COMP 2406	The MongoDB DBMS	Winter 2026

Chapter 12
The MongoDB DBMS

What is in This Chapter ?
This chapter begins with a very brief motivation for using databases and Database Management Systems (DBMS). We then discuss the MongoDB shell and how we can use it to create our own database to organize our data into collections. We examine some of the more common operations that can be performed from the terminal window using mongosh. We then consider how to use MongoDB within Node.js. We create a basic test program to connect to a database, perform some queries and then disconnect. We conclude with an example of a basic website that can perform product management by connecting an Express server running PUG code to our MongoDB database.
[image: previewer]

	[bookmark: _Hlk211347180] 12.1 Database Introduction

Consider building a website that lets people create accounts, post comments, or save their favorite products. At first, it might seem simple enough to store that information in local files on our server. We can, for example, just write to a text file or a JSON file whenever new data comes in. This may work well if there are just a few intermittent accounts being created and used. However, as soon as multiple users start interacting with the site at the same time, things can become unpleasant …

 Handling asynchronous file reads and writes can become complicated and error-prone.
· [image: A cartoon character of a person

AI-generated content may be incorrect.]We have to keep track of callbacks or async/await logic for every read/write.
· If multiple requests try to write to the file at once, race conditions can occur (i.e., one write overwriting another).
· If an error happens mid-operation (e.g., file missing, permission denied, disk full), we need to catch and handle it properly or our whole app may crash.
· As the number of operations grows, the code can become messy and harder to debug.
 Using synchronous file operations is considered bad practice because it blocks the entire server, slowing everything down.
 If we want to search or filter data (e.g., "find all users over 18"), we would need to write our own custom code to parse and scan the file, which is inefficient and fragile.

This is where databases (e.g., MongoDB , Firebase Firestone, MySQL, SQLite, Microsoft SQL Server, Amazon DynamoDB, etc..) can be useful.

[image: Database with solid fill]
A database is an organized collection of information that can be stored, updated, and searched efficiently.

Databases are designed to safely handle lots of users and data at once, making it fast to insert, update, and query information without conflicts/problems. Unlike local files, databases provide structure, scalability, and reliability … so our website can grow from a simple project to a full-fledged application that serves real users smoothly. But to make a database useful, we need …

A Database Management System (DBMS) is special software that sits between our application and the database.

[image: Database with solid fill][image: Ethernet with solid fill][image: Monitor with solid fill]

Instead of us having to write raw file-handling code, the DBMS provides tools and commands to:

 Store data efficiently (i.e., in tables, documents, or other structures).
 Manipulate data (i.e., insert new records, update existing ones, or delete them safely).
 Query data (i.e., search and filter information quickly).
 Control access (i.e., handle multiple users at once without conflicts).
 Maintain reliability (i.e., recover from crashes, ensure data isn’t corrupted, keep backups).

In short, the DBMS is what makes databases practical because it does the hard part (i.e., organizing and protecting data) while providing a simple, clean way for us developers to interact with it.

Beyond just storing data safely, databases also give us the following essential advantages:

 Fast Queries - we can search and filter data rapidly without writing custom code.

[image: A cartoon character giving a thumbs up

AI-generated content may be incorrect.] Reports & Insights - data can be combined and turned into meaningful information (e.g., sales by region, most active users, etc..).

 Automatic Optimizations - handles indexing and performance tweaks “under the hood”.

 Reliability (ACID: Atomicity, Consistency, Isolation, Durability) – guarantees that data remains valid even if something goes wrong (e.g., errors, crashes, or power loss).

 Fault Tolerance - can recover from failures or replicate data to keep things safe.

 Concurrency - multiple users can interact at the same time without corrupting information.

 Scalability - built to handle very large amounts of data as our app/site grows.

There are two main classes of DBMS:

· Relational: Stores data in structured tables with fixed rows and columns. Great for data with clear relationships (e.g., users ↔ orders ↔ products). Querying is done with SQL (Structured Query Language). Examples: MySQL, PostgreSQL, Oracle.

· NoSQL (i.e., Not Only SQL): Stores data in non-tabular formats and offer dynamic structure, making them easier to adapt as requirements change and they scale well to handle huge amounts of data and high traffic.

