COMP 2406	RESTful Web Design	Winter 2026

Chapter 11
[bookmark: _Hlk211083935]RESTful Web Design

What is in This Chapter ?
This chapter explains how to follow RESTful web design guidelines. RESTful web design is like fine dining compared to fast food. Both will “feed” you data, but in very different ways. A fast-food API might give you what you need quickly, but it’s usually messy, inconsistent, and not designed for long-term use. REST, on the other hand, is like fine dining: every course (resource) is well-presented, the menu (URLs) is organized and predictable, and the service (HTTP methods) follows clear rules. The experience is structured, scalable, and meant to be appreciated … not just consumed in a hurry.

[image: A cartoon characters sitting at a table

AI-generated content may be incorrect.]

	[bookmark: _Hlk211083954] 11.1 RESTful APIs

As we have seen in this course so far, web applications are not limited to delivering static HTML pages. Instead, they often need to send and receive data between the browser (or another client) and the server in real time. This is where web APIs come in.

A Web API is an interface that allows different software applications to communicate and exchange data over the web, typically using HTTP.
[image: A cartoon of a child reading a book

AI-generated content may be incorrect.]
It provides a clearly-defined way for clients (e.g., web browsers, mobile apps, smartwatch apps, other servers) to request, modify, and work with application data. To design these APIs effectively, developers often use REST (REpresentational State Transfer).

REST is not a protocol, format, or strict rulebook … it is really just some guiding principles to follow when designing our app. A RESTful API is one that follows three main principles of how web components should interact over the internet:

· Stateless Communication - every request is independent and contains all the information the server needs.
· Resource-based Structure - data and functionality are organized into distinct resources, each with a unique URL.
· Use of HTTP Methods - standard HTTP verbs (GET, POST, PUT, DELETE, etc.) indicate the desired action on a resource.

Consider, for example, what happens when a client requests some song data from a server. Look at the diagram below and see if you can verify the three principles mentioned above:

[image: A diagram of a computer program

AI-generated content may be incorrect.]
In the above diagram, the resource is the song data. The URL supplied by the browser specifies the song ID indicating the unique resource. Notice that all the information it needs is in the GET and the supplied URL, since it indicates: “Get me this exact song”. Of course, for this to work, the client must know what it is able to ask for.

[image: A cartoon character holding a pencil and a book in front of a chalkboard

AI-generated content may be incorrect.]A RESTful web API presents all the server’s available resources in a clear and structured way, making it obvious what clients can access and how to interact with them. Each resource is identified by a unique URL and can be manipulated using standard HTTP methods such as GET, POST, PUT, and DELETE. The resources themselves can take various forms, such as:

· JSON – for structured data exchange
· HTML – for web pages
· Plain text or XML – for simpler or legacy data formats
· Images, videos, or other files – for media content
While some resources may require authentication or permissions to access certain data, the API’s structure and available endpoints are fully visible, so clients can see what is possible, even if they cannot access everything. This clarity helps developers understand the system, know which actions are allowed, and integrate with it reliably.

In a RESTful API, data is presented as resources that can be created, retrieved, updated, or deleted. These operations are collectively known as CRUD:
· [image: A person with her hand on her chin

AI-generated content may be incorrect.]Create a resource (i.e., POST request)
· Read a resource (i.e., GET request)
· Update a resource (i.e., PUT or PATCH request)
· Delete a resource (i.e., DELETE request)

For example, in a RESTful API for a site with songs, we might see requests/responses like this:

	Method
	URL
	Resource Interaction
	Response

	GET
	/songs
	get a list of all songs
	200 OK

	GET
	/songs?genre=pop
	get all songs in the pop genre
	200 OK

	GET
	/songs?artist=Taylor+Swift
	get all songs by artist “Taylor Swift”
	200 OK

	GET
	/songs?genre=rock&year=2020
	get all rock songs from 2020
	200 OK

	GET
	/songs/234
	get song with ID 234
	200 OK

	GET
	/songs/9999999
	get non-existing song with ID 9999999
	404 Not Found

	GET
	/songs/234/lyrics
	get lyrics for song 234
	200 OK

	GET
	/songs/234/comments
	get comments for song 234
	200 OK

	POST
	/songs
	create a new song
	201 Created

	PUT
	/songs/234
	update song with ID 234
	204 No Content

	DELETE
	/songs/234
	delete song with ID 234
	204 No Content

	POST
	/songs/234/comments
	add a comment to song 234
	201 Created

	DELETE
	/songs/234/comments/10
	delete comment 10 on song 234
	204 No Content

	GET
	/songs/top?limit=10
	get top 10 songs
	200 OK

	GET
	/artists/45/songs
	get all songs by artist with ID 45
	200 OK

By looking at the request method and URL in the above table, the resulting resource interaction and response is somewhat intuitive. It shows that by following REST principles, APIs become predictable, easier to understand, and simpler to integrate across platforms. This is why REST is commonly used in web service design.

