

Chapter 9

Template Engines

What is in This Chapter ?

This chapter begins by discussing the need to be able to generate
dynamic HTML and gives an example of how to do it by combining
HTML and JavaScript manually. It then discusses Template Engines
and the embedded JavaScript template engine called EJS. The
manually generated HTML website example is then modified to
use EJS. Code connected to this chapter is also available to
examine how the FutureTech site can be converted to use
EJS to allow dynamic content. We end the chapter with a
discussion of the PUG template engine and apply it to our
FutureTech website.

COMP 2406 Template Engines Winter 2026

 - 202 -

 9.1 Generating Dynamic HTML with JavaScript

At this point in the course, we can make dynamic webpages on the client side, we can make basic
HTTP servers and we can serve static HTML. But sometimes we need to customize a page's
contents because websites often display content that changes based on user interactions,
preferences, or data from a server (e.g., user profiles, product lists, blog posts, search results, etc.)
We cannot realistically write static HTML for every possible scenario, so we need to generate HTML
content dynamically.

Dynamically generated HTML makes it possible for websites to show different content to different
users or change what’s on the page based on live data. For example, a social media website can
show your feed, messages, and notifications, while someone else sees theirs. Instead of creating
hundreds of separate pages by hand, developers use templates that fill in the blanks with the right
information at the right time. This keeps websites flexible, easier to manage, and more interactive.

One way to create dynamic HTML is to manually write out HTML code as plain text in JavaScript
and add variables:

const user = {
 name: "Anastasia",
 age: 23,
 bio: "Loves hiking, coffee, pizza and coding."
};

let html = "";
html += "<div class='profile'>\n"; // \n is not needed but allows string to be displayed nicely
html += " <h2>" + user.name + "</h2>\n "; // spaces at start are not needed either
html += " <p>Age: " + user.age + "</p>\n ";
html += " <p>Bio: " + user.bio + "</p>\n ";
html += "</div>";

This will produce the HTML code as follows:

<div class='profile'>
 <h2>Anastasia</h2>
 <p>Age: 23</p>
 <p>Bio: Loves hiking, coffee, pizza and coding.</p>
</div>

This approach works for simple cases but there are downsides:

 Error-prone - it's easy to forget a closing tag or misplace a variable.

 Hard to maintain - mixing logic and HTML makes code messy and difficult to read.

 Unsafe - can create security problems (e.g., hackers can run harmful scripts on our site)

Recall that back in chapter 4.4, we discussed the use of template literals by using the
backtick character and we compared this with string concatenation using the + operator.

COMP 2406 Template Engines Winter 2026

 - 203 -

As we can see from the table below, the code is very similar, but the template literal is more readable,
easier to maintain and less prone to syntax error (i.e., we are more likely to miss " or + when doing

string concatenation).

With + Concatenation With Template Literals

let user = {
 name: "Anastasia",
 age: 23,
 bio: "Loves hiking, coffee, pizza & coding."
};

let html =
 "<div class=\"profile\">" +
 "<h2>" + user.name + "</h2>" +
 "<p>Age: " + user.age + "</p>" +
 "<p>Bio: " + user.bio + "</p>" +
 "</div>";

let user = {
 name: "Anastasia",
 age: 23,
 bio: "Loves hiking, coffee, pizza & coding."
};

let html = `
 <div class="profile">
 <h2>${user.name}</h2>
 <p>Age: ${user.age}</p>
 <p>Bio: ${user.bio}</p>
 </div>
`;

With template literals, we can actually do a lot. We could add functions to read files and then replace
specific sections of those files with provided variable values.

Example

Let’s look at an example of using template literals for a fake
dating site called “Date-a-Science” that has a main homepage
that looks like what is shown here on the right.

When the user clicks on a member name, it goes to their profile
page, and the about goes to another page (see below):

We can also add a member to the list by creating a new profile by entering a name and pressing the
Submit Profile button. And then from within a member’s profile page, we can also enter a message
and press the Submit Message button to leave a message for that person.

COMP 2406 Template Engines Winter 2026

 - 204 -

The styles.css file will not be described in our example, but it is mostly specifying spacing, padding,
alignment, coloring, rounding corners, over effects, etc..

We will set up our server’s folder structure as shown here →
(Assumes we begin with 4 profile images: homer, marge, ling, ahmed).

Below is a basic version of the main server (called server.js). We begin
with a fixed array of 4 members, where each member has a name, id,
age, photo and array of messages sent to them. Of course, this example
can be expanded upon by adding more fields (e.g., friends, posts, etc.).
Also, the messages are currently just strings, but the array could be an
array of objects. We can then have more state for each message (e.g.,
creator, likes, views, match history, mutual interests, etc.).

const http = require("http");
const url = require("url");
const fs = require("fs");

let contents = "";
let nextID = 101;
let people = [{name: "Homer", id:nextID++, age: 26, photo:"/images/homer.jpg", messages:[]},
 {name: "Marge", id:nextID++, age: 25, photo:"/images/marge.jpg", messages:[]},
 {name: "Ling", id:nextID++, age: 27, photo:"/images/ling.jpg", messages:[]},
 {name: "Ahmed", id:nextID++, age: 24, photo:"/images/ahmed.jpg", messages:[]}];
let anonImg = "/images/unknown_person.jpg";

// Helper functions for sending specific messages
function respondMainPage(res) {…}
function respondAboutPage(res) {…}
function respondWithProfile(res, id) {…}
function serveStaticFile(filename, res) {…}
function send404(response) {…}

// Listener for incoming client requests
function handleRequest(req, res) {
 const parsed = url.parse(req.url, true); // get the query params (for profile pages)
 const pathname = parsed.pathname; // get path without query

 // Handle all GET requests
 if (req.method === "GET") {
 if (pathname === "/" || pathname === "/home") {// Return the main page
 respondMainPage(res);
 } else if (pathname.startsWith("/profile")) { // Return a specific profile
 respondWithProfile(res, parsed.query.id);
 } else if (pathname.startsWith("/about")) { // Return the about page
 serveStaticFile(("./about.html", res);
 } else if (pathname === "/clientscript.js") { // Return the client-side javascript
 serveStaticFile("./clientscript.js", res);
 } else if (pathname.startsWith("/images/")) { // Return an image for a page
 serveStaticFile("." + pathname, res);
 } else if (pathname === "/style.css") { // Return the style file
 serveStaticFile("./style.css", res);
 } else { // If anything else ... respond with 404 error
 send404(res);
 }
 } else { // If not a GET request, send 405
 res.writeHead(405);
 res.end("Unsupported method");
 }
}

COMP 2406 Template Engines Winter 2026

 - 205 -

http.createServer(handleRequest).listen(3000);
console.log("Server running on port 3000");

Notice that the server currently handles just GET requests for when the browser asks for the main
page (i.e., "/"), the about page (i.e., "/about"), a particular profile (e.g., "/profile?101"), the

client-side JavaScript file (i.e., "/clientscript.js"), the style file (i.e., "/style.css") or an image

file (e.g., "./images/homer.jpg"). For any other request, it responds with a 404 message. The code

is straight forward, but what goes into the helper functions?

The simplest one is the send404() because it is static:

// Helper function for sending 404 message
function send404(response) {
 response.writeHead(404, {"Content-Type": "text/plain"});
 response.write("Error 404: Resource not found.");
 response.end();
}

The serveStaticFile() is also straight forward because it also is static:

// Send back the specific file requested (html, JavaScript, css, jpg, or plain text)
function serveStaticFile(filename, res) {
 fs.readFile(filename, function(err, data) {
 if (err) {
 res.statusCode = 404;
 res.end("File not found");
 } else {
 res.writeHead(200, {"content-type": lookupMIMEType(filename)});
 res.end(data);
 }
 });
}

… which makes use of another helper function to get the MIME type:

// Return the MIME type given the filename
function lookupMIMEType(filename) {
 if (filename.endsWith(".js")) return "application/javascript";
 if (filename.endsWith(".css")) return "text/css";
 if (filename.endsWith(".jpg") || filename.endsWith(".jpeg")) return "image/jpeg";
 if (filename.endsWith(".png")) return "image/png";
 if (filename.endsWith(".html")) return "text/html";
 return "text/plain";
}

There is nothing new here so far because this is the static content.

The about.html page has no dynamic content, so we can serve it back as a static file:

COMP 2406 Template Engines Winter 2026

 - 206 -

<!DOCTYPE html>
<html>
 <head>
 <title>Date-a-Science</title>
 <link rel="stylesheet" href="/style.css">
 <link rel="icon" href="/images/favicon.jpg" type="image/jpeg">
 </head>
 <body>
 <nav class="navbar">
 <div class="nav-left">

 Date-a-Science
 </div>
 <ul class="nav-menu">
 Home
 About

 </nav>
 <div class="container">
 <h1>About Date-a-Science</h1>
 <p>Date-a-Science is a playful dating platform connecting scientifically curious minds
who believe in love through logic, chemistry, and a dash of nerdy fun. Whether you are into
molecules or algorithms, we've got a match for you.</p>
 </div>
 <footer>
 <p>© 2025 Date-a-Science</p>
 <p>Contact us at support@dateascience.com</p>
 </footer>
 </body>
</html>

The home page, however, will have non-static content because
the members list will grow over time. Also, the profile page is a
template that we want to fill in based on the particular member.
So, these two pages will have some dynamic content.

Let’s look now at the home page. We need to consider what
parts of the page are static and what parts are dynamic. The
dynamic content is the unordered list of member names, which
will depend on whatever is in the people array variable →

Initially, there will be 4 names, but more names will be added by
the user. Here is the respondMainPage() function that will build this dynamic page for us:

// Helper function for sending back the main homepage
function respondMainPage(res) {
 contents = `
 <!DOCTYPE html>
 <html>
 <head>
 <title>Date-a-Science</title>
 <link rel="stylesheet" href="./style.css">
 <link rel="icon" href="./images/favicon.jpg" type="image/jpeg">

COMP 2406 Template Engines Winter 2026

 - 207 -

 </head>
 <body>
 <nav class="navbar">
 <div class="nav-left">

 Date-a-Science
 </div>
 <ul class="nav-menu">
 Home
 About

 </nav>
 <div class="banner">

 </div>
 <div class="container">
 <h1>Welcome to Date-a-Science</h1>
 <p>Where Your Heart Gets a Software Update.</p>

 <h2>Our Members</h2>
 <ul class="profile-list">
 `;
 people.forEach(person => {
 contents += `♥ ${person.name}`;
 });
 contents += `

 <h2>Create a New Profile</h2>
 <label for="name">Name:</label>
 <input type="textbox" id="name">
 <button type="button" onclick="submit()">Submit Profile</button>
 <script src="/clientscript.js"></script>
 </div>

 <footer>
 <p>© 2025 Date-a-Science</p>
 <p>Contact us at support@dateascience.com</p>
 </footer>
 </body>
 </html>
 `;

 res.writeHead(200, { "Content-Type": "text/html" });
 res.end(contents);
}

Thanks to VSCode’s color scheme, it is easy to identify the static content (as orange), while the
dynamic content stands out in different colors. Notice that we use the template literal approach (i.e.,
the backtick) to specify the HTML contents for the top of the page (i.e., before the list). Then we

append to the contents, our dynamic list. Then we append more static contents and send it back in

the response. Notice the yellow code. This will insert the clientscript.js code into this location in the
code. We will discuss this soon.