There are 4 types of NoSQL databases:

· Document Databases: stores data in documents that look like JSON objects.
· Key-Value Databases: each item is a key paired with a value.
· Wide-Column Stores: stores data in tables with rows and dynamic columns (sometimes called “two-dimensional key-value databases”). Different rows don’t need to have the same columns.
· Graph Databases: stores data as nodes (things like people, places, or products) and edges (the relationships between them).

[image: A green leaf with a black background

AI-generated content may be incorrect.]In this course, we will be using MongoDB, which is classified as a NoSQL (document-based) program that uses JSON-like documents with flexible structure, so each record can contain different types of information. It organizes data into collections of documents, with each document representing a single entity or object in the system. It is consistently ranked as the world’s most popular NoSQL database.

	[bookmark: _Hlk211347193] 12.2 Working with Databases in a MongoDB Shell

Let’s get started using MongoDB. We need to first follow these steps:

1. Install MongoDB Community Edition by first downloading the package under MongoDB Community Server for your OS from here:
https://www.mongodb.com/products/self-managed/community-edition
Then it using all the default settings. Let's hope the latest version adheres to these notes.

2. Download MongoDB Shell (i.e., mongosh) from here (select msi package for windows):
https://www.mongodb.com/docs/mongodb-shell/
Install it using the default settings.

3. To run the MongoDB Shell, we need to open a Command Prompt terminal (not Powershell) and type mongosh. You will see something like what is shown below, although it may differ over time with each version update:
[image: A screen shot of a computer

AI-generated content may be incorrect.]

MongoDB organizes data in a hierarchy that is flexible and easy to understand:

MongoDB Server
 └─ Database
 └─ Collection
 └─ Document
 └─ Field

1. Server / Instance
The MongoDB server (or instance) is the running process that holds our databases. We can connect to it via mongosh or through our application.

2. Databases
Each server can have multiple databases (e.g., school, store, blog). Databases act like containers for collections.

3. Collections
Each database contains one or more collections. A collection is roughly like a table in SQL, but it has no fixed schema (e.g., users, products, orders).

4. Documents
A collection stores multiple documents. A document is a single record, stored as a JSON-like object. (e.g., { "id": 1, "name": "Bob", "email": "bob@gmail.com", "age": 22 })

5. Fields
Each document contains fields (i.e., key-value pairs) that hold data. (e.g., "age": 22)

Creating and Modifying a MongoDB Database

There are different commands that we can use in mongosh to create and modify databases. Here are just a few of the more useful ones:

· show dbs – shows the current databases (three defaults exist: admin, config and local)

	test> show dbs
admin 40.00 KiB
config 12.00 KiB
local 40.00 KiB
test>

· db – shows the current database name. (Note: upon startup, the current database is test which is like a “starting playground” where we can experiment until we create and switch to our own databases).

	test> db
test
test>

· use <dbName> – switches to the database with name <dbName> if it already exists. Otherwise, it creates a database with the name <dbName> if it doesn’t already exist (although the database is only actually created when we insert our first document, so it will not appear yet in the list of databases).

	test> use store
switched to db store
store>

· db.dropDatabase() – removes all collections and documents inside the current database. Once executed, the action is irreversible, so use it carefully and make sure to use db to check that we are in the current database is the one that we want to delete. Note that the database still shows in the prompt, but it no longer exists on disk until we insert new data again.

	store> db.dropDatabase()
{ ok: 1, dropped: 'store' }
store>

· db.createCollection(<collectionName>) – creates a collection with the given name in the current database. Alternatively, a collection will be created automatically as we add our first document.

	store> db.createCollection("products")
{ ok: 1 }
store> db.createCollection("users")
{ ok: 1 }
store>

· [bookmark: _Hlk206507193]show collections – shows all collections in the current database:
	store> show collections
products
users
store>

· db.<collectionName>. insertOne(<JSON Object>) – adds a document to the specified collection named <collectionName> within the current database. Note that EVERY document MUST have a key called _id. If we accidentally provide a key name id, it will be added but then an additional _id key will also be automatically created. Note as well that the key names do not need quotes around them, but value strings do.

	store> db.products.insertOne({_id:1, name:"Laptop", price:1200, stock:136 })
{
 acknowledged: true,
 insertedId: 1
}
store> db.products.insertOne({_id:2, name:"Mouse", price:25, stock:395 })
{
 acknowledged: true,
 insertedId: 2
}
store> db.products.insertOne({_id:2, name:"Pizza", price:9.99, stock:2 })
MongoServerError: E11000 duplicate key error collection: store.products index: _id_ dup key: { _id: 2 }

· db.<collectionName>.find() – shows all documents in the collection named <collectionName> within the current database.

