Chapter 8
Node.js & NPM

What is in This Chapter ?

This chapter begins by comparing (at a basic level) the Node.js architecture with other server
architectures. The event loop and event queue lie at the heart of the innerworkings of Node.js, so
they are explained as well. We will look at the module system of Node.js and make use of a few
built-in ones, as well as see how we can make our code available to be used as a module as well. We
will create a few simple servers and see how we can set up a server for our FutureTechCorp
website. We will follow this with a discussion of how to handle incoming parameters and form data
from GET and POST requests. The last section gives an introduction of the Node Package Manager
(NPM) and how it can be used.

COMP 2406 Node.js & NPM Winter 2026

8.1 Node.js Architecture

Node.js is an open-source, cross-platform JavaScript runtime environment that allows developers to
run JavaScript code outside of a web browser. It is commonly used for the creation of web servers
and real-time applications such as chat apps and multiplayer games.

What can Node.js do?

Generate dynamic page content using templating engines or frameworks
Create, read, write, update, and delete files on the server

Handle form submissions and parse user input

Interact with databases to perform create/read/update/delete operations
Handle thousands of simultaneous client connections efficiently

many more things ...

How does Node.js compare with traditional servers?

With traditional servers, when a client request comes in, it blocks the thread until it's finished. This
can be slow under high loads, since threads are tied up waiting. However, with Node.js servers, it
uses non-blocking 1/0 and an event loop to stay responsive. This means that it is more scalable
because it handles many simultaneous requests efficiently with fewer resources.

For example, consider the difference between the two when a client requests a file:

Step | Traditional Server (Synchronous) Node.js Server (Asynchronous)

Receives file request from client Receives file request from client

Sends a command to file system to read file Sends a command to file system to read file

Waits/blocks until file system finishes reading = Continues processing other requests without waiting

Once file is read, sends content back to client | When file read is done, a callback/event sends file to client
Becomes available to handle next request Always available to handle more requests during file read process

U'I-th—\I

As we can see from the above table, step 3 is where the crucial difference lies. Traditional servers
block to access the file (or database, etc..) so that the server cannot handle any other incoming
requests until that file is read in and returned to the client. Node.js, on the other hand, does not block.
Instead, it assigns an event listener to handle the file reading and file sending (i.e., back to the client).
In the meantime ... it is able to take on additional client requests. Although this example discusses file
access, the same principle applies to any operation that can be delayed.

What is the big deal about file access? Well, when dealing with I/O operations, we can measure
things in terms of milliseconds (one thousandth of a second), microseconds (one millionth of a
second) and even nanoseconds (one billionth of a second). When doing time delay comparisons, we
use a term called latency ... which is the time delay between when a request is made and when the
response begins. Consider the latency differences for accessing cache memory, main memory, SSD
& HDD disk memory and internet packet sending in this chart:

-172 -

COMP 2406 Node.js & NPM Winter 2026

Approximate Latency of Common Operations (in ns)

Europe Packet (RTT)

150,000,000 ns

HDD Read 15,000,000 ns

SSD Read

100,000 ns

Main Memory (RAM)

L2 Cache

L1 Cache

10! 103 10° 107
Latency (nanoseconds, log scale)

This chart visually illustrates how vastly different the response times (i.e., latency) are between
various computing tasks. It shows ultra-fast cache access, much slower disk reads and even slower
network communication. The point is, there is a huge bottleneck in processing time when it comes to
some operations dealing with disk access and network communications. So, when a server must wait
for a file to be read (or for a packet to be sent and received) before handling any other client requests,
the delay can feel like “an eternity”.

Let's compare three common server architectures:

e Process-per-request
e Thread pool-based
e Event-driven (non-blocking 1/0O)

(1) Originally, web servers handled each client request by spawning a separate process to handle
each request as shown in the diagram below:

7 Slow Process Per Request Web Server
W& a

1 (blocking)

j= ===

Running Processes
- gt

b —

S —

5

+[=
*

-

File System,
Database,
Computation,
MNetwork ...

Client Request

Server Response

-173 -

COMP 2406 Node.js & NPM Winter 2026

There are two features of this design that can cause significant delay...

1. Spawning a process is considered slow because it requires the operating system to allocate
separate memory, initialize resources, and set up a full execution environment.

2. Since all processes share the CPU, if one takes too long to finish, it can hog CPU time and
delay the others. It can be compared to the notion of one slow person holding up a line. In the
diagram above, it could take a while for the first process to complete due to the delay of
accessing the file system or database, or due to computation-heavy calculations, or even due
to slow network communications.

As an analogy, imagine a restaurant where every new customer (i.e.,
client request) that walks in gets their own personal waiter, cook, and
table ... a full dedicated staff just for them (i.e., their own process).
When a customer orders food, that entire team serves only them until
they’re done eating and leave the restaurant. This means each client
request (i.e., customer) gets its own process (i.e., staff) and they are
totally isolated and independent from others.

aaw While this approach is simple and avoids interference
¢ . between client requests ... it is also very expensive

and inefficient. For example , if 500 customers arrive,

we would need 500 waiters and 500 cooks, which is not scalable.

LR O

(2) A more traditional approach is to use threads instead of processes. Threads are faster than
processes because they share memory and resources, are cheaper to create, and switching
between them can be more efficient. A thread-pool server pre-allocates a fixed number of threads
to handle client requests. Incoming requests are placed in a queue and dispatched to available
threads as they become free, enabling efficient reuse of resources without the overhead of
creating a new thread for each request. Here is a diagram depicting such a server:

&
Thread Pool Web Server (e.g., Apache)

Fixed-Size Thread Pool
-
L —

¥ N ("“a,
= ~
S EE
File System, Task Queue
Database,
Computation,
Metwork ...

Server Response

Client Request

How does this compare to a process-per-request server? Well to use our simple restaurant
analogy ... a process-per-request server is like hiring a brand-new team of employees for each
customer that comes in. A thread pool is like having a few small trained teams already in place,
where each team quickly handles the next customer in line.

174 -

COMP 2406 Node.js & NPM Winter 2026

Apache is one of the most widely used web servers today,
and is often configured to use a thread-pool approach. With
Apache, all active requests (i.e., when the server is actually
processing something) always get a dedicated thread or
process. This approach is not inherently slow, but it can
become a bottleneck when all threads in the pool are busy,
and incoming requests have to wait in a queue until a thread
becomes free. Thus, a thread pool can become slower under
high load, because threads are limited, and can be tied up
waiting hence reducing throughput and increasing latency
for queued requests.

