

Chapter 12

The MongoDB DBMS

What is in This Chapter ?

This chapter begins with a very brief motivation for using databases and Database Management
Systems (DBMS). We then discuss the MongoDB shell and how we can use it to create our own
database to organize our data into collections. We examine some of the more common operations
that can be performed from the terminal window using mongosh. We then consider how to use
MongoDB within Node.js. We create a basic test program to connect to a database, perform some
queries and then disconnect. We conclude with an example of a basic website that can perform
product management by connecting an Express server running PUG code to our MongoDB
database.

COMP 2406 The MongoDB DBMS Winter 2026

 - 306 -

 12.1 Database Introduction

Consider building a website that lets people create accounts, post comments, or save their favorite
products. At first, it might seem simple enough to store that information in local files on our server. We
can, for example, just write to a text file or a JSON file whenever new data comes in. This may work
well if there are just a few intermittent accounts being created and used. However, as soon as
multiple users start interacting with the site at the same time, things can become unpleasant …

 Handling asynchronous file reads and writes can become complicated and error-prone.

• We have to keep track of callbacks or async/await logic for every
read/write.

• If multiple requests try to write to the file at once, race conditions can
occur (i.e., one write overwriting another).

• If an error happens mid-operation (e.g., file missing, permission denied,
disk full), we need to catch and handle it properly or our whole app may
crash.

• As the number of operations grows, the code can become messy and
harder to debug.

 Using synchronous file operations is considered bad practice because it blocks the entire

server, slowing everything down.

 If we want to search or filter data (e.g., "find all users over 18"), we would need to write our own

custom code to parse and scan the file, which is inefficient and fragile.

This is where databases (e.g., MongoDB , Firebase Firestone, MySQL, SQLite, Microsoft SQL
Server, Amazon DynamoDB, etc..) can be useful.

A database is an organized collection of information that can be stored, updated, and
searched efficiently.

Databases are designed to safely handle lots of users and data at once, making it fast to insert,
update, and query information without conflicts/problems. Unlike local files, databases provide
structure, scalability, and reliability … so our website can grow from a simple project to a full-fledged
application that serves real users smoothly. But to make a database useful, we need …

A Database Management System (DBMS) is special software that sits between our
application and the database.

COMP 2406 The MongoDB DBMS Winter 2026

 - 307 -

Instead of us having to write raw file-handling code, the DBMS provides tools and commands to:

✓ Store data efficiently (i.e., in tables, documents, or other structures).

✓ Manipulate data (i.e., insert new records, update existing ones, or delete them safely).

✓ Query data (i.e., search and filter information quickly).

✓ Control access (i.e., handle multiple users at once without conflicts).

✓ Maintain reliability (i.e., recover from crashes, ensure data isn’t corrupted, keep backups).

In short, the DBMS is what makes databases practical because it does the hard part (i.e., organizing
and protecting data) while providing a simple, clean way for us developers to interact with it.

Beyond just storing data safely, databases also give us the following essential advantages:

✓ Fast Queries - we can search and filter data rapidly without writing custom code.

✓ Reports & Insights - data can be combined and turned into

meaningful information (e.g., sales by region, most active users,
etc..).

✓ Automatic Optimizations - handles indexing and performance

tweaks “under the hood”.

✓ Reliability (ACID: Atomicity, Consistency, Isolation, Durability) –

guarantees that data remains valid even if something goes wrong
(e.g., errors, crashes, or power loss).

✓ Fault Tolerance - can recover from failures or replicate data to keep

things safe.

✓ Concurrency - multiple users can interact at the same time without corrupting information.

✓ Scalability - built to handle very large amounts of data as our app/site grows.

There are two main classes of DBMS:

• Relational: Stores data in structured tables with fixed rows and columns. Great for data with
clear relationships (e.g., users ↔ orders ↔ products). Querying is done with SQL (Structured
Query Language). Examples: MySQL, PostgreSQL, Oracle.

• NoSQL (i.e., Not Only SQL): Stores data in non-tabular formats and offer dynamic structure,
making them easier to adapt as requirements change and they scale well to handle huge
amounts of data and high traffic.

COMP 2406 The MongoDB DBMS Winter 2026

 - 308 -

There are 4 types of NoSQL databases:

o Document Databases: stores data in documents that look like JSON objects.

o Key-Value Databases: each item is a key paired with a value.

o Wide-Column Stores: stores data in tables with rows and dynamic columns
(sometimes called “two-dimensional key-value databases”). Different rows don’t need to
have the same columns.

o Graph Databases: stores data as nodes (things like people, places, or products) and
edges (the relationships between them).

In this course, we will be using MongoDB, which is classified as a NoSQL (document-
based) program that uses JSON-like documents with flexible structure, so each record can
contain different types of information. It organizes data into collections of documents, with
each document representing a single entity or object in the system. It is consistently ranked
as the world’s most popular NoSQL database.

 12.2 Working with Databases in a MongoDB Shell

Let’s get started using MongoDB. We need to first follow these steps:

1. Install MongoDB Community Edition by first downloading the package under MongoDB
Community Server for your OS from here:

https://www.mongodb.com/products/self-managed/community-edition

Then it using all the default settings. Let's hope the latest version adheres to these notes.

2. Download MongoDB Shell (i.e., mongosh) from here (select msi package for windows):

https://www.mongodb.com/docs/mongodb-shell/

Install it using the default settings.

3. To run the MongoDB Shell, we need to open a Command Prompt terminal (not Powershell)
and type mongosh. You will see something like what is shown below, although it may differ
over time with each version update:

https://www.mongodb.com/products/self-managed/community-edition
https://www.mongodb.com/docs/mongodb-shell/

COMP 2406 The MongoDB DBMS Winter 2026

 - 309 -

MongoDB organizes data in a hierarchy that is flexible and easy to understand:

MongoDB Server
 └─ Database
 └─ Collection
 └─ Document
 └─ Field

1. Server / Instance

The MongoDB server (or instance) is the running process that holds our databases. We
can connect to it via mongosh or through our application.

2. Databases

Each server can have multiple databases (e.g., school, store, blog). Databases act like
containers for collections.

3. Collections

Each database contains one or more collections. A collection is roughly like a table in
SQL, but it has no fixed schema (e.g., users, products, orders).