	[image: Magnifying glass with solid fill]store> db.products.find()
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 2, name: 'Mouse', price: 25, stock: 395 }
]
store>

· db.<collectionName>.deleteOne({ key : value }) – deletes the first document that matches the given key : value filter.

	store> db.products.deleteOne({_id:2})
{ acknowledged: true, deletedCount: 1 }
store> db.products.deleteOne({_id:6})
{ acknowledged: true, deletedCount: 0 }
store>

· db.<collectionName>. insertMany([<JSON Obj1> , <JSON Obj2> , <JSON Obj3> , …]) – adds multiple documents to the specified collection named <collectionName> within the current database.

	store> db.products.insertMany([{_id:3, name:"Pencils", price:1.79, stock:4352}, {_id:4, name:"Ruler", price:2.79, stock:2879}, {_id:9, name:"Mug", price:4.49, stock:528}])
{ acknowledged: true, insertedIds: { '0': 3, '1': 4, '2': 9 } }
store>

· db.<collectionName>.countDocuments() – shows the number of documents in the collection named <collectionName> within the current database.
[bookmark: _Hlk206527451]
	store> db.products.find()
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]
store> db.products.countDocuments()
4
store>

[image: Help with solid fill]Querying a MongoDB Database

Databases often contain a lot of data, but we usually only need a small portion at a time. To get exactly what we want, we use a …

query = a request to a database to retrieve specific data that matches certain criteria.

For example, we might want to see just a few product names and prices, sort them by price, or only look at products that are in stock. In MongoDB, we use the find() function to perform these queries and control which data is returned. Here are some examples of how this can be done effectively

· db.<collectionName>.find({ key : { $operator : value } }) – shows all documents in the collection named <collectionName> within the current database whose key attribute has a value that matches the given query condition specified by $operator. When .count() is used at the end, it shows only the number of documents that matched.

	[image: Cartoon character holding a clipboard

AI-generated content may be incorrect.]store> db.products.find()
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]
store> db.products.find({price:{$gt:10}})
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 }
]
store> db.products.find({price:{$lt:10}})
[
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]
store> db.products.find({price:{$lt:10}}).count()
5
store>

Here are a few of the various comparison query operators available:

	Operator
	Description

	$eq
	=

	$ne
	!=

	$gt
	>

	$gte
	>=

	$lt
	<

	$lte
	<=

	$in []
	matches values in the specified array of values

	$nin []
	matches values not in the specified array of values

Queries can be combined using a comma:
	store> db.products.find({price:{$lt:10}, stock:{$gt:500}})
[
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]

Queries can be combined for the same key field:
	store> db.products.find({price:{$gt:10,$lt:500}})
[
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 }
]

Values can be compared to items in an array:
	store> db.products.find({name:{$in:["Chair", "Table"]}})
[
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 }
]

We can use regular expressions to see if there is a partial match for a string:
	store> db.products.find()
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 },
 { _id: 10, name: 'Red Ball', price: 2.99, stock: 24 },
 { _id: 11, name: 'Blue Ball', price: 2.99, stock: 46 },
 { _id: 12, name: 'Green Ball', price: 2.99, stock: 34 }
]

store> db.products.find({name:{$regex:"Ball"}})
[
 { _id: 10, name: 'Red Ball', price: 2.99, stock: 24 },
 { _id: 11, name: 'Blue Ball', price: 2.99, stock: 46 },
 { _id: 12, name: 'Green Ball', price: 2.99, stock: 34 }
]
store>

Here are a few of the various logical query operators available:

