →

{

 "id": 28812,

 "name": "Wireless Mouse",

 "price": 29.99,

 "stock": 12

}

The client now has all the information needed to display the product or let a user interact
with it. The server may later change its internal storage (e.g., move from a database to a
file system), but the client still receives the same JSON format, so its code doesn’t break.

(c) Self-descriptive messages:

In a RESTful system, every request and response should contain enough information to
be understood on its own, without relying on previous messages. Also, each message
should contain a data type, which tells the receiver what kind of data it is receiving (e.g.,
"Content-Type" in HTTP).

RESTful systems should also follow the formal meaning of the HTTP verbs: GET to
retrieve, POST to create, PUT to update and DELETE to remove. Because these verbs
have well-known meanings, clients and servers can interact consistently, which
contributes to a uniform interface.

COMP 2406 RESTful Web Design Winter 2026

 - 291 -

(d) Hypermedia as the Engine of Application State (HATEOAS):

In REST, hypermedia links in the server’s response act like signposts. The client doesn’t
need to “know” all URLs in advance; it can simply follow the links provided by the server.
Starting from an initial URL, the client can discover and navigate other resources
dynamically using these hyperlinks.

This approach allows clients to explore relationships (e.g., how a product is linked to its
reviews or manufacturer), discover related resources (e.g., similar products), and interact
with the system without hardcoding any URLs.

For example, a client requests the first page of products like this: GET /products
The server can respond with JSON including products and links:

{

 "products": [

 { "id": 101,

 "name": "Wireless Mouse",

 "price": 29.99,

 "links": {

"reviews": "/products/101/reviews",

"similar": "/products?category=accessories" }},

 { "id": 102,

 "name": "Mechanical Keyboard",

 "price": 79.99,

 "links": {

"reviews": "/products/102/reviews",

"similar": "/products?category=keyboards" }}],

 "links": {

"nextPage": "/products?start=10" }

}

To see reviews for the mouse, the client follows /products/101/reviews, to see similar
products it follows /products?category=accessories, to see the next page of products it
follows /products?start=10 etc..

For fully RESTful systems that implement HATEOAS, the client never hardcodes URLs …
it discovers all actions dynamically through the links provided in the responses. However, in
practice many so-called “REST APIs” do not fully use hypermedia. The reality is that many
APIs still expect the client to know URLs in advance and don’t provide hypermedia links.
These are technically not fully RESTful, even if they use HTTP verbs and URLs.

5. Layered System:

In REST, the system can be composed of multiple layers of servers or services, but
the client interacts with the system as a whole and never needs to know how
many layers exist or how they are structured, it just sends requests and
receives responses. Each layer only communicates with the layers directly
above or below it. This separation of concerns makes the system more modular,
maintainable, and scalable.

COMP 2406 RESTful Web Design Winter 2026

 - 292 -

As an analogy of not needing to know the layers … just think of sending a FedEx
package. We (i.e., client) drop it off at the FedEx counter (i.e., web server). The
staff handles routing our package through storage, sorting, and shipping (i.e., other
layers). We don’t need to know what happens behind the scenes as long as our

package gets delivered.

In a web app, we may have layers like: Clients ➔ Servers ➔ Databases

Additional layers can be added without affecting the client or other layers:

• Caching layer: speeds up responses by storing frequently requested data.

• Authentication/Authorization layer: checks security credentials.

• Load balancer layer: distributes requests across multiple servers.

This enforces separation of concerns within the system and increases modularity.

6. Code on Demand (optional):

In most REST interactions, the server sends static representations of resources (e.g., HTML,
JSON, XML) that the client already knows how to handle. However, the server may optionally
send executable code (such as JavaScript) that extends or modifies the client’s behavior on
the fly. This is useful when the server wants to give the client new capabilities without requiring
the client application to be updated manually. For example:

• A photo-sharing site adds a brand new type of image filter, but the current client app
doesn’t know how to create that effect. The server can send JavaScript code with the
image data that teaches the client how to render the new filter.

• An online form might receive JavaScript that validates new input formats without the
client needing an update.

This approach allows the server to deliver new features instantly, keeping the system flexible
and reducing deployment friction … though it’s used sparingly due to security and caching
concerns.

Not all APIs that call themselves “RESTful” follow every one of these constraints. In general, the more
constraints an API adheres to, the closer it is to the full REST architecture, which can improve
scalability, maintainability, and clarity.