A truly RESTful API is designed according to six architectural constraints defined by Roy Fielding (https://ics.uci.edu/~fielding/pubs/dissertation/top.htm). These are:

1. Client–Server:

In REST, the client and server have separate responsibilities, so changes on one side don’t directly affect the other.
Server: Stores the data, rules, and logic, and provides information (i.e., representations of resources) in response to client requests.
Client: Makes requests to the server and does something useful with the response.
Ideally, the client and server see each other as “black boxes” where each knows the API (the interface) but not the internal implementation of the other. In some cases, the client may even learn about the API dynamically from the server.

This separation provides flexibility:
· Different types of clients (e.g., browser, mobile app, bots) can interact with the same server.
· The server can change how it stores or manages data without affecting clients.
· New components or services can be added without disrupting the system.

2. Stateless:

In REST, each request from the client must include all the information the server needs to process it and respond. The server does not keep any memory of previous requests or client session state … it treats every request as independent. This makes it easy to add more servers to handle additional requests, which improves scalability.

For example, imagine a product search: GET /products?type=book

The server might return only the first 10 results. If the client wants more, it must include all necessary information to get the next set, such as one of these:

GET /products?type=book&start=25
GET /products?type=book&page=2
GET /products?type=book&num=25&offset=25

We can see that each request is independent in that the server does not remember what the client requested previously.

In contrast, non-RESTful systems often rely on server-side session state. The server remembers what the client was doing, allowing requests like:
GET /products?type=book
GET /nextPage
GET /nextPage

Here, the server keeps track of the client’s progress, which violates statelessness. If that server crashes, the client may lose its session and have to start over. A stateless system, on the other hand, is more robust and scalable. Since each request contains all the information the server needs, any server can handle any request. If one server fails, another can take over without interrupting the client’s interactions.

[image: Chat with solid fill]Even for something like a back-and-forth chat session, REST can remain stateless, despite the existence of chat history. Each request from the client must include all the information the server needs to process it, such as an authentication token, the message content, or the chat room ID.

But the chat history itself is data, not session state. The server can store messages in a database and return past messages on request. This does not violate statelessness because the server is not keeping any temporary memory of the client’s ongoing session. Each request is handled independently, so if the client disconnects and reconnects, the server can still process requests correctly.

3. Cacheable:

[image: Download with solid fill]In REST, the server explicitly indicates whether a response can be cached. This is done using HTTP headers (like Cache-Control or Expires). If a response is cacheable, the server can also specify how long it remains valid.

When a client has a valid cached copy, it can reuse it instead of making a new request, which reduces network traffic and server load. This makes the system more scalable and efficient.

As an example, consider an image-hosting website. The server stores both images and metadata (e.g., filename, upload date, tags, or description). While metadata may change, the image files themselves usually do not. The server can mark the images as cacheable for longer periods, while metadata may have shorter cache times or no caching at all. This way, clients and intermediaries can reuse large, unchanging resources efficiently.

4. Uniform Interface:

A RESTful system uses a uniform interface to ensure consistent communication between clients and servers. This makes APIs predictable, easy to understand, and interoperable across different systems. The uniform interface has several key aspects:

(a) Identification of Resources

REST is centered around resources, which are any entities that can be named (e.g., images, user profiles, orders, or real-time data streams). While each resource may be dynamically generated by the server, each resource must be uniquely identifiable by a URL that remains constant for its lifetime.
For example …

http://myapi.com/products ← collection of products
http://myapi.com/products/28812 ← a specific product
http://myapi.com/products/28812/reviews ← reviews for that product

URLs usually represent nouns, not verbs. APIs that use verbs in URLs (e.g., /removeProduct or /updateAccount) are generally not RESTful).

(b) Manipulation of resources through representations:

In REST, the client interacts with information about the resource, not the resource itself or its storage mechanism. This information, often formatted as JSON, contains all the data needed to understand and work with it. The server handles the actual storage and management of the resource (e.g., by using a database, files, or even other servers) but the client doesn’t need to know how this is done. This separation allows the server to change its internal implementation without affecting the client.

	For example, suppose the server stores product information in a database. Internally, a product record might look like this

	id: 28812
name: "Wireless Mouse"
price: 29.99
stock: 12
supplierId: 451
barCode: "WM-122-XY"

	The client (e.g., a web app or mobile app) doesn’t need to know how the server stores this data. Instead, the client requests the product and receives a representation of it, usually in JSON

	{
 "id": 28812,
 "name": "Wireless Mouse",
 "price": 29.99,
 "stock": 12
}

The client now has all the information needed to display the product or let a user interact with it. The server may later change its internal storage (e.g., move from a database to a file system), but the client still receives the same JSON format, so its code doesn’t break.