	Operator
	Description

	$and
	matches the conditions of all clauses

	$not
	do not match the conditions of the query

	$nor
	fail to match the conditions of all clauses

	$or
	match the conditions of either clause

	Here is an example of finding cheap items that have a lot of stock:
	store> db.products.find ({$and:[{price:{$lt:5}}, {stock:{$gt:100}}])
[
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]

	Here is an example of finding cheap items OR ones that are low in stock:
	store> db.products.find ({$or:[{price:{$lt:2.99}}, {stock:{$lt:20}}]})
[
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 }
]
store>

Here is an example of finding items that are neither cheap NOR low in stock:
	store> db.products.find ({$nor:[{price:{$lt:2.99}}, {stock:{$lt:20}}]})
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 },
 { _id: 10, name: 'Red Ball', price: 2.99, stock: 24 },
 { _id: 11, name: 'Blue Ball', price: 2.99, stock: 46 },
 { _id: 12, name: 'Green Ball', price: 2.99, stock: 34 }
]
store>

We can also handle nested/embedded objects by using the dot notation. Quotes are required around the attribute parameters. Here is an example of how to do this:
	store> db.products.insertMany([
 {
 _id: 22, name: "Tablet A", price: 499.99, stock: 25,
 details: {
 manufacturer: { name: "TechBrand", country: "Korea", warrantyYears: 1 },
 specs: { screen: "10 inch", storage: "128GB", battery: "7000mAh" }
 }
 },
 {
 _id: 23, name: "Tablet B", price: 599.99, stock: 30,
 details: {
 manufacturer: { name: "GigaTech", country: "USA", warrantyYears: 2 },
 specs: { screen: "11 inch", storage: "256GB", battery: "8000mAh" }
 }
 },
 {
 _id: 24, name: "Tablet C", price: 699.99, stock: 18,
 details: {
 manufacturer: { name: "SmartWorld", country: "Japan", warrantyYears: 1 },
 specs: { screen: "12.5 inch", storage: "256GB", battery: "9000mAh" }
 }
 }
])
{ acknowledged: true, insertedIds: { '0': 22, '1': 23, '2': 24 } }
store> db.products.find({"details.specs.storage": "128GB"})
[
 {
 _id: 22,
 name: 'Tablet A',
 price: 499.99,
 stock: 25,
 details: {
 manufacturer: { name: 'TechBrand', country: 'Korea', warrantyYears: 1 },
 specs: { screen: '10 inch', storage: '128GB', battery: '7000mAh' }
 }
 }
]
store>

When working with a database, we often don’t need all the information stored in a document. For example, suppose we are shopping online and just want to see the name and price of items (i.e., we may not care about their manufacturer, warrantyYears, _id, etc..). If the database sent us all the details every time, it would be wasteful (i.e., more data to transfer, more memory to hold it, and more noise for us to filter through).

Thankfully, MongoDB allows us to use …

A projection is a way to select which fields of a document are returned by a query, including some and excluding others.
[image: A cartoon child with her hands up

AI-generated content may be incorrect.]A projection let’s us say: “I only want these fields, and nothing else.” It helps keep queries fast, makes our results easier to read, and reduces the amount of data traveling across the network. Projections are especially important in large systems, where millions of users are querying massive collections.

A projection is supplied as the second parameter of the find() command:

· db.<collectionName>.find({ key : value } , { key1:flag1, key2:flag2, key3:flag3 … })
– shows all documents in the collection named <collectionName> within the current database whose key attribute has the specified value. The flags above are either 0 or 1. The only key: value pairs that are returned are those in which their flag is set to 1. The _id field is returned by default, but can be disabled by setting its flag to 0 (i.e., _id:0). Alternatively, we can specify a 𝟎 for all fields we don’t want, and all others will be included.

