Chapter 13

Authentication, Authorization & Sessions

What is in This Chapter ?

This chapter discusses how we can add authentication and authorization to our websites by means
of sessions and cookies. We look briefly at how the cookie-parser and express-session
middleware can make our lives easier. We conclude with a simple example of how to do
authentication via username/password HTTP forms and how to authenticate users before they
access particular routes.

COMP 2406 Authentication, Authorization & Sessions Winter 2026

13.1 Authentication and Authorization

When building web apps, we often need to know who is using our site and what they are allowed to
do because most web apps handle things that are personal, private, or restricted. Here are some
common examples:

¢ Personalization — a shopping site needs to know who we are so it can show our cart, order
history, recommendations, etc..

e Security — a banking app must ensure that only we can see our account balance and transfer
money.

¢ Access control — a school portal might let students view their own grades, but only teachers
can update them.

e Trust — users expect that their data and actions are safe, private, and inaccessible to
strangers.

To make this possible, websites rely on three core ideas:

e authentication - proving our identity (e.g., logging in with a username and password)
e authorization - deciding what that user is allowed to access (e.g., admin vs. guest privileges)
e sessions - remembering the user as they move from page to page (e.g., cookies)

Together, these form the foundation for secure, personalized web applications. Let’s look a little more
at the first two of these.

Authentication is the process of verifying the identity of a user or process.

In other words, it's about proving that someone really is who they claim to be. The most common
authentication method is that of supplying a username and password, but many sites add extra steps
such as security questions, codes sent to our phone, security images, etc.. Here is a list showing
examples of the various ways to perform authentication:

e Login form - requiring the user to submit a username and password on a webpage.

e AJAX-based login - sending login information in the background (often used in single-page
applications).

e HTTP authentication - the browser itself prompts for a username and password.
e Token-based login - the server issues a token that the browser/app sends with each request.
e Third-party login - using providers like Google, Facebook, or GitHub to sign in.

e Multi-factor authentication (MFA) - adding an extra step, such as a code sent to our phone,
on top of a password.

- 340 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

Authorization is the process of deciding what an authenticated user is allowed to do.
For example:

e Aregular user might be allowed to view their own profile, but not edit someone else’s.
e An admin user might have permission to add or delete users, while others cannot.
e A guest (not logged in) may only be able to browse public pages.

Authorization is usually achieved through access controls, which can be applied at different levels:

e URLs or routes - certain paths on the server (like /admin) are restricted to certain roles.

o Database queries - filtering what data a user can see (e.g., only their own orders).

e Features and actions - deciding whether buttons, forms, or actions are visible/usable based

on role.
Let’s consider an example of using a URL endpoint. Assume that a
I'm Dave client sends the request PUT /users/dave. The server will use the

URL to figure out which resource is being targeted. In this case, the

O server sees /users/dave and interprets it as “the profile of the user
o

named dave.” This is part of how RESTful APIs work ... the URL path
identifies the specific resource = .

-

0
e Next, the server needs to know who is making the request. This is
Y done through authentication, usually via a session, cookie, or token
sent with the request (we will talk more about this later). For example,
) if Dave is logged in, the browser might include a session cookie that

proves the request is coming from Dave.

At this point, the server knows the resource being requested as well as the identity of the requester
so it can perform the authorization:

« If this is indeed Dave trying to update his own profile, the server allows it.
o Ifitis not Dave (and not admin) trying to update this profile, the server denies it.

In practice, the server always checks a user’s permissions or roles before performing sensitive
actions, ensuring only authorized users can access or modify resources.

When a user logs in and then makes multiple requests to a server, how does the server know that its
is the same user each time? After all, HTTP is stateless (i.e., each request is independent and
doesn’t automatically remember previous interactions).

The simplest approach would be to have the client include their username and password each time
that they make a request. The server can then easily authenticate each request and make the
appropriate decisions regarding authorization. But there are downsides to this, as we will discuss in a
moment.

-341 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

13.2 Sessions and Cookies

A more common approach is to have the server send a session ID to the client after they login.
There are two main ways to send a session ID with a user’s request.