 11.2 Designing RESTful APIs

A RESTful API is built around the idea of resources (i.e., entities in our system that we want to
expose to clients). Designing one well means deciding what those resources are, how they are
identified, and how clients can interact with them.

COMP 2406 RESTful Web Design Winter 2026

 - 293 -

Here are some tips towards designing a RESTful API:

Identify Resources:

A resource is anything our API manages (e.g., a user, a product, an order, etc.) So, our first step is to
come up with a list of the main “things” our system works with. These can be:

• real-world objects (e.g., users, products, vehicles)

• digital items (e.g., images, reviews, songs)

• abstract concepts (e.g., orders, sessions or transactions)

• system resources (e.g., settings, logs, metrics)

Next, we should identify the attributes for each resource:

users

id

name

email

phone

address

purchases

reviews

interests

images

id

url

filename

format

size

uploadedBy

orders

id

userId

items

status

totalPrice

createdAt

settings

id

name

value

updatedAt

products

id

name

description

price

category

images

reviews

stockQuantity

reviews

id

productId

userId

rating

comment

date

sessions

id

userId

createdAt

expiresAt

ipAddress

logs

id

timestamp

level

message

source

vehicles

id

make

model

year

color

VIN

Mileage

songs

id

title

artist

album

duration

releaseDate

genre

transactions

id

userId

amount

currency

status

timestamp

metrics

id

name

value

recordedAt

Then we need to come up with our endpoints … which is a specific URL + HTTP method that
represents one resource or a set of related resources…

COMP 2406 RESTful Web Design Winter 2026

 - 294 -

Use Consistent, Predictable Naming:

When choosing our endpoints, we should follow these guidelines:

• Use plural nouns in route paths to show that the endpoint works with a collection and returns
multiple items, not just a single one:

/products = the entire collection of products
/users = the entire collection of users
/reviews = the entire collection of users

• Append a unique identifier to the collection path for a single resource to make it obvious that
the endpoint returns a single item:

/products/35452 = the product with ID 35452
/users/18 = the user with ID 18
/reviews/164 = the review with ID 164

• Represent parent–child relationships directly in the URL to improve discoverability and keep
related data grouped together:

/products/35452/reviews = all reviews for product 35352
/users/18/orders = all orders for user 18

• Use lowercase letters and hyphens for multi-word resource names because hyphens are
more URL-friendly, easier to read, and work better with search engines:

/user-profiles … not /UserProfiles nor /user_profiles

• Avoid verbs in resource names. Let the HTTP method describe the action, not the path.

POST /orders (create new order) … not … /createOrder
DELETE /orders/37 (delete order 37) … not … /deleteOrder/37

• Map HTTP verbs to CRUD operations:

GET = retrieve one or more resources
POST = add a new resource to a collection
PUT = replace an existing resource
PATCH = partially update an existing resource
DELETE = remove a resource

• Use query parameters for filtering, sorting, and searching. The path should identify the
resource, while the query parameters control how the results are returned:

/products = get all products
/products?name=paint = get products with paint in the name
/products?type=book = get products that have a type of book
/products?name=paint&type=book = get books with paint in the name

COMP 2406 RESTful Web Design Winter 2026

 - 295 -

Avoid putting filter logic into the path:

/products?category=electronics&sort=price

instead of … /products/electronics/sort/price

• Keep URIs stable and version when necessary. Once published, treat a resource path as
permanent. If breaking changes are needed, version at the root:

/v1/products becomes /v2/products if a new version is needed

Use Pagination:

When a collection contains hundreds, thousands, or even millions of resources,
returning the entire set in a single response is inefficient and unnecessary. Instead, the
server should return a small subset (i.e., a page of results) for each request. This
approach, called pagination, reduces bandwidth usage and improves performance.

Pagination is often implemented using query parameters in the GET request that can specify:

• The number of resources to return (e.g., limit or pageSize)

• The page number to retrieve (e.g., page)

• Or, in some APIs, a start and end range of results (e.g., start, end).

Here are some typical examples:

/products get all products (use default pagination (e.g., first 20 items))
/products?page=3 retrieve the 3rd page of products
/products?limit=20 return only 20 products per page
/products?offset=40&limit=20 skip the first 40 products, then return the next 20
/products?start=41&end=60 return products with positions 41 through 60
/products?type=book get all products of type book (default pagination)
/products?type=book&limit=10 get first 10 book products
/products?type=book&page=2&limit=10 get 2nd page of books, 10 per page (items 11–20)
/products?type=book&offset=20&limit=10 get books starting from item 21, next 10 items
/products?type=book&sort=price-asc&limit=5 get first 5 books sorted by ascending price

In a query string, the plus sign (+) usually represents a space between words. However, the exact
meaning can vary depending on how the server handles it. For example:

/products?type=book&search=fidget+toy&page=1&limit=5

This may either search for books with “fidget toy” in the title or description and give the first 5
results. Alternatively, it may search for books with both “fidget” and “toy” in the title or description.
Most modern APIs use the second approach.