4. Documents

A collection stores multiple documents. A document is a single record, stored as a
JSON-like object. (e.g., { "id": 1, "name": "Bob", "email": "bob@gmail.com", "age": 22 })

5. Fields

Each document contains fields (i.e., key-value pairs) that hold data. (e.g., "age": 22)

Creating and Modifying a MongoDB Database

There are different commands that we can use in mongosh to create and modify databases. Here
are just a few of the more useful ones:

• show dbs – shows the current databases (three defaults exist: admin, config and local)

test> show dbs
admin 40.00 KiB
config 12.00 KiB
local 40.00 KiB
test>

• db – shows the current database name. (Note: upon startup, the current database is test which is like a

“starting playground” where we can experiment until we create and switch to our own databases).

test> db
test
test>

COMP 2406 The MongoDB DBMS Winter 2026

 - 310 -

• use <dbName> – switches to the database with name <dbName> if it already exists.
Otherwise, it creates a database with the name <dbName> if it doesn’t already exist (although
the database is only actually created when we insert our first document, so it will not appear
yet in the list of databases).

test> use store
switched to db store
store>

• db.dropDatabase() – removes all collections and documents inside the current database.
Once executed, the action is irreversible, so use it carefully and make sure to use db to check
that we are in the current database is the one that we want to delete. Note that the database
still shows in the prompt, but it no longer exists on disk until we insert new data again.

store> db.dropDatabase()
{ ok: 1, dropped: 'store' }
store>

• db.createCollection(<collectionName>) – creates a collection with the given name in the
current database. Alternatively, a collection will be created automatically as we add our first
document.

store> db.createCollection("products")
{ ok: 1 }
store> db.createCollection("users")
{ ok: 1 }
store>

• show collections – shows all collections in the current database:

store> show collections
products
users
store>

• db.<collectionName>. insertOne(<JSON Object>) – adds a document to the specified
collection named <collectionName> within the current database. Note that EVERY document
MUST have a key called _id. If we accidentally provide a key name id, it will be added but then
an additional _id key will also be automatically created. Note as well that the key names do not
need quotes around them, but value strings do.

store> db.products.insertOne({_id:1, name:"Laptop", price:1200, stock:136 })
{
 acknowledged: true,
 insertedId: 1
}
store> db.products.insertOne({_id:2, name:"Mouse", price:25, stock:395 })
{
 acknowledged: true,
 insertedId: 2
}

COMP 2406 The MongoDB DBMS Winter 2026

 - 311 -

store> db.products.insertOne({_id:2, name:"Pizza", price:9.99, stock:2 })
MongoServerError: E11000 duplicate key error collection: store.products index:
id dup key: { _id: 2 }

• db.<collectionName>.find() – shows all documents in the collection named
<collectionName> within the current database.

store> db.products.find()
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 2, name: 'Mouse', price: 25, stock: 395 }
]
store>

• db.<collectionName>.deleteOne({ key : value }) – deletes the first document that matches
the given key : value filter.

store> db.products.deleteOne({_id:2})
{ acknowledged: true, deletedCount: 1 }
store> db.products.deleteOne({_id:6})
{ acknowledged: true, deletedCount: 0 }
store>

• db.<collectionName>. insertMany([<JSON Obj1> , <JSON Obj2> , <JSON Obj3> , …]) –
adds multiple documents to the specified collection named <collectionName> within the
current database.

store> db.products.insertMany([{_id:3, name:"Pencils", price:1.79, stock:4352},
{_id:4, name:"Ruler", price:2.79, stock:2879}, {_id:9, name:"Mug", price:4.49,
stock:528}])
{ acknowledged: true, insertedIds: { '0': 3, '1': 4, '2': 9 } }
store>

• db.<collectionName>.countDocuments() – shows the number of documents in the
collection named <collectionName> within the current database.

store> db.products.find()
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]
store> db.products.countDocuments()
4
store>

COMP 2406 The MongoDB DBMS Winter 2026

 - 312 -

Querying a MongoDB Database

Databases often contain a lot of data, but we usually only need a small portion at a
time. To get exactly what we want, we use a …

query = a request to a database to retrieve specific data that matches certain criteria.

For example, we might want to see just a few product names and prices, sort them by price, or only
look at products that are in stock. In MongoDB, we use the find() function to perform these queries
and control which data is returned. Here are some examples of how this can be done effectively

• db.<collectionName>.find({ key : { $operator : value } }) – shows all documents in the
collection named <collectionName> within the current database whose key attribute has a
value that matches the given query condition specified by $operator. When .count() is used
at the end, it shows only the number of documents that matched.

store> db.products.find()
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]
store> db.products.find({price:{$gt:10}})
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 }
]
store> db.products.find({price:{$lt:10}})
[
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]
store> db.products.find({price:{$lt:10}}).count()
5
store>

Here are a few of the various comparison query operators available:

COMP 2406 The MongoDB DBMS Winter 2026

 - 313 -

Operator Description
$eq =
$ne !=
$gt >
$gte >=
$lt <
$lte <=
$in [] matches values in the specified array of values
$nin [] matches values not in the specified array of values

Queries can be combined using a comma:

store> db.products.find({price:{$lt:10}, stock:{$gt:500}})
[
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]

Queries can be combined for the same key field:

store> db.products.find({price:{$gt:10,$lt:500}})
[
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 }
]

Values can be compared to items in an array:

store> db.products.find({name:{$in:["Chair", "Table"]}})
[
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 }
]

We can use regular expressions to see if there is a partial match for a string:

store> db.products.find()
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 },
 { _id: 10, name: 'Red Ball', price: 2.99, stock: 24 },
 { _id: 11, name: 'Blue Ball', price: 2.99, stock: 46 },
 { _id: 12, name: 'Green Ball', price: 2.99, stock: 34 }
]

COMP 2406 The MongoDB DBMS Winter 2026

 - 314 -

store> db.products.find({name:{$regex:"Ball"}})
[
 { _id: 10, name: 'Red Ball', price: 2.99, stock: 24 },
 { _id: 11, name: 'Blue Ball', price: 2.99, stock: 46 },
 { _id: 12, name: 'Green Ball', price: 2.99, stock: 34 }
]
store>

Here are a few of the various logical query operators available:

Operator Description
$and matches the conditions of all clauses
$not do not match the conditions of the query
$nor fail to match the conditions of all clauses
$or match the conditions of either clause

 Here is an example of finding cheap items that have a lot of stock:

store> db.products.find ({$and:[{price:{$lt:5}}, {stock:{$gt:100}}])
[
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]

 Here is an example of finding cheap items OR ones that are low in stock:

store> db.products.find ({$or:[{price:{$lt:2.99}}, {stock:{$lt:20}}]})
[
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 }
]
store>

Here is an example of finding items that are neither cheap NOR low in stock:

store> db.products.find ({$nor:[{price:{$lt:2.99}}, {stock:{$lt:20}}]})
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 },
 { _id: 10, name: 'Red Ball', price: 2.99, stock: 24 },
 { _id: 11, name: 'Blue Ball', price: 2.99, stock: 46 },
 { _id: 12, name: 'Green Ball', price: 2.99, stock: 34 }
]
store>

We can also handle nested/embedded objects by using the dot notation. Quotes are required
around the attribute parameters. Here is an example of how to do this:

COMP 2406 The MongoDB DBMS Winter 2026

 - 315 -

store> db.products.insertMany([
 {
 _id: 22, name: "Tablet A", price: 499.99, stock: 25,
 details: {
 manufacturer: { name: "TechBrand", country: "Korea", warrantyYears: 1 },
 specs: { screen: "10 inch", storage: "128GB", battery: "7000mAh" }
 }
 },
 {
 _id: 23, name: "Tablet B", price: 599.99, stock: 30,
 details: {
 manufacturer: { name: "GigaTech", country: "USA", warrantyYears: 2 },
 specs: { screen: "11 inch", storage: "256GB", battery: "8000mAh" }
 }
 },
 {
 _id: 24, name: "Tablet C", price: 699.99, stock: 18,
 details: {
 manufacturer: { name: "SmartWorld", country: "Japan", warrantyYears: 1 },
 specs: { screen: "12.5 inch", storage: "256GB", battery: "9000mAh" }
 }
 }
])
{ acknowledged: true, insertedIds: { '0': 22, '1': 23, '2': 24 } }
store> db.products.find({"details.specs.storage": "128GB"})
[
 {
 _id: 22,
 name: 'Tablet A',
 price: 499.99,
 stock: 25,
 details: {
 manufacturer: { name: 'TechBrand', country: 'Korea', warrantyYears: 1 },
 specs: { screen: '10 inch', storage: '128GB', battery: '7000mAh' }
 }
 }
]
store>

When working with a database, we often don’t need all the information stored in a document. For
example, suppose we are shopping online and just want to see the name and price of items (i.e., we
may not care about their manufacturer, warrantyYears, _id, etc..). If the database sent us all the
details every time, it would be wasteful (i.e., more data to transfer, more memory to hold it, and more
noise for us to filter through).

Thankfully, MongoDB allows us to use …

A projection is a way to select which fields of a document are returned by a query,
including some and excluding others.

COMP 2406 The MongoDB DBMS Winter 2026

 - 316 -

A projection let’s us say: “I only want these fields, and nothing else.” It helps keep
queries fast, makes our results easier to read, and reduces the amount of data
traveling across the network. Projections are especially important in large systems,
where millions of users are querying massive collections.

A projection is supplied as the second parameter of the find() command:

• db.<collectionName>.find({ key : value } , { key1:flag1, key2:flag2, key3:flag3 … })
– shows all documents in the collection named <collectionName> within the current
database whose key attribute has the specified value. The flags above are either 0 or 1. The
only key: value pairs that are returned are those in which their flag is set to 1. The _id field is
returned by default, but can be disabled by setting its flag to 0 (i.e., _id:0). Alternatively, we
can specify a 𝟎 for all fields we don’t want, and all others will be included.

store> db.products.find({}, {name: 1, price:1, _id:0}))
[
 { name: 'Laptop', price: 1200 },
 { name: 'Pizza', price: 9.99 },
 { name: 'Coke', price: 0.99 },
 { name: 'Chair', price: 345.99 },
 { name: 'Table', price: 429.97 },
 { name: 'Red Ball', price: 2.99 },
 { name: 'Blue Ball', price: 2.99 },
 { name: 'Green Ball', price: 2.99 },
 { name: 'Pencils', price: 1.79 },
 { name: 'Ruler', price: 2.79 },
 { name: 'Mug', price: 4.49 },
 { name: 'Tablet A', price: 499.99 },
 { name: 'Tablet B', price: 599.99 },
 { name: 'Tablet C', price: 699.99 }
]
store> db.products.find({}, {name:0, price:0, _id:0, details:0})
[
 { stock: 136 }, { stock: 2 },
 { stock: 15 }, { stock: 83 },
 { stock: 17 }, { stock: 24 },
 { stock: 46 }, { stock: 34 },
 { stock: 4352 }, { stock: 2879 },
 { stock: 528 }, { stock: 25 },
 { stock: 30 }, { stock: 18 }]
store>

There are some other functions that we can apply after the find() command that are very useful
for pagination:

• db.<collectionName>.find(… }.limit(<n>) – returns the first <n> results that match the
specified query documents.

• db.<collectionName>.find(… }.skip(<m>) – skips over the first <m> results that match the
specified query documents and returns the rest.

COMP 2406 The MongoDB DBMS Winter 2026

 - 317 -

• db.<collectionName>.find(… }.skip(<m>).limit(<n>) – skips over the first <m> results that
match the specified query documents and then returns the next <n> results.

store> db.products.find().limit(5)
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 }
]
store> db.products.find().skip(2).limit(5)
[
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 }
]
store>

Whenever we want to quickly grab just one document, rather than dealing with a full list of results, we
can use findOne(…) instead of find(…). This is useful if we are looking up a specific user by their
unique username or email address. findOne() is better because it stops after it finds the match, while
find() keeps looking for all matches … and in this particular situation, we know that there is only one
match, so why waste time looking for more?

However, we can always use find().limit(1) to get just one product as well. The difference is in the
format returned. findOne() returns one document, whereas find().limit(1) returns a cursor (which is
essentially a pointer to the results … which must be handled differently).

• db.<collectionName>.find(… }.sort({ key : flag})
– sorts the results in order of the specified key. If the flag is 1, it sorts in ascending order. If the
flag is -1, it sorts in descending order.

store> db.products.find({price:{$lt:450}}).sort({stock: 1})
[
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 },
 { _id: 10, name: 'Red Ball', price: 2.99, stock: 24 },
 { _id: 12, name: 'Green Ball', price: 2.99, stock: 34 },
 { _id: 11, name: 'Blue Ball', price: 2.99, stock: 46 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 }
]
store>

COMP 2406 The MongoDB DBMS Winter 2026

 - 318 -

Here is a link to some documentation that describes the various query operators:

https://www.mongodb.com/docs/manual/reference/mql/expressions/

Updating & Deleting in a MongoDB Database

In addition to querying the database, we sometimes need to replace an old document with a new one
(e.g., when a discontinued product is replaced by a newer version). At other times, we may want to
update only certain fields of a document, such as changing the price or stock quantity of a product.
MongoDB provides built-in functions that make both replacing and updating documents
straightforward and efficient.

All modifications in MongoDB are atomic, meaning each change is completed fully before another
begins. This ensures that two processes cannot modify the same document at the same time,
preventing conflicts and avoiding data corruption that could occur if multiple processes tried to write to
the same file simultaneously.