(1) The first approach is to use query parameters. In this case, the user logs in, perhaps with a

form POST. The server authenticates the credentials and decides if the person is authorized to
continue using the site. If they are, the server generates a unique session ID which will be
associated with this authenticated user on the server. The server stores that session ID (e.g., locally
or in a database), and then replies to the client with the session ID. The client then passes that
session ID with each request as a query parameter. The server can then check each time to see if
the session ID parameter is there, if it is valid and if the user associated with that session ID is
authorized for the given request. If not authorized (e.g., the session timed out), a 401 Not Authorized
response can be returned. Here is a visual of what happens:

Client Web

Browser Server
POST /login

-’ ¥

- {"username": "dave", "password": "Cool_Dude_75"} o
- r.'\ Authentication
Username B - al .P’. Successful !
e 200 OK

LOGIN

sessionld=yw3dup93z

Update r.\
Page ¢ ‘_'.
GET /dave/calendar?session_id=yw3dup93z
,"
’ ®
7 C @ session valid
e ~
.
. 200 OK
Calandar {[{"id": 1, "title": "Team Meeting", "date": "2025-08-28", "time": "10:00"},
: Update »® {"id": 2, "title": "Doctor Appointment”, "date": "2025-08-29", "time": "14:30" },
k2l T Frome Page c'_} {"id": 3, "title": "Birthday Party”, "date": "2025-08-30", "time": "18:00"}]}
LOGOUT ~
Tl GET /dave/profile?session_id=yw3dup93z
T
L]
g‘—’. session valid
200 OK
. { "username": "Dave", "fullName": "David Rave",
Update " "email": "dave@example.com”, "age": 28, "role": "user",
Page ¢_ ®

— "preferences": { "theme": "dark", "notifications": true }}

The advantage of sending session IDs as query parameters is that the username and

password do not need to be sent with every request. The server can invalidate a)
session ID at any time by removing it from its database, and sessions can also have

an expiry time to limit their lifespan. As an analogy, the session ID acts like a “ticket”

in that it proves the user has already logged in, so they don’t have to re-enter

credentials every time.

-342 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

Session IDs are usually long, random, and hard to guess. This is important for security,
so that attackers cannot predict or “guess” someone else’s session ID and hijack their
session. They are typically random strings with enough characters to make brute-force

attacks infeasible. Sometimes they include letters, numbers, and symbols to increase
complexity.

So, this approach works fine. However, because the session ID is included in the URL, it is
transmitted with every request. Even if HTTPS encrypts the transmission, URLs may still appear in
server logs, browser history, or shared links ... creating a potential security risk. For this reason,
using query parameters is generally only recommended for short-lived sessions or low-risk scenarios.

(2) The second approach (which is a better fit for browsers), is to use cookies: P
A cookie is a small piece of data sent by the server that stores a sessionID * ‘ ’ 'Yy
to identify the user on future requests. a4

The “query parameter” approach and the “cookie” approach are similar in that they both
send a session ID with each request, allowing the server to identify a logged-in user. The difference
lies in where and how the session ID is stored and transmitted. The “query parameter” approach
includes the session ID directly in the URL, which can create potential security risks. Cookies, on the
other hand, are stored by the browser and sent automatically in the HTTP headers, keeping the
session ID out of the URL. The overall approach is similar to the “query parameter” approach:

Client
Browser

POST /login

{"username": "dave", "password": "Cool_Dude_75"} L
r.'\' Authentication
L]

'_,l Successful !

P
Username BTN -

.
Password -

LOGIN
?
Create Cookie F:.'-
& Update

Page

200 OK

Set-Cookie: sessionld=yw3dup93z;

GET /calendar &5

(“:-- Cookie valid

{[{"id": 1, "title": "Team Meeting", "date": "2025-08-28", "time": "10:00"},
{"id": 2, "title": "Doctor Appointment”, "date": "2025-08-29", "time": "14:30" },

Calandar
Update a®~,

Welcome back Dave! Profile

Page o @ {"id": 3, "title": "Birthday Party", "date": "2025-08-30", "time": "18:00"}]}
—
LOGOUT ~
= ht - ‘....
~ GET /profile &
T —
5
o Cookie valid
200 OK
- { "username": "Dave", "fullName": "David Rave",
Update Yy "email": "dave@example.com", "age": 28, "role": "user",
Page .1—’. "preferences": { "theme": "dark"”, "notifications": true }}

- 343 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

As with the “query parameter” approach, the session ID is sent back to the client with a request for
the client to store it in a cookie. This cookie is then sent with every subsequent request. Each time,
the server will verify that the session ID is valid and still active (e.g., not timed out). Once this is
confirmed each time, the server can identify the user and apply authorization rules to decide what
resources/actions are allowed.