The interesting part of the static content is that we are making anchors for each member and
then just showing the person’s name. The anchor is the link that will specify the specific
profile page that we want to request from the server when we click on the link:

http://localhost:3000/profile?id=101

COMP 2406 Template Engines Winter 2026

 - 208 -

Otherwise, the code should be quite straight forward and familiar to you.

Now… what about the profile page? What is dynamic on it? Well, look
at the list item anchors from the code we just wrote:

♥ ${person.name}

We can see that we will be requesting the same exact profile page
regardless of the person, but the id number (passed as a query) will

differ each time. So, we just need to dynamically fill in the name,
picture, age and messages for that person based on that id.

Below is the respondWithProfile() function that will build this dynamic page for us. We can

quickly identify the dynamic content by the non-orange color:

// Helper function for sending back the profile page
function respondWithProfile(res, id) {
 // This is not an efficient way of finding people. You may want to use a HashMap.
 let person = null;
 for (let i=0; i<people.length; i++) {
 if (people[i].id == id) {
 person = people[i];
 break;
 }
 }
 // If the person is not found, send back an error
 if (person === null) {
 send404(res);
 return;
 }

 const photo = person.photo || anonImg;
 contents = `
 <!DOCTYPE html>
 <html>
 <head>
 <title>${person.name} - Date-a-Science</title>
 <link rel="stylesheet" href="/style.css">
 <link rel="icon" href="/images/favicon.jpg" type="image/jpeg">
 </head>
 <body>
 <div class="container">
 < Back to homepage

 <div class="profile-card">
 <h1>${person.name}</h1>

 <p>Age: ${person.age}</p>
 </div>

 <div class="messages">
 <h2>Messages</h2>`;
 if (person.messages.length !== 0) {
 person.messages.forEach(msg => {
 contents += `<div class="message">${msg}</div>`;

COMP 2406 Template Engines Winter 2026

 - 209 -

 });
 } else {
 contents += `<p>No messages yet.</p>`;
 }
 contents += `<h3>Leave a Message</h3>
 <input type="textbox" id="msg">
 <button type="button" onclick="submitMessage(${person.id})">Submit
Message</button>
 </div>

 <script src="/clientscript.js"></script>
 </div>
 </body>
 </html>
 `;
 res.writeHead(200, { "Content-Type": "text/html" });
 res.end(contents);
}

To start, we look for the person in the array based on the id. We did something simple here, but in a

real system, we would likely want to use something like a HashMap to find the person faster. Of
course, if the person is not found (i.e., the id was invalid), then we send back the 404 message.

Otherwise, we simply insert the person’s name, photo, age and messages into the template literal
and write out the response.

Again, notice the same yellow code to insert the clientscript.js code. This JavaScript code will be
the code that must run on the client browser. It will have two functions … one to handle the Submit
Profile button (from the main home page) and the other to handle the Submit Message button on
this profile page.

We will need to send this clientscript.js file from the server to the browser as a static file. The
browser will request it because we included <script src="/clientscript.js"></script> in

the dynamic HTML code that will get executed on the client browser.

For the Submit Profile button, we need to start off clientscript.js with the following code:

// Function to handle the Submit Profile button on the main page
function submit() {
 let name = document.getElementById("name");
 if (name.value.length == 0) {
 alert("You must enter a name");
 } else {
 req = new XMLHttpRequest();
 req.onreadystatechange = function() {
 if (this.readyState == 4) { // 4 means the response has come back
 if (this.status == 200) {
 alert("Profile Created!");
 name.value = "";
 window.location.href = "/"; // Tell browser to load main page again
 } else {
 alert("Error while trying to create profile. Try again.");
 }
 }

COMP 2406 Template Engines Winter 2026

 - 210 -

 }
 let person = {name: name.value};
 req.open("PUT", "/newprofile");
 req.send(JSON.stringify(person));
 }
}

It is standard AJAX request code that ensures there is non-empty name before sending, and then it
sends a PUT request to this site: http://localhost:3000/newprofile. We will need to go to

the server and update the handleRequest() function to handle this PUT request.

We need to add code before the last send404() else statement to handle this case. The grayed out
code below is what was there already and is show for context of where to insert the new code:

// Listener for incoming client requests
function handleRequest(req, res) {
 // Handle all GET requests
 if (req.method === "GET") {
 if (req.url === "/"){ //... code not shown, to save space
 } else if (req.url.startsWith("/profile?")) { //... code not shown, to save space
 } else if (req.url === "/about") { //... code not shown, to save space
 } else if (req.url === "/clientscript.js") { //... code not shown, to save space
 } else if (req.url.startsWith("/images/")) {//... code not shown, to save space
 } else if (req.url === "/style.css") {//... code not shown, to save space
 } else { // If anything else ... respond with 404 error
 send404(res);
 }

 } else if (req.method === "PUT" && req.url === "/newprofile") {
 readRequestBody(req, function(body) {
 newPerson = JSON.parse(body);
 newPerson.id = nextID++;
 newPerson.messages = [];
 people.push(newPerson); // add profile to the array
 res.writeHead(200, { "content-type": "text/plain" });
 res.end();
 });
 } else {
 res.writeHead(405);
 res.end("Unsupported method");
 }
}

The code simply checks if the request's method is PUT and that the URL is "/newprofile" and then
reads the request body … which is a JSON object with only the name defined. It then sets the id to

be the next available one from the nextID counter and sets the messages array to an empty one. It

finally sends back a successful 200 response.

Of course, we need the function to read the request body as it comes in piece-by-piece (although
there is likely only one small piece in our case):

// Helper function to read the request body
function readRequestBody(req, callback) {
 let body = ""
 req.on("data", (chunk) => {
 body += chunk;
 })

COMP 2406 Template Engines Winter 2026

 - 211 -

 //Once the entire body is ready, process the request
 req.on("end", () => {
 callback(body);
 });
}

Now, let’s handle the Submit Profile button on the profile page. The client request code is similar,
but now we will use a POST, along with the message, instead of a PUT:

// Function to handle the Submit Message button on the profile page
function submitMessage(id) {
 let msg = document.getElementById("msg");
 if (msg.value.length == 0) {
 alert("You must enter a message");
 } else {
 req = new XMLHttpRequest();
 req.onreadystatechange = function() {
 if (this.readyState == 4) { // 4 means the response has come back
 if (this.status == 200) {
 alert("Message Sent!");
 msg.value = "";
 window.location.reload(); // Tell browser to load this page again
 } else {
 alert("Error while sending message. Try again.");
 }
 }
 }
 let messageContent = { message: msg.value, id: id };
 req.open("POST", "/message");
 req.send(JSON.stringify(messageContent));
 }
}

Again, we see standard AJAX request code that ensures there is non-empty message before
sending, and then it sends a POST request to this site: http://localhost:3000/message. We

will need to go to the server and update the handleRequest() function again to handle this POST

request.

We need to add code again, before the last send404() else statement. The grayed out code below is
what was there already and is show for context of where to insert the new code:

// Listener for incoming client requests
function handleRequest(req, res) {
 // Handle all GET requests
 if (req.method === "GET") {
 if (req.url === "/"){ //... code not shown, to save space
 } else if (req.url.startsWith("/profile?")) { //... code not shown, to save space
 } else if (req.url === "/about") { //... code not shown, to save space
 } else if (req.url === "/clientscript.js") { //... code not shown, to save space
 } else if (req.url.startsWith("/images/")) {//... code not shown, to save space
 } else if (req.url === "/style.css") {//... code not shown, to save space
 } else { // If anything else ... respond with 404 error
 send404(res);
 }
 }
 // Combination of PUT and /newprofile is interpreted as a request to create a profile
 else if (req.method === "PUT" && req.url === "/newprofile") {
 readRequestBody(req, function(err, body) {
 newPerson = JSON.parse(body);

COMP 2406 Template Engines Winter 2026

 - 212 -

 newPerson.id = nextID++;
 newPerson.messages = [];
 people.push(newPerson); // add profile to the array
 res.writeHead(200, { "content-type": "text/plain" });
 res.end();
 });

 // Combination of POST and /message is interpreted as a request to add a message
 } else if (req.method === "POST" && req.url === "/message") {
 readRequestBody(req, function(body) {
 console.log("Adding message: " + body);
 let message = JSON.parse(body);
 if (addMessage(message)) {
 res.writeHead(200, { "content-type": "text/plain" });
 res.end();
 } else {
 send404(res);
 }
 });
 //Any other combination of method/URL is not supported
 } else {
 res.writeHead(405);
 res.end("Unsupported method");
 }
}

The code checks for a POST message type and to ensure that the URL is /message and then reads
the request body … which is a JSON object which contains the message (defined as a string) as well

as the id of the person to send it to.

It then calls addMessage() to add it to the profile’s messages array. The function returns true if it

was successful:

// Helper function to add a message to a person's profile
function addMessage(msg) {
 for (let i=0; i<people.length; i++) {
 if (people[i].id === msg.id) {
 people[i].messages.push(msg.message);
 return true;
 }
 }
 return false;
}

That’s it! Messages will appear one after another in a list
after we add submit them →

So, we now understand that we can write JavaScript
functions for generating HTML. But as mentioned earlier,
there are downsides to doing things this way.

COMP 2406 Template Engines Winter 2026

 - 213 -

 9.2 Embedded JavaScript Templates (EJS)

A template engine is a tool that combines HTML with dynamic data to automatically generate web
pages in a clean and organized way. Template engines solve the problems mentioned above by
providing a cleaner, more structured way to separate application logic
from presentation (HTML).

Template engines allow us to:

✓ Write HTML templates with placeholders for dynamic data.

✓ Keep HTML readable and maintainable.

✓ Prevent common security risks by escaping output by default.

✓ Speed up development with built-in utilities
(e.g., looping or conditional rendering).

At a high level, a template engine does three things:

1. Takes a Template file (e.g., HTML with special syntax for placeholders
representing document structure & generalized contents).

2. Combines it with Data from our application (e.g., users, products, etc).

3. Produces a final HTML output string to send to the browser.

The template engine combines the data and templates in a process called rendering … producing
the view … which is the visual part of the application that users interact with in their browser.

We will talk soon about Express, which is a fast, widely-used, minimal web framework for Node.js
that makes it easy to build web servers and APIs. Several template engines work with Express such
as Pug, Mustache and EJS.

Template engines are useful when we want to rapidly build web applications that are split into
different components … especially when we want to:

• reuse common HTML structures across multiple pages (e.g., headers, footers, navigation
bars, sidebars, etc.).

• insert dynamic content into HTML (e.g., usernames, product lists, messages).

• quickly render views in server-side web applications, where the HTML changes based on
user requests or data from a database.

• separate our visual specification from data and server logic.

They’re a great choice when we want to build pages that share a consistent layout but display
different content. In short: they help us write clean HTML layouts that automatically get filled with the
right content when needed.

COMP 2406 Template Engines Winter 2026

 - 214 -

EJS (Embedded JavaScript) is one of the most popular and lightweight template engines for
Node.js. It lets us embed JavaScript code directly in our HTML to dynamically produce portions of
the page. To use EJS, we need to ensure that it is first installed using NPM: npm install ejs

and then use require in our server code: const ejs = require("ejs");

EJS supports the idea of partials … which is a piece of an entire “page” that can be re-used
(e.g., headers, footers, menus, etc.)