To continue our previous restaurant analogy, imagine a
restaurant with a fixed number of tables (i.e., threads). Each
customer (e.g., client request) is assigned to a table to be o Y
served. Once seated, the customer might order and then eat o8 4 .jﬁ
quickly (e.g., a fast task), or they may take a long time o8
waiting for their order (e.g., waiting for I/O). While } % Il
L J : -
. ‘ o
I R

they sit there, perhaps doing nothing but waiting,

the table is occupied. If all tables are full, any

new customers have to wait in line until a ‘N>

table becomes free. This can be very

inefficient especially if many tables have

customers waiting for food (e.g., thread idle while waiting for 1/0O).

(3) A better alternative to assigning each client request its own thread is to use a single-threaded
event loop that handles requests asynchronously. This is the model used by Node.js. When a
request arrives, it’s registered as a callback and the event loop continues running without
blocking.

Non-blocking operations (e.g., handling HTTP headers, routing logic, network I/O, etc..) are
processed immediately by the main thread. Blocking or time-consuming tasks (e.g., file system
access, DNS lookups, database queries, etc..) are offloaded to a background thread pool
managed by Node.js. If all threads are busy, additional tasks are queued in an event queue until
a thread becomes available. This architecture allows Node.js to efficiently handle many
concurrent requests with minimal overhead, using a single thread for coordination and a limited
number of worker threads for heavier operations:

Node.js Web Server

Worker threads \
Event Loop

Client Request

Server Response

-175 -

COMP 2406 Node.js & NPM Winter 2026

Going back to our restaurant analogy, Node.js is like a restaurant
with only one Customer Service Representative (i.e., event loop)
but no assigned tables for each customer. The CSR takes a
customer’s order, tells them to wait nearby until called (i.e.,.
callback function). In the meantime, the CSR continues taking
other orders without delay (i.e., iterates through event queue).
When an order becomes ready, the CSR delivers the food (i.e.,
server response) to the customer and goes back to taking

orders. The big advantage is that dozens (or hundreds) of
customers can be "in progress" at any moment in time.

So where are the real savings? With time-intensive tasks like disk reads or database queries,
someone, somewhere, still has to wait ... the time itself doesn’t go away. Node.js saves time not by
eliminating the wait, but by ensuring that waiting doesn’t block other work. In other words, Node.js
doesn't make slow tasks faster, it just avoids letting them hold up everything else. That’s where its
speed and scalability come from. Node.js can support tens of thousands of concurrent requests in
the event loop, especially for I/O-bound operations!! This is one of its biggest strengths.

One drawback of Node.js is that it's single-threaded at its core, so a single CPU-
intensive task (such as heavy computation or blocking code) can block the event
loop, preventing other requests from being processed. In extreme cases, this can
cause performance degradation or even crash the application if not properly
handled. This is why Node.js is best suited for I/0O-bound workloads. For CPU-
intensive tasks, it's recommended to offload the work using worker threads, child
processes, or external services, to prevent blocking the event loop.

8.2 Event Loop Processing

~—x The event loop is at the heart of how Node.js handles asynchronous operations while
‘& () maintaining non-blocking behavior on a single thread. The loop itself is iterative and
handles all callbacks.

Before the event loop starts, Node.js executes ALL our synchronous code. This includes
variable declarations, function calls, console.log () statements, and so on. If the code
includes asynchronous functions with callbacks (such as setTimeout, £s.readFile, Or
promise. then), those callbacks are registered as the code is encountered ... but the
callbacks themselves are not executed at that time.

Once it has completed the initial execution phase, Node.js enters the event loop ... which is an
ongoing cycle where it processes asynchronous operations by executing their associated callbacks
as they become ready. When the event loop queue is empty and there are no more pending
operations or callbacks to process, Node.js will exit.

Asynchronous tasks are categorized into two main types: microtasks and macrotasks. These
represent different kinds of queued operations that are handled by the event loop.

-176 -

COMP 2406 Node.js & NPM Winter 2026

e Microtasks include operations like promise. (), promise. (), await and
() and are executed immediately after current synchronous code finishes.

e Macrotasks include things like 0, () and I/O callbacks. They are
processed in specific phases of the event loop and run after all microtasks have been cleared.

Here is the pseudocode for Node.js ... the REPEAT/UNTIL is the event loop:

Execute all synchronous (top-level) code

REPEAT {
Process all pending microtasks
Process ready timer callbacks (e.g., setTimeout)
Process pending I/O callbacks (e.g., 0S-level events)
Process new I/O callbacks (e.g., file read done)
Process scheduled setImmediate() callbacks
Process "close" event callbacks

} UNTIL (there is no more work to do)

N L —

Let’s look at some examples. Can you guess the output of this asyncTest.js code, based on the
above pseudocode?

function middle() {
console.log("Middle");

}

console.log("Start");

setTimeout(function cb(){
console.log("This will be delayed by approximately 2 seconds");
}, 2000);

middle();

setTimeout(middle, 1000);

setTimeout (function cb(){
console.log("This will be delayed by © seconds");

}, 9);

queueMicrotask(() => {
console.log("This was a Microtask™);

})s

console.log("End");

Notice that all synchronous code is evaluated first. Then the microtask that was set up, then the
timeout callbacks, based on their timer values.

-177 -

COMP 2406 Node.js & NPM Winter 2026

Now, consider the following code from badCode.js, which has a CPU-intensive operation:

console.log("Start");

function fibonacci(n) {
if (n < 2)
return 1;
else
return fibonacci(n - 2) + fibonacci(n - 1);

}

console.time("timer"); // start the timer

setTimeout(function () {
console.timeEnd("timer"); // stop the timer and display
}, 1000);

fibonacci(44); // CPU-intense operation

console.log("End");

There is only one timer callback set up. The . () sets up a timer labelled . The
() ends the specified timer and displays the amount of time that the timer was
running for. Look at the output. There is actually a long delay after start is displayed because the
() function is CPU-intensive and is synchronous (i.e., blocking).

So, nothing was happening while the function was being evaluated. Therefore, even though we set up
our code to end the timer after 1 second, it still took over 5.6 seconds before that timer code was
evaluated, due to the blocking nature of the synchronous call to the () function.

This example highlights two important warnings:
1. Timers are not guaranteed to run our code at the time we specify.

2. CPU-Intensive synchronous code is a bad idea since it blocks
everything (including the event loop) from processing anything!