Here is how to do an update of a document:

• db.<collectionName>.updateOne(<filter>, <update>, <options>) – updates a single
document in a collection that matches the given filter. The <filter> identifies the specific
document. <update> defines how to modify the document and <options> are optional
settings.

store> db.products.findOne({_id:1})
{ _id: 1, name: 'Laptop', price: 1200, stock: 136 }

store> db.products.updateOne({_id:1}, {$set: {price: 1079}})
{
 acknowledged: true,
 insertedId: null,
 matchedCount: 1,
 modifiedCount: 1,
 upsertedCount: 0
}

store> db.products.findOne({_id:1})
{ _id: 1, name: 'Laptop', price: 1079, stock: 136 }

store> db.products.updateOne({_id:1}, {$inc: {stock: -1}})
{
 acknowledged: true,
 insertedId: null,
 matchedCount: 1,
 modifiedCount: 1,
 upsertedCount: 0
}

store> db.products.findOne({_id:1})
{ _id: 1, name: 'Laptop', price: 1079, stock: 135 }

https://www.mongodb.com/docs/manual/reference/mql/expressions/

COMP 2406 The MongoDB DBMS Winter 2026

 - 319 -

store> db.products.updateOne({_id:1}, {$inc: {stock: 100}})
{
 acknowledged: true,
 insertedId: null,
 matchedCount: 1,
 modifiedCount: 1,
 upsertedCount: 0
}

store> db.products.findOne({_id:1})
{ _id: 1, name: 'Laptop', price: 1079, stock: 235 }

store>

Notice the resulting object that contains information about how many documents were
modified, among other information. We can use this information to decide what response to
send. Notice the upsertedCount field in the result. It shows how many documents were
inserted because of an upsert (i.e., “update insert” = upsert) operation. If we include
{ upsert: true }, in the <options> parameter, MongoDB will create and insert a new

document when no existing document matches the specified <filter>.

We can include multiple update operators at the same time, separated by commas

(e.g., {$set:{price: 500},$inc:{stock: 100}}).

We can include multiple fields for each update operator, separated by commas

(e.g., {$set:{price: 300, stock: 50}}).

We can handle nested values using the dot operator and quotations:

(e.g., {$set:{"details.manufacturer.warantyYears":5}}).

These are some additional useful update operators:

o $rename – renames a field in a document

o $unset – removes the specified field from a document

Look here for a more thorough list of update operators:

https://www.mongodb.com/docs/manual/reference/mql/update/

There is also an updateMany() function that works similar to insertMany():

• db.<collectionName>.updateMany(<filter>, <update>, <options>) – updates all
documents in a collection that match the given filter.

https://www.mongodb.com/docs/manual/reference/mql/update/

COMP 2406 The MongoDB DBMS Winter 2026

 - 320 -

store> db.products.find({stock:{$gt:50}})
[
 { _id: 1, name: 'Laptop', price: 1079, stock: 235 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]

store> db.products.updateMany({$and:[{stock:{$gt:50}}, {price:{$gt:100}}]},
{$inc:{price:-100}})
{
 acknowledged: true,
 insertedId: null,
 matchedCount: 2,
 modifiedCount: 2,
 upsertedCount: 0
}

store> db.products.find({stock:{$gt:50}})
[
 { _id: 1, name: 'Laptop', price: 979, stock: 235 },
 { _id: 7, name: 'Chair', price: 245.99, stock: 83 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]
store>

• db.<collectionName>.replaceOne(<filter>, <replacementObject>) – replace a single
document in a collection that matches the given <filter> with the <replacementObject>. This
is useful, for example, if we need to replace a discontinued product with a newer version of the
product where many of the attributes are different.

store> db.products.find({_id:24})
[
 {
 _id: 24,
 name: 'Tablet C',
 price: 699.99,
 stock: 18,
 details: {
 manufacturer: { name: 'SmartWorld', country: 'Japan', warrantyYears: 1 },
 specs: { screen: '12.5 inch', storage: '256GB', battery: '9000mAh' }
 }
 }
]
store> db.products.replaceOne({ _id: 24 }, { _id: 24, name: 'Tablet C+', price:
799.99, stock: 50,
... details: {
... manufacturer: { name: 'SmartWorld', country: 'Japan', warrantyYears: 2
},

COMP 2406 The MongoDB DBMS Winter 2026

 - 321 -

... specs: { screen: '12.5 inch', storage: '512GB', battery: '9500mAh' }

... }

... })
{
 acknowledged: true,
 insertedId: null,
 matchedCount: 1,
 modifiedCount: 1,
 upsertedCount: 0
}
store> db.products.find({_id:24})
[
 {
 _id: 24,
 name: 'Tablet C+',
 price: 799.99,
 stock: 50,
 details: {
 manufacturer: { name: 'SmartWorld', country: 'Japan', warrantyYears: 2 },
 specs: { screen: '12.5 inch', storage: '512GB', battery: '9500mAh' }
 }
 }
]
store>

The … in the above example is from the shell's prompt. It is a visual queue to show us that we
are typing in a multi-line command.

• db.<collectionName>.deleteOne(<filter>) – delete a single document in a collection that
matches the given <filter>.

• db.<collectionName>.deleteMany(<filter>) – delete all documents in a collection that match
the given <filter>.

store> db.products.deleteOne({price:{$gt: 400}})
{ acknowledged: true, deletedCount: 1 }
store> db.products.deleteOne({_id:5})
{ acknowledged: true, deletedCount: 1 }
store> db.products.deleteMany({_id:{$gt:10}})
{ acknowledged: true, deletedCount: 4 }
store> db.products.find()
[
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 },
 { _id: 10, name: 'Red Ball', price: 2.99, stock: 24 }
]
store>

COMP 2406 The MongoDB DBMS Winter 2026

 - 322 -

At this point, we have just looked at the basics of MongoDB from the shell window. There are a lot of
operations that we can perform on the database, but we shouldn't worry about trying to know and
understand them all. We should, however, get comfortable with using the documentation to build
queries to achieve specific goals.

Now let’s see how to incorporate MongoDB into a Node.js web application.

 12.3 MongoDB in Node.js

Before we can use MongoDB with Node.js, we need to get the Mongo daemon running. I am not
sure how to describe this for iOS or Linux … but I will describe the process for Windows.

We have to first decide where we want MongoDB to store its files related to our databases. Typically,
we just choose a folder and then tell the Mongo daemon where it is. Let’s do this:

1. Make a subfolder called db within a data folder at the root of our system (i.e., C:\data\db). We
will then tell the Mongo daemon to use that folder.

2. Identify the location that the Mongo daemon executable (i.e., mongod.exe) was installed into
(e.g., C:\Program Files\MongoDB\Server\8.2\bin\mongod.exe).

3. Open up a Command Prompt window and navigate to the folder
from step 2 that contains the mongod.exe file (Note: The Powershell

terminal window in VScode does not have the right permissions). We can
choose it from the arrow beside the + in VSCode →

4. Run this to start the daemon: mongod.exe --dbpath=C:\data\db. We
should see a bunch on “non-sensical” stuff appear that looks like this:

{"t":{"$date":"2025-08-20T16:29:21.438-04:00"},"s":"I", "c":"CONTROL", "id":23285,
"ctx":"thread1","msg":"Automatically disabling TLS 1.0, to force-enable TLS 1.0 specify --sslDisabledProtocols 'none'"}
{"t":{"$date":"2025-08-20T16:29:21.441-04:00"},"s":"I", "c":"CONTROL", "id":5945603, "ctx":"thread1","msg":"Multi threading
initialized"}
{"t":{"$date":"2025-08-20T16:29:21.441-04:00"},"s":"I", "c":"NETWORK", "id":4648601, "ctx":"thread1","msg":"Implicit TCP FastOpen
unavailable. If TCP FastOpen is required, set at least one of the related
parameters","attr":{"relatedParameters":["tcpFastOpenServer","tcpFastOpenClient","tcpFastOpenQueueSize"]}}
{"t":{"$date":"2025-08-20T16:29:21.442-04:00"},"s":"I", "c":"NETWORK", "id":4915701, "ctx":"thread1","msg":"Initialized wire
specification","attr":{"spec":{"incomingExternalClient":{"minWireVersion":0,"maxWireVersion":25},"incomingInternalClient":{"minWireV
ersion":0,"maxWireVersion":25},"outgoing":{"minWireVersion":6,"maxWireVersion":2
…

The code daemon will still be running … indication that the MongoDB server is ready and
listening for us to talk to it (as clients).