Although this looks like it has almost the same kind of interaction as the “query parameter” approach,
the “cookie” approach is more powerful and secure. A cookie is much more than a simple session ID
because it includes additional attributes that control how the data is used. The server defines the
rules for these cookies according to various attributes and the browser enforces them by deciding
when and whether to include the cookie in requests (as well as when to delete it).

e Name & Value - the actual data stored (i.e., often it is the session ID and its value).

e Expires - the date and time that the cookie expires. Without an expiry, the cookie is a session
cookie and is deleted when the browser closes. The browser automatically deletes the cookie
once the set time is reached. The user can’t use it after that, even if it’s still stored.

e Max-Age - number of seconds until the cookie expires. A zero or negative number will
expire the cookie immediately. This attribute takes precedence over “Expires”.

e Domain - the browser will only send the cookie to servers matching this domain. For example,
a cookie for oneSite.com won'’t be sent to anotherSite.com.

e Path - the browser only sends the cookie for requests that match the given path. For example,
a cookie with path /products won'’t be sent to /users.

e Secure - the browser only sends the cookie over HTTPS, never over plain HTTP.

e HttpOnly - the browser blocks JavaScript from accessing the cookie (i.e.,
document.cookie can’t read it). Only the server can see it.

e SameSite - the browser decides whether the cookie is sent with cross-site requests.

These attributes make cookies flexible and secure, allowing the server to control when, where, and
how the session ID (or other data) is transmitted, rather than just storing a single value.

In summary, the use of cookies and session IDs is more secure and practical than sending the
username and password with every request because ...

v" Reduced exposure of credentials - the username/password is
sent only once during login, and the session ID is used for
subsequent requests.

v/ Automatic expiration - sessions can expire after a set time or
when the browser closes. Even if an attacker steals a session ID,
they can only use it until the session ends.

v" Logout support - the server can invalidate a session ID at any
time, for example, when the user logs out or if suspicious activity is detected.

So, we will use session IDs since they are more secure and practical.

-344 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

Let’s talk a little more about cookie-based sessions. Cookies are mainly used for three purposes:

1. Session management - keeping users logged in, storing shopping carts,
game scores, or any information the server should remember across
requests.

2. Personalization - remembering user preferences, themes, language
settings, or other customizations.

3. Tracking - recording and analyzing user behavior, such as page visits,
clicks, or usage patterns.

We can have multiple cookies being passed on each request. Here is an example of an HTTP
response header asking the browser to create three new cookies (or update them):

HTTP/1.1 200 OK

Content-Type: text/html

Set-Cookie: theme=light; Path=/; Max-Age=86400; SameSite=Lax

Set-Cookie: sessionToken=abcl23; Path=/; HttpOnly; Secure;
Expires=Wed, 22 Nov 2023 11:18:14 GMT; SameSite=Strict

Set-Cookie: language=en-US; Path=/; Max-Age=604800; SameSite=Lax

This example demonstrates how a server can manage sessions, user
preferences, and other settings simultaneously using cookies. The
browser stores all three cookies and automatically includes them in
future requests to the appropriate domain and path, respecting each
cookie’s attributes such as expiration, security flags, and scope.

Since cookies are sent with every request, they should generally be
small to avoid performance issues. Current cookie specifications
require browsers to support at least 4KB per cookie, at least 50
cookies per domain, and at least 3000 cookies in total, though actual
browser limits may be higher.

On future requests, the client browser may send headers that look like this:

GET /dashboard HTTP/1.1
Host: example.com
Cookie: theme=light; sessionToken=abcl23; language=en-US

Notice that only the cookie name and value are sent. The other attributes (i.e., Path, Expires,

HttpOnly, Secure, SameSite) are not included in the request. They only affect how and when the
browser sends the cookie, not the content of the header itself.