	store> db.products.find({}, {name: 1, price:1, _id:0}))
[
 { name: 'Laptop', price: 1200 },
 { name: 'Pizza', price: 9.99 },
 { name: 'Coke', price: 0.99 },
 { name: 'Chair', price: 345.99 },
 { name: 'Table', price: 429.97 },
 { name: 'Red Ball', price: 2.99 },
 { name: 'Blue Ball', price: 2.99 },
 { name: 'Green Ball', price: 2.99 },
 { name: 'Pencils', price: 1.79 },
 { name: 'Ruler', price: 2.79 },
 { name: 'Mug', price: 4.49 },
 { name: 'Tablet A', price: 499.99 },
 { name: 'Tablet B', price: 599.99 },
 { name: 'Tablet C', price: 699.99 }
]
store> db.products.find({}, {name:0, price:0, _id:0, details:0})
[
 { stock: 136 }, { stock: 2 },
 { stock: 15 }, { stock: 83 },
 { stock: 17 }, { stock: 24 },
 { stock: 46 }, { stock: 34 },
 { stock: 4352 }, { stock: 2879 },
 { stock: 528 }, { stock: 25 },
 { stock: 30 }, { stock: 18 }]
store>

There are some other functions that we can apply after the find() command that are very useful for pagination:

· db.<collectionName>.find(… }.limit(<n>) – returns the first <n> results that match the specified query documents.

· db.<collectionName>.find(… }.skip(<m>) – skips over the first <m> results that match the specified query documents and returns the rest.

· db.<collectionName>.find(… }.skip(<m>).limit(<n>) – skips over the first <m> results that match the specified query documents and then returns the next <n> results.

	store> db.products.find().limit(5)
[
 { _id: 1, name: 'Laptop', price: 1200, stock: 136 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 }
]
store> db.products.find().skip(2).limit(5)
[
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 }
]
store>

Whenever we want to quickly grab just one document, rather than dealing with a full list of results, we can use findOne(…) instead of find(…). This is useful if we are looking up a specific user by their unique username or email address. findOne() is better because it stops after it finds the match, while find() keeps looking for all matches … and in this particular situation, we know that there is only one match, so why waste time looking for more?

However, we can always use find().limit(1) to get just one product as well. The difference is in the format returned. findOne() returns one document, whereas find().limit(1) returns a cursor (which is essentially a pointer to the results … which must be handled differently).

· db.<collectionName>.find(… }.sort({ key : flag})
– sorts the results in order of the specified key. If the flag is 1, it sorts in ascending order. If the flag is -1, it sorts in descending order.

	store> db.products.find({price:{$lt:450}}).sort({stock: 1})
[
 { _id: 5, name: 'Pizza', price: 9.99, stock: 2 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 },
 { _id: 10, name: 'Red Ball', price: 2.99, stock: 24 },
 { _id: 12, name: 'Green Ball', price: 2.99, stock: 34 },
 { _id: 11, name: 'Blue Ball', price: 2.99, stock: 46 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 }
]
store>

Here is a link to some documentation that describes the various query operators:

https://www.mongodb.com/docs/manual/reference/mql/expressions/

Updating & Deleting in a MongoDB Database

In addition to querying the database, we sometimes need to replace an old document with a new one (e.g., when a discontinued product is replaced by a newer version). At other times, we may want to update only certain fields of a document, such as changing the price or stock quantity of a product. MongoDB provides built-in functions that make both replacing and updating documents straightforward and efficient.

All modifications in MongoDB are atomic, meaning each change is completed fully before another begins. This ensures that two processes cannot modify the same document at the same time, preventing conflicts and avoiding data corruption that could occur if multiple processes tried to write to the same file simultaneously.

Here is how to do an update of a document:

· db.<collectionName>.updateOne(<filter>, <update>, <options>) – updates a single document in a collection that matches the given filter. The <filter> identifies the specific document. <update> defines how to modify the document and <options> are optional settings.

	store> db.products.findOne({_id:1})
{ _id: 1, name: 'Laptop', price: 1200, stock: 136 }
store> db.products.updateOne({_id:1}, {$set: {price: 1079}})
{
 acknowledged: true,
 insertedId: null,
 matchedCount: 1,
 modifiedCount: 1,
 upsertedCount: 0
}
store> db.products.findOne({_id:1})
{ _id: 1, name: 'Laptop', price: 1079, stock: 136 }
store> db.products.updateOne({_id:1}, {$inc: {stock: -1}})
{
 acknowledged: true,
 insertedId: null,
 matchedCount: 1,
 modifiedCount: 1,
 upsertedCount: 0
}
store> db.products.findOne({_id:1})
{ _id: 1, name: 'Laptop', price: 1079, stock: 135 }

store> db.products.updateOne({_id:1}, {$inc: {stock: 100}})
{
 acknowledged: true,
 insertedId: null,
 matchedCount: 1,
 modifiedCount: 1,
 upsertedCount: 0
}
store> db.products.findOne({_id:1})
{ _id: 1, name: 'Laptop', price: 1079, stock: 235 }
store>