Now let’s consider reading a file or simulating a slower web request in our fileAndWeb.js file. Look at
this code and see if you can guess at the output (assuming the index.html file is our simplified
FutureTechCorp. homepage) ?

const fs = require("fs");

console.log("Start");

fs.readFile("index.html", 'utf8', function(err, data){
if(err) {

console.log("Error :(");
console.log(err);

} else {
console.log("File Read Successfully!");
console.log(data);

-178 -

COMP 2406 Node.js & NPM Winter 2026

console.log("Middle");

// simulate a delayed operation based on the specified number of seconds
function longRunningOperation(callback, delay) {
setTimeout(callback, delay);

}

function webRequest(request) {
console.log('starting a long operation for request:', request.id);
longRunningOperation(function () {

console.log('ending a long operation for request:', request.id);
}, request.delay);

// simulate a web request
webRequest({ id: 1, delay: 3000});

// simulate a second web request
webRequest({ id: 2, delay: 2000});

console.log("End");

The output is as follows ... was it what you expected?

Start

Middle

starting a long operation for request: 1
starting a long operation for request: 2
End

File Read Successfully!

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8">
<title>FutureTech - The Future is Now</title>
<link rel="icon" href="icons/logo-icon.png">
<link rel="stylesheet" href="styles/image-slider.css">
<link rel="stylesheet" href="styles/general-body.css">
<link rel="stylesheet" href="styles/header-footer.css">
</head>

<body>
<header>

<nav>

Home</1li>
About Us
Products</1i>
Contact Us</1li>

</nav>
</header>

<div style="text-align: center;">

<div class="caption">Android Development Lab</div>

</div>

-179 -

COMP 2406 Node.js & NPM Winter 2026

<footer>
<p>© 2025 FutureTech. All rights reserved.</p>
</footer>

</body>
</html>
ending a long operation for request: 2
ending a long operation for request: 1

Now, we are starting to get a feel for how the Node.js event loop processes tasks in order. It's also
helpful to understand how the event queue interacts with the thread pool, which is responsible for
handling I/O-intensive operations. By default, Node.js is configured with 4 worker threads in the pool.
When an 1/0O-heavy task (e.g., a file read or a crypto operation) is triggered, it's offloaded to one of
these threads. The first four such tasks are assigned immediately. But then since all threads are
already busy, any additional tasks are placed into the event queue and must wait for a thread to
become available before they can begin.

Let’s look at an example that makes this clear. We will set up 10 calls to a built-in Node.js function
used for password-based key derivation which is called . (). It belongs to the

module, which provides cryptographic functionality. Do not concern yourself with what this
function does ... just know that it is a time-intensive operation. Here is the code:

const crypto = require("crypto");

console.log("Start");

for (let i=0; i<10; i++) {
console.time(Task ${i});
crypto.pbkdf2("password", "salt", 110 000, 64, "sha512", () => {

console.timeEnd(Task ${i});

})s
}

console.log("All crypto tasks started");

console.log("End");

The code simply calls the CPU-intensive function 10 times Start
and records the end time of each process. Here is the gii crypto tasks started
output on the right > Task 1: 81.407ms

Task 3: 83.316ms
Notice that the first 4 calls complete roughly at the same Task 0: 87.671ms
time (although not in the same order that we started them). gasi Z= ?2532225

as . . ms

Th_e next 4 tasks had to be queued, so they took roughly Task 7: 165 821ms
twice the time to complete because they started later. The Task 5: 170.93ms
last two tasks had to wait even longer because they had to Task 6: 173.963ms

wait for two rounds of the threads to complete before Task 8: 233.134ms
becoming available. Task 9: 234.555ms

The example is simple, but it helps us visualize the effects of queuing events/requests.

- 180 -

COMP 2406 Node.js & NPM Winter 2026

8.3 The Module System of Node.js

Because we have programmed in Java, we know how to organize code into classes and packages. In
C, we organize reusable code into functions in header (.h) and source (.c) files, then include them
where needed. Node.js modules work similarly. They let us break our code into reusable files, where
each file is like a self-contained unit with functions, variables, or objects that we can use elsewhere.
Like classes, modules help us to stay organized and make our code more readable. It also promotes
code-reuse.

There are three types of modules in Node.js:
1. Built-in modules - similar to java.util.* in JAVA or <stdlib.h>in C
e.g., fs, , :
2. File modules - similar to our own . java or .c source code files
e.g., our own . js files

3. External modules - similar to importing external . jar libraries or linking C libraries
e.g., express, lodash, efc..

We use the () function to inform Node.js that we require a particular module for our code. It
is like asking Node.js: “Go find this file/ module and give me whatever it exports so | can use it here”.
It is similar to the idea of doing an import java.util.ArrayList; in JAVA or doing #include
<stdlib.h> and linking its lib in C.

Often we store the module in a variable, with a similar name:

const = () ;
We have been using some modules already.

Node.js automatically treats EVERY file as a module. Behind the scenes, it creates a object
for each file. This object includes a special property called , which is used to define what
parts of the file (e.g., variables, constants, or functions) should be exported and made accessible to
other files via () . An exported function in Node.js is kinds like a static method in Java iin t
hat we don’t need to make an object to use it. But in Java, the container is always a class, while in
Node.js the container is the file (module).

Here is an example of a file called employeeUtils.js that contains some constants and functions that
are all exported (i.e., made available to be used by others).

// Constants
const COMPANY_NAME = "TechNova Inc.";
const MAX_EMPLOYEES = 100;

// Check if an employee is full-time
function isFullTime(hoursWorked) {
return hoursWorked >= 35;

}

-181 -

COMP 2406 Node.js & NPM Winter 2026

// Return a string summary of an employee
function getEmployeeSummary(name, hoursWorked) {
const status = isFullTime(hoursWorked) ? "Full-Time" : "Part-Time";
return ~${name} works at ${COMPANY_NAME} as a ${status} employee.;
}

// Return a single employee object
function createEmployee(id, name, hoursWorked) {
return {
id,
name,
hoursWorked,
status: isFullTime(hoursWorked) ? "Full-Time" : "Part-Time"
}s
}

// Return a list of employees
function getAllEmployees() {
return [
createEmployee(1, "Sanju", 40),
createEmployee(2, "Jin", 28),
createEmployee(3, "Alfredo", 36)
1;
}

// Export everything (order doesn’t matter)
module.exports = {

COMPANY_NAME ,

MAX_EMPLOYEES,

isFullTime,

getEmployeeSummary,

createEmployee,

getAllEmployees

ol

How do we make use of this module from some other code? We just use the () function
call and then access the components (i.e., variables, constants or functions) by using the dot
operator.