COMP 2406 RESTful Web Design Winter 2026

 - 296 -

Use Appropriate Response Codes:

Using the right response codes helps clients quickly understand what happened (i.e., whether the
request worked, needs adjustment, or failed). The most common codes are grouped below by
category, along with their typical meaning and when to use them:

Informational:

100 Continue Client may continue with request
101 Switching Protocols Server is switching protocols

Success:

200 OK Request succeeded
201 Created Resource successfully created
202 Accepted Request accepted for processing
204 No Content Request succeeded, no content returned

Redirection:

301 Moved Permanently Resource permanently moved; use new URL for future requests
302 Found Temporary redirect; client may retry at original URL later
303 See Other Redirect after POST; client should use GET method
304 Not Modified Resource unchanged; cached version is still valid
307 Temporary Redirect Temporary redirect; repeat request using same method
308 Permanent Redirect Permanent redirect; repeat request with same method at new URL

Client Errors:

400 Bad Request Request malformed or invalid
401 Unauthorized Authentication required or failed
403 Forbidden Authenticated, but access is not allowed
404 Not Found Resource not found
405 Method Not Allowed Method is not allowed on this resource
408 Request Timeout Client took too long to send request
429 Too Many Requests Client sent too many requests (rate limit)

Server Errors:

500 Internal Server Error Generic server error
501 Not Implemented Method not supported by server
502 Bad Gateway Server received an invalid response from another server it contacted
503 Service Unavailable Server is overloaded or down
504 Gateway Timeout Server didn’t receive a response in time from another server

In conclusion … RESTful design is all about treating resources consistently and letting clients interact
with them through a standard interface. Since different clients may need the same resource in
different ways (i.e., humans using a browser, programs running on servers, or mobile apps) it’s best
that our server support multiple data formats. HTML works well for humans in a browser, while
programs or other applications usually prefer machine-readable formats like JSON or plain text.

To achieve this, the server typically stores a single main representation of each resource, such as a
JSON file or a database entry, and converts it into other formats on demand. This can be done by
checking the client’s request headers (e.g., Accept: application/json vs. Accept: text/html) or by
using query parameters (e.g., ?format=json).

By providing flexible representations, our API can be used by a wide range of clients without
duplicating data or creating separate endpoints for each format.

COMP 2406 RESTful Web Design Winter 2026

 - 297 -

 11.3 Practice Exercise - Date-a-Science Website API

Let's do a practice exercise. Going back to our Data-a-Science
site, lets design a RESTful API that will allow us to search
members, view member profiles, see suggested matches,
and manage user accounts. We will build this API step-by-
step, with questions guiding our design. Of course, here in the
notes, we are just explaining it all, but pause at each question
(in red text) to see if you can come up with the results on your
own.

1. What resources will we need?

• Real-world objects:

• members

• users

• Digital items:

• photos

• reviews

• messages

• Abstract concepts:

• matches

• sessions

• interactions (e.g., likes, dislikes, match accepted/rejected)

• notifications (e.g., match/like/message/security alerts)

• System resources:

• settings

2. What data do we need for each resource?

• members
o id → unique identifier

o name → first/last or display name

o age / birthdate

o gender / pronouns

o location → city, state, or coordinates

o bio / description → short personal summary

o photos → array of photo URLs

o interests / hobbies → array of strings

o lastActive → timestamp for last login or activity

COMP 2406 RESTful Web Design Winter 2026

 - 298 -

• users
o id → unique user ID

o username / login → account identifier

o passwordHash → stored securely

o email → optional, for verification or notifications

o profileId → links to the member profile

o createdAt → account creation timestamp

• photos
o id → unique photo ID

o url / path → location of photo

o caption → optional text

o uploadedAt → timestamp

o ownerId → member ID who owns the photo

• reviews
o id → unique review ID

o authorId → member writing the review

o targetId → member receiving the review

o rating → number (e.g., 1–5)

o comment → optional text

o createdAt → timestamp

• messages
o id → unique message ID

o senderId / receiverId → member IDs

o content → text

o sentAt → timestamp

o readStatus → boolean or timestamp

• matches
o id → unique match ID (optional)

o memberId → the member receiving suggestions

o matchedMemberId → suggested member ID

o score / compatibility → optional number indicating match strength

o createdAt / suggestedAt → timestamp

• sessions
o id / token → session token

o userId → linked account

o createdAt / expiresAt → timestamps

o device / IP → optional metadata

• interactions
o id → unique interaction ID

o memberId → person performing the action

o targetId → person receiving the action

o type → like, super-like, dislike, etc.