(c) Self-descriptive messages:

In a RESTful system, every request and response should contain enough information to be understood on its own, without relying on previous messages. Also, each message should contain a data type, which tells the receiver what kind of data it is receiving (e.g., "Content-Type" in HTTP).

RESTful systems should also follow the formal meaning of the HTTP verbs: GET to retrieve, POST to create, PUT to update and DELETE to remove. Because these verbs have well-known meanings, clients and servers can interact consistently, which contributes to a uniform interface.

(d) Hypermedia as the Engine of Application State (HATEOAS):

In REST, hypermedia links in the server’s response act like signposts. The client doesn’t need to “know” all URLs in advance; it can simply follow the links provided by the server. Starting from an initial URL, the client can discover and navigate other resources dynamically using these hyperlinks.

This approach allows clients to explore relationships (e.g., how a product is linked to its reviews or manufacturer), discover related resources (e.g., similar products), and interact with the system without hardcoding any URLs.

For example, a client requests the first page of products like this: GET /products
The server can respond with JSON including products and links:

{
 "products": [
 { "id": 101,
 "name": "Wireless Mouse",
 "price": 29.99,
 "links": {
"reviews": "/products/101/reviews",
"similar": "/products?category=accessories" }},
 { "id": 102,
 "name": "Mechanical Keyboard",
 "price": 79.99,
 "links": {
"reviews": "/products/102/reviews",
"similar": "/products?category=keyboards" }}],
 "links": {
"nextPage": "/products?start=10" }
}

To see reviews for the mouse, the client follows /products/101/reviews, to see similar products it follows /products?category=accessories, to see the next page of products it follows /products?start=10 etc..

For fully RESTful systems that implement HATEOAS, the client never hardcodes URLs … it discovers all actions dynamically through the links provided in the responses. However, in practice many so-called “REST APIs” do not fully use hypermedia. The reality is that many APIs still expect the client to know URLs in advance and don’t provide hypermedia links. These are technically not fully RESTful, even if they use HTTP verbs and URLs.

5. Layered System:

[image: Layers Design with solid fill]In REST, the system can be composed of multiple layers of servers or services, but the client interacts with the system as a whole and never needs to know how many layers exist or how they are structured, it just sends requests and receives responses. Each layer only communicates with the layers directly above or below it. This separation of concerns makes the system more modular, maintainable, and scalable.
[image: Box with solid fill]As an analogy of not needing to know the layers … just think of sending a FedEx package. We (i.e., client) drop it off at the FedEx counter (i.e., web server). The staff handles routing our package through storage, sorting, and shipping (i.e., other layers). We don’t need to know what happens behind the scenes as long as our package gets delivered.

In a web app, we may have layers like: Clients Servers Databases

Additional layers can be added without affecting the client or other layers:
· Caching layer: speeds up responses by storing frequently requested data.
· Authentication/Authorization layer: checks security credentials.
· Load balancer layer: distributes requests across multiple servers.

This enforces separation of concerns within the system and increases modularity.

6. Code on Demand (optional):

In most REST interactions, the server sends static representations of resources (e.g., HTML, JSON, XML) that the client already knows how to handle. However, the server may optionally send executable code (such as JavaScript) that extends or modifies the client’s behavior on the fly. This is useful when the server wants to give the client new capabilities without requiring the client application to be updated manually. For example:

· A photo-sharing site adds a brand new type of image filter, but the current client app doesn’t know how to create that effect. The server can send JavaScript code with the image data that teaches the client how to render the new filter.

· An online form might receive JavaScript that validates new input formats without the client needing an update.

This approach allows the server to deliver new features instantly, keeping the system flexible and reducing deployment friction … though it’s used sparingly due to security and caching concerns.

Not all APIs that call themselves “RESTful” follow every one of these constraints. In general, the more constraints an API adheres to, the closer it is to the full REST architecture, which can improve scalability, maintainability, and clarity.