Here is a moduleUsage.js that makes use of the module that we just exported above. Note that we
are specifying that the module is in the same directory/folder as this moduleUsage.js file with the
at the beginning of the module name.

const emp = require("./employeeUtils");

console.log(emp.COMPANY_NAME);
console.log(Max employees: ${emp.MAX_EMPLOYEES});

let priyal = emp.createEmployee(101, "Priyal", 42);
console.log(priyal);

let allEmps = emp.getAllEmployees();
console.log(allEmps);

console.log(emp.getEmployeeSummary("Jin", 28));

COMP 2406 Node.js & NPM Winter 2026

Here is the output for this code:

TechNova Inc.
Max employees: 100
{ id: 101, name: 'Priyal', hoursWorked: 42, status: 'Full-Time' }

{ id: 1, name: 'Sanju', hoursWorked: 40, status: 'Full-Time' 1},
{ id: 2, name: 'Jin', hoursWorked: 28, status: 'Part-Time' 1},

{ id: 3, name: 'Alfredo', hoursWorked: 36, status: 'Full-Time' }

Jin works at TechNova Inc. as a Part-Time employee.

The () function in Node.js is synchronous, meaning it blocks execution until the
requested module is loaded. So, under certain circumstances, () can be slow, but
this typically only applies to the first time a module is loaded. To avoid repeated file system

access and improve performance, Node.js caches modules after the first time they're required. This
means that if multiple files use () to load the same module, they all receive a reference to
the same single instance of that module, not separate copies.

This has important consequences, especially when . is an object. Since objects are
passed by reference in JavaScript, any changes made to the exported object from one part of the
program will be visible everywhere else that imported it.

As an example, assume that we define a value like this in a module called shared.js:

module.exports = { counter: 0 };

Then we use it like this in some JavaScript file called test1.js:

const shared = require("./shared");
shared.counter += 1;

And then we use it again in another JavaScript file (running in the same Node.js process) called test2.js:

const shared = require("./shared");
console.log(shared.counter);

The counter will print 1, not 0.

So, be careful ... even if you
heard the expression:
“sharing is caring”

this can be a source of
headaches if you are
unaware of it.

COMP 2406 Node.js & NPM Winter 2026

As we have already seen previously, to use built-in modules, we also use the require () function
but we do not include the relative path (i.e., leave out the ' . /' at the beginning of the module name).

http = require(http);

Here is a table that shows some of the common built-in modules, along with a brief description:

| Module | Descripton

fs

path

os

http
https
url
events
stream
util
crypto
child process
timers
dns

net
readline
zlib
assert

Provides functions for working with the file system (reading/writing files)
Helps us work with file and directory paths in a cross-platform way

Gives information about the operating system (e.g., memory and CPU)

Lets us create HTTP servers and handle web requests and responses
Similar to ht tp, but for handling secure HTTPS connections

Parses and formats URL strings easily

Allows us to create and handle custom events using the EventEmitter class
Provides tools to work with streaming data (e.g., file or network streams)
Offers helper functions (e.g., type checking, formatting, etc..)

Provides cryptographic features (e.g., hashing, encryption, key generation)
Lets us run external commands or scripts from within our Node.js app
Used internally for setTimeout, setinterval, etc., but accessible if needed
Provides functions to perform DNS lookups and name resolution

Enables creation of lower-level TCP servers and clients

Lets us create interactive command-line interfaces (e.g., prompt user input)
Provides functions to compress and decompress data (e.g., gzip, deflate, etc.)
Offers simple assertion functions for writing tests and validating conditions

There are also many external modules which are organized through a Node Package Manager
(NPM). We will talk about this soon. Here are just a few of the most commonly-used:

| Module | Description |

express
dotenv

axios
nodemon
Jjsonwebtoken
mongoose

cors

Web framework for building APIs and server-side apps quickly and easily

Loads environment variables from a .env file into process.env

Promise-based HTTP client for making API requests (both in Node.js and the browser)
Dev tool that auto-restarts our app when we make changes to the source code
Implements JSON Web Tokens (JWT) for secure user authentication and authorization
ODM library for managing MongoDB data using schemas and models

Middleware to enable Cross-Origin Resource Sharing in Express apps

-184 -

COMP 2406 Node.js & NPM Winter 2026

8.4 Creating Servers

Now that we understand communications between clients and servers as well as the use of modules,

let’'s see how to create a very simple server and get it running. We can make use of the module.
This module has a () function that takes a callback function as a parameter. The
callback function should have two parameters ... the first represents the incoming object
from the client and the second represents the object to be returned to the client.

const http = require("http");

let server = http.createServer((request, response) => {
// Write code here to handle the incoming requests and generate responses

})s

Once this is set up, we just tell the server to start listening to incoming client requests by calling the
() function, passing in a port number. We will use 3000 as a port number regularly in this
course. It is the call to () that actually starts the server:

const PORT = 3000;
server.listen(PORT);
console.log(Server running at http://localhost:${PORT});

Assuming that we save this code in a file called serverTemplate.js, to run it we can just go to the
VScode terminal window and type: node serverTemplate.js. This will start the server. We

should see the single line appear and our code will be in an infinite loop (which we can stop with Ctrl-
C):

Server running at http://localhost:3000/);
Once the server is running, we can open a browser and go to this address to access our server:

http://localhost:3000/

However, at this time, our basic server template does not do anything with the incoming requests, so
it will not respond.

Here is another way to write the code that is cleaner, since we do not require the server variable:

let http = require("http");
let PORT = 3000;

function requestListener(request, response) {
// Write code here to handle the incoming requests and generate responses
}

http.createServer(requestListener).listen(PORT);
console.log(Server running at http://localhost:${PORT});

-185 -

COMP 2406 Node.js & NPM Winter 2026

Now, let’'s add some code to make things more interesting.

Heads Up: as a side point for future reference ... if we do any updates to the server while it
is running, we will not see our updates applied until we restart the server and refresh the
localhost page. So, stop the server with Ctrl+C, start the updated server and then refresh
the localhost page in our browser.

To see anything happen in the browser, we need to respond to the request by sending something
back. Let's send back the standard 200 OK response along with a simple html text message. To do
this, we need to write to the response object and read a couple of things from the request object.
We can use response. () to write the response header and the use

response. () to write to the body. Finally, we use response. () to send the response.

Here is what we will do in our basicServer.js file:

let http
let PORT

require('http');
3000;

function requestListener(request, response) {
console.log("Server: I received a request for ", request.url);
response.writeHead (200, {"Content-Type": "text/html"}); // OK status and html text response
response.write("<hl>Hello, from the server</h1>"); // html text body to send back
response.end(); // send the response now

}

http.createServer(requestListener).listen(PORT);
console.log(Server running at http://localhost:${PORT});

Notice that we are first displaying the request.url information. This is the path/file that is being
requested from the client. We then write the head by supplying the response status number and the
headers object that contains the header information that we want to return. In this case, we at least
want to tell the client that the body content is of type . The body itself is just a simple
html text message.