o timestamp → when the action occurred

COMP 2406 RESTful Web Design Winter 2026

 - 299 -

• notifications
o id → unique notification ID

o memberId → recipient

o type → message, match, like, system alert

o content → optional text

o readStatus → boolean

o createdAt → timestamp

• settings
o id / userId → links to account

o notificationsEnabled → boolean

o visibility / privacy settings → e.g., show profile to everyone or matches only

o language / locale → string

o theme / display settings → optional

3. What are the API endpoints (i.e., method and URL)?

• members:

GET /members Search or list members with optional query params

GET /members/{mID} Retrieve a specific member profile

PUT /members/{mID} Update a member profile (bio, photos, interests, etc.)

DELETE /members/{mID} Delete a member profile (optional, if allowed)

• users:

POST /users Create a new user account

GET /users/{uID} Retrieve user account info

PUT /users/{uID} Update user account info (password, email, settings)

DELETE /users/{uID} Delete a user account

• photos:

GET /members/{mID}/photos List all photos for a member

POST /members/{mID}/photos Upload a new photo

GET /members/{mID}/photos/{photoID} Retrieve a specific photo

DELETE /members/{mID}/photos/{photoID} Delete a photo

• reviews:

GET /members/{mID}/reviews List reviews for a member

POST /members/{mID}/reviews Submit a review for a member

GET /members/{mID}/reviews/{reviewID} Retrieve a specific review

DELETE /members/{mID}/reviews/{reviewID} Delete a review

COMP 2406 RESTful Web Design Winter 2026

 - 300 -

• messages:

GET /members/{mID}/messages List messages for a member

POST /members/{mID}/messages Send a new message

GET /members/{mID}/messages/{messageID} Retrieve a specific message

DELETE /members/{mID}/messages/{messageID} Delete a message

• matches:

GET /members/{mID}/matches Get a list of suggested matches for a member

POST /members/{mID}/matches Record or generate a new match (system-driven)

• sessions:

POST /sessions Create a new login session (authenticate)

DELETE /sessions/{sessionID} Logout / delete a session

• interactions:

GET /members/{mID}/interactions List interactions for a member

POST /members/{mID}/interactions Record a new interaction

GET /members/{mID}/interactions/{interactionID} Retrieve a specific interaction

DELETE /members/{mID}/interactions/{interactionID} Remove an interaction

• notifications:

GET /members/{mID}/notifications List notifications for a member

POST /members/{mID}/notifications Create a notification (system)

GET /members/{mID}/notifications/{notificationID} Retrieve a specific notification

PUT /members/{mID}/notifications/{notificationID} Mark notification as read

DELETE /members/{mID}/notifications/{notificationID} Delete a notification

• settings:

GET /users/{uID}/settings Retrieve user settings / preferences

PUT /users/{uID}/settings Update user settings / preferences

COMP 2406 RESTful Web Design Winter 2026

 - 301 -

4. What are the expected queries for these endpoints?

Resource /
Type

Attributes
HTTP

Method
Endpoint / URL Pattern

Typical Query /
Request Parameters

Notes / Response

Members /
Profiles

id, name, age,
gender, bio,
location,
photos[],
interests[],
lastActive

GET /members name, min-age, max-
age, interest, gender,
location, limit, offset, sort

List/search members

GET /members/{mID} none Retrieve single member

profile
PUT /members/{mID} JSON body with

attributes to update
Update member profile

DELETE /members/{mID} none Delete member profile

Users /
Accounts

id, username,
passwordHash,
email, profileId,
createdAt

POST /users JSON: {username,
password}

Create new account, 201
Created

GET /users/{uID} none Retrieve user account
PUT /users/{uID} JSON body with updates Update account
DELETE /users/{uID} none Delete account