For example, the home page and about page of our Date-a-Science site both contain the same
exact code to start the page, so they have the same header:

<!DOCTYPE html>
<html>
 <head>
 <title>Date-a-Science</title>
 <link rel="stylesheet" href="/style.css">
 <link rel="icon" href="/images/favicon.jpg" type="image/jpeg">
 </head>
 <body>
 <nav class="navbar">
 <div class="nav-left">

 Date-a-Science
 </div>
 <ul class="nav-menu">
 Home
 About

 </nav>

We could consider this a partial and place this code into a file called header.ejs. At the moment this

is just an HTML file, but we will adjust it to have a small bit of dynamic content in a moment, so we
will use the .ejs file extension. Notice that the file is not a completed HTML file because there are no

closing tags for the <body> and <html> tags. That is because we will include this code as “partial”

code that will be appended to other code, which will have the proper closing of those tags as needed.

In addition, the home and about pages both share the same footer information. So, we can make a
footer.ejs file as well:

 <footer>
 <p>© 2025 Date-a-Science</p>
 <p>Contact us at support@dateasci.com</p>
 </footer>
 </body>
</html>

COMP 2406 Template Engines Winter 2026

 - 215 -

Let’s convert our code to make use of the EJS template engine.
We will adjust our folder hierarchy to be as shown here on the
right. The top portion is the same, but we added a data folder to

hold our data, a views folder to hold our dynamic pages, and a

partials folder to hold our header.ejs and footer.ejs

partials.

We may notice that we have three .ejs files in the views

folder. These are mostly made up of HTML but they will have
some dynamic EJS content as well. Let’s begin our conversion
to EJS by taking a look at the about.html file from before:

<!DOCTYPE html>
<html>
 <head>
 <title>Date-a-Science</title>
 <link rel="stylesheet" href="/style.css">
 <link rel="icon" href="/images/favicon.jpg" type="image/jpeg">
 </head>
 <body>
 <nav class="navbar">
 <div class="nav-left">

 Date-a-Science
 </div>
 <ul class="nav-menu">
 Home
 About

 </nav>
 <div class="container">
 <h1>About Date-a-Science</h1>
 <p>Date-a-Science is a playful dating platform connecting
scientifically curious minds who believe in love through logic, chemistry, and
a dash of nerdy fun. Whether you are into molecules or algorithms, we've got a
match for you.</p>
 </div>
 <footer>
 <p>© 2025 Date-a-Science</p>
 <p>Contact us at support@dateascience.com</p>
 </footer>
 </body>
</html>

The first thing that we will notice is
that all of the yellow code is code
that is in our header and footer.

So, for our about.ejs file, we will

simply include the header.ejs

and footer.ejs files instead of

duplicating the code.

To include an EJS partial in another EJS file, we simply use EJS’s include() function which has this
format:

<%- include("filename") %>

Here, the filename is the name of the .ejs file that we want to include, but we leave off the file

extension. If the file is in the same folder as the one that we write this include statement in, then we
do not need to specify a path (e.g., "header"). However, if it is in subfolder or other folder, we need

to specify the path relative to where we are (e.g., "partials/header").

So, we can write our about.ejs file (which will replace our previous about.html file) as follows:

COMP 2406 Template Engines Winter 2026

 - 216 -

<%- include('partials/header') %>

<div class="container">
 <h1>About Date-a-Science</h1>
 <p>Date-a-Science is a playful dating platform connecting scientifically curious minds who
believe in love through logic, chemistry, and a dash of nerdy fun. Whether you are into molecules
or algorithms, we've got a match for you.</p>
</div>

<%- include("partials/footer") %>

Notice that the main content of the page looks short & sweet now, since we do not clutter it up with
the header and footer code.

The <%- at the beginning of the include call indicates that we want to output …

Unescaped HTML - HTML code that is rendered directly in the browser without
converting special characters (e.g., <, >, &, etc..), meaning it produces actual HTML
elements (e.g., headings, images, or links) instead of displaying the raw code as plain
text.

We use this if we trust the content being rendered (i.e., we wrote it). We would not use it if we had
content that may contain user input (e.g., messages, comments) because it could lead to security

risks. In those cases, we would use <%= instead, which will output …

Escaped HTML - HTML code in which special characters (e.g., <, >, &, etc..) are turned
into safe text so that they don’t act like real HTML in the browser. It's like putting a
disguise on HTML so the browser doesn’t treat it as code and just shows it as plain text.

Escaping protects our site from code injection and keeps user-submitted content safe and harmless.

A nice feature of the include() function is that it allows us to pass in data by supplying a second
parameter. So, if we want to pass along some data into our EJS file, we could do it by specifying a
second parameter which must be a JavaScript object containing one or more key: value pairs,

separated by commas:

<%- include(file, { key1: val1, key2: val2, key3: val3, etc.. }) %>

Let’s try this by passing in the page title to our header.ejs file. This will be useful because the

header partial contains the <head> tag which has the page <title> in it … which will be shown as

the title of the page on the browser tab. By passing in a title to the header, each page that shares the
header will be able to have their own unique page title (e.g., "Date-a-Science – Home", "About – Date-

a-Science", "Homer - Date-a-Science", "Marge - Date-a-Science”, etc..)

So, we will adjust the first line of our about.ejs page to be as follows:

<%- include("partials/header", { title: "About - Date-a-Science" }) %>

COMP 2406 Template Engines Winter 2026

 - 217 -

Then, we can make use of this in our header.ejs file by using this title variable.

<!DOCTYPE html>
<html>
 <head>
 <title><%= title %></title>
 <link rel="stylesheet" href="/style.css">
 <link rel="icon" href="/images/favicon.jpg" type="image/jpeg">

etc.

This tells EJS to get the title variable’s value (because there are no quotes around it, it assumes

that it is a variable defined). It also tells it to render the value as plain text (i.e., <%= instead of <%-).
As we can see, it is quite easy to supply some data when including EJS files inside of others.

Now, what about our main homepage? Well, recall that we had a function in our server for producing
the HTML code that did this (highlighted header/footer code in yellow):

contents = `
 <!DOCTYPE html>
 <html>
 <head>
 <title>Date-a-Science</title>
 <link rel="stylesheet" href="/style.css">
 <link rel="icon" href="/images/favicon.jpg" type="image/jpeg">
 </head>
 <body>
 <nav class="navbar">
 <div class="nav-left">

 Date-a-Science
 </div>
 <ul class="nav-menu">
 Home
 About

 </nav>
 <div class="banner">

 </div>
 <div class="container">
 <h1>Welcome to Date-a-Science</h1>
 <p>Where Your Heart Gets a Software Update.</p>

 <h2>Our Members</h2>
 <ul class="profile-list">
 `;

 people.forEach(person => {
 contents += `${person.name}`;
 });

 contents += `

COMP 2406 Template Engines Winter 2026

 - 218 -

 <h2>Create a New Profile</h2>
 <label for="name">Name:</label>
 <input type="textbox" id="name">
 <button type="button" onclick="submit()">Submit Profile</button>

 <script src="/clientscript.js"></script>
 </div>

 <footer>
 <p>© 2025 Date-a-Science</p>
 <p>Contact us at support@dateascience.com</p>
 </footer>

 </body>
 </html>
 `;

Instead of putting the homepage in a server function that will produce the HTML code, we will extract
it to an index.ejs file and place it in our views folder. Since the header and footer are the same as

what is in our partial files, we will begin by replacing those with appropriate include calls and get rid of
the backticks and contents variable (which was something specific to our server code):

<%- include("partials/header", { title: "Date-a-Science - Home" }) %>

 <div class="banner">

 </div>
 <div class="container">
 <h1>Welcome to Date-a-Science</h1>
 <p>Where Your Heart Gets a Software Update.</p>

 <h2>Our Members</h2>
 <ul class="profile-list">

 people.forEach(person => {
 ${person.name}
 });

 <h2>Create a New Profile</h2>
 <label for="name">Name:</label>
 <input type="textbox" id="name">
 <button type="button" onclick="submit()">Submit Profile</button>

 <script src="/clientscript.js"></script>
 </div>

<%- include("partials/footer") %>

Now what about the dynamic code in the middle? We have to change it slightly because this is
JavaScript code, not EJS code.

COMP 2406 Template Engines Winter 2026

 - 219 -

Notice that it makes use of a people variable. We do not have this available to us here at the

moment. However, we can pass the array of members in as some EJS data to this file (i.e., when the
EJS engine renders this page) and then we will have access to what we need. So, really, all we need
to do is to change the syntax from JavaScript to EJS.

For any code that we want to evaluate, we enclose it within <% %> to indicate that we want to

insert a block of code. It does not output anything to the rendered HTML. Instead, it is used for control
flow, variable declarations, or any logic we want to run.

So, we replace this:

 people.forEach(person => {
 ${person.name}
 });

With this:

 <% people.forEach(person => { %>
 <a href="./profile?id=<%= person.id %>"><%= person.name %>
 <% }) %>

Which means …. for our 4 initial sample members … the code that will be rendered is as follows:

 Homer
 Marge
 Ling
 Ahmed

So, here is our completed index.ejs file which has included partials and supports dynamic content:

<%- include("partials/header", { title: "Date-a-Science - Home" }) %>
 <div class="banner">

 </div>
 <div class="container">
 <h1>Welcome to Date-a-Science</h1>
 <p>Where Your Heart Gets a Software Update.</p>

 <h2>Our Members</h2>

 <ul class="profile-list">
 <% people.forEach(person => { %>
 <a href="/profile?id=<%= person.id %>">♥ <%= person.name %>
 <% }) %>

 <h2>Create a New Profile</h2>
 <label for="name">Name:</label>
 <input type="textbox" id="name">
 <button type="button" onclick="submit()">Submit Profile</button>

 <script src="/clientscript.js"></script>
 </div>
<%- include("partials/footer") %>

COMP 2406 Template Engines Winter 2026

 - 220 -

For this to work, we need to ensure that we pass in the people data. That brings up an important
point. Currently our data is merged with our server code. This is not good because we should really
de-couple our content from our logic. So, let’s extract the member-specific data and put it in its own
JavaScript file. Here is the current data-specific code from the server file:

let nextID = 101;
let people = [{name: "Homer", id:nextID++, age: 26, photo:"/images/homer.jpg", messages:[]},
 {name: "Marge", id:nextID++, age: 25, photo:"/images/marge.jpg", messages:[]},
 {name: "Ling", id:nextID++, age: 27, photo:"/images/ling.jpg", messages:[]},
 {name: "Ahmed", id:nextID++, age: 24, photo:"/images/ahmed.jpg", messages:[]}];
let anonImg = "/images/unknown_person.jpg";

We will place this in a members.js file under the data folder in our hierarchy. While we are at it, we

will adjust the nextID variable to be somewhat private by making a public function that gets us the

next id for us so that we can avoid misusing the variable. Here is the completed members.js file:

let nextID = 101;

// Gets the next profile ID available (its just a counter)
export function getNextID() {
 return nextID++;
}

// These are sample people for the purposes of demonstration
export let people = [
 { name: "Homer", id: getNextID(), age: 26, photo: "/images/homer.jpg", messages: [] },
 { name: "Marge", id: getNextID(), age: 25, photo: "/images/marge.jpg", messages: [] },
 { name: "Ling", id: getNextID(), age: 27, photo: "/images/ling.jpg", messages: [] },
 { name: "Ahmed", id: getNextID(), age: 24, photo: "/images/ahmed.jpg", messages: [] }
];

// This is the image to show for new profiles that have no uploaded picture
export const anonImg = "/images/unknown_person.jpg";

Notice the use of export to ensure that these are visible and usable to others. We can then just

include this file by using require() to ask for this module in our server code as follows:

const { people, anonImg, getNextID } = require("./data/members");

This will give us access to the array, the anonymous image and the function to get the id. But before
we adjust our server code, let’s look at how to convert the profile rendering code from our server into
a profile.ejs file to place in our views folder. Here is the code that we have in our server:

 contents = `
 <!DOCTYPE html>
 <html>
 <head>
 <title>${person.name} - Date-a-Science</title>
 <link rel="stylesheet" href="/style.css">
 <link rel="icon" href="/images/favicon.jpg" type="image/jpeg">

COMP 2406 Template Engines Winter 2026

 - 221 -

 </head>
 <body>
 <div class="container">
 < Back to homepage

 <div class="profile-card">
 <h1>${person.name}</h1>

 <p>Age: ${person.age}</p>
 </div>

 <div class="messages">
 <h2>Messages</h2>`;
 if (person.messages.length !== 0) {
 person.messages.forEach(msg => {
 contents += `<div class="message">${msg}</div>`;
 });
 } else {
 contents += `<p>No messages yet.</p>`;
 }
 contents += `<h3>Leave a Message</h3>
 <input type="textbox" id="msg">
 <button type="button" onclick="submitMessage(${person.id})">Submit
Message</button>
 </div>

 <script src="/clientscript.js"></script>
 </div>
 </body>
 </html>
 `;

We will notice that it does NOT have the same header as our other files and it does NOT even have a
footer. We will make an adjustment so that we have consistency across our pages by including the
same header and footer as the other pages. Notice that the code makes use of a person variable.