Tracking Cookies

When we visit a website (e.g., example.com), the server may store a cookie on our device — this is
called a first-party cookie, since it comes from the site we are directly visiting.

- 345 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

However, many websites also load content from other domains (i.e., ads, images, or social media
widgets). When our browser requests these resources, those external servers can also store cookies
on our device. These are known as third-party cookies, because they come from domains other
than the one we’re currently visiting.

When our browser makes requests to a server, it automatically includes any cookies previously set by
that server. For example:

We visit example.com, which loads an advertisement from ads.com.

The request to ads.com sets a cookie in our browser (e.g., id=somelD).

Later, we visit example2.com, which also loads an ad from ads.com.

BN =

Our browser will send the previously set cookie to ads.com often including information such as
the referring page (i.e., example2.com).

Step 4 happens because that “previously-set” cookie ... assuming it has not expired ... is associated
with the ads.com domain and browsers automatically include all cookies for a domain whenever a
request is made to that domain, regardless of which site is actually loading the content).

As a result, ads.com can track that the same user visited both example.com and example2.com.
This is how third-party cookies enable cross-site tracking.

This is a simple example, but processing cookies can reveal a lot of
information about our browsing history, such as (a) Which URLs we
visited, (b) What our query parameters were, (c) The times we
visited each site. Even seemingly harmless cookies can be combined
to build detailed profiles of user behavior.

Many companies take advantage of long-lived cookies to track users
across multiple websites, often without the user realizing it. These
cookies can store unique IDs that let advertisers and analytics services
reconstruct browsing histories, preferences, and behaviors over
months or even years, creating detailed user profiles that are largely
invisible to the person being tracked.

There are several practical ways to protect ourselves from unwanted tracking via cookies, especially
third-party cookies:

Block third-party cookies

Use private/incognito mode

Clear cookies regularly

Use browser extensions or privacy-focused browsers
Pay attention to cookie consent dialogs

Disable cross-site tracking in browser settings

Cookies themselves aren’t inherently bad, but being mindful of third-party cookies and controlling
them helps protect our privacy.

- 346 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

13.3 Middleware: cookie-parser & express-session

Let's make a server that will use a cookie to track how many times we have =
visited the webpage at http://localhost:3000/visit. We will do this without ~ ‘

any helpful modules by creating our own values and storing

them locally on the server in an object called : ' y ("
G

We will store the values from the cookies that will be passed back and forth.

One way to create a , is to use a random number generator. This code, for example

represents one way to do this:

Math.random().toString(36).slice(2);

It first generates a random number from 0 to 1 (e.g., 0.3749285147). Then it converts it to a base-36
string which uses the digits from 0-0 and characters a-z (e.qg.,). Then it removes the
first two characters so that we have a nice random (e.g.,). However, this
is not cryptographically secure because an attacker could potentially guess or brute-force the ID due
to the amount of randomness that it provides being limited.

Instead, it is better to make use of the crypto module which is more secure and readily available.
Here is a better way to produce a

const crypto = require('crypto"');

const sessionId = crypto.randomBytes(16).toString('hex"'); // 32 hex characters (128 bits)

This creates a securely random session ID like this:

Now, what will our cookie look like? It is simple ... it will just be this and will look like this:

sessionId=a7b3c92e7f1046c8a3d7e8cbd52a4e61

To create a cookie, our server will need to send an HTTP response with a Set-Cookie header that
contains the as follows:

Set-Cookie: = ; : =
The option keeps it safe from JavaScript and =/ makes it valid for the whole site.
Later, the browser will automatically send this cookie with each request. This allows the server to

recognize the user (distinguishing them from other clients) and track how many times they have
visited the page.

- 347 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

So, in our server code, each time a request comes in, we will check if the matches one
that we have stored. If it does, increase the number of views for that session and increase it.

If it does not match, then this is must be a new client request and we will give it a new

and then start counting that client’s views as well.