We can start this new server and then access it from our browser. This is what the browser will show:

FT localhost:3000

& @ localhost:3000

Hello, from the server

Yay! It worked! If we go back to the VScode terminal window and look at the console output, we will
notice that the browser actually sent two requests ... one for the main page and one for the favicon:

Server running at http://localhost:3000/
Server: I received a request for /
Server: I received a request for /favicon.ico

So, a reload from the Chrome browser generates two requests by default.
-186 -

COMP 2406 Node.js & NPM Winter 2026

That was not too bad. Now let’'s see how to get our FutureTech Corp. website up and running as a
server on the local host. To do this, we need our server to be able to send back the necessary HTML,
CSS, JavaScript, image files and logos whenever the browser asks for them. So, we will need to add
a little more to our basic server above. We will need to be able to access the file system so that we
can send the files to the client browser when they are requested. We can add these modules to get
access to Node.js’s file and path-related functions:

let = ();
let ();

Each time we send a file, we will need to set the Content-Type appropriately. So, we could create a
simple array that maps the Content-Type to the file extension, for each type of file that we have in
the server files that we created. These content types are also known as MIME types(Multipurpose
Internet Mail Extensions). Originally designed for email, MIME defines a way to specify the type and
format of content being sent over the internet. We can create the following object for our use, which
contains a file extension mapping to content types we will need for the header:

const =
- N
S e

Cndh »

Here is what we have so far for our futuretechServer.js file:

const http = require("http");
const fs = require("fs");
const path = require("path");

const PORT = 3000;
const mimeTypes = {
".html": "text/html",
".css": "text/css",
".js": "application/javascript”,
".png": "image/png",
“.jpg": "image/jpeg",
".ico": "image/x-icon"

}s

function requestListener(req, res) {
// the FUN stuff goes here

}

http.createServer(requestListener).listen(PORT);
console.log(Server running at http://localhost:${PORT});

Now, all that needs to be done is to complete the listener to handle the requests. When the browser
requests a file, we send it back, provided that there was no error reading it. Remember ... when a
browser requests a site, it first wants the HTML file sent back. Then it will start requesting the images,
icons, CSS and JavaScript files one at a time. So, we need to be able to handle all of these.

- 187 -

COMP 2406 Node.js & NPM Winter 2026

Also, it is rare that the user would request specifically the default index.html file, which is the main
page. So, if they simply go to our site, with no specific file specified (i.e., the requested URL is),
then we need to send back the index.html file. Even then, once they specify the file that they want,
we still need to get that file in our server’s file system with the absolute path to that file. So, here is
how we will begin:

function requestListener(req, res) {
let filePath = req.url === "/" ? "/index.html" : req.url; // add index.html if needed

filePath = path.join(__dirname, filePath); // get absolute path to file

This code looks at the request’s URL and changes it to if needed. Then it uses the
__dirname variable, which is a special variable in Node.js that gives us the absolute path to the
directory where the currently executing script file resides. So, filePath is set to the absolute path of

An

the requested file. Now we know where to find the file & .

Next, let’s look at the file extension and set up a mime type that we can send back in the header. The
path module’s () function lets us extract the extension for the file requested (e.g.,)-
We can then find the content type for that extension by looking it up in our mimeTypes object
mapping. If, for some reason, we do not find the file type that matches, we can set the content type to
the general: . So, we add this code to our listener:

const ext = path.extname(filePath); // get the file extension

// lookup content type based on ext. If not there, treat as a download
const contentType = mimeTypes[ext] || "application/octet-stream";

By using the OR (i.e., | |) operator, we are essentially saying: “If the file type was not found in the
object (i.e., returns undefined), then use this one instead.”

OK. Now we are ready to read in the requested file and send it back to the client. The read will either
be successful or it will fail (e.g., file not found). So, we must handle both of those situations.

The module contains the function that we need to read the file. The module’s ()
function takes the filename as its first parameter and a callback function as its second parameter.

Let’s see if you have been paying attention. Why is a callback function required?
Well, as we well know by now, this is an I/O operation which can take time to
Yy 4 perform. Therefore, it will not be processed right away but will be assigned to a
4 thread in the pool. When the file read comes back successfully, the event loop will
—J." , —‘ﬁ be notified and it will then call our callback function to send the information back to
the client.

The callback function that we supply must take two parameters. The first is an object that will be null
if all went well, or an object if an error occurred. The second parameter is the object that represents
data from the file. In our case, it will be the binary data of the file.

- 188 -

COMP 2406 Node.js & NPM Winter 2026

So, here is what we need to do ...

fs.readFile(filePath, (err, data) => { // read file, set data to contents
if (err) { // if error, return 404 Not Found
res.writeHead (404, { "Content-Type": "text/plain" });
return res.end("404 Not Found");

}

res.writeHead(200, { "Content-Type": contentType }); // otherwise send 200 OK and the data
res.end(data);

1)

From the above code, we can see that if an error occurs, we send back a 404 response in the header
with a content type saying that it is plain text. Then we include a simple string in the body indicating
the error. Notice that we are supplying a parameter to the res.end () function. This will write that
parameter as the body of the response and then send the response. In the case of no error, we send
back the 200 response and use our contentType variable (that we set earlier) to indicate the kind of
body content. We then send back the data from the file reading.

That’s it! Now we can run this with Node.js. The result is that we can go to a browser on our

laptop/desktop and type in localhost:3000 ... and then it will open up our webpage and we can
navigate the page.

v FT FutureTech — The Future is Now X +

o Cc @® localhost:3000/index.html

FutureTech

CORP.

About Us Products Contact Us

Every once in a while, a new technology, an old problem, and a big idea turn into an innovation

- Dean Kamen

© 2025 FutureTech. All rights reserved.

© 1:22:16PM

-189 -

COMP 2406 Node.js & NPM Winter 2026

8.5 Handling Request Data

Lat’s talk more about the request and response parameters for our listener callback function. The
request object has some useful properties:

e request.method —the HTTP method of the request (i.e., GET or POST)
e request.url —the URL of the request (e.g., /index.html)
e request.headers — an object containing all headers

As an example, consider this requestDetails.js server code:

const http = require("http");
const PORT = 3000;

function requestListener(request, response) {
console.log("method: " + request.method);
console.log("URL: " + request.url);
console.log("headers: " + JSON.stringify(request.headers));
response.end(); // an empty response sent back

}

http.createServer(requestListener).listen(PORT);
console.log(Server running at http://localhost:${PORT});