	[bookmark: _Hlk211083972] 11.2 Designing RESTful APIs

A RESTful API is built around the idea of resources (i.e., entities in our system that we want to expose to clients). Designing one well means deciding what those resources are, how they are identified, and how clients can interact with them.
Here are some tips towards designing a RESTful API:

Identify Resources:

A resource is anything our API manages (e.g., a user, a product, an order, etc.) So, our first step is to come up with a list of the main “things” our system works with. These can be:
· real-world objects (e.g., users, products, vehicles)
· digital items (e.g., images, reviews, songs)
· abstract concepts (e.g., orders, sessions or transactions)
· system resources (e.g., settings, logs, metrics)

Next, we should identify the attributes for each resource:

	users
id
name
email
phone
address
purchases
reviews
interests

	images
id
url
filename
format
size
uploadedBy

	orders
id
userId
items
status
totalPrice
createdAt
	settings
id
name
value
updatedAt

	products
id
name
description
price
category
images
reviews
stockQuantity

	reviews
id
productId
userId
rating
comment
date
	sessions
id
userId
createdAt
expiresAt
ipAddress
	logs
id
timestamp
level
message
source

	vehicles
id
make
model
year
color
VIN
Mileage

	songs
id
title
artist
album
duration
releaseDate
genre
	transactions
id
userId
amount
currency
status
timestamp
	metrics
id
name
value
recordedAt

Then we need to come up with our endpoints … which is a specific URL + HTTP method that represents one resource or a set of related resources…

Use Consistent, Predictable Naming:

When choosing our endpoints, we should follow these guidelines:

· Use plural nouns in route paths to show that the endpoint works with a collection and returns multiple items, not just a single one:

/products 	= the entire collection of products
/users 	= the entire collection of users
/reviews 	= the entire collection of users

· Append a unique identifier to the collection path for a single resource to make it obvious that the endpoint returns a single item:

/products/35452 	= the product with ID 35452
/users/18 		= the user with ID 18
/reviews/164 	= the review with ID 164

· Represent parent–child relationships directly in the URL to improve discoverability and keep related data grouped together:

/products/35452/reviews 	= all reviews for product 35352
/users/18/orders 		= all orders for user 18

· Use lowercase letters and hyphens for multi-word resource names because hyphens are more URL-friendly, easier to read, and work better with search engines:

/user-profiles … not /UserProfiles nor /user_profiles

· Avoid verbs in resource names. Let the HTTP method describe the action, not the path.

POST /orders (create new order) … not … /createOrder
DELETE /orders/37 (delete order 37) … not … /deleteOrder/37

· Map HTTP verbs to CRUD operations:

GET 	= retrieve one or more resources
POST 	= add a new resource to a collection
PUT 	= replace an existing resource
PATCH 	= partially update an existing resource
DELETE	= remove a resource

· Use query parameters for filtering, sorting, and searching. The path should identify the resource, while the query parameters control how the results are returned:

/products 		= get all products
/products?name=paint 		= get products with paint in the name
/products?type=book 		= get products that have a type of book
/products?name=paint&type=book	= get books with paint in the name
Avoid putting filter logic into the path:

/products?category=electronics&sort=price
instead of … /products/electronics/sort/price

· Keep URIs stable and version when necessary. Once published, treat a resource path as permanent. If breaking changes are needed, version at the root:

/v1/products becomes /v2/products if a new version is needed

Use Pagination:

[image: Open book outline]When a collection contains hundreds, thousands, or even millions of resources, returning the entire set in a single response is inefficient and unnecessary. Instead, the server should return a small subset (i.e., a page of results) for each request. This approach, called pagination, reduces bandwidth usage and improves performance.

Pagination is often implemented using query parameters in the GET request that can specify:
· The number of resources to return (e.g., limit or pageSize)
· The page number to retrieve (e.g., page)
· Or, in some APIs, a start and end range of results (e.g., start, end).

Here are some typical examples:

/products				get all products (use default pagination (e.g., first 20 items))
/products?page=3			retrieve the 3rd page of products
/products?limit=20			return only 20 products per page
/products?offset=40&limit=20	skip the first 40 products, then return the next 20
/products?start=41&end=60	return products with positions 41 through 60
/products?type=book	get all products of type book (default pagination)
/products?type=book&limit=10	get first 10 book products
/products?type=book&page=2&limit=10	get 2nd page of books, 10 per page (items 11–20)
/products?type=book&offset=20&limit=10	get books starting from item 21, next 10 items	
/products?type=book&sort=price-asc&limit=5	get first 5 books sorted by ascending price

In a query string, the plus sign (+) usually represents a space between words. However, the exact meaning can vary depending on how the server handles it. For example:

/products?type=book&search=fidget+toy&page=1&limit=5

This may either search for books with “fidget toy” in the title or description and give the first 5 results. Alternatively, it may search for books with both “fidget” and “toy” in the title or description. Most modern APIs use the second approach.