Now, since the browser only sends cookies as a plain string in the request header, we need a way to
parse that string into key-value pairs we can check in code. Since we only have one key/value pair

(i.e., the), this is not too difficult. However, in general, the browser may send multiple
cookies with each request (e.g., if we enhance our code later) like this:

So, we need a way to convert this string into this object:

{

}

Here is a function to do this:

// Helper function to parse the cookies
function parseCookies(cookieHeader) {
const cookies = {};
if (!cookieHeader)
return cookies;

cookieHeader.split(';"').forEach(pair => {
const [name, value] = pair.trim().split('=");
cookies[name] = value;

})s

return cookies;

The code first separates each cookie into substrings by splitting using the ;" separator, then finds the
key/values by splitting the substrings using the separator.

To get the cookie string that we need to pass into this parsing function, we simply ask the request for
its list of headers and then for the cookie header as follows:

const cookies = parseCookies(req.headers.cookie);
let sessionId cookies.sessionld;

Now it is time to look at our server code. It is simple, since we will just handle a GET for the /visit
page.

crypto = require('crypto');
express = require('express');

app = express();
PORT = 3000;

- 348 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

// This is where we will store all session information
const sessions = {};

// Helper function to parse the cookies
function parseCookies(cookieHeader) {
// .. code already described ..

}

// Sample route to /visit URL

app.get('/visit', (req, res) => {
const cookies = parseCookies(req.headers.cookie);
let sessionId = cookies.sessionId;

// If there is no session or this will be a new one, create one
if (!sessionId || !sessions[sessionId]) {
const sessionId = crypto.randomBytes(16).toString('hex'); // 32 hex characters (128 bits)
sessions[sessionId] = { views: 1 };
res.setHeader('Set-Cookie', “sessionId=${sessionId}; HttpOnly; Path=/");
res.send('You have visited this page 1 time');
} else {
// Increment existing session views
sessions[sessionId].views++;
res.send(You have visited this page ${sessions[sessionId].views} times’);

1)

app.listen(PORT);
console.log("Server listening on port " + PORT);

If we run this code, we see the counter increase ¥ Request Headers Raw

each time that we visit the page. Accept text/html application/xhtml+xml,

application/xml;q=0.9,image/avif
v @ localhost:3000/visit .imagefwehp.imagefapng,'f*;q=
0.8 application/signed-
< c @ localhost:3000/visit exchange;v=b3;q=0.7

Vou have visited this Accept-Encoding gzip, deflate, br, zstd
Accept-Language en-Us,en;q=09
Cache-Control max-age=ﬂ
Connection keep-alive
We can also see (in Chrome DevTools) that our Cookie sessionld=c5b29b9427af9e907b
cookie is being passed each time in the request 2222c1120f348b
header - Host localhost:3000
If-None-Match Wym22-

. S " , gQ305GXSIGIYHWWTRWUMCPO2
Notice how much "tedious" work was involved: 428"

(a) we need to parse the cookies,

(b) we need to generate our own sessionId and

(c) we need to manually set up the cookie attributes.

- 349 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

Thankfully, there are a few modules that will help to reduce the tedious coding involved. The first is a
cookie-parser module:

https://expressjs.com/en/resources/middleware/cookie-parser.html
To uses it, we should install it: npm install cookie-parser

Let's look at how this middleware module simplifies cookie handling, so we don’t have to manually
parse the cookie header:

const crypto = require('crypto');

const express = require('express');

const app = express();

const PORT = 3000;

const cookieParser = require('cookie-parser');

// This is where we will store all session information
const sessions = {};

// Use cookie-parser middleware
app.use(cookieParser());

// Sample route to /visit URL
app.get('/visit', (req, res) => {
let sessionId = req.cookies.sessionId;

// If there is no session or this will be a new one, create one

if (!sessionId || !sessions[sessionId]) {
const sessionId = crypto.randomBytes(16).toString('hex'); // 32 hex characters (128 bits)
sessions[sessionId] = { views: 1 };

// Set the cookie with HttpOnly and Secure flags

res.cookie('sessionId', sessionId, {
httpOnly: true,
secure: false, // allow cookies over HTTP (needed for localhost dev)
path: '/'

3

res.send('You have visited this page 1 time');

} else {

// Increment existing session views

sessions[sessionId].views++;

res.send(" You have visited this page ${sessions[sessionId].views} times’);

1)

app.listen(PORT);
console.log("Server listening on port " + PORT);

Notice that things are simpler now. We install the middleware and then the cookies are automatically
parsed so that we no longer need the helper function & . Also, we can use . () now
instead of . () to set the cookie attributes in a simpler way.