We will need to ensure that this is passed in as data to this page when we render it. So, we can do
what we did for the other EJS pages … replace the yellow highlighted code by including the header
and footer in place of them, and then by altering the JavaScript syntax to enclose the dynamic code

within <% %> . Here is the resulting profile.ejs file:

<%- include("partials/header", { title: person.name + " - Date-a-Science" }) %>

<div class="container">
 < Back to homepage

 <div class="profile-card">
 <h1><%= person.name %></h1>
 <img src="<%= person.photo || anonImg %>" width="200" alt="<%= person.name %>'s photo">
 <p>Age: <%= person.age %></p>
 </div>

 <div class="messages">
 <h2>Messages</h2>
 <% if (person.messages.length !== 0) { %>
 <% person.messages.forEach(msg => { %>

COMP 2406 Template Engines Winter 2026

 - 222 -

 <div class="message"><%= msg %></div>
 <% }) %>
 <% } else { %>
 <p>No messages yet.</p>
 <% } %>

 <h3>Leave a Message</h3>
 <input type="textbox" id="msg">
 <button type="button" onclick="submitMessage(<%= person.id %>)">Submit Message</button>
 </div>

 <script src="/clientscript.js"></script>
</div>

<%- include("partials/footer") %>

As we can see, EJS files are quite readable, even though they mix code with HTML. I am
sure that we will find this easy as we do it more and more. Of course, this code only works
if we pass in the person variable data when we render the page.

OK, so we are now ready to adjust our server code. It will be shorter now that we don’t have the
HTML rendered code in it since we extracted the code for rendering the main home page and profile
page and placed them into EJS files.

These functions will remain the same: send404(), getMimeType(), serveStaticFile(),

readRequestBody() and addMessage(). And in the code to handle incoming requests, we only

need to update the code in three locations:

 // Handle all GET requests
 if (req.method === "GET") {
 if (pathname === "/" || pathname === "/home") {// Return the main page
 renderPage("./views/index.ejs", res, { people });
 } else if (pathname.startsWith("/profile")) { // Return a specific profile
 respondWithProfile(res, parsed.query.id);
 } else if (pathname.startsWith("/about")) { // Return the about page
 renderPage("./views/about.ejs", res);
 ...
 }

 // Combination of PUT and /newprofile is interpreted as a request to create a profile
 else if (req.method === "PUT" && pathname === "/newprofile") {
 readRequestBody(req, function(body) {
 const newPerson = JSON.parse(body);
 newPerson.id = getNextID(); // This used to be nextID++
etc..

Notice that we call a renderPage() function now to do the rendering for the main page and about

page. We pass it the particular page to render as well as the response variable and any needed data.

Here is the renderPage() function:

COMP 2406 Template Engines Winter 2026

 - 223 -

// Render an EJS page
function renderPage(templatePath, res, data = {}) {
 ejs.renderFile(templatePath, data, function(err, html) {
 if (err) {
 console.error(err);
 res.writeHead(500);
 res.end("Internal Server Error");
 } else {
 res.writeHead(200, { "Content-Type": "text/html" });
 res.end(html);
 }
 });
}

This function calls the renderFile() function in the imported ejs module … which does all the

work for us. The function takes three parameters:

• templatePath - string path to the EJS template file.

• data - an object containing variables to pass into the template.

• callback - a function to call with the rendered result (or error).

Notice that a 500 error is returned if the page cannot be rendered from the server. Otherwise, it
returns a 200 along with the rendered html string … which is equivalent to the resulting contents

variable that we kept appending to in the non-EJS server version of our code.

The respondWithProfile() function is as follows:

// Handle individual profile
function respondWithProfile(res, id) {
 // This is not an efficient way of finding people. You may want to use a HashMap.
 let person = null;
 for (let i=0; i<people.length; i++) {
 if (people[i].id == id) {
 person = people[i];
 break;
 }
 }
 // If the person is not found, send back an error
 if (person === null) {
 send404(res);
 return;
 }
 renderPage("./views/profile.ejs", res, { person, anonImg });
}

The code does the same as before to find the person, but now instead of all that code to write out the
HTML code, it is all rendered from the profile.ejs file. Notice that we pass in the person and

anonImg data so that these can be used within the profile.ejs file's code.

Of course, we need to include these at the top of our server.js file as well now:

COMP 2406 Template Engines Winter 2026

 - 224 -

const ejs = require("ejs");
const { people, anonImg, getNextID } = require("./data/members");

but we can delete all the data that was at the top of the file because we moved it into the
members.ejs file.

If you get a moment, take a look at the FutureTech website code which has been altered to use the
EJS Template Engine. Of particular note is the product-data.js file that contains all our data

now, just like the members.js contained data for our Date-a-Science site:

export const products = [
 {
 name: "SkyCore JetPack",
 id: 1,
 image: "jetPack.jpg",
 imageSmall: "jetPack_small.jpg",
 desc: "Take to the skies delivering powerful, stable flight that turns gravity into your playground.",
 imageAlt: "SkyCore JetPack",
 par1: "Experience the future of personal flight with the SkyCore JetPack — engineered with next-
gen quantum propulsion technology for unparalleled speed, agility, and eco-friendly performance. Designed for thrill-
seekers and urban adventurers alike, the AeroX Quantum redefines freedom, allowing you to soar effortlessly above the city
skyline or explore rugged terrains with ease.",
 par2: "Built with lightweight carbon-titanium alloys and powered by a zero-emission quantum core, this jet pack is
not only fast but also sustainable. Integrated AI navigation and safety systems ensure a smooth and secure flight
experience, whether you're a beginner or a seasoned pilot.",
 features: [
 {feature: "Quantum Propulsion Engine", desc:"Silent, ultra-efficient engine offering up to 45 minutes of
continuous flight at speeds reaching 120 mph."},
 {feature: "AI-Assisted Navigation", desc:"Real-time obstacle detection, automatic stabilization, and route
optimization via onboard AI."},

 etc..
],
 specs: [
 {key: "Flight Time", value: "Up to 45 minutes" },
 {key: "Maximum Speed", value: "120 mph (193 km/h)"},
 {key: "Weight", value: "15 kg (33 lbs)"},
 etc..
],
 pricing: [
 {option: "Standard Package", price: 19999.00, includes: "Jet pack, charger, basic user manual"},
 {option: "Advanced Package", price: 24999.00, includes: "Standard + AI flight coach app + extended warranty (3
years)"},
 {option: "Premium Package", price: 29999.00, includes: "Advanced + custom design panels + on-site training"}
],
 accessories: [
 {option: "Solar Charging Pad", price: 499.00},
 {option: "Extra Modular Thrusters", price: 799.00},
 {option: "Protective Flight Helmet with HUD", price: 1199.00},
 {option: "Portable Flight Case", price: 299.00}
]
 },

Thus, we were able to get rid of our individual product pages (i.e., product_01.html,

product_02.html, etc..) and make one product.ejs file that accommodates all our products.

COMP 2406 Template Engines Winter 2026

 - 225 -

Closing remarks:

Recall that we used this code to look up the person:

let person = null;
for (let i=0; i<people.length; i++) {
 if (people[i].id == id) {
 person = people[i];
 break;
 }
}

This is a linear search, which could take a long time. A faster approach would be to use a Hashmap.
We could set this up ahead of time:

let peopleById = new Map();
people.forEach(p => peopleById.set(p.id, p));

Then we can replace our search code with this line (remember to convert the string id to a number):

let person = peopleById.get(Number(id));

Alternatively, we could have just used a Hashmap from the start by replacing this:

// These are sample people for the purposes of demonstration
export let people = [
 { name: "Homer", id: getNextID(), age: 26, photo: "/images/homer.jpg", messages: [] },
 { name: "Marge", id: getNextID(), age: 25, photo: "/images/marge.jpg", messages: [] },
 { name: "Ling", id: getNextID(), age: 27, photo: "/images/ling.jpg", messages: [] },
 { name: "Ahmed", id: getNextID(), age: 24, photo: "/images/ahmed.jpg", messages: [] }
];

With this:

export let people = new Map();
let nid;
people.set(nid = getNextID(),
 { name: "Homer", id: nid, age: 26, photo: "/images/homer.jpg", messages: [] });
people.set(nid = getNextID(),
 { name: "Marge", id: nid, age: 25, photo: "/images/marge.jpg", messages: [] });
people.set(nid = getNextID(),
 { name: "Ling", id: nid, age: 27, photo: "/images/ling.jpg", messages: [] });
people.set(nid = getNextID(),
 { name: "Ahmed", id: nid, age: 24, photo: "/images/ahmed.jpg", messages: [] });

We now have a good grasp of writing dynamic server-side code. However, currently, the data is hard-
coded into our server. That means we would need to restart the server every time that we want to
change the data. Later, we will find out how to get this data from a database and as well be able to
modify the data through some other server logic. At that point, we would not need to restart our server
when we need to alter the data.

COMP 2406 Template Engines Winter 2026

 - 226 -

 9.3 PUG

Another nice template engine is PUG (it is not an acronym … just a
name). Pug is similar to EJS in that both are template engines for
Node.js that let us generate dynamic HTML using JavaScript data. They
allow us to insert variables, use conditionals (if statements), and loop
through data to build HTML pages dynamically. Both ultimately produce
standard HTML that is sent to the browser.

The key idea behind both engines is that of separating our layout (i.e.,
HTML structure) from our logic (i.e., JavaScript code), which makes our
web applications more organized and maintainable. While their syntax is
different, the main purpose and functionality are essentially the same.

When we think of our EJS code, it has a mix of HTML and JavaScript. In some ways this is good,
because we are familiar with it and it is easy to identify the JavaScript tags/code (especially in
VSCode). The downside of EJS, however, is that it can get messy and hard to manage, especially as
our templates grow. It’s easy to lose track of where the logic ends and the HTML begins. This can
make the file harder to read, especially when we are nesting conditionals or loops. Over time, our
template can start to look cluttered, with a lot of angle brackets, opening and closing tags, and
JavaScript syntax all jammed together. This makes debugging and maintaining our code more
difficult, particularly for larger teams or beginners who are still learning how templating works.