Use Appropriate Response Codes:

Using the right response codes helps clients quickly understand what happened (i.e., whether the request worked, needs adjustment, or failed). The most common codes are grouped below by category, along with their typical meaning and when to use them:

	Informational:

	100
	Continue
	Client may continue with request

	101
	Switching Protocols
	Server is switching protocols

	Success:

	200
	OK
	Request succeeded

	201
	Created
	Resource successfully created

	202
	Accepted
	Request accepted for processing

	204
	No Content
	Request succeeded, no content returned

	Redirection:

	301
	Moved Permanently
	Resource permanently moved; use new URL for future requests

	302
	Found
	Temporary redirect; client may retry at original URL later

	303
	See Other
	Redirect after POST; client should use GET method

	304
	Not Modified
	Resource unchanged; cached version is still valid

	307
	Temporary Redirect
	Temporary redirect; repeat request using same method

	308
	Permanent Redirect
	Permanent redirect; repeat request with same method at new URL

	Client Errors:

	400
	Bad Request
	Request malformed or invalid

	401
	Unauthorized
	Authentication required or failed

	403
	Forbidden
	Authenticated, but access is not allowed

	404
	Not Found
	Resource not found

	405
	Method Not Allowed
	Method is not allowed on this resource

	408
	Request Timeout
	Client took too long to send request

	429
	Too Many Requests
	Client sent too many requests (rate limit)

	Server Errors:

	500
	Internal Server Error
	Generic server error

	501
	Not Implemented
	Method not supported by server

	502
	Bad Gateway
	Server received an invalid response from another server it contacted

	503
	Service Unavailable
	Server is overloaded or down

	504
	Gateway Timeout
	Server didn’t receive a response in time from another server

In conclusion … RESTful design is all about treating resources consistently and letting clients interact with them through a standard interface. Since different clients may need the same resource in different ways (i.e., humans using a browser, programs running on servers, or mobile apps) it’s best that our server support multiple data formats. HTML works well for humans in a browser, while programs or other applications usually prefer machine-readable formats like JSON or plain text.

To achieve this, the server typically stores a single main representation of each resource, such as a JSON file or a database entry, and converts it into other formats on demand. This can be done by checking the client’s request headers (e.g., Accept: application/json vs. Accept: text/html) or by using query parameters (e.g., ?format=json).

By providing flexible representations, our API can be used by a wide range of clients without duplicating data or creating separate endpoints for each format.
	[bookmark: _Hlk211199299] 11.3 Practice Exercise - Date-a-Science Website API

[image: A screenshot of a dating app

AI-generated content may be incorrect.]Let's do a practice exercise. Going back to our Data-a-Science site, lets design a RESTful API that will allow us to search members, view member profiles, see suggested matches, and manage user accounts. We will build this API step-by-step, with questions guiding our design. Of course, here in the notes, we are just explaining it all, but pause at each question (in red text) to see if you can come up with the results on your own.

1. What resources will we need?

· Real-world objects:
· members
· users

· Digital items:
· photos
· reviews
· messages

· Abstract concepts:
· matches
· sessions
· interactions (e.g., likes, dislikes, match accepted/rejected)
· notifications (e.g., match/like/message/security alerts)

· System resources:
· settings

2. What data do we need for each resource?

· members
· id → unique identifier
· name → first/last or display name
· age / birthdate
· gender / pronouns
· location → city, state, or coordinates
· bio / description → short personal summary
· photos → array of photo URLs
· interests / hobbies → array of strings
· lastActive → timestamp for last login or activity
· users
· id → unique user ID
· username / login → account identifier
· passwordHash → stored securely
· email → optional, for verification or notifications
· profileId → links to the member profile
· createdAt → account creation timestamp

· photos
· id → unique photo ID
· url / path → location of photo
· caption → optional text
· uploadedAt → timestamp
· ownerId → member ID who owns the photo

· reviews
· id → unique review ID
· authorId → member writing the review
· targetId → member receiving the review
· rating → number (e.g., 1–5)
· comment → optional text
· createdAt → timestamp

· messages
· id → unique message ID
· senderId / receiverId → member IDs
· content → text
· sentAt → timestamp
· readStatus → boolean or timestamp

· matches
· id → unique match ID (optional)
· memberId → the member receiving suggestions
· matchedMemberId → suggested member ID
· score / compatibility → optional number indicating match strength
· createdAt / suggestedAt → timestamp

· sessions
· id / token → session token
· userId → linked account
· createdAt / expiresAt → timestamps
· device / IP → optional metadata

· interactions
· id → unique interaction ID
· memberId → person performing the action
· targetId → person receiving the action
· type → like, super-like, dislike, etc.
· timestamp → when the action occurred
· notifications
· id → unique notification ID
· memberId → recipient
· type → message, match, like, system alert
· content → optional text
· readStatus → boolean
· createdAt → timestamp

· settings
· id / userId → links to account
· notificationsEnabled → boolean
· visibility / privacy settings → e.g., show profile to everyone or matches only
· language / locale → string
· theme / display settings → optional

3. What are the API endpoints (i.e., method and URL)?

· members:
	GET
	/members
	Search or list members with optional query params

	GET
	/members/{mID}
	Retrieve a specific member profile

	PUT
	/members/{mID}
	Update a member profile (bio, photos, interests, etc.)