Photos id, url, caption,
uploadedAt,
ownerId

GET /members/{mID}/photos limit, offset, sort List member photos

POST /members/{mID}/photos file + optional JSON

metadata
Upload photo

GET /members/{mID}/photos/{photoID} none Retrieve photo
DELETE /members/{mID}/photos/{photoID} none Delete photo

Messages id, senderId,
receiverId,
content,
sentAt,
readStatus

GET /members/{mID}/messages sender-id, receiver-id,
read-status, limit, offset,
sort

List messages

POST /members/{mID}/messages JSON: {receiver-id,

content}
Send message

GET /members/{mID}/messages/{messageID} none Retrieve message
DELETE /members/{mID}/messages/{messageID} none Delete message

Reviews /
Testimonials

id, authorId,
targetId, rating,
comment,
createdAt

GET /members/{mID}/reviews author-id, rating-min,
rating-max, limit, offset,
sort

List reviews

POST /members/{mID}/reviews JSON: {author-id, rating,

comment}
Submit review

GET /members/{mID}/reviews/{reviewID} none Retrieve review
DELETE /members/{mID}/reviews/{reviewID} none Delete review

Matches id, memberId,
matchedMemb
erId, score,
createdAt

GET /members/{mID}/matches limit, sort, exclude-
viewed

Get suggested matches

POST /members/{mID}/matches optional system-

generated
Record new match

Sessions /
Login

id/token,
userId,
createdAt,
expiresAt,
device/IP

POST /sessions JSON: {username,
password}

Login / create session

DELETE /sessions/{sessionID} none Logout / delete session

Interactions
/ Likes

id, memberId,
targetId, type,
timestamp

GET /members/{mID}/interactions type, target-id, limit,
offset, sort

List interactions

POST /members/{mID}/interactions JSON: {target-id, type} Create interaction
GET /members/{mID}/interactions/{interactionID} none Retrieve interaction
DELETE /members/{mID}/interactions/{interactionID} none Remove interaction

Notifications id, memberId,
type, content,
readStatus,
createdAt

GET /members/{mID}/notifications read-status, type, limit,
offset, sort

List notifications

POST /members/{mID}/notifications optional system-

generated
Create notification

COMP 2406 RESTful Web Design Winter 2026

 - 302 -

GET /members/{mID}/notifications/{notificationID} none Retrieve notification
PUT /members/{mID}/notifications/{notificationID} JSON: {read-status:

true/false}
Mark read/unread

DELETE /members/{mID}/notifications/{notificationID} none Delete notification

Settings /
Preferences

id/userId,
notificationsEn
abled, visibility,
privacy,
language,
theme

GET /users/{uID}/settings optional section Retrieve settings

PUT /users/{uID}/settings JSON body with updates Update settings

What are examples of queries and their expected 200 OK response bodies?

GET /members?name=Alex&min-age=25&max-age=35

[

 {

 "id": 101,

 "name": "Alex Johnson",

 "age": 28,

 "gender": "male",

 "bio": "Loves hiking and coffee",

 "location": "Toronto",

 "interests": ["hiking", "coffee"],

 "lastActive": "2025-10-12T12:34:56Z"

 },

 {

 "id": 102,

 "name": "Alexandra Smith",

 "age": 27,

 "gender": "female",

 "bio": "Enjoys painting and yoga",

 "location": "Toronto",

 "interests": ["painting", "yoga"],

 "lastActive": "2025-10-12T11:20:10Z"

 }

]

GET /members?interest=hiking&location=Toronto&limit=5

[

 { "id": 101, "name": "Alex Johnson", "age": 28 },

 { "id": 103, "name": "Brian Lee", "age": 30 },

 ...

]

GET /members?limit=10&offset=20&sort=last-active-desc

[... next 10 member objects ...]

GET /members/101/photos?limit=5&sort=uploaded-at-desc

[

 { "id": 501, "url": "/images/501.jpg", "caption": "Hiking trip", "uploadedAt": "2025-

10-10T10:00:00Z" },

 { "id": 502, "url": "/images/502.jpg", "caption": "Coffee shop", "uploadedAt": "2025-

10-08T15:30:00Z" }

]

COMP 2406 RESTful Web Design Winter 2026

 - 303 -

GET /members/101/messages?sender-id=202&read-status=false

[

 { "id": 1001, "senderId": 202, "receiverId": 101, "content": "Hi there!", "sentAt":

"2025-10-12T10:12:00Z", "readStatus": false }

]

GET /members/101/messages?limit=20&offset=0&sort=sent-at-desc

[... last 20 messages ...]