Notice the resulting object that contains information about how many documents were modified, among other information. We can use this information to decide what response to send. Notice the upsertedCount field in the result. It shows how many documents were inserted because of an upsert (i.e., “update insert” = upsert) operation. If we include
{ upsert: true }, in the <options> parameter, MongoDB will create and insert a new document when no existing document matches the specified <filter>.

We can include multiple update operators at the same time, separated by commas
(e.g., {$set:{price: 500},$inc:{stock: 100}}).

We can include multiple fields for each update operator, separated by commas
(e.g., {$set:{price: 300, stock: 50}}).

We can handle nested values using the dot operator and quotations:
(e.g., {$set:{"details.manufacturer.warantyYears":5}}).

These are some additional useful update operators:
· [image: A cartoon of a child pointing

AI-generated content may be incorrect.]$rename – renames a field in a document
· $unset – removes the specified field from a document

Look here for a more thorough list of update operators:

https://www.mongodb.com/docs/manual/reference/mql/update/

There is also an updateMany() function that works similar to insertMany():

· db.<collectionName>.updateMany(<filter>, <update>, <options>) – updates all documents in a collection that match the given filter.

	store> db.products.find({stock:{$gt:50}})
[
 { _id: 1, name: 'Laptop', price: 1079, stock: 235 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]

store> db.products.updateMany({$and:[{stock:{$gt:50}}, {price:{$gt:100}}]}, {$inc:{price:-100}})
{
 acknowledged: true,
 insertedId: null,
 matchedCount: 2,
 modifiedCount: 2,
 upsertedCount: 0
}

store> db.products.find({stock:{$gt:50}})
[
 { _id: 1, name: 'Laptop', price: 979, stock: 235 },
 { _id: 7, name: 'Chair', price: 245.99, stock: 83 },
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 }
]
store>

· db.<collectionName>.replaceOne(<filter>, <replacementObject>) – replace a single document in a collection that matches the given <filter> with the <replacementObject>. This is useful, for example, if we need to replace a discontinued product with a newer version of the product where many of the attributes are different.

	store> db.products.find({_id:24})
[
 {
 _id: 24,
 name: 'Tablet C',
 price: 699.99,
 stock: 18,
 details: {
 manufacturer: { name: 'SmartWorld', country: 'Japan', warrantyYears: 1 },
 specs: { screen: '12.5 inch', storage: '256GB', battery: '9000mAh' }
 }
 }
]
store> db.products.replaceOne({ _id: 24 }, { _id: 24, name: 'Tablet C+', price: 799.99, stock: 50,
... details: {
... manufacturer: { name: 'SmartWorld', country: 'Japan', warrantyYears: 2 },
... specs: { screen: '12.5 inch', storage: '512GB', battery: '9500mAh' }
... }
... })
{
 acknowledged: true,
 insertedId: null,
 matchedCount: 1,
 modifiedCount: 1,
 upsertedCount: 0
}
store> db.products.find({_id:24})
[
 {
 _id: 24,
 name: 'Tablet C+',
 price: 799.99,
 stock: 50,
 details: {
 manufacturer: { name: 'SmartWorld', country: 'Japan', warrantyYears: 2 },
 specs: { screen: '12.5 inch', storage: '512GB', battery: '9500mAh' }
 }
 }
]
store>

The … in the above example is from the shell's prompt. It is a visual queue to show us that we are typing in a multi-line command.

· db.<collectionName>.deleteOne(<filter>) – delete a single document in a collection that matches the given <filter>.