5. We will need to use a different terminal window to run our server. We will

open up another terminal now … it can be a powershell window this time. A
powershell window may already be running in VScode, but if not, we can
press the + off to the right side of the terminal to make a new one. We can
swap between them by selecting them from the list … as we can see from
the image here on the right →

6. From that new terminal, we can navigate to the directory that will contain our server code
(e.g., C:\Users\lanth\Documents\COMP 2406\code\MyWebsite\) and install the mongodb
module in NPM: npm install mongodb

COMP 2406 The MongoDB DBMS Winter 2026

 - 323 -

Now we are ready to use the database in our code. Keep in mind that steps 3 & 4 will be necessary
every time that we want to run our server because the Mongo server daemon must also be running
at all times for us to be able to access our database. Our server will become a client of the MongoDB
server.

Let’s first look at how to write a JavaScript program (i.e., test_mongo_connect.js) that
communicates with MongoDB and then later we will see how to do this with a server.

Now, in our course examples, we usually have a simple, single server, so we only need one module
that talks to the database. In that case, it would be fine to put both the server code and the database
code together in the same file. However, in larger applications the server-to-database communication
code is often required across multiple modules (e.g., users.js, products.js, auth.js, etc.). Each of
these modules may need to access different collections in the same database.

If every module managed its own connection, we would end up with repeated code and
possibly multiple unnecessary connections to the database. By moving the connection
logic into a separate file (e.g., db.js), we centralize that responsibility so that the whole
application shares a single connection. This also makes the system easier to maintain.
If, for example, the connection details change (e.g., the database URL or error-handling
strategy), we only need to make updates in one location and the entire app benefits.

So, what does our database module (db.js) look like? It needs to first get/require the MongoClient
class from the mongodb module so that we can connect and talk to the database server. Then we
can set up variables to indicate the address of the MongoDB server as well as the name of our
database.

Finally, we will maintain a client object that will represent our connection to the database and a db

variable that will represent the database that we are connected to … as follows:

 // Get the MongoClient class from the mondodb module
 const { MongoClient } = require("mongodb");

 // Connection URL for the MongoDB server (default port for Mongo is 27017)
 const url = "mongodb://localhost:27017";
 const dbName = "store"; // This is the name of our database

 // Create a MongoClient instance
 const client = new MongoClient(url);

 let db = null; // The database connection (null upon start)

Now, we will need to use the MongoClient to connect to & disconnect from the MongoDB server.
We can set things up so that whenever we need to access something from the database, we call a
function to connect to it, and get back a database object that we can work with. Then we can call a
disconnect function to release the connection.

The latest version of MongoDB requires us to use the async/await approach that we discussed a

while ago in our AJAX chapter. Here is the code that we will add to our db.js file:

COMP 2406 The MongoDB DBMS Winter 2026

 - 324 -

// Connect to the database
async function connectToDatabase() {
 if (!db) { // If not already connected, connect now
 await client.connect();
 console.log("Connected to MongoDB: " + dbName);
 db = client.db(dbName);
 }
 return db;
}

// Disconnect from the database
async function disconnectFromDatabase() {
 await client.close();
 db = null; // Reset so next call to connectToDatabase() works properly
 console.log("Disconnected from MongoDB: " + dbName);
}

module.exports = { connectToDatabase, disconnectFromDatabase };

Notice how the connection code checks to see if the database is already set before connecting again.
This prevents someone from trying to connect again after they are already connected. The db object

is returned to the caller so that we can use it. Closing the connection is also quite simple.

Take notice that these two function make use of await. So, the function that we call these from will

have to have async in front of it.

Finally, notice that we are exporting the two functions. So, to use them in our code, we will need to
do something like this:

const { connectToDatabase, disconnectFromDatabase } = require("./db");

In typical real-world Node.js apps, we wouldn't call disconnectFromDatabase() after every

query. That function is mainly used when the app/server is shutting down. Therefore, in the
require() above, we will often see modules only importing the connectToDatabase() function.

Notice as well that the code above assumes that db.js is in the same folder as wherever we write this
code.

But wait!

Our functions do not have any error-checking in them! What if something goes
wrong (e.g., someone forgot to start the MongoDB server)?

Let’s add some error-handling code.

Here is a better version of these functions …

COMP 2406 The MongoDB DBMS Winter 2026

 - 325 -

 // Connect to the database
 async function connectToDatabase() {
 if (!db) { // If not already connected, connect now
 try {
 await client.connect();
 db = client.db(dbName);
 console.log("Connected to MongoDB: " + dbName);
 } catch (err) {
 console.error("Error connecting to MongoDB:", err);
 throw err; // re-throw this error so that the caller knows it failed
 }
 }
 return db;
 }

 // Disconnect from the database
 async function disconnectFromDatabase() {
 try {
 await client.close();
 db = null; // Reset so next call to connectToDatabase() works properly
 console.log("Disconnected from MongoDB: " + dbName);
 } catch (err) {
 console.error("Error disconnecting from MongoDB:", err);
 }
 }

At this point, we have a nice clean module that allows us to connect to one database on one
MongoDB server. If we wanted to use multiple databases at the same time, we would need to
maintain multiple database variables or use an array to hold them. If we needed to communicate with
multiple database servers, this would require us to have multiple clients, each with their own
connect/close functionality. In all cases, we will want to reuse connections, not create a new one
every time. In this course, we will keep things simple with one database on one server.

Here is a basic test program that will use our db.js module to connect to a database, display its
collections and then disconnect from the database:

// Get the database connect/disconnect functions
const { connectToDatabase, disconnectFromDatabase } = require("./db");

// We made a main() function because we are required to use "async"
async function main() {
 try {
 const db = await connectToDatabase();

 const collections = await db.collections();
 console.log("Collections:", collections.map(c => c.collectionName));

 } catch (err) {
 console.error("Error ... something went wrong:", err);
 } finally {
 await disconnectFromDatabase();
 }
}
main();

COMP 2406 The MongoDB DBMS Winter 2026

 - 326 -

Notice that the code is simple and clean with the use of db.js.