	DELETE
	/members/{mID}
	Delete a member profile (optional, if allowed)

· users:
	POST
	/users
	Create a new user account

	GET
	/users/{uID}
	Retrieve user account info

	PUT
	/users/{uID}
	Update user account info (password, email, settings)

	DELETE
	/users/{uID}
	Delete a user account

· photos:
	GET
	/members/{mID}/photos
	List all photos for a member

	POST
	/members/{mID}/photos
	Upload a new photo

	GET
	/members/{mID}/photos/{photoID}
	Retrieve a specific photo

	DELETE
	/members/{mID}/photos/{photoID}
	Delete a photo

· reviews:
	GET
	/members/{mID}/reviews
	List reviews for a member

	POST
	/members/{mID}/reviews
	Submit a review for a member

	GET
	/members/{mID}/reviews/{reviewID}
	Retrieve a specific review

	DELETE
	/members/{mID}/reviews/{reviewID}
	Delete a review

· messages:
	GET
	/members/{mID}/messages
	List messages for a member

	POST
	/members/{mID}/messages
	Send a new message

	GET
	/members/{mID}/messages/{messageID}
	Retrieve a specific message

	DELETE
	/members/{mID}/messages/{messageID}
	Delete a message

· matches:
	GET
	/members/{mID}/matches
	Get a list of suggested matches for a member

	POST
	/members/{mID}/matches
	Record or generate a new match (system-driven)

· sessions:
	POST
	/sessions
	Create a new login session (authenticate)

	DELETE
	/sessions/{sessionID}
	Logout / delete a session

· interactions:
	GET
	/members/{mID}/interactions
	List interactions for a member

	POST
	/members/{mID}/interactions
	Record a new interaction

	GET
	/members/{mID}/interactions/{interactionID}
	Retrieve a specific interaction

	DELETE
	/members/{mID}/interactions/{interactionID}
	Remove an interaction

· notifications:
	GET
	/members/{mID}/notifications
	List notifications for a member

	POST
	/members/{mID}/notifications
	Create a notification (system)

	GET
	/members/{mID}/notifications/{notificationID}
	Retrieve a specific notification

	PUT
	/members/{mID}/notifications/{notificationID}
	Mark notification as read

	DELETE
	/members/{mID}/notifications/{notificationID}
	Delete a notification

· settings:
	GET
	/users/{uID}/settings
	Retrieve user settings / preferences

	PUT
	/users/{uID}/settings
	Update user settings / preferences

4. What are the expected queries for these endpoints?

	Resource / Type
	Attributes
	HTTP Method
	Endpoint / URL Pattern
	Typical Query / Request Parameters
	Notes / Response

	Members / Profiles

	id, name, age, gender, bio, location, photos[], interests[], lastActive
	GET
	/members
	name, min-age, max-age, interest, gender, location, limit, offset, sort
	List/search members

	
	
	GET
	/members/{mID}
	none
	Retrieve single member profile

	
	
	PUT
	/members/{mID}
	JSON body with attributes to update
	Update member profile

	
	
	DELETE
	/members/{mID}
	none
	Delete member profile

	Users / Accounts

	id, username, passwordHash, email, profileId, createdAt
	POST
	/users
	JSON: {username, password}
	Create new account, 201 Created

	
	
	GET
	/users/{uID}
	none
	Retrieve user account

	
	
	PUT
	/users/{uID}
	JSON body with updates
	Update account

	
	
	DELETE
	/users/{uID}
	none
	Delete account

	Photos

	id, url, caption, uploadedAt, ownerId
	GET
	/members/{mID}/photos
	limit, offset, sort
	List member photos

	
	
	POST
	/members/{mID}/photos
	file + optional JSON metadata
	Upload photo

	
	
	GET
	/members/{mID}/photos/{photoID}
	none
	Retrieve photo

	
	
	DELETE
	/members/{mID}/photos/{photoID}
	none
	Delete photo

	Messages
	id, senderId, receiverId, content, sentAt, readStatus
	GET
	/members/{mID}/messages
	sender-id, receiver-id, read-status, limit, offset, sort
	List messages

	
	
	POST
	/members/{mID}/messages
	JSON: {receiver-id, content}
	Send message

	
	
	GET
	/members/{mID}/messages/{messageID}
	none
	Retrieve message

	
	
	DELETE
	/members/{mID}/messages/{messageID}
	none
	Delete message

	Reviews / Testimonials
	id, authorId, targetId, rating, comment, createdAt
	GET
	/members/{mID}/reviews
	author-id, rating-min, rating-max, limit, offset, sort
	List reviews

	
	
	POST
	/members/{mID}/reviews
	JSON: {author-id, rating, comment}
	Submit review

	
	