When we access the server by going to localhost:3000 we get the following information written to the
console (and we send back a response with no header nor body):

method: GET

URL: /

headers: {"host":"localhost:3000","connection":"keep-alive","cache-control":"max-
age=0", "sec-ch-ua":"\"Not)A;Brand\";v=\"8\", \"Chromium\";v=\"138\", \"Google
Chrome\";v=\"138\"", "sec-ch-ua-mobile":"?0", "sec-ch-ua-platform":"\"Windows\"", "upgrade-
insecure-requests":"1", "user—-agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0
Safari/537.36","accept":"text/html, application/xhtml+xml, application/xml;g=0.9, image/avif
, image/webp, image/apng, */*;qg=0.8, application/signed-exchange;v=b3;g=0.7", "sec-fetch-
site":"none", "sec-fetch-mode":"navigate", "sec-fetch-user":"?1", "sec-fetch-
dest":"document", "accept-encoding":"gzip, deflate, br, zstd","accept-language":"en-
US,en;g=0.9"}

request starting...

method: GET

URL: /favicon.ico

headers: {"host":"localhost:3000","connection":"keep-alive", "sec-ch-ua-
platform":"\"Windows\"", "user-agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36","sec-ch-

ua":"\"Not)A;Brand\";v=\"8\", \"Chromium\";v=\"138\", \"Google Chrome\";v=\"138\"", "sec-
ch-ua-

mobile":"?20", "accept":"image/avif, image/webp, image/apng, image/svg+xml, image/*, */*;g=0.8",
"sec-fetch-site":"same-origin", "sec-fetch-mode":"no-cors", "sec-fetch-

dest":"image", "referer":"http://localhost:3000/", "accept-encoding":"gzip, deflate, Dbr,
zstd", "accept-language":"en-US,en;g=0.9"}

-190 -

COMP 2406 Node.js & NPM Winter 2026

As we can see, there is a lot of information available in the header JSON object that is returned. Our
server can examine these headers to determine what is being requested and to make some decisions
as to what it should return.

Remember as well that GET requests do not have a body. If there is any data coming along with the
request, it will be coming within the URL string:

http://localhost:3000/index.html?year=2022&month=octoberf#content

Do you remember how to parse this?

const url = require("url");

let q = url.parse(request.url, true);
let gdata = q.query; // returns an object: { year: 2022, month: 'october' }

So here is a requestQueryDetails.js server that will display the query information supplied with any
incoming request:

const http = require("http");
const url = require("url");

const PORT = 3000;

function requestListener(request, response) {
console.log("URL: " + request.url);

let q = url.parse(request.url, true);
let gdata = qg.query; // returns an object: { year: 2022, month: 'october' }
for (x in gdata) {
console.log(x + ": " + qgdata[x]); // year: 2022 and month: october
}

response.end(); // an empty response sent back

}

http.createServer(requestListener).listen(PORT);
console.log(Server running at http://localhost:${PORT});

If we go to this webpage:
http://llocalhost:3000/index.html?year=2022&month=october#content

We get this output:

Server running at http://localhost:3000
URL: /index.html?year=2022&month=october
year: 2022

month: october

URL: /favicon.ico

-191 -

COMP 2406 Node.js & NPM Winter 2026

Now, what if our request type is a POST or PUT instead of a GET? In these cases, the incoming
request will contain a body. Reading the body requires a bit more work because it involves additional
I/0, which is handled asynchronously using callbacks. Fortunately, we can treat the request object as
a readable stream and collect the data as it arrives.

A readable stream emits two important events we can handle:

e data — triggered whenever a new chunk of data is available
¢ end - triggered when all data has been received

We can attach handlers to these events to read the entire request body. The data event collects
chunks as they arrive, so it is triggered multiple times. We just need to keep appending the latest
chunk to what we have accumulated so far. Once the end event is triggered, that signals us that the
data is all here now and we can process the full body.

The data coming from the stream is a Buffer object in JavaScript, which is essentially a raw
sequence of bytes. The way that we initialize the buffer and append to it will depend on how we are
using the buffer. For example, we may treat the buffer as a string of text characters, or it might be
binary data (e.g., files, images, etc..). Here are two ways to initialize a variable to hold the buffer
data:

let bodyl

" // when the body will be a string
let body2 = Buffer.alloc(9); // when the body will be binary data

Now, we just need to set up two callbacks one for when some data arrives, and one for when it is all
done. Registering event handlers (i.e., callbacks) is easily done by using the .on () function which
works for the HttpRequest object (as well as many other objects defined in the Node.js core
modules). It takes, as the first parameter, the name of the event that we want to listen for (i.e.,

or in our case here) and the callback function as the second parameter. The callback function
for the data event should have one parameter to represent the incoming data and the callback for the
end event needs no parameters.

Here is how we would set things up to read the body of an incoming POST or PUT request if it was
text data:

let body = ""; // when the body will be a string

request.on("data", chunk => {
body += chunk; // chunk is a Buffer, but += calls .toString() on it

})s

request.on("end", () => {
console.log("Final body (as string):", body);

})s

And here is how it would be set up if the body was a file of some kind (e.g., image, icon, binary file):

-192 -

COMP 2406 Node.js & NPM Winter 2026

let body = Buffer.alloc(9); // when the body will be binary data

request.on("data", chunk => {
body = Buffer.concat([body, chunk]);

})s

request.on("end", () => {
console.log("Final body (as Buffer):", body);

})s

Let’'s do an example. Here is a simple html file called simple-form.html, that contains a form that will
be submitted to our local host server when the user presses the “Send Message” button:

<html> Contact us using this form:
<head> Name
<title>Sending Form Data</title> 1
</head>
<body>
<p>Contact us using this form:</p>

<form action="http://localhost:3000/" method="POST" target="_blank">
<label for="name">Name:</label>

<input type="text" id="name" name="name" required>

 [Send Messags |
<label for="email">Email:</label>

<input type="email" id="email" name="email" required>

<label for="message">Message:</label>

<textarea id="message" name="message" rows="5" required></textarea>

<button type="submit">Send Message</button>
</form>
</body>
</html>

The code is set up with = so that the response from the server (whatever it may
be) is displayed in a new browser tab. The request itself will be sent as a default POST message.