Once we connect to the database, we can begin to use it to do interesting things. We have already
seen how to do various operations with the MongoDB shell mongosh. As it turns out, the same
functionality is available for MongoDB under Node.js.

Here is a comparison of the mongosh functionality with Node.js. We will notice that most function
calls require the use of await since they are asynchronous calls that return promises.

> mongosh

const client = new MongoClient("mongodb://localhost:27017");
await client.connect();

> use store

const db = client.db("store");

> show collections

const collections = await db.collections(); // returns an array of Collection objects

> db.users.findOne({name: "Steve"})

const doc = await db.collection("users").findOne({name: "Steve"});

> db.users.find({})

const docs = await db.collection("users").find().toArray(); // .toArray() executes the query

A little bit of explanation is needed for this one. The call to .find() does not immediately return the

documents. Instead, it returns a Cursor object … which is like a pointer to the matching documents
on the server. It allows us to iterate over the results without loading everything into memory at once.
The call to .toArray() actually executes the query on the server, fetches all the documents, and

then returns them as a JavaScript array. There are multiple ways to use the cursor object. Here are
a few:

const cursor = db.collection("users").find();
const firstDoc = await cursor.next(); // gets the first object from the collection

const cursor = db.collection("users").find();
let doc;
while ((let doc = await cursor.next()) !== null) { // gets one object at a time
 console.log(doc);
}

const cursor = db.collection("users").find({});
for await (const doc of cursor) { // iterates through each object, one at a time
 console.log(doc);
}

COMP 2406 The MongoDB DBMS Winter 2026

 - 327 -

The last one (above) is the preferred pattern, especially when we are doing multiple operations with
each document, including other async calls.

Here are some more comparisons of functions with mongosh. Most of these return a value with
useful data about the operation that was completed.

> db.users.insertOne({name: "Abdul"})

const result = await db.collection("users").insertOne({name: "Abdul"});

In the above code, result will hold a JavaScript object like this:

{ acknowledged: true, insertedId: ObjectId("66cc2f42e317a841dce293b7") }

in which we can determine if the operation was a success and even get back the ID of the inserted
item (e.g., by using result.acknowledged or result.insertedId).

> db.users.insertMany([{name:"Chen"}, {name:"Hans"}])

const result = await db.collection("users").insertMany([{name:"Chen"}, {name:"Hans"}]);

Similar to inserting one item, result will return a JavaScript object but it will also list multiple IDs:

{

 acknowledged: true,

 insertedCount: 2,

 insertedIds: {

'0': ObjectId("…"),

'2': ObjectId("…")

 }

}

The other functions also have return objects that let us query the result … but I won't list them here.

> db.users.updateOne({name:"Martha"}, {$set:{age:20}})

const result = await db.collection("users").updateOne({name:"Martha"}, {$set:{age:20}});

> db.users.updateMany({age:{$lt:18}}, {$set:{minor:true}})

const result = await db.collection("users").updateMany({age:{$lt:18}}, {$set:{minor:true}});

> db.users.deleteOne({name:"Priyal"})

const result = await db.collection("users").deleteOne({name:"Priyal"});

> db.users.deleteMany({minor:true})

const result = await db.collection("users").deleteMany({minor:true});

> db.users.countDocuments({})

COMP 2406 The MongoDB DBMS Winter 2026

 - 328 -

const count = await db.collection("users").countDocuments({});

> db.users.drop()

const result = await db.collection("users").drop();

> db.dropDatabase()

const result = await db.dropDatabase();

Here is a simple test program that connects to the database, adds a few products to a products
database and then performs some queries (assume though that we changed the name of the database in db.js

as follows: const db = client.db("myDatabase"); because it uses some of the same product ideas as the store

we had before and we want it to start fresh):

// This code will connect to a database add some toys to a products collection and then perform
// some queries/updates and then quit.

// Get the database connect/disconnect functions
const { connectToDatabase, disconnectFromDatabase } = require("./db");

// Here are some toys that we will insert
const toys = [
 { _id: 1, name: "LEGO Classic Bricks", category: "Building", price: 29.99, stock: 120, ageRange: "4+"},
 { _id: 2, name: "Barbie Dreamhouse", category: "Dolls", price: 199.99, stock: 25, ageRange: "3+"},
 { _id: 3, name: "Hot Wheels Track Set", category: "Vehicles", price: 49.99, stock: 75, ageRange: "5+"},
 { _id: 4, name: "NERF Blaster Elite", category: "Outdoor", price: 39.99, stock: 60, ageRange: "8+"},
 { _id: 5, name: "Play-Doh Party Pack", category: "Arts&Crafts", price: 12.99, stock: 200, ageRange: "3+"},
 { _id: 6, name: "Rubik’s Cube", category: "Puzzles", price: 9.99, stock: 150, ageRange: "6+"}
];

// We made a main() function because we are required to use "async"
async function main() {
 try {

 const db = await connectToDatabase();

 // Create a products collection
 const products = db.collection("products");

 // Insert the toys in the above-defined array
 let result = await products.insertMany(toys);
 console.log(result.insertedCount + " products were added.");

 // Display all added products
 let prods = await products.find();

 console.log("Here are the products that were added:");
 for await (const p of prods) {
 console.log(p);
 }

COMP 2406 The MongoDB DBMS Winter 2026

 - 329 -

 // Display all products with a price under $30
 let cheap = await products.find({price:{$lt:30}});
 console.log("Here are the products under $30:");
 for await (const p of cheap) {
 console.log(p);
 }

 // Update the price of the Barbie Dreamhouse
 result = await products.updateOne({name:"Barbie Dreamhouse"}, {$set: {price: 179.99}});
 if (result.acknowledged)
 console.log("Price has been updated for Barbie Dreamhouse");
 else
 console.log("Price has NOT been updated for Barbie Dreamhouse");

 // Update the price of the Barbie Dreamhouse
 let product = await products.findOne({name:"Barbie Dreamhouse"}).toArray();
 console.log("Price is now at $" + product[0].price);

 // Alternatively, we can do the following to use the cursor instead of the lines above:
 // let product = await products.find({ name: "Barbie Dreamhouse" });

 // console.log("Price is now at $" + (await product.next()).price);

 // Replace the NERF Blaster Elite with a new prouct (using the same _id)
 result = await products.replaceOne({_id: 4}, {_id: 4, name: "RC Monster Truck",
 category: "Remote Control", price: 59.99, stock: 40, ageRange: "6+"});
 if (result.acknowledged)
 console.log("NERF Blaster Elite has been replaced by RC Monster Truck");
 else
 console.log("NERF Blaster Elite has NOT been replaced");

 // Display all products
 prods = await products.find();
 console.log("Here are the products in the database:");
 for await (const p of prods) {
 console.log(p);
 }

 } catch (err) {
 console.error("Error ... something went wrong:", err);
 } finally {
 await disconnectFromDatabase();
 }
}

main();

The code shows that we can connect to the database and perform various operations on the
database in a similar way to interacting with the database via the mongosh. The above code will run
once, but if we try to run it again, it will throw an error because we would be trying to add 6 more
products with the same _id values as the ones already in there. This was just a proof-of-concept
program. We would not typically set up our code like this. Most interactions will be user-driven.