	GET
	/members/{mID}/reviews/{reviewID}
	none
	Retrieve review

	
	
	DELETE
	/members/{mID}/reviews/{reviewID}
	none
	Delete review

	Matches
	id, memberId, matchedMemberId, score, createdAt
	GET
	/members/{mID}/matches
	limit, sort, exclude-viewed
	Get suggested matches

	
	
	POST
	/members/{mID}/matches
	optional system-generated
	Record new match

	Sessions / Login

	id/token, userId, createdAt, expiresAt, device/IP
	POST
	/sessions
	JSON: {username, password}
	Login / create session

	
	
	DELETE
	/sessions/{sessionID}
	none
	Logout / delete session

	Interactions / Likes

	id, memberId, targetId, type, timestamp
	GET
	/members/{mID}/interactions
	type, target-id, limit, offset, sort
	List interactions

	
	
	POST
	/members/{mID}/interactions
	JSON: {target-id, type}
	Create interaction

	
	
	GET
	/members/{mID}/interactions/{interactionID}
	none
	Retrieve interaction

	
	
	DELETE
	/members/{mID}/interactions/{interactionID}
	none
	Remove interaction

	Notifications
	id, memberId, type, content, readStatus, createdAt
	GET
	/members/{mID}/notifications
	read-status, type, limit, offset, sort
	List notifications

	
	
	POST
	/members/{mID}/notifications
	optional system-generated
	Create notification

	
	
	GET
	/members/{mID}/notifications/{notificationID}
	none
	Retrieve notification

	
	
	PUT
	/members/{mID}/notifications/{notificationID}
	JSON: {read-status: true/false}
	Mark read/unread

	
	
	DELETE
	/members/{mID}/notifications/{notificationID}
	none
	Delete notification

	Settings / Preferences
	id/userId, notificationsEnabled, visibility, privacy, language, theme
	GET
	/users/{uID}/settings
	optional section
	Retrieve settings

	
	
	PUT
	/users/{uID}/settings
	JSON body with updates
	Update settings

What are examples of queries and their expected 200 OK response bodies?

GET /members?name=Alex&min-age=25&max-age=35
[
 {
 "id": 101,
 "name": "Alex Johnson",
 "age": 28,
 "gender": "male",
 "bio": "Loves hiking and coffee",
 "location": "Toronto",
 "interests": ["hiking", "coffee"],
 "lastActive": "2025-10-12T12:34:56Z"
 },
 {
 "id": 102,
 "name": "Alexandra Smith",
 "age": 27,
 "gender": "female",
 "bio": "Enjoys painting and yoga",
 "location": "Toronto",
 "interests": ["painting", "yoga"],
 "lastActive": "2025-10-12T11:20:10Z"
 }
]

GET /members?interest=hiking&location=Toronto&limit=5
[
 { "id": 101, "name": "Alex Johnson", "age": 28 },
 { "id": 103, "name": "Brian Lee", "age": 30 },
 ...
]

GET /members?limit=10&offset=20&sort=last-active-desc
[... next 10 member objects ...]

GET /members/101/photos?limit=5&sort=uploaded-at-desc
[
 { "id": 501, "url": "/images/501.jpg", "caption": "Hiking trip", "uploadedAt": "2025-10-10T10:00:00Z" },
 { "id": 502, "url": "/images/502.jpg", "caption": "Coffee shop", "uploadedAt": "2025-10-08T15:30:00Z" }
]

GET /members/101/messages?sender-id=202&read-status=false
[
 { "id": 1001, "senderId": 202, "receiverId": 101, "content": "Hi there!", "sentAt": "2025-10-12T10:12:00Z", "readStatus": false }
]

GET /members/101/messages?limit=20&offset=0&sort=sent-at-desc
[... last 20 messages ...]

GET /members/101/reviews?rating-min=4&rating-max=5&limit=10
[
 { "id": 201, "authorId": 102, "targetId": 101, "rating": 5, "comment": "Great person!", "createdAt": "2025-10-11T14:00:00Z" }
]

GET /members/101/reviews?sort=created-at-desc
[... reviews sorted newest first ...]

GET /members/101/matches?limit=5&sort=score-desc
[
 { "memberId": 201, "matchedMemberId": 101, "score": 98 },
 { "memberId": 202, "matchedMemberId": 101, "score": 95 }
]

GET /members/101/matches?exclude-viewed=true
[... only unseen match suggestions ...]

GET /members/101/interactions?type=like
[
 { "id": 301, "memberId": 101, "targetId": 202, "type": "like", "timestamp": "2025-10-10T09:00:00Z" }
]

GET /members/101/interactions?limit=10&offset=20&sort=timestamp-desc
[... next 10 interactions ...]