Now, let’'s work on the server by making use of our .on () code from above. Since we are
using the standard form submission from our HTML page, we will want to make use of the
module, which lets us do . () to access the individual input

fields of the form by their names: “name”, “email” and “message”. Here is the code for
requestFormHandler.js:

const http = require("http");

const querystring = require("querystring");
const PORT = 3000;

function requestListener(request, response) {

console.log("method: " + request.method);
console.log("URL: "+ request.url);

COMP 2406 Node.js & NPM Winter 2026

console.log("headers:

+ JSON.stringify(request.headers));

if (request.method === "POST"){

let body = "";

request.on("data", chunk => {
body += chunk;

1

request.on("end", () => {
console.log("Final body:", body);
let formData = querystring.parse(body);
console.log("Name: " + formData.name);
console.log("Email: + formData.email);
console.log("Message: + formData.message);

// Send back an acknowledgement Contact us using this form’

response.end("Thank you for your message.");

Name
3
} [Mark |
else // send back nothing if it wasn't a POST

response.end(); Email:
|Lanthier@scs.carleton.ca |

}

http.createServer(requestListener).listen(PORT); MMessage:
console.log(Server running at http://localhost:${PORT}); Can you have someone

contact me please? I
need help configuring
Assume that we entered information into the form (as shown on the image my Time Machine.

here to the right) and then pressed Send Message. The output below is £

what we would see in the server console:
Send Message

Server running at http://localhost:3000

method: POST

URL: /

headers: {"host":"localhost:3000","connection":"keep-alive", "content-
length":"133", "cache-control":"max-age=0", "sec-ch-ua":"\"Not)A;Brand\";v=\"8\",
\"Chromium\";v=\"138\", \"Google Chrome\";v=\"138\"","sec-ch-ua-mobile":"?20", "sec-ch-ua-

platform":"\"Windows\"", "upgrade-insecure-requests":"1", "user—-agent":"Mozilla/5.0
(Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0
Safari/537.36","origin":"null", "content-type":"application/x-www—-form-

urlencoded", "accept":"text/html, application/xhtml+xml, application/xml;g=0.9,image/avif,im
age/webp, image/apng, */*;g=0.8,application/signed-exchange;v=b3;g=0.7", "sec-fetch-

site":"cross-site", "sec-fetch-mode":"navigate", "sec-fetch-user":"?21", "sec-fetch-
dest":"document", "accept-encoding":"gzip, deflate, br, zstd","accept-language":"en-
US,en;g=0.9"}

Final body:

name=Mark&email=Lanthier%40scs.carleton.ca&message=Cant+youthave+someonetcontact+me+please
$3F+I+needthelptconfiguring+my+Time+Machine.

Name: Mark

Email: Lanthier@scs.carleton.ca

Message: Can you have someone contact me please? I need help configuring my Time Machine.
method: GET

URL: /favicon.ico

headers: {"host":"localhost:3000","connection":"keep-alive","sec-ch-ua-
platform":"\"Windows\"", "user-agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36","sec-ch-
ua":"\"Not)A;Brand\";v=\"8\", \"Chromium\";v=\"138\", \"Google Chrome\";v=\"138\"", "sec-
ch-ua-

mobile":"?20", "accept":"image/avif, image/webp, image/apng, image/svg+xml, image/*, */*;g=0.8",

194 -

COMP 2406 Node.js & NPM Winter 2026

"sec-fetch-site":"same-origin", "sec-fetch-mode":"no-cors", "sec-fetch-
dest":"image", "referer":"http://localhost:3000/", "accept-encoding":"gzip, deflate, br,
zstd", "accept-language":"en-US,en;g=0.9"}

@ Sending Form Data X FT localhost:3000

In the browser, we would see a new tab
opened up with the response from our server in
it as shown here ->

c ® localhost:3000

We did not handle all types of errors in our
code above. The idea was to show us how to
handle a POST. Ultimately, our goal is to understand how to write servers to handle all possible
requests. We will learn more as the course goes on, and as we practice.

8.6 Node Package Manager (NPM)

NPM stands for Node Package Manager. We can find more about it here:
https://www.npmjs.com/. It is used by over 17 million developers worldwide.

It's a tool that helps web developers install, manage, and share code written
by others. Think of it like an app store, but for code libraries and tools that developers use when
building websites and web applications. We do not have to install NPM because it comes with
Node.js, which we have installed already.

When we are building a website or web app, we likely will not want to write everything from scratch.
For example, if we need animations ... there is a package for that. If we want to build a responsive

layout ... we can use a framework like Bootstrap. If we want to handle user input easily ... we can

install a form library. NPM helps us quickly add these features to our project.

What is NPM actually “managing”? Packages ... which are the building blocks that @
NPM installs and organizes. Knowing how they work will help us use NPM effectively :
to build our web applications faster and more efficiently. NPM is the largest software [P ‘
registry (library) in the world ... with over 2,000,000 packages available! " A

> A package is a bundle of code (which can include one or more JavaScript
Q files/modules) that someone wrote to solve a problem.

A package differs from a module in that a module is just a single JavaScript file whereas a
package is a folder of files bundled together with a package . json file.

The package . json file stores important information about our project, including:

o metadata such as the project's name, author, version, etc..
« alist of dependencies (i.e., other packages our project needs)

1§ 4 § 1
1111

o scripts to automate tasks (e.g., running our app or tests)
o other settings that help tools and developers understand our project

-195 -

https://www.npmjs.com/

COMP 2406 Node.js & NPM Winter 2026

Developers upload these packages to NPM'’s online registry, and we can install them in our project.
Some popular NPM packages in web development are ...

e React — for building user interfaces
e Express — for backend servers
e Lodash — for utility functions
e Tailwind CSS - for styling
Let’s start by reviewing how we have been using modules so far. We have mainly worked with two

types: built-in modules and modules defined in local files. Let’s explore how NPM locates the modules
we want to use in our code.

We have seen that there are two main ways of using require () to import a module:

e For alocal module:

const myLocalModule = require("./myFolder/myLocalModule");

e For a Node.js module:

const lodash = require("lodash");

The difference between the two is the specified path (i.e., " . /myFolder/") for local modules. When
we do not supply a path, we are not telling Node.js where to find the module, so it uses its module

resolution algorithm to search for it.
Consider doing a require("lodash") in a file called myCode. s that has the absolute file name:

C:/Users/steve/Documents/COMP2406/MyAssignment/myCode. js.
Here is what Node.js does to look for it:

1. It first checks if "1odash™ is a built-in module (e.g., "£s", "path", or "http"). Since "lodash"
is not built-in, the search continues...

2. It then looks for a folder called node modules in the same directory as the file that's running
(i.e., it checks for c: /Users/steve/Documents/COMP2406/MyAssignment/node_modules/lodash).
If there is N0 node_modules folder or if the 1odash folder is not in it, the search continues...

3. It then starts looking for the module by moving up one level at a time in the directory tree. So, it
would look up the tree for "1odash" in the following paths (in order shown):

C:/Users/steve/Documents/COMP2406/node_modules/lodash
C:/Users/steve/Documents/node_modules/lodash

C:/Users/steve/node_modules/lodash

C:/Users/node_modules/lodash r
C:/node_modules/lodash

4. If it reaches the root folder without finding it, it throws an error:

Error: Cannot find module "lodash"

- 196 -

COMP 2406 Node.js & NPM

Winter 2026

It is good to understand this search order because
Node.js programs are typically organized into projects
and it can make our life simpler if we structure our
folders nicely. For example, assume that we have a
main my_projects folder with some of our own modules
and then a few subfolders arranged as shown here ->

If the three different project servers here all require the
same my module. js, then we can simply write
require ("my module") in each server and they will
each import the same module, due to our well-chosen
directory hierarchy.