In contrast, PUG offers a clean, minimalist syntax that makes templates easier to read and write. By
removing the need for closing tags and angle brackets, PUG reduces clutter and helps us focus on
the structure of our content. Its indentation-based layout clearly shows nesting, which makes our
HTML structure more obvious and less error-prone. Here is a quick side-by-side comparison:

<%- include("partials/header", { title: "Date-a-Science -
Home" }) %>

 <div class="banner">

 </div>

 <div class="container">
 <h1>Welcome to Date-a-Science</h1>
 <p>Where Your Heart Gets a Software Update.</p>

 <h2>Our Members</h2>
 <ul class="profile-list">
 <% people.forEach(person => { %>
 <a href="/profile?id=<%= person.id %>">♥
 <%= person.name %>
 <% }) %>

 <h2>Create a New Profile</h2>
 <label for="name">Name:</label>
 <input type="textbox" id="name">
 <button type="button" onclick="submit()">
 Submit Profile</button>

 <script src="/clientscript.js"></script>
 </div>

<%- include("partials/footer") %>

include partials/header.pug
 - var title = "Date-a-Science - Home"

.banner
 img(src="/images/loveBanner.jpg" alt="Love Banner")

.container
 h1 Welcome to Date-a-Science
 p Where Your Heart Gets a Software Update.

 h2 Our Members
 ul.profile-list
 each person in people
 li
 a(href=`/profile?id=${person.id}`) ♥
#{person.name}

 h2 Create a New Profile
 label(for="name") Name:
 input#name(type="textbox")
 button(type="button" onclick="submit()") Submit Profile

 script(src="/clientscript.js")

include partials/footer.pug

COMP 2406 Template Engines Winter 2026

 - 227 -

PUG Syntax:

PUG uses indentation and whitespace, much like Python, to define structure instead of relying on
opening and closing tags. Here is a comparison of HTML vs. PUG:

 <!-- HTML -->

 <h1>Welcome</h1>
 <p>This is a paragraph.</p>

 // PUG

 h1 Welcome
 p This is a paragraph.

Each line represents an HTML element, with the tag name at the beginning:

 img(src="/logo.png" alt="Logo")

The indentation shows the nesting of elements with child elements are indented under their parents:

 Item 1
 Item 2

 ul
 li Item 1
 li Item 2

There are no closing tags in PUG. They are handled automatically based on indentation:

 <table>
 <thead>
 <tr>
 <th>Name</th>
 <th>Age</th>
 </tr>
 </thead>
 <tbody>
 <% people.forEach(person => { %>
 <tr>
 <td><%= person.name %></td>
 <td><%= person.age %></td>
 </tr>
 <% }) %>
 </tbody>
 </table>

 table
 thead
 tr
 th Name
 th Age
 tbody
 each person in people
 tr
 td= person.name
 td= person.age

 // Nice ... isn't it?

Notice the = beside the table data (i.e., td=). The = tells PUG to “evaluate the following JavaScript

expression and output the result.” That is needed every time we have a variable value to insert.
Without the =, PUG would simply write out person.name and person.age as plain text instead of

substituting the variable values. Notice as well the difference in the looping constructs. We use
each/in to iterate.

We can use three particular operators in PUG:

COMP 2406 Template Engines Winter 2026

 - 228 -

= Outputs the result of an expression with HTML escaping (i.e., renders as plain text).

Example PUG code: Resulting HTML output:

p= "Welcome to Date-a-Science!"
p= 3 + 4
p= "Your score is: " + (10 * 2)
p= loggedIn ? "Yes" : "No"
p= "Not bold"
p= "<script>alert("Saved")</script>"

<p>Welcome to Date-a-Science!</p>
<p>7</p>
<p>Your score is: 20</p>
<p>Yes</p>
<p>Not bold</p>
<p><script>alert("Daved")</script></p>

- Runs JavaScript but it outputs nothing directly. Use it for logic, variables, loops, etc..

Example PUG code: Resulting HTML output:

- var greeting = "Hello, world!"
- var isLoggedIn = true
- var items = ["Apples", "Bananas", "Cherries"]
- var color = "red"

p= greeting

if isLoggedIn
 p Welcome back!
else
 p Please log in.

ul
 each item in items
 li= item

p(style="color:" + color)= "This text is red"

<p>Hello, world!</p>

<p>Welcome back!</p>

 Apples
 Bananas
 Cherries

<p style="color:red">This text is red</p>

!= Outputs the result of an expression without HTML escaping (i.e., renders raw HTML).

Example PUG code:

- var description = "Astrophysicist from MIT"
- var bio = "Loves stars
Enjoys dark matter theories"
- var video = "<iframe src="https://www.youtube.com/embed/19N1rUBA-Qk"></iframe>"
- var highlight = "Quantum Entanglement"

p!= description
p!= bio
div.video!= video
p!= "Topic: " + highlight

Resulting HTML output:

<p>Astrophysicist from MIT</p>
<p>Loves stars
Enjoys dark matter theories</p>
<div class="video">
 <iframe src="https://www.youtube.com/embed/19N1rUBA-Qk"></iframe>
</div>
<p>Topic: Quantum Entanglement</p>

COMP 2406 Template Engines Winter 2026

 - 229 -

We can also include variables by using:

Interpolation - inserting a variable or expression inside text or markup, so its evaluated
result appears in the final output.

This is often used for displaying user names, counts, prices, dates, etc., directly in sentences. We use
the #{} notation to indicate that we want the variable’s value inserted there as follows:

Example PUG code: Resulting HTML output:

- let username = "Unknown"
p= "Username is " + username
p Username is #{username}

<p>Username is Unknown</p>
<p>Username is Unknown</p>

Notice that the first paragraph uses quotations since the = indicates that we are using JavaScript
code. The second paragraph allows us to use plain text and have the variable inserted using
interpolation. HTML element attributes are specified in parentheses beside the element:

 <!-- HTML -->

 View Profile

 <div id="main" data-role="page"></div>

 <form action="/submit" method="post">
 <label for="name">Name:</label>
 <input type="text" id="name" name="name">
 <label for="age">Age:</label>
 <input type="number" id="age" name="age">

 <button type="submit">Submit</button>
 </form>

 <script src="/scripts/app.js" defer></script>

 // PUG

 a(href="/profile?id=123" class="profile-link") View Profile

 div(id="main" data-role="page")

 form(action="/submit" method="post")
 label(for="name") Name:
 input(type="text" id="name" name="name")
 label(for="age") Age:
 input(type="number" id="age" name="age")

 button(type="submit") Submit

 script(src="/scripts/app.js" defer)

 img(src="/images/avatar.jpg" alt="User Avatar" width="100" height="100")

COMP 2406 Template Engines Winter 2026

 - 230 -

Classes and IDs can be expressed as attributes or by using a .className and #idName notation.
Consider this HTML code that has many element attributes (i.e., light blue):

 <!-- HTML -->

 <div id="header" class="site-header" data-theme="dark">
 <h1 class="title">Welcome</h1>
 <p class="subtitle" id="intro-text">Thanks for visiting our site.</p>
 </div>
 <div class="card featured dark-theme"></div>
 About Us

 </div>
 <script src="/scripts/main.js" async></script>

Here they are expressed as attributes in PUG:

 // PUG as attributes only (notice 2nd div has multiple classes)

 div(id="header" class="site-header" data-theme="dark")
 h1(class="title") Welcome
 p(class="subtitle" id="intro-text") Thanks for visiting our site.

 div(class="card featured dark-theme")
 a(href="/about" class="nav-link" id="about-link" target="_blank") About Us
 img(src="/images/logo.png" alt="Site Logo" class="logo-img" id="main-logo" width="120")

 script(src="/scripts/main.js" async)

And here they are expressed using . and # notation, which goes after the element tag name:

 // PUG using . and # instead (notice 2nd div has multiple classes hence multiple dots are used)

 div#header.site-header(data-theme="dark")
 h1.title Welcome
 p.subtitle#intro-text Thanks for visiting our site.

 div.card.featured.dark-theme
 a.nav-link#about-link(href="/about" target="_blank") About Us
 img.logo-img#main-logo(src="/images/logo.png" alt="Site Logo" width="120")

 script(src="/scripts/main.js" async)

The | (pipe) operator can be used to start a line with plain text. It allows us to include multiple lines of

text inside an HTML tag, while keeping the code readable and properly indented. It can make long
text more readable.

 <!-- HTML -->
 <p>
 This is the first sentence of the paragraph.
 It continues on a second line using the pipe operator.
 This helps maintain indentation and readability.
 </p>

COMP 2406 Template Engines Winter 2026

 - 231 -

 // PUG
 p
 | This is the first sentence of the paragraph.
 | It continues on a second line using the pipe operator.
 | This helps maintain indentation and readability.

Without the pipe operator, we get errors:

 // PUG – ERROR … thinks This, It and This are tags
 p
 This is the first sentence of the paragraph.
 It continues on a second line using the pipe operator.
 This helps maintain indentation and readability.

Example:

Let’s look at our EJS version of our Date-a-Science site and convert it to PUG
code. One thing that I have noticed is that due to indentation rules in PUG, it gets
complicated (with unexpected behavior) if we include the html and body tags in

the header because it makes it difficult for nesting. Therefore, we will separate
the head tag portion from the nav tag portion to make two separate partials. Here
will be the header.pug file:

head
 title= title
 link(rel="stylesheet" href="/style.css")
 link(rel="icon" href="/images/favicon.jpg" type="image/jpeg")

… which is the portion that covered this part of the header.ejs file:

<head>
 <title><%= title %></title>
 <link rel="stylesheet" href="/style.css">
 <link rel="icon" href="/images/favicon.jpg" type="image/jpeg">
</head>

Notice that the title variable is being used, which we will need to pass in when we render the file.

Here will be the nav.pug file:

nav.navbar
 div.nav-left
 img.logo(src="/images/logo.jpg" alt="Logo")
 span.site-title Date-a-Science
 ul.nav-menu
 li
 a(href="/") Home
 li
 a(href="/about") About

… which is the portion that covered this part of the header.ejs file:

COMP 2406 Template Engines Winter 2026

 - 232 -

<nav class="navbar">
 <div class="nav-left">

 Date-a-Science
 </div>
 <ul class="nav-menu">
 Home
 About

</nav>

Here is the footer.pug partial:

footer
 p © 2025 Date-a-Science
 p
 | Contact us at
 a(href="mailto:support@dateascience.com") support@dateascience.com

So, now we have our partials. Next, it is important to understand how PUG handles indentation when
we use include statements.

In PUG, an include literally injects the included file’s content at that exact indentation level where

the include statement appears. The included file’s content is treated as if it were written inline at

that spot, respecting the indentation of the include. So, indentation matters because the included

content will be nested inside whatever block or tag the include is inside.

Here is the converted index.pug file for the main homepage. We may notice that we took the

doctype, html and body tags out from the header.ejs file and put them here. Notice how we

included the three partials, which are highlighted:

doctype html
html
 include partials/header.pug
 body
 include partials/nav.pug
 div.banner
 img(src="/images/loveBanner.jpg" alt="Love Banner")

 div.container
 h1 Welcome to Date-a-Science
 p Where Your Heart Gets a Software Update.

 h2 Our Members
 ul.profile-list
 each person in people
 li
 a(href="/profile?id=" + person.id) ♥ #{person.name}

 h2 Create a New Profile
 label(for="name") Name:
 input#name(type="textbox")
 button(type="button" onclick="submit()") Submit Profile

COMP 2406 Template Engines Winter 2026

 - 233 -

 script(src="/clientscript.js")

 include partials/footer.pug

Notice that the first include is indented exactly once … which is where the head tag would be

placed. By using include, it is as if we pasted the partial file right here at this level of indentation.