GET /members/101/notifications?read-status=false
[
 { "id": 401, "memberId": 101, "type": "match", "content": "You matched with Alex!", "readStatus": false, "createdAt": "2025-10-12T08:00:00Z" }
]

GET /members/101/notifications?type=match&sort=created-at-desc
[... match notifications, newest first ...]

5. What are the expected response codes?

	Resource / Type
	HTTP Method
	Endpoint / URL Pattern
	Response Codes
	Notes / Response

	Members / Profiles
	GET
	/members
	200, 400
	List/search members

	
	GET
	/members/{mID}
	200, 404
	Retrieve single member profile

	
	PUT
	/members/{mID}
	200, 400, 404
	Update member profile

	
	DELETE
	/members/{mID}
	204, 404
	Delete member profile

	Users / Accounts
	POST
	/users
	201, 400
	Create new account

	
	GET
	/users/{uID}
	200, 404
	Retrieve user account

	
	PUT
	/users/{uID}
	200, 400, 404
	Update account

	
	DELETE
	/users/{uID}
	204, 404
	Delete account

	Photos
	GET
	/members/{mID}/photos
	200, 404
	List member photos

	
	POST
	/members/{mID}/photos
	201, 400, 404
	Upload photo

	
	GET
	/members/{mID}/photos/{photoID}
	200, 404
	Retrieve photo

	
	DELETE
	/members/{mID}/photos/{photoID}
	204, 404
	Delete photo

	Messages
	GET
	/members/{mID}/messages
	200, 404
	List messages

	
	POST
	/members/{mID}/messages
	201, 400, 404
	Send message

	
	GET
	/members/{mID}/messages/{messageID}
	200, 404
	Retrieve message

	
	DELETE
	/members/{mID}/messages/{messageID}
	204, 404
	Delete message

	Reviews / Testimonials
	GET
	/members/{mID}/reviews
	200, 404
	List reviews

	
	POST
	/members/{mID}/reviews
	201, 400, 404
	Submit review

	
	GET
	/members/{mID}/reviews/{reviewID}
	200, 404
	Retrieve review

	
	DELETE
	/members/{mID}/reviews/{reviewID}
	204, 404
	Delete review

	Matches
	GET
	/members/{mID}/matches
	200, 404
	Get suggested matches

	
	POST
	/members/{mID}/matches
	201, 400, 404
	Record new match

	Sessions / Login
	POST
	/sessions
	201, 400, 401
	Login / create session

	
	DELETE
	/sessions/{sessionID}
	204, 404
	Logout / delete session

	Interactions / Likes
	GET
	/members/{mID}/interactions
	200, 404
	List interactions

	
	POST
	/members/{mID}/interactions
	201, 400, 404
	Create interaction

	
	GET
	/members/{mID}/interactions/{interactionID}
	200, 404
	Retrieve interaction

	
	DELETE
	/members/{mID}/interactions/{interactionID}
	204, 404
	Remove interaction

	Notifications
	GET
	/members/{mID}/notifications
	200, 404
	List notifications

	
	POST
	/members/{mID}/notifications
	201, 400, 404
	Create notification

	
	GET
	/members/{mID}/notifications/{notificationID}
	200, 404
	Retrieve notification

	
	PUT
	/members/{mID}/notifications/{notificationID}
	200, 400, 404
	Mark read/unread

	
	DELETE
	/members/{mID}/notifications/{notificationID}
	204, 404
	Delete notification

	Settings / Preferences
	GET
	/users/{uID}/settings
	200, 404
	Retrieve settings

	
	PUT
	/users/{uID}/settings
	200, 400, 404
	Update settings

Success codes: 200 OK, 201 Created, 204 No Content
Client errors: 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found, 429 Rate Limit
Server errors: 500 Internal Error … implied for all endpoints

As we can see, creating an API for a website involves many "moving parts", from defining resources and endpoints to specifying query parameters, request bodies, and response codes. However, by taking the time to design the API carefully and consistently, we make the implementation much smoother, reduce the likelihood of errors, and ensure that our code will be easier to maintain and extend in the future.

- 8 -
	
image3.png
Browser

GET
/songs/42

HTTP Response
{"id": 42, "title": "Song Name", ... }

Database

DB Query

Server SELECT * FROM songs WHERE id=42

DB Response
Song data

image4.png

image5.png

image6.png

image7.svg

image8.png

image9.svg

image10.png
(3

image11.svg

image12.png

image13.svg

image14.png

image15.svg

image16.png
Welcome to Date-a-Science
Where Your Heart Gets a Software Update.

Our Members

¥ Homer
¥ Marge
w Ling

@ Ahmed

Create a New Profile

e ==

© 2025 Date-a-Science
Contact us at support@dateascience.com

image1.jpg

image2.png