GET /members/101/reviews?rating-min=4&rating-max=5&limit=10

[

 { "id": 201, "authorId": 102, "targetId": 101, "rating": 5, "comment": "Great person!",

"createdAt": "2025-10-11T14:00:00Z" }

]

GET /members/101/reviews?sort=created-at-desc

[... reviews sorted newest first ...]

GET /members/101/matches?limit=5&sort=score-desc

[

 { "memberId": 201, "matchedMemberId": 101, "score": 98 },

 { "memberId": 202, "matchedMemberId": 101, "score": 95 }

]

GET /members/101/matches?exclude-viewed=true

[... only unseen match suggestions ...]

GET /members/101/interactions?type=like

[

 { "id": 301, "memberId": 101, "targetId": 202, "type": "like", "timestamp": "2025-10-

10T09:00:00Z" }

]

GET /members/101/interactions?limit=10&offset=20&sort=timestamp-desc

[... next 10 interactions ...]

GET /members/101/notifications?read-status=false

[

 { "id": 401, "memberId": 101, "type": "match", "content": "You matched with Alex!",

"readStatus": false, "createdAt": "2025-10-12T08:00:00Z" }

]

GET /members/101/notifications?type=match&sort=created-at-desc

[... match notifications, newest first ...]

COMP 2406 RESTful Web Design Winter 2026

 - 304 -

5. What are the expected response codes?

Resource / Type
HTTP

Method
Endpoint / URL Pattern

Response
Codes

Notes / Response

Members / Profiles GET /members 200, 400 List/search members
GET /members/{mID} 200, 404 Retrieve single member profile
PUT /members/{mID} 200, 400, 404 Update member profile
DELETE /members/{mID} 204, 404 Delete member profile

Users / Accounts POST /users 201, 400 Create new account
GET /users/{uID} 200, 404 Retrieve user account
PUT /users/{uID} 200, 400, 404 Update account
DELETE /users/{uID} 204, 404 Delete account

Photos GET /members/{mID}/photos 200, 404 List member photos
POST /members/{mID}/photos 201, 400, 404 Upload photo
GET /members/{mID}/photos/{photoID} 200, 404 Retrieve photo
DELETE /members/{mID}/photos/{photoID} 204, 404 Delete photo

Messages GET /members/{mID}/messages 200, 404 List messages
POST /members/{mID}/messages 201, 400, 404 Send message
GET /members/{mID}/messages/{messageID} 200, 404 Retrieve message
DELETE /members/{mID}/messages/{messageID} 204, 404 Delete message

Reviews / Testimonials GET /members/{mID}/reviews 200, 404 List reviews
POST /members/{mID}/reviews 201, 400, 404 Submit review
GET /members/{mID}/reviews/{reviewID} 200, 404 Retrieve review
DELETE /members/{mID}/reviews/{reviewID} 204, 404 Delete review

Matches GET /members/{mID}/matches 200, 404 Get suggested matches
POST /members/{mID}/matches 201, 400, 404 Record new match

Sessions / Login POST /sessions 201, 400, 401 Login / create session
DELETE /sessions/{sessionID} 204, 404 Logout / delete session

Interactions / Likes GET /members/{mID}/interactions 200, 404 List interactions
POST /members/{mID}/interactions 201, 400, 404 Create interaction
GET /members/{mID}/interactions/{interactionID} 200, 404 Retrieve interaction
DELETE /members/{mID}/interactions/{interactionID} 204, 404 Remove interaction

Notifications GET /members/{mID}/notifications 200, 404 List notifications
POST /members/{mID}/notifications 201, 400, 404 Create notification
GET /members/{mID}/notifications/{notificationID} 200, 404 Retrieve notification
PUT /members/{mID}/notifications/{notificationID} 200, 400, 404 Mark read/unread
DELETE /members/{mID}/notifications/{notificationID} 204, 404 Delete notification

Settings / Preferences GET /users/{uID}/settings 200, 404 Retrieve settings
PUT /users/{uID}/settings 200, 400, 404 Update settings

Success codes: 200 OK, 201 Created, 204 No Content
Client errors: 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found, 429 Rate Limit
Server errors: 500 Internal Error … implied for all endpoints

As we can see, creating an API for a website involves many "moving parts", from defining resources
and endpoints to specifying query parameters, request bodies, and response codes. However, by
taking the time to design the API carefully and consistently, we make the implementation much
smoother, reduce the likelihood of errors, and ensure that our code will be easier to maintain and
extend in the future.