Now, let’s simplify things even further by using the express-session middleware module:
https://expressjs.com/en/resources/middleware/session.html

- 350 -

https://expressjs.com/en/resources/middleware/cookie-parser.html
https://expressjs.com/en/resources/middleware/session.html

COMP 2406 Authentication, Authorization & Sessions Winter 2026

We should install it as well: npm install express-session

This module will handle the sessions for us, so that we do not have to manually store them ourselves
... hor do we have to come up with a new each time @ . So, it will make it easy to
manage user sessions. It creates a . object for each client, where we can store
session-specific data.

Here is the revised code that makes use of this. We notice that there is no need for the cookie-
parser module anymore since all of that is handled for us when the sessions are managed.

const express = require('express');

const session = require('express-session');
const app = express();

const PORT = 3000;

// Use express-session middleware
app.use(session({
secret: 'mySecretKey', // used to sign the session ID cookie
resave: false, // don't save session if unmodified
saveUninitialized: true, // create session for new clients
cookie: {
httpOnly: true,
secure: false, // allow cookies over HTTP (needed for localhost dev)
path: '/'
}
1))

// Sample route to /visit
app.get('/visit', (req, res) => {
// If 'views' does not exist in session, initialize it
if ('req.session.views) {
req.session.views = 1;
res.send('You have visited this page 1 time');
} else {
// Increment existing session views
req.session.views++;
res.send(You have visited this page ${req.session.views} times’);

}

})s

app.listen(PORT);
console.log("Server listening on port " + PORT);

The code requires a bit of explanation. The parameter passed to () is an options object that
configures how express-session behaves. In this particular case, the options object tells Express
how to handle session storage, when to create/save sessions, and how to configure the session ID
cookie. Each property shown has a specific role:

A string used to sign the session ID cookie. Signing the cookie ensures that the
browser cannot tamper with the session ID. We should make it long and random to
prevent attackers from guessing it.

- 351 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

e resave: false

Normally, express-session saves the session back to storage on every request, even if
nothing changed. Setting this to false prevents unnecessary saves, which improves

performance.

e saveUninitialized: true

This option controls whether the server should create a session for a client that hasn’t
stored any data yet (i.e., true = a session is created immediately when a user
connects, even if no data is stored yet. false = the session is only created when we
assign something to req.session).

e cookie: { ..}

This configures the cookie that stores the session ID in the browser.
Here are a few additional properties that we can set:

e keys: ['keyl', 'key2',6 'key3']

This is used when we want cookie signing with multiple secrets. It is mostly relevant if
we pass an array of secrets instead of a single secret. The server can rotate secrets
over time: the first key signs new cookies, older keys are used to verify old cookies.

e rolling: true

This controls whether the session cookie is reset (refreshed) on every response. If
true, every response resets the cookie expiration, so the session lives longer as long
as the user keeps interacting. If £alse (the default) the cookie expiration is only set
once at creation, so inactivity can cause the session to expire.

e store: MongoStore.create ({
mongoUrl: 'mongodb://localhost:27017/myDatabase’,
collectionName: 'sessions', //name of collection to store sessions
ttl: 14 ~ 24 * 60 * 60 //session expiration in seconds (14 days)

})

This determines where session data is stored on the server. By default, sessions are
stored in memory (i.e., new session.MemoryStore ()), which is fine for testing but not
for production. Common stores include: MongoDB, MySQL, etc.

13.4 Example: Handling Login Sessions

Now let’s look at a more complete Express/Pug example that handles authentication, authorization
and sessions. There will be 5 registered users (hard-coded) ... two with admin privileges and three
without. A user will be able to login from a main homepage which will simply be an HTTP form as
shown on the next page.