COMP 2406 The MongoDB DBMS Winter 2026

 - 330 -

 12.4 Products Management Site Example

Let’s look at an example of making a simple website to manage the products in our database. The
folder hierarchy will be as shown on the right below. We will use Express and PUG to make our
dynamic pages. The main site will have the simple look as shown on the left below:

The navigation bar will allow us to View, Add, Update, Delete and Search for products. The
products will be the ones that are currently in the products collection of the myDatabase database
that we made earlier. We will use the same db.js module that we created earlier to connect to the
database. We will set up our routes under a products router so that we use the following URLs to
access the appropriate behavior:

http://localhost:3000/products/

http://localhost:3000/products/add

http://localhost:3000/products/update

http://localhost:3000/products/delete

http://localhost:3000/products/search

Let’s start by examining the simple front-end pages. Here is the common PUG header partial:

head
 meta(charset="UTF-8")
 title Product Management
 link(rel="stylesheet" href="/styles/style.css")
body
 nav
 a(href="/products/") View
 a(href="/products/add") Add
 a(href="/products/update") Update
 a(href="/products/delete") Delete
 a(href="/products/search") Search
 hr

COMP 2406 The MongoDB DBMS Winter 2026

 - 331 -

Here is the main page (i.e., index.pug) that uses this header and displays a list of products currently
in the database:

doctype html
html
 include partials/header.pug

 h1 Products List
 table
 tr
 th ID
 th Name
 th Category
 each p in products
 tr
 td= p._id
 td= p.name
 td= p.category

Here is what the add.pug will look like:

doctype html
html
 include partials/header.pug

 h1 Add Product
 form(action="/products/add" method="POST")
 div
 label(for="name") Name
 input#name(name="name" placeholder="Name" required)
 div
 label(for="category") Category
 select#category(name="category" required)
 option(value="" disabled selected) Select Category
 option(value="Building") Building
 option(value="Dolls") Dolls
 option(value="Vehicles") Vehicles
 option(value="Outdoor") Outdoor
 option(value="Arts & Crafts") Arts & Crafts
 option(value="Puzzles") Puzzles
 option(value="Games") Games
 div
 label(for="price") Price
 input#price(name="price" placeholder="Price" type="number" step="0.01" required)
 div
 label(for="stock") Stock
 input#stock(name="stock" placeholder="Stock" type="number" required)
 div
 label(for="ageRange") Age Range
 input#ageRange(name="ageRange" placeholder="Age Range" required)
 div
 button(type="submit") Add

COMP 2406 The MongoDB DBMS Winter 2026

 - 332 -

Here is the update.pug file, which lists ALL products:

doctype html
html
 include partials/header.pug

 h1 Update Products

 each p in products
 form(action="/products/update" method="POST")
 div
 input(type="hidden" name="id" value=p._id)
 div
 label(for="name") Name
 input#name(name="name" value=p.name required)
 div
 label(for="category") Category
 select#category(name="category" required)
 option(value="" disabled) Select Category
 option(value="Building" selected=(p.category=="Building")) Building
 option(value="Dolls" selected=(p.category=="Dolls")) Dolls
 option(value="Vehicles" selected=(p.category=="Vehicles")) Vehicles
 option(value="Outdoor" selected=(p.category=="Outdoor")) Outdoor
 option(value="Arts & Crafts" selected=(p.category=="Arts & Crafts")) Arts & Crafts
 option(value="Puzzles" selected=(p.category=="Puzzles")) Puzzles
 option(value="Games" selected=(p.category=="Games")) Games
 div
 label(for="price") Price
 input#price(name="price" type="number" step="0.01" value=p.price required)
 div
 label(for="stock") Stock
 input#stock(name="stock" type="number" value=p.stock required)
 div
 label(for="ageRange") Age Range
 input#ageRange(name="ageRange" value=p.ageRange required)
 div
 button(type="submit") Update
 hr

Here is the delete.pug file, which lists ALL products as well:

doctype html
html
 include partials/header.pug

 h1 Delete Products

 table(border="1"
 cellpadding="8"
 cellspacing="0"
 style="border-collapse:collapse;")
 thead
 tr
 th ID
 th Name
 th Stock
 th Action

COMP 2406 The MongoDB DBMS Winter 2026

 - 333 -

 tbody
 each p in products
 tr
 td #{p._id}
 td #{p.name}
 td #{p.stock}
 td
 form(action="/products/delete" method="POST")
 input(type="hidden" name="id" value=p._id)
 button(type="submit") Delete

Finally, the search.pug allows to perform basic matching searches:

doctype html
html
 include partials/header.pug

 h1 Search Products
 form(action="/products/search" method="POST")
 select(name="field")
 option(value="name") Name
 option(value="category") Category
 option(value="ageRange") Age Range

 input(type="text"
 name="value"
 id="valueInput"
 placeholder="Enter search value" required)

 button Search

 if products.length
 h2 Results
 table
 tr
 th ID
 th Name
 th Category
 th Price
 th Stock
 th Age Range
 each p in products
 tr
 td= p._id
 td= p.name
 td= p.category
 td $#{p.price}
 td= p.stock
 td= p.ageRange

Of course, we can add a lot of functionality to these pages (especially the search page), but the idea
of connecting to the database server is all we are trying to show here. Also, the style.css file is not
described here but is fairly basic.

COMP 2406 The MongoDB DBMS Winter 2026

 - 334 -

So, what does our server look like? Here is the server.js file. The “interesting stuff” is in the
products.js router page which we will look at in a moment:

// Get the database module. Notice that we are never disconnecting
const { connectToDatabase } = require("./db");
const PORT = 3000;

// Get the Express object
const express = require("express");
const app = express();

// Set up Pug as the view engine
app.set("view engine", "pug");

// Middleware to parse HTML form data into req.body
app.use(express.urlencoded({ extended: true })); // true allows nested objects

// Tell Express where the styles and views are
app.use('/styles', express.static("styles"));

// Main function that starts the server
async function main() {
 const db = await connectToDatabase();
 const products = db.collection("products");

 // Mount products router
 app.use("/products", require("./routes/products")(products));

 // Home redirects to list products
 app.get("/", (req, res) => res.redirect("/products"));

 // Start server
 app.listen(PORT);
 console.log(`Server is listening at http://localhost:${PORT}`);
}

main();

Notice that we add middleware to indicate that we want to be able to parse the HTML form data query
strings. The use of {extended: true} allows the parser to handle nested objects. We don’t have

any nested objects in our example, so we could use false here. However, if we wanted to use a
similar template for our FutureTech Corp. site which has nested objects, then true would be needed.
We also indicate to serve the style.css file as a static file. We do not have any other static files.