Similarly, the nav.pug partial is placed within the body tag … which is where the navigation stuff

would be placed. Lastly, the footer.pug partial is placed inside of the body and at the end of it.

The indentation for these include statements is crucial for PUG to properly render the required

HTML nesting.

It is also important that the each person in people code is indented within the ul tag and that the

li is within that loop and that the a anchor tags are within the li tags.

Now look at the unordered profile-list. We are using person.id directly to get its value but

then we use person.name within #{ } notation. Why the difference for these variables?

In the case of person.id, PUG treats the whole attribute value as JavaScript, so that variable gets

evaluated directly. In the case of person.name, we are inside the text content of the tag, not inside

an attribute. The #{ } tells PUG to evaluate the variable and insert it as escaped text at that position.

So, the difference is that inside the attributes, it is treated as JavaScript, but outside it is treated as
text unless we use #{ }.

It is also important to understand that variables behave differently in PUG than in EJS, especially
when it comes to includes. In EJS, when we include the header partial like this:

<%- include("partials/header", { title: "Date-a-Science - Home" }) %>

We are passing the variable title just to that partial. If we don’t pass it, the included file has no idea

what title is. We have to send it manually each time. This is analogous to passing a parameter to a
function.

However, in PUG, when we simply do this:

include partials/header.pug

No variables are specified because PUG automatically shares the current template’s variables with
the included file. So, as long as we pass the title to the index.pug file when we render it, then

partials that we include (such as header.pug) automatically have access to the title variable. There

is no need to pass it again. So, while things are simpler in PUG, we still need to be careful because
since all variables are shared, naming conflicts are more likely to occur if we are not organized.

Here is the about.pug file converted from about.ejs:

COMP 2406 Template Engines Winter 2026

 - 234 -

doctype html
html
 include partials/header.pug
 body
 include partials/nav.pug
 div.container
 h1 About Date-a-Science
 p
 | Date-a-Science is a playful dating platform connecting
 | scientifically curious minds who believe in love through
 | logic, chemistry, and a dash of nerdy fun. Whether you are
 | into molecules or algorithms, we've got a match for you.

 include partials/footer.pug

We can see the same three included partials. Notice the use of | as well. This allows our text to look

nice in the editor without wraparound. The rest is straight forward.

Finally, …here is the profile.pug file converted from profile.ejs:

doctype html
html
 include partials/header.pug
 body
 include partials/nav.pug
 div.container
 a.back-link(href="/") < Back to homepage

 div.profile-card
 h1= person.name
 img(src=person.photo || anonImg, width="200", alt=person.name + "'s photo")
 p
 strong Age:
 = person.age

 div.messages
 h2 Messages
 if person.messages.length !== 0
 each msg in person.messages
 div.message= msg
 else
 p No messages yet.

 h3 Leave a Message
 input#msg(type="textbox")
 button(type="button" onclick="submitMessage(" + person.id + ")") Submit Message

 script(src="/clientscript.js")

 include partials/footer.pug

Notice that the IF statement has the same indentation as the h2 header. If we had accidentally

indented it further, it would have been made part of the header, as well as all the messages under it.
This would mess up our styles that we already created.

COMP 2406 Template Engines Winter 2026

 - 235 -

Notice in the img tag that we separated the attributes by commas, yet in the

button tag we did not. Why the difference? Well, for the button tag, the values

are complete strings, so PUG has no problem parsing it. But for the img tag, there

is confusion due to the || code, so PUG would get confused without the commas.

In fact, we could put the commas in all the time, if we would like. Sometimes, it is
even clearer to put the items on separate lines (with commas) as follows:

 img(
 src=person.photo || anonImg,
 width="200",
 alt=person.name + "'s photo"
)

PUG in the Server:

To use PUG, we need to ensure that it is first installed using NPM: npm install

pug and then use require in our server code: const pug = require("pug");

Since Pug and EJS are both template engines, they serve the same purpose:
converting data into HTML pages. However, the way they render templates differs
slightly, especially in terms of flexibility and performance.

• EJS allows us to pass a callback function when rendering a template. This means rendering
can be handled asynchronously, and we can even offload processing (like in a separate thread
or worker if needed).

• Pug, on the other hand, doesn’t natively support passing a callback for rendering. It renders
synchronously (i.e., directly and immediately) which can be simpler … but limits threading
options and might be less ideal for performance in high-load scenarios.

So, we have to do things a little differently. The callback function in EJS allowed us to be informed if
there was an error during rendering (for whatever reason). Since PUG does not have the callback
function, we need to take the code from EJS’s the callback function and put it in a try/catch block

to handle the potential error. Here, for example, is a comparison of the renderPage() function from

our EJS server code, and the PUG version alongside it:

// Render an EJS page

function renderPage(templatePath, res, data = {}) {
 ejs.renderFile(templatePath, data, (err, html) => {
 if (err) {
 console.error(err);
 res.writeHead(500);
 res.end("Internal Server Error");
 } else {
 res.writeHead(200, { "Content-Type":
 "text/html" });
 res.end(html);
 }
 });
}

// Render a Pug page

function renderPage(templatePath, res, data = {}) {
 try {
 let html = pug.renderFile(templatePath, data);
 res.writeHead(200, { "Content-Type":
 "text/html" });
 res.end(html);
 } catch (err) {
 console.error(err);
 res.writeHead(500);
 res.end("Internal Server Error");
 }
}

COMP 2406 Template Engines Winter 2026

 - 236 -

So, the callback’s err parameter becomes the catch block parameter and its html parameter

becomes a local variable. The rest of the code is the same. Other than this function, the remaining
server code is the same, with the exception that we alter the file names to have the .pug extension

instead of .ejs.

Instead of rendering the PUG template from scratch every time a request comes in, we can compile it
once using pug.compileFile(). What does it mean to “compile it”? Well, the function will process

the template to determine which HTML parts are static and which parts are dynamic (i.e., will change
with incoming data). That way, when the function is called, it will not re-render the static parts of the
HTML … just the dynamic parts. This means that we will save time rendering if the function needs to
be called more than once but with different data (e.g., when we have many users viewing the same
page layout but with personalized content).

Here, for example, is a side-by-side comparison showing how a PUG file would be compiled:

// code from views/profile.pug

doctype html
html
 include partials/header.pug

 body
 include partials/nav.pug
 div.container
 a.back-link(href="/") < Back to homepage

 div.profile-card
 h1= person.name
 img(
 src=person.photo || anonImg,
 width="200",
 alt=person.name + "'s photo"
)
 p
 strong Age:
 = person.age

 div.messages
 h2 Messages
 if person.messages.length !== 0
 each msg in person.messages
 div.message= msg
 else
 p No messages yet.

 h3 Leave a Message
 input#msg(type="textbox")
 button(
 type="button"
 onclick="submitMessage(" + person.id + ")"
) Submit Message

 script(src="/clientscript.js")

 include partials/footer.pug

Assume that we did this:

const f = pug.compileFile("views/profile.pug");

The HTML string on the right would be “hard-

<!DOCTYPE html>
<html>
 <head>
 <title>Date-a-Science</title>
 <link rel="stylesheet" href="/style.css">
 <link rel="icon" href="/images/favicon.jpg"
 type="image/jpeg">
 </head>
 <body>
 <nav class="navbar">
 <div class="nav-left">

 Date-a-Science
 <ul class="nav-menu">
 Home
 About

 </div>
 </nav>

 <div class="container">
 <
 Back to homepage

 <div class="profile-card">
 <h1>person.name</h1>
 <img
 src="person.photo || anonImg"
 width="200"
 alt="person.name + ' photo'">
 <p>
 Age: person.age
 </p>
 </div>

 <div class="messages">
 <h2>Messages</h2>

 if person.messages.length !== 0
 each msg in person.messages
 <div class="message">msg</div>
 else
 <p>No messages yet.</p>

 <h3>Leave a Message</h3>
 <input id="msg" type="textbox">
 <button type="button"
 onclick="submitMessage(person.id)">
 Submit Message</button>
 </div>

COMP 2406 Template Engines Winter 2026

 - 237 -

coded” into the function f, with the exception of

the yellow highlighted code, which would be
rendered dynamically when we call f with data.

The data being a single JavaScript object.

As we can see, most of the produced code is
static and unchanging, so it need not be rendered
each time the function is called.

 </div>

 <script src="/clientscript.js"></script>

 <footer>
 <p>© 2025 Date-a-Science</p>
 </footer>
 </body>
</html>

We can do this pre-computation upon startup by adding this code to our server.js:

// Precompiled templates - done at startup
const compiledTemplateFunctions = {};

["./views/index.pug", "./views/about.pug", "./views/profile.pug"].forEach(name => {
 compiledTemplateFunctions[name] = pug.compileFile(`${name}`);
});

Then we could re-write our renderPage() function as follows:

// Render function that selects the right compiled template
function renderPage(templatePath, res, data = {}) {
 try {
 const renderFn = compiledTemplateFunctions[templatePath];
 if (!renderFn) { // Make sure that things pre-compiled ok
 res.writeHead(404);
 res.end("Template Not Found");
 return;
 }
 const html = renderFn(data); // Call the precompiled function

 res.writeHead(200, { "Content-Type": "text/html" });
 res.end(html);
 } catch (err) {
 console.error(err);
 res.writeHead(500);
 res.end("Internal Server Error");
 }
}

That’s all for now. To really get the hang of this, we need to practice more.

COMP 2406 Template Engines Winter 2026

 - 238 -

Here are some more links if you want to learn more about EJS or PUG syntax:

https://ejs.co/

https://pugjs.org/api/getting-started.html

https://codepen.io/mimoduo/post/learn-pug-js-with-pugs

Here are some ideas for expanding our Date-a-Science site. Feel free to practice adding some of
these features to ensure that you understand how to do them.

1. Add timestamps on messages
o Just change the message from a string to an object. E.g., { text, time }

o Then modify the display logic in profile.ejs or profile.pug.

2. Emoji or reaction picker

o Add simple emoji buttons next to messages (e.g., , , , ,).

o No backend logic is needed if these are stored on the client-side or in memory.

3. Add a "Like" button (with counter) on profile pages

o Add a button (e.g., or) and increment a like counter.

o Display the number of likes somewhere (e.g., " 5 Likes")

o Make sure to send the “like” to the server for storage

4. Create a "Daily Featured Profile"
o Randomly pick one person either upon server start or daily.
o Display that person at the top of index.ejs or index.pug.