If we need another (altered) version of my module.js
for one specific project, we can just include a
node_modules folder with the updated my module.js
file in it as shown here >

This method of relying on directory hierarchies will work,
but it can (and will) get confusing for larger projects with
many versions. Also, we must build the directory
structure ourselves (i.e., we would have to find and
download every package, “install” them, etc.). This
approach is fragile and error-prone.

NPM helps us manage both our Node.js projects and
the external code they rely on, called dependencies. A
dependency is simply a package (often created by
someone else) that our project needs in order to work
properly. These might include things like web

'. my projects

— /i node modules

I my module.js
_E fun project

|_ fun server.js
—ri funner project

|_ funner server.]js

— '. funnest project

L funnest server.js

'. my projects

— il nocde modules

L— [my module.js
— r._ fun project

I fun server.]js
— r._ funner project

|_ funner server.]js

— '. funnest project
'y node modules
I— Ig my module.js

h
— funnest server.js

frameworks, utility libraries, or tools for testing. All the dependencies that a project uses are listed in a
file called package.json. This file acts like a map for our project, showing what it needs to run.

With NPM, we can easily install new packages, keep track of them, and re-install everything later if
we move the project to a different computer. This makes our projects easier to build, maintain, and

share with others.

-197 -

COMP 2406 Node.js & NPM Winter 2026

When starting a new project, it is best practice to initialize it by running npm init in the project’s root
directory. When doing this, we will be asked some questions about the package (we can just press
Enter until the end) and then it will create the basic package. json file, which will keep track of the
packages that we use. We can alternatively do npm init --yes, which will not ask us those
qguestions.

We can install packages without running npm init first, but if we skip it, our project won’t have a
package. json file. That file is important because it keeps track of project details and dependencies.
Without it, several problems arise:

% We will have no way to track dependencies. If we install a
package (such as express), it will appear in the node _modules/
folder, but there won’t be any record in the project. This means if
someone else downloads our code (or if we move it to a new
computer) there is no way to know which packages need to be
reinstalled..

¥ Running npm install (see below) won’t work, because it relies on
package . json to know which packages to install. So, there is no
easy way to rebuild the project.

% Other tools (e.g., GitHub or teammates) rely on package. json for metadata and
dependencies. Without it, they won’t know how our project is set up.

To install packages, we use npm install. We can install packages in two ways:

» Local mode: installed in a node_modules/ directory in our current working directory.

(e.g., npm install moduleName)

« Global mode: installed system-wide in a global node modules/ directory, defined by NPM’s
prefix configuration.

(e.g., npm install moduleName -Q)
We can find the global install location using nom config get prefix).
In most cases, we install packages locally, on a per-project basis. This means each project has its

own copy of the packages it needs. While this may result in duplicate files across projects, it's a
worthwhile tradeoff:

e |t avoids the complexity of sharing and managing a single set of packages across many
projects.

e More importantly, different projects may require different versions of the same package, and
local installation makes that possible. NPM handles this automatically, helping each project
stay consistent and isolated from others.

Whenever we install a package (e.g., express), that package is listed in package . json so that
others (or even we ourselves, later) can easily recreate the environment by running npm install.

-198 -

COMP 2406 Node.js & NPM Winter 2026

For example, assume thatwe hada [

package. json file already with the "name": "05 01",

express, pug & socket.io e e

. "main": "server.js",

modules installed already and then "scriptsv: {

we do: "test": "echo \"Error: no test specified\" && exit 1",
" t tl’l: n d_e R L

npm install underscore } star s Lo b
to install the underscore module. r'keword’?": [1,
"author": "Alina",
"license": "ISC",

The package . json file will then "dependencies": {

look as shown here > express”: "°4.18.27,
I'lpug-"_ n 3_0_2"'
"socket.io": "*4.7.2",

When we (or a TA) are setting up a "underscore": "*1.13.6"

project on a new computer or I ,

i t, and need to install all Joovpependenes U
enVIronmen y an nee O "d.escription": LU
required dependencies, we can }

simply run: npm install from

within the directory that contains this package . json file. This will install all the modules listed in the
file, restoring the project’s full set of dependencies.

If we look at what was written to the package. json file, when we installed the underscore module,

we see this:

"underscore":

"~1.13.6"

< What is this?

The value of "~1.13.6" here is the semantic versioning information (a.k.a., version specifier).

Caret " orTilde ~

-

™ tells NPM: “Install the most recent version that is still part of the same major version.”

~ tells NPM: “Install the latest patch version, but stay within the same minor version.”

If nothing here ... tells NPM: “Install this exact version only”.

~N

T~
“1.13.6

Major
Changes that are not
backwards compatible

Minor

New features added that
are backwards-compatible

N

Patch

Small fixes like bug fixes or
performance improvements

with older versions

-199 -

COMP 2406 Node.js & NPM Winter 2026

When working on a project with NPM, it's important that everything works the
same way on every computer ... whether it’s ours or our TA’s. A file named
package-lock. json is automatically created by NPM when we install
packages. It records the exact versions of every package (and sub-package)
used in our project, ensuring consistent behavior across different
environments. While package . json lists our main dependencies,
package-lock. json locks in the specific versions actually installed. This
helps avoid version mismatches and makes our project easier to share, test,
and deploy.

Here are some additional things that we may want to do with NPM:
Install a specific version of a package

Tell NPM exactly which version we want to install by adding the version after the
package name. For example,

npm install pug@3.0.0 < Installs version 3.0.0 exactly
npm install pug@"~3.0.0" < Installs the latest compatible version
starting from 3.0.0 (e.g., 3.0.2)

Remove a package

We might want to remove a package if we don’t need it anymore, if it causes problems
or conflicts, to keep our project smaller and cleaner, or to replace it with a better or
newer package. To uninstall a package, use: npm uninstall pug

Update packages

We may want to do this, to get bug fixes and improvements, to add new features, to
improve security, or to keep compatibility with other tools or packages. We run

npm update to upgrade the packages installed in our project based on the version
rules in our package. json. It updates each package to the latest version that still
matches the specified range. This ensures we get new features and fixes without
accidentally installing incompatible major versions.

Check installed packages
In some situations, we may want to see what packages are installed for our project: to

verify package versions, to find outdated or unused packages, or to troubleshoot
errors or conflicts. To check packages and versions, use: npm list

- 200 -