The code to connect to the database is in our main() function. We make sure to then handle the
routing to the /products/ API in a different file and also allow a redirect of http://localhost:3000/ to
http://localhost:3000/products/.

Notice that we do not call listen() until AFTER we connect to the database. It is good to also

notice that we do not do any error-checking here for connections to the database. That error-checking
is in db.js, so we do not have to worry about it here.

COMP 2406 The MongoDB DBMS Winter 2026

 - 335 -

So, what does our products.js look like? It does all the routing fun and communicates to the
database. The structure of the code will look as shown below. The routing of the home page is
handled in this code as well.

const express = require("express");
const router = express.Router();

module.exports = (products) => {

 // "View" products page
 router.get("/", async (req, res) => {
 const allProducts = await products.find().toArray();
 res.render("index", { products: allProducts });
 });

 // "Add" product page
 ...

 // "Update" product page
 ...

 // "Delete" product page
 ...

 // "Search" products page
 ...

 return router;
};

Previously, we simply did module.exports = router; to export our router. However, in the

above code, we are exporting a function that takes a products parameter and this function returns

the router. The use of a function here, allows use to pass in the database’s products collection …

which is required by the code. If we did not use a function here, the router itself would have to get
access to the database collection internally by doing something like this in the router code:

let products; // Will hold the collection

// Immediately connect to DB when this module is loaded
(async () => {
 const db = await connectToDatabase();
 products = db.collection("products");
})();

In summary, by using the function with the products passed in, our code is cleaner, safer and

easier to test and maintain than if we had to put the connection code in like this.

Now, notice how simple it is when someone requests the home page to view the products. We simply
get all the products from the database and then render the index.pug page, making sure to pass in
all the products into the products variable sent to the PUG page.

COMP 2406 The MongoDB DBMS Winter 2026

 - 336 -

Now what about the /add page? It is also easy. We need to handle the GET for the /add page as well
as the POST of the newly added item from the form. So, we need the two routes as follows:

// "Add" product page
router.get("/add", (req, res) => res.render("add"));

// Handle an add
router.post("/add", async (req, res) => {
 // Get the attributes from the request body
 const { name, category, price, stock, ageRange } = req.body;

 // Find the highest _id of all products
 const lastProduct = await products.findOne({}, { sort: { _id: -1 } });

 // Make sure to do an increment on the _id each time
 const nextId = lastProduct ? lastProduct._id + 1 : 1;

 // Now add the product
 await products.insertOne({
 _id: nextId,
 name,
 category,
 price: parseFloat(price),
 stock: parseInt(stock),
 ageRange
 });

 // Go back to the products view page
 res.redirect("/products");
});

Notice that rendering the add.pug page on a GET request is simple, since it needs no additional
data. For the POST from the /add page, we first get the attributes from the request body. Then we
look at all the products and find the largest _id so that we can choose an _id which is one higher

(unless there are no products yet, in which case we choose an _id of 1). Then all we need to do is

call the insertOne() function.

Notice the use of parseFloat() and parseInt() to convert the form strings to numbers. We end

by redirecting to the view page.

The handling of the GET and POST to the /update page is similar. The GET will list all products
again and the POST will be simple in that it just requires calling updateOne():

// "Update" product page
router.get("/update", async (req, res) => {
 const allProducts = await products.find().toArray();
 res.render("update", { products: allProducts });
});

// Handle an update
router.post("/update", async (req, res) => {
 const { id, name, category, price, stock, ageRange } = req.body;

COMP 2406 The MongoDB DBMS Winter 2026

 - 337 -

 // Update the product now
 await products.updateOne(
 { _id: parseInt(id) },
 { $set: {name, category, price: parseFloat(price), stock: parseInt(stock), ageRange} }
);

 // Go back to the products view page
 res.redirect("/products");
});

This code simply updates all the fields with whatever is currently in the form. However, when calling
updateOne() we only need to pass in the fields that have changed. But this would take more work.

We would either need to get the current item again (i.e., the one with the same _id) and compare the

new values to see which ones changed, or we can use JavaScript on the client side to keep track of
which fields the user changed. The first approach would look something like this:

// Handle an update
router.post("/update", async (req, res) => {
 const { id, name, category, price, stock, ageRange } = req.body;

 // Get the current product with the same _id
 const current = await products.findOne({ _id: parseInt(id) });
 const updates = {};

 if (current.name !== name) updates.name = name;
 if (current.category !== category) updates.category = category;
 if (current.price !== parseFloat(price)) updates.price = parseFloat(price);
 if (current.stock !== parseInt(stock)) updates.stock = parseInt(stock);
 if (current.ageRange !== ageRange) updates.ageRange = ageRange;

 if (Object.keys(updates).length > 0) {
 await products.updateOne({ _id: parseInt(id) }, { $set: updates });
 }

 // Go back to the products view page
 res.redirect("/products");
});

This coding approach will work as long as the "id" form field on our rendered HTML page (that the
user interacts with) is visibly "hidden":

input(type="hidden" name="id" value=p._id)

By hiding this input field, the user cannot alter it, thereby ensuring that we are looking up the same
_id as the product being updated because the user cannot change it to some other _id, which

would cause problems.

The /delete endpoint is also quite similar to handle, yet it is even simpler since we only need the _id

field:

COMP 2406 The MongoDB DBMS Winter 2026

 - 338 -

// "Delete" product page
router.get("/delete", async (req, res) => {
 const allProducts = await products.find().toArray();
 res.render("delete", { products: allProducts });
});

// Handle a delete
router.post("/delete", async (req, res) => {
 const { id } = req.body;
 await products.deleteOne({ _id: parseInt(id) });

 // Go back to the products view page
 res.redirect("/products");
});

Likewise, handling the /search page is also simple:

// "Search" products page
router.get("/search", (req, res) => res.render("search", { products: [] }));

// Handle a search
router.post("/search", async (req, res) => {
 const { field, value } = req.body;
 const query = {};
 if (field && value)
 query[field] = value;

 const results = await products.find(query).toArray();
 res.render("search", { products: results });
});

Notice that for a GET, we start off with no data (i.e., no products) so we do not need to access the
database … we just pass in an empty list of products to render on the search.pug page. Otherwise,
we look at the field and its value to search for and set it in our query variable (which is initially an
empty object). Then we just call find() for the results and render them. We do not re-direct this

time, since we want to see the results appear on this page.

As we have seen in this chapter, by connecting a PUG Express server to a MongoDB database, we
open up a whole new world of data for our website. Instead of just showing fixed content, our site can
store and retrieve information, let users add new items, update existing ones, delete old ones, and
search through all the data in real time.

Once we become comfortable with this kind of setup, it’s almost like giving our website a memory: it
can remember user actions, respond to changes, and adjust over time. From here, we can start
experimenting, add more advanced features, and really explore the power of working with live,
dynamic data.