- 352 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

When the user presses the Login button, the server will attempt to

authenticate them to make sure that the username and password

matches someone in the list of registered users. If there is no match, then Login

a error message will be Username

returned. amy
Password

Otherwise, one of two pages will be shown ... either Admin Dashboard o

the Admin Dashboard page (for admin users) or a

simpler Welcome page for non-admin users - Registered Users:

Both pages have a Logout button. The bonus for the e

admin users is that they get to see the list of all Active Users: Wl y

registered/active users. L sieome,

The server will allow specific routes as described

in the following table:

goes to login page | goes to login page goes to login page

goes to login page | logs user out, goes to login page logs user out, goes to login page

“Unauthorized” goes to admin dashboard page “Unauthorized”

goes to login page | goes to welcome page goes to welcome page

There are 3 PUG pages, one for each of the three views shown in the images above.

The login.pug page is basically just an HTTP form with a Login submit button. However, it does
allow one incoming variable that represents a potential error message (i.e., "Invalid credentials")
which allows this page to be re-rendered with an error message above the form as shown in the

image here 2>

Login

doctype html
html Invalid credentials
head
title Login
link(rel="stylesheet", href="/style.css")
body Password
.container
h2 Login
if error

Username

p.error #{error}
form(method="POST", action="/login")
label(for="username") Username
input(type="text", name="username", id="username", required)

label(for="password") Password
input(type="password", name="password", id="password", required)

button(type="submit") Login

- 353 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

The admin.pug is a little more interesting in that it takes a as well as a list of

and as incoming parameters. It then displays the active/registered users. In the
code, it handles the case where there are no active users ... but this should never be the case in our
code, since the admin user has to be logged on to see this page. The form at the end is a simple
Logout button:

doctype html
html]
head Admin Dashboard
title Admin Dashboard
link(rel="stylesheet", href="/style.css")
body

Logged in as amy
Registered Users:

.container amy
h2 Admin Dashboard raj

. uki
p Logged in as #{username} omar

lia
h3 Registered Users: Active Users:
ul
each u in registeredUsers
li= u
h3 Active Users:
ul
each u in activeUsers
li= u
form(method="GET", action="/logout")
button(type="submit") Logout

. amy
* raj

The user.pug is a simple welcome page for non-admin users which only takes a
sole incoming parameter. It also has a simple form at the end with Logout button:

doctype html
html
head Welcome, raj!
title Welcome
link(rel="stylesheet", href="/style.css")
body
.container
h2 Welcome, #{username}!
form(method="GET", action="/logout")
button(type="submit") Logout

Now, let’s look at our server code a little bit at a time. Here is what we have at the top of our code ...
much of the usual stuff. But notice that we hardcode the users here:

const express = require('express');

const session require('express-session'); // We will need npm install express-session

const app = express();

const PORT = 3000;

app.set('view engine', 'pug');

let users = {
"amy": { password: "1234", admin: true },
"raj": { password: "india", admin: false },
"yuki": { password: "sakura", admin: false },
"omar": { password: "desert", admin: true },
"lia": { password: "flor", admin: false }

}s

COMP 2406 Authentication, Authorization & Sessions Winter 2026

Next, we can set up some middleware before we deal with our routes:

// Use the express-session middleware
app.use(session({
secret: 'f937A7z!9uBv#2QpXOkLm@4sWrT8&dEe', // This can be anything
//cookie: {maxAge:50000}, // Expire in 50 seconds
resave: false, // Do not save session every time
saveUninitialized: true // Create session upon connection

1);

// Serve the static files in the public directory
app.use(express.static("public"));

// Middleware that lets us use req.body for incoming form query data
app.use(express.urlencoded({ extended: true }));

The first one lets us set options for our express-session middleware to put in our secret key
(arbitrary) as well as a couple of others. Notice the commented-out cookie setting that sets the
session timeout to be 50 seconds. We can put this code back in later when we are testing and see

A

how it affects things &2 .

After that, we indicate that we want all static pages in the public directory to be served (only our
stylesheet is in there in this example). Then we set up the middleware to parse the . for
incoming query data ... this makes our life easier by doing the tedious parsing work for us.