5. Keep track of current user (e.g., pretending a member logged in)

o Let the user choose who they are from a dropdown list on the homepage: "Select Your
Profile".

o Maintain track of who the user is by storing the selected ID in a query parameter (e.g.,
?userId=3) passed onto all pages

6. Compute Match Percentage (assume current user is selected from above)

o Add a few profile questions (e.g., "Do you like hiking?", “Quiet Evenings?”, etc..).
o Store each person’s answers as an array: (e.g., ["yes", "no", "yes", "yes"]).
o Compare the answers of two profiles, count how many match, return a percentage.
o Add calculated "match score" to each profile view against the current user.
o Show top few match scores

https://ejs.co/
https://pugjs.org/api/getting-started.html
https://codepen.io/mimoduo/post/learn-pug-js-with-pugs

COMP 2406 Template Engines Winter 2026

 - 239 -

 9.4 Updating the FutureTech Corp. Site

Let’s adjust our FutureTech Corp. site to use PUG. The first step is to decide how we will organize
our files. Below, on the left is our current folder structure and on the right is how we will restructure
things:

Since we will no longer have static product pages, we will remove those html files and replace them
with a single product.pug page. At the same time, we will extract the product data from the static
pages and encode it into an array in the product-data.js file. We will be changing our .html page
files to have .pug extensions. We will also extract the common header and footer stuff and place
them in their own files. Lastly, we will adjust the folder structure to be more organized with the use of
the data, views, view/pages and views/partials folders.

Let’s start converting by looking at the shared header on each page. We take this:

<header>

 <nav>

 Home
 About Us
 Products
 Contact Us

 </nav>
</header>

COMP 2406 Template Engines Winter 2026

 - 240 -

And convert to this, saving it to /partials/header.pug:

header
 img(src="/images/logo.jpg" height=200 alt="FutureTech Corp. Logo")
 nav
 ul
 li
 a(href="/" class="#{currentPage === 'home' ? 'active' : ''}") Home
 li
 a(href="/about" class="#{currentPage === 'about' ? 'active' : ''}") About Us
 li
 a(href="/products" class="#{currentPage === 'products' ? 'active' : ''}") Products
 li
 a(href="/contact" class="#{currentPage === 'contact' ? 'active' : ''}") Contact Us

The main difference is that we will now need a variable (i.e., currentPage) to decide if the

navigation link should be highlighted (i.e., 'active'). Why? Well, in our static page we hard-coded

class='active' for the specific link on each page. But now all pages will share this header, so we

need a variable to indicate the page we are on, so we can highlight for that page only.

The common footer on each page is easy to adjust as well. We take this:

<footer>
 <p>© 2025 FutureTech. All rights reserved.</p>
 <div class="status-bar">
 <div id="clock">Loading time...</div>
 <button id="darkModeToggle">Switch to Dark Mode</button>
 </div>
</footer>

<script src="scripts/time-clock.js"></script>
<script src="scripts/dark-mode.js"></script>

and then convert it to this, saving it to /partials/footer.pug:

footer
 p © 2025 FutureTech. All rights reserved.
 div.status-bar
 div#clock Loading time...
 button#darkModeToggle Switch to Dark Mode

script(src="/scripts/time-clock.js")
script(src="/scripts/dark-mode.js")

Nothing new here, except to point out that we only added the two scripts that were specific to the
footer, to the /partials/footer.pug file. Now we can do the main /views/pages/index.pug page:

DOCTYPE=html
html(lang="en")

head
 meta(charset="UTF-8")

COMP 2406 Template Engines Winter 2026

 - 241 -

 title FutureTech - The Future is Now
 link(rel="icon" href="/icons/logo-icon.png")
 link(rel="stylesheet" href="/styles/image-slider.css")
 link(rel="stylesheet" href="/styles/general-body.css")
 link(rel="stylesheet" href="/styles/header-footer.css")

body
 include ../partials/header
 br
 div#quote(style="text-align:center; font-style:italic; padding: 10px;")
 div#quoter(style="text-align:center; font-style:italic;")

 section.slider-container
 div.slider#imageSlider
 div.slide
 img(src="/images/news/scientists.jpg" alt="Molecular Stabilizer Lab")
 div.caption Molecular Stabilizer Lab
 div.slide
 img(src="/images/news/robotics.jpg" alt="Design and Manufacturing Lab")
 div.caption Design and Manufacturing Lab
 div.slide
 img(src="/images/news/portals.jpg" alt="Portal Experimentation Lab")
 div.caption Portal Experimentation Lab
 div.slide
 img(src="/images/news/android.jpg" alt="Android Development Lab")
 div.caption Android Development Lab

 div.dots#dotsContainer
 span.dot.active(data-slide="0")
 span.dot(data-slide="1")
 span.dot(data-slide="2")
 span.dot(data-slide="3")

 include ../partials/footer

 // All the JavaScripts to run
 script(src="/scripts/quotes.js")
 script(src="/scripts/slider-script.js")
 script(src="/scripts/captions.js")

When including the header & footer, we must indicate where to find it by backing up a directory first
… otherwise the server won’t find them because they are not in the /view/pages folder with this file.

The about.html is similarly converted to /views/pages/about.pug … nothing exciting here:

DOCTYPE=html
html(lang="en")
 head
 meta(charset="UTF-8")
 title About Us
 link(rel="icon" href="/icons/logo-icon.png")
 link(rel="stylesheet" href="/styles/general-body.css")
 link(rel="stylesheet" href="/styles/header-footer.css")

 body.about-page

COMP 2406 Template Engines Winter 2026

 - 242 -

 include ../partials/header

 main
 section
 h2 About Us
 div(style="text-align: center;")
 img(src="/images/headquarters.jpg" alt="FutureTech Corp. Headquarters" width=600)

 div.about
 p
 | At FutureTech Corp., we don't just imagine the future, we invent it.
 | ...

 p
 | Over the past ten years, FutureTech Corp. has combined breakthrough
 | ...

 p
 | As a global leader in high-tech development, we remain committed to
 | ...

 include ../partials/footer

Also, the contact.html file is easily converted to /views/pages/contact.pug …

DOCTYPE=html
html(lang="en")
 head
 meta(charset="UTF-8")
 title Contact Us
 link(rel="icon" href="/icons/logo-icon.png")
 link(rel="stylesheet" href="/styles/general-body.css")
 link(rel="stylesheet" href="/styles/header-footer.css")

 body
 include ../partials/header

 main
 section
 h2 Contact Us

 table.contact-table
 tr
 td
 h3 Our Office
 p
 strong FutureTech Corp.
 br
 | 4567 Hyperion Avenue
 br
 | Sector 9, NeoCity, CA 94018
 br
 | United States
 p
 strong Phone:
 | (555) 013-2048

COMP 2406 Template Engines Winter 2026

 - 243 -

 br
 strong Email:
 a(href="mailto:support@futuretechcorp.com") support@futuretechcorp.com
 td
 img(src="/images/topview.jpg" width=500 alt="FutureTech Corp. Headquarters")
 tr
 td.contact-info
 div.map-container
 h3 Find Us
 iframe(
 src="https://maps.google.com/maps?q=37.7749,-122.4194&z=14&output=embed",
 width="100%",
 height="300",
 style="border:0;",
 allowfullscreen="",
 loading="lazy",
 title="FutureTech Corp Map")

 td.contact-form-box
 p
 | Feel free to get in touch using the form on the right
 | or through the contact information below.

 form(action="/contact/message" method="POST" target="")
 label(for="name") Name:
 br
 input#name(type="text" name="name" required)
 br
 br
 label(for="email") Email:
 br
 input#email(type="email" name="email" required)
 br
 br
 label(for="message") Message:
 br
 textarea#message(name="message" rows="5" required)
 br
 br
 button(type="submit") Send Message

 include ../partials/footer

Notice … we set the action to "contact/message" so that it will now contact our server and we will

be able to handle it (more on this later). We also set target to "" to stay on the same page after.

The conversion of products.html to /views/pages/products.pug will now require some additional
coding because it used to simply contain hard-coded links to individual static product pages but now
we need to go to just one common page (i.e., /views/pages/product.pug). Also, we need to make
sure all the products are shown on this page in a dynamic way. That means, this page will now
require an incoming variable (we will call it products) representing the array of products. We will also
need to give each product an id so that when we select that product to view its page, we will be able
to tell the server which product we want it to render on that page.

COMP 2406 Template Engines Winter 2026

 - 244 -

Let’s first discuss the /data/product-data.js file which will simply contain an array with all the product
data (note: in the future, we will replace this with some database logic). We will need to make an
object to represent the product. If we were to examine the product pages that we created, we would
be able to identify the following common information for each product:

{
 name: "",
 id: 1,
 imageSmall: "?.jpg",
 desc: "...",
 imageAlt: "...",

 image: "?.jpg",
 par1: "...",
 par2: "...",
 features: [
 {feature: "...", desc:"..."},
 {feature: "...", desc:"..."},
 ...],
 specs: [
 {key: "...", value: "..." },
 {key: "...", value: "..."},
 ...],
 pricing: [
 {option: "...", price: 99.00, includes: "..."},
 {option: "...", price: 99.00, includes: "..."},
 ...],
 accessories: [
 {option: "...", price: 99.00},
 {option: "...", price: 99.00},
 ...]
}

So, we just need an array of the above product objects in our /data/product-data.js file that we
export as follows:

export const products = [
 { /* product 1 object */ },
 { /* product 2 object */ },
 { /* product 3 object */ },
 { /* product 4 object */ },
 { /* product 5 object */ },
 { /* product 6 object */ }
];

Now we can look at the /views/pages/products.pug page. We will assume that the
products variable will be passed into this page when we render it. This page will

now need to take the products array and loop through it to create an HTML <div>

for each one. Within the <div>, we will need to have a header, an image and a short

description so that we can make it look as shown here on the right.

COMP 2406 Template Engines Winter 2026

 - 245 -

Assume that we loop through each product in products. Then for each product p, we can access

the attributes that we need to render this page (i.e., p.name, p.imageSmall, p.imageAlt and

p.desc). We will also need the p.id so that we can place a unique ID on each rendered product so

that when the user selects the product, we can send that ID to the /views/pages/product.pug page

to render the correct product for that page. Here is the code for the /views/pages/products.pug
page:

DOCTYPE=html
html(lang="en")
 head
 meta(charset="UTF-8")
 title Our Products
 link(rel="icon" href="/icons/logo-icon.png")
 link(rel="stylesheet" href="/styles/general-body.css")
 link(rel="stylesheet" href="/styles/products-style.css")
 link(rel="stylesheet" href="/styles/header-footer.css")

 body
 header
 include ../partials/header

 main
 section
 h2 Our Products
 div.product-list
 each p in products
 div.product(id="product#{p.id}")
 h3 #{p.name}
 a(href="product?id=" + p.id)
 img(src="/images/small/" + p.imageSmall alt=p.imageAlt width="150")
 p #{p.desc}

 include ../partials/footer

Notice how we use PUG interpolation to insert the product name into the header and description into
the paragraph. We also use it to insert the product id number so that the <div> id becomes

"product1", "product2", etc.. Lastly, we use inline JavaScript to produce the correct image file

path.

Finally, we need to make the /views/pages/product.pug file to represent the page that will render a
specific product. To render this page we will assume that a particular product has been passed in as
a variable called prod. Here is the code … I highlighted the important things. We will notice that there

are 4 loops now, since we need to loop through product features, specs, pricing and accessories.