Now we are ready to discuss the routes. The root / route is our login page, which renders the

login.pug page with no error parameter:

app.get("/", (req, res) => { res.render("login"); });

Next, we will handle a login POST request from the submitted form:

// Send POST request to /login route to our login function
app.post("/login", (req, res) => {
const { username, password } = req.body;

// Perform authentication

if (lusers[username] || users[username].password !== password) {
res.render("login", { error: "Invalid credentials" });
return;

}

req. session.username = username;

// Decide whether to show the Admin Dashboard page or the Welcome page
if (users[username].admin) {
// Redirect to the admin page instead of just rendering, since we need to build
// up the lists of active and registered users first.
res.redirect("/admin™);
} else {
// Redirect to welcome page
res.redirect("/welcome™);

COMP 2406 Authentication, Authorization & Sessions Winter 2026

It first extracts the and from the form and then performs the authentication by
checking if they match a user in the array. If not, it re-renders the same login page but this time with
an error message @ . If successfully authenticated, our code stores for that session,
which we will use to be able to detect who is currently logged in. Then the code checks if the user is
an authorized admin user or not, then directs to either the route or the route.

Now we can consider the route. In this case, we simply destroy the session and then re-direct
back to the root login page / as follows:

// Send GET request to /logout route to our logout function
app.get("/logout”, (req, res) => {
req.session.destroy(err => {

res.redirect("/");

Next, let’s handle the route. If the user is not logged in, we re-direct to the login page,
otherwise we render the user.pug page with the passed in as a parameter:

// Handle /welcome route
app.get("/welcome", (req, res) => {
// If not logged in, go back to the home page
if (!req.session.username) {
res.redirect("/");
return;
¥
// Otherwise render the user.pug page
res.render("user", { username: req.session.username });

Finally, we will handle the route. It will first call our own helper function to make sure
that the user is logged in and has admin privileges, which looks like this:

// Our Authorization function

function auth(req, res, next) {
// Check if there is a username property set for the session, and if they have admin rights
if (!req.session.username || !users[req.session.username].admin) {

res.status(401).send("Unauthorized");
return;

}
next();

Notice the use of () to continue the middleware chain.

Here is the code to handle the route. Notice that it calls our function first. The code has
a bit of work to do because it needs to gather the lists of registered and active users, which it passes
as parameters to render the admin.pug page:

- 356 -

COMP 2406 Authentication, Authorization & Sessions Winter 2026

// Handle /admin route Registered Users:
app.get("/admin", auth, (req, res) => {

// Get all registered users amy

const registeredUsers = Object.keys(users);

raj
yuki
omar
// Get all active users (i.e., anyone with a session + username) lia
const activeUsers = [];

const sessions = req.sessionStore.sessions;

const sessionKeys = Object.keys(sessions); o amy
e raj

Active Users:

for (let i=0; i<sessionKeys.length; i++) {
const sessionld = sessionKeys[i];
const sessionData = JSON.parse(sessions[sessionId]);

if (sessionData.username && !activeUsers.includes(sessionData.username)) {
activeUsers.push(sessionData.username);

}

.render("admin", {

username: req.session.username,
registeredUsers,

activeUsers

Notice in the code that the array is just the names (i.e., keys) of the that
we hardcoded in our server code. The array takes some more work because we first
need to get the array of sessions from the one stored with the request. Then we grab the keys (which
are the session IDs). We then loop through the sessions, parse the JSON data there and grab the

from that parsed session data. As long as that user is not already in the list, we add them
to the list of

Of course, our code completes with the usual code to start up the server:

app.listen(PORT);

console.log("Server listening on port " + PORT);

At this point in the course, we have seen how authentication, authorization, and sessions work
together to make web applications secure and personalized.

¢ Authentication lets the server know who a user is, usually by checking credentials like a
username and password.

e Authorization then decides what that user is allowed to do, such as viewing an admin
dashboard or a regular user page.

e Sessions and cookies are the glue that hold it all together. When a user logs in, the server
creates a session and uses a cookie to remember that session across multiple requests, so
users don’t have to log in every time they click a link.

The result is that our websites can now have a kind of “memory,” remembering who a user is across
multiple requests, while clearly distinguishing between authorized and unauthorized parts of the site.

- 357 -