DOCTYPE=html
html(lang="en")
 head
 meta(charset="UTF-8")
 title Product - FutureTech Corp.
 link(rel="icon" href="/icons/logo-icon.png")
 link(rel="stylesheet" href="/styles/header-footer.css")
 link(rel="stylesheet" href="/styles/general-body.css")

COMP 2406 Template Engines Winter 2026

 - 246 -

 link(rel="stylesheet" href="/styles/details.css")
 body
 include ../partials/header
 main
 section.product-detail
 h2 #{prod.name}
 div(style="text-align: center;")
 img(src="/images/large/" + prod.image alt=prod.imageAlt)
 p!= prod.par1  != needed to render tag in the data
 p!= prod.par2

 h3 Key Features:
 ul
 each f in prod.features
 li
 f.feature= f.desc

 h3 Specifications:
 table.specs-table
 tbody
 each s in prod.specs
 tr
 th= s.key
 td= s.value

 h3 Pricing:
 table.pricing-table
 thead
 tr
 th Package
 th Price (USD)
 th Includes
 tbody
 each pr in prod.pricing
 tr
 td= pr.option
 td= "$" + pr.price.toLocaleString("en-US", { minimumFractionDigits: 0,
maximumFractionDigits: 0 })
 td= pr.includes

 h3 Optional Accessories:
 ul
 each a in prod.accessories
 li= a.option + " - $" + a.price.toLocaleString("en-US", { minimumFractionDigits: 0,
maximumFractionDigits: 0 })

 button.buy-button Buy Now

 include ../partials/footer

The use of toLocaleString when displaying money has a two-fold purpose. It will allow commas to

be displayed (e.g., $499,000) and it will also allow us to specify the number of decimal places (in our
case we just want integers shown).

The pages are done! Now we need to adjust the server so that it renders the pages and so that we
pass in the needed variables when doing so.

COMP 2406 Template Engines Winter 2026

 - 247 -

Currently, our server accepts a request for any file (which were all static) and sends it back by using
the following code:

function requestListener(req, res) {
 let filePath = req.url === "/" ? "/index.html" : req.url; // add index.html if needed
 filePath = path.join(__dirname, filePath); // get the absolute path

 let ext = path.extname(filePath); // get the file extension
 let contentType = mimeTypes[ext] // lookup content type based on ext
 || "application/octet-stream"; // if not there, treat as download

 fs.readFile(filePath, (err, data) => { // read file, set data to contents
 if (err) { // if error, return 404 Not Found
 res.writeHead(404, { "Content-Type": "text/plain" });
 return res.end("404 Not Found");
 }
 res.writeHead(200, { "Content-Type": contentType }); // otherwise send 200 OK and the data
 res.end(data);
 });
}

Now that we are using dynamic pages, we will need to handle each page. Below is the top portion of
our new requestListener. It no longer looks for absolute paths by using (__dirname, but instead

will look for each page relative to where the server started. Since we will render each page, we will
need to extract the pathname from the request URL. We use url.parse() to extract (i.e., separate)

the pathName from the query string.

// Handle incoming requests
function requestListener(req, res) {
 let parsedUrl = url.parse(req.url, true); // true parses query string
 let pathName = parsedUrl.pathname;
 let query = parsedUrl.query;

 // Serve static files if the URL matches typical file folders
 if (pathName.startsWith("/styles/") || pathName.startsWith("/images/") ||
 pathName.startsWith("/icons/") || pathName.startsWith("/scripts/")) {
 serveStaticFile(req, res);
 return;
 }
 ... more to come ...
}

Notice that we first look for the static files by examining where the files are located in the path. If it is
in one of the styles, images, icons or scripts folders, then we know that it will be a static file and we
can serve that file easily.

To serve the static file, we call the function shown in the chunk of code below:

function send404(response){
 response.statusCode = 404;
 response.write("Not Found");
 response.end();
}

COMP 2406 Template Engines Winter 2026

 - 248 -

const mimeTypes = {
 ".html": "text/html",
 ".css": "text/css",
 ".js": "application/javascript",
 ".png": "image/png",
 ".jpg": "image/jpeg",
 ".ico": "image/x-icon"
};

// Serve static files as requested
function serveStaticFile(req, res) {
 const filePath = path.join(__dirname, req.url);
 const ext = path.extname(filePath);
 const contentType = mimeTypes[ext] || "application/octet-stream";

 fs.readFile(filePath, (err, data) => {
 if (err) {
 send404(res);
 } else {
 res.writeHead(200, { "Content-Type": contentType });
 res.end(data);
 }
 });
}

As we did previously, it just looks at the file extension so that it can create the correct Content-Type
header attribute. Then it reads the file and sends it back as before, or sends back a 404 error (we
made a helper function for this). There is nothing really new here, since there is no dynamic content.

Let’s continue with the remainder of the requestListener function. It will need to look at the

pathName and decide which page to render:

// Handle incoming requests
function requestListener(req, res) {
 ...
 // Render PUG pages
 switch (pathName) {
 case "/":
 case "/home":
 case "/index":
 renderPage("./views/pages/index.pug", res, "home");
 break;
 case "/about":
 renderPage("./views/pages/about.pug", res, "about");
 break;
 case "/contact":
 renderPage("./views/pages/contact.pug", res, "contact");
 break;
 case "/products":
 renderPage("./views/pages/products.pug", res, "products");
 break;
 case "/product":
 if (query.id)
 renderProductPage("./views/pages/product.pug", res, query.id);

COMP 2406 Template Engines Winter 2026

 - 249 -

 else
 send404(res);
 break;
 default:
 send404(res);
 }
}

Notice a couple of things. First, all pages are rendered with the same function, which we will discuss
in a moment, except for the one for rendering a particular product (which has a different function that
will require the id of the product to be rendered, which we get from the extracted query.id).

Notice as well that the pages to be rendered are specified relative to the current directory (i.e., "./").

Now … let's look at the functions to render the pages. We will pre-compile the pages as we did with
our Date-a-Science site:

// Precompiled templates - done at startup
const compiledTemplateFunctions = {};
["./views/pages/index.pug", "./views/pages/about.pug", "./views/pages/contact.pug",
 "./views/pages/product.pug", "./views/pages/products.pug"].forEach(name => {
 compiledTemplateFunctions[name] = pug.compileFile(`${name}`);
});

We will also render the pages the same way as our Date-a-Science site:

// Render a PUG file as requested
function renderPage(fileName, res, pageName) {
 try {
 const renderFn = compiledTemplateFunctions[fileName];
 if (!renderFn) { // Make sure that things pre-compiled ok
 res.writeHead(404);
 res.end("Template Not Found");
 return;
 }
 const html = renderFn({products: products, currentPage: pageName});
 res.writeHead(200, { "Content-Type": "text/html" });
 res.end(html);
 } catch (err) {
 console.error(err);
 res.writeHead(500);
 res.end("Internal Server Error");
 }
}

Notice in the pre-compiled render function (i.e., renderFn) we pass in an object that contains

products and currentPage attributes. The products will be from our products array that we

exported from our product-data.js file, so we will need this at the top of our server code:

const { products } = require("./data/product-data.js");

COMP 2406 Template Engines Winter 2026

 - 250 -

The currentPage is set to the pageName that was passed in as a parameter from our routing code

in the requestListener function (e.g., "./views/pages/about.pug").

The call to this renderFn() will do the PUG rendering for us by producing the dynamic pages that

we need, based on the passed-in parameters . In a similar way, we can write the function that will

render an individual product page:

// Render a product PUG file as requested
function renderProductPage(fileName, res, id) {
 try {
 const renderFn = compiledTemplateFunctions[fileName];
 if (!renderFn) { // Make sure that things pre-compiled ok
 res.writeHead(404);
 res.end("Template Not Found");
 return;
 }
 const html = renderFn({prod: products[id-1], currentPage: "products"});
 res.writeHead(200, { "Content-Type": "text/html" });
 res.end(html);
 } catch (err) {
 console.error(err);
 res.writeHead(500);
 res.end("Internal Server Error");
 }
}

Notice that the id is passed in as a parameter. It was obtained from the query id value (i.e.,

http://localhost:3000/product?id=2). Otherwise the code should be easily understood at

this point. So, now we have our converted PUG server code for our site.

At this point, though, our Contact Us page sends our form to

http://localhost:3000/contact/message

At the moment, our server doesn’t handle the post, so let’s add that now.
What do we do with the data? We will store the data in an array, and
assume that someone will process them later. Ultimately, a database would be used to store these.
Let’s add this to our product-data.js file:

// Store all incoming messages like this:
// messages = [
// {name: "Mark", email: "mark@somewhere.com", message: "This is my message."}
// {name: "Jen", email: "jen@somewhere.com", message: "My message is better."}
// ...
//];
export const messages = [];
export let messageCount = 0;

Then we will add this to the top of our server code:

 let { messages, messageCount } = require("./data/product-data.js");

COMP 2406 Template Engines Winter 2026

 - 251 -

Now we have a location for the incoming messages from our Contact Us form. We just need to
handle the POST requests coming in from "contact/message" (which is the action that we set for

our form).

We can add this case to our switch statement at the end of our requestListener() function:

 case "/contact/message":
 handlePost(req, res);
 break;

and add this function:

function handlePost(req, res) {
 console.log("got it");
}

We can do a quick test to see if it worked by going to http://localhost:3000/contact/message,

filling out the form, and then submitting it. We should see the “got it” message appear, but the
browser will hang because we are not sending anything back yet.

Now, let’s store the data and send back an OK by adjusting the handlePost() function. We will

need to read the body, so we will use the same helper code as our Date-a-Science site to do this:

// Helper function to read the request body
function readRequestBody(req, callback) {
 let body = ""
 req.on("data", (chunk) => {
 body += chunk;
 })
 //Once the entire body is ready, process the request
 req.on("end", () => {
 callback(body);
 });
}

Now let’s adjust the handlePost() to store the incoming message. With a POST, the data is sent in

the request’s body. It will be a URL-encoded string like this, for example:

"name=Mark%20Lanthier&email=lanthier%40scs.carleton.ca&message=I%20got%20st
uck%20in%20a%20few%20walls%20with%20my%20Phasing%20suit%20for%2010%2
0minutes%20or%20so%20%E2%80%A6%20is%20this%20a%20glitch%20in%20the%
20software%3F"

We will parse this into an object by making use of the Node.js querystring module, so we add this

to the top of our code:

const querystring = require("querystring");

COMP 2406 Template Engines Winter 2026

 - 252 -

Then we can convert this string into a message object that we can store in our array by using the
parse function. Once we have the object, we can add it to our messages, then send back an

acknowledgement page:

// Handle the message post
function handlePost(req, res) {
 readRequestBody(req, function(body) {
 const mesgObj = querystring.parse(body);
 messages.push(mesgObj);
 messageCount++;
 renderPage("./views/pages/messageReceived.pug", res, "contact/message")
 });
}

The message being returned is stored in /views/pages/messageReceived.pug. We can pre-compile
it as we did with the others by adding it to our initializing code:

const compiledTemplateFunctions = {};
["./views/pages/index.pug", "./views/pages/about.pug", "./views/pages/contact.pug",
 "./views/pages/product.pug", "./views/pages/products.pug",
"./views/pages/messageReceived.pug"].forEach(name => {
 compiledTemplateFunctions[name] = pug.compileFile(`${name}`);
});

The page itself is simple in that it just acknowledges that the message was received at the server:

DOCTYPE=html
html(lang="en")
 head
 meta(charset="UTF-8")
 title Thank You
 link(rel="icon" href="/icons/logo-icon.png")
 link(rel="stylesheet" href="/styles/general-body.css")
 link(rel="stylesheet" href="/styles/header-footer.css")

 body.received-page
 include ../partials/header

 main
 section
 div.mrecv
 h1 Your message has been received
 p Please wait up to 5 business days for a reply.

 include ../partials/footer

Although we will add this to the general-body.css to indent the text a little:

/* For the "message received" page */
.mrecv {
 margin-left: 40px; /* push it right from the left */
}