· db.<collectionName>.deleteMany(<filter>) – delete all documents in a collection that match the given <filter>.

	store> db.products.deleteOne({price:{$gt: 400}})
{ acknowledged: true, deletedCount: 1 }
store> db.products.deleteOne({_id:5})
{ acknowledged: true, deletedCount: 1 }
store> db.products.deleteMany({_id:{$gt:10}})
{ acknowledged: true, deletedCount: 4 }
store> db.products.find()
[
 { _id: 3, name: 'Pencils', price: 1.79, stock: 4352 },
 { _id: 4, name: 'Ruler', price: 2.79, stock: 2879 },
 { _id: 6, name: 'Coke', price: 0.99, stock: 15 },
 { _id: 7, name: 'Chair', price: 345.99, stock: 83 },
 { _id: 8, name: 'Table', price: 429.97, stock: 17 },
 { _id: 9, name: 'Mug', price: 4.49, stock: 528 },
 { _id: 10, name: 'Red Ball', price: 2.99, stock: 24 }
]
store>

At this point, we have just looked at the basics of MongoDB from the shell window. There are a lot of operations that we can perform on the database, but we shouldn't worry about trying to know and understand them all. We should, however, get comfortable with using the documentation to build
queries to achieve specific goals.

Now let’s see how to incorporate MongoDB into a Node.js web application.

	[bookmark: _Hlk211347216] 12.3 MongoDB in Node.js

Before we can use MongoDB with Node.js, we need to get the Mongo daemon running. I am not sure how to describe this for iOS or Linux … but I will describe the process for Windows.

We have to first decide where we want MongoDB to store its files related to our databases. Typically, we just choose a folder and then tell the Mongo daemon where it is. Let’s do this:
1. Make a subfolder called db within a data folder at the root of our system (i.e., C:\data\db). We will then tell the Mongo daemon to use that folder.
2. [image: A screenshot of a computer program

AI-generated content may be incorrect.]Identify the location that the Mongo daemon executable (i.e., mongod.exe) was installed into (e.g., C:\Program Files\MongoDB\Server\8.2\bin\mongod.exe).
3. Open up a Command Prompt window and navigate to the folder from step 2 that contains the mongod.exe file (Note: The Powershell terminal window in VScode does not have the right permissions). We can choose it from the arrow beside the + in VSCode
4. Run this to start the daemon: mongod.exe --dbpath=C:\data\db. We should see a bunch on “non-sensical” stuff appear that looks like this:
{"t":{"$date":"2025-08-20T16:29:21.438-04:00"},"s":"I", "c":"CONTROL", "id":23285, "ctx":"thread1","msg":"Automatically disabling TLS 1.0, to force-enable TLS 1.0 specify --sslDisabledProtocols 'none'"}
{"t":{"$date":"2025-08-20T16:29:21.441-04:00"},"s":"I", "c":"CONTROL", "id":5945603, "ctx":"thread1","msg":"Multi threading initialized"}
{"t":{"$date":"2025-08-20T16:29:21.441-04:00"},"s":"I", "c":"NETWORK", "id":4648601, "ctx":"thread1","msg":"Implicit TCP FastOpen unavailable. If TCP FastOpen is required, set at least one of the related parameters","attr":{"relatedParameters":["tcpFastOpenServer","tcpFastOpenClient","tcpFastOpenQueueSize"]}}
{"t":{"$date":"2025-08-20T16:29:21.442-04:00"},"s":"I", "c":"NETWORK", "id":4915701, "ctx":"thread1","msg":"Initialized wire specification","attr":{"spec":{"incomingExternalClient":{"minWireVersion":0,"maxWireVersion":25},"incomingInternalClient":{"minWireVersion":0,"maxWireVersion":25},"outgoing":{"minWireVersion":6,"maxWireVersion":2
…
The code daemon will still be running … indication that the MongoDB server is ready and listening for us to talk to it (as clients).
[image: A screenshot of a computer

AI-generated content may be incorrect.]
5. We will need to use a different terminal window to run our server. We will open up another terminal now … it can be a powershell window this time. A powershell window may already be running in VScode, but if not, we can press the + off to the right side of the terminal to make a new one. We can swap between them by selecting them from the list … as we can see from the image here on the right

6. From that new terminal, we can navigate to the directory that will contain our server code (e.g., C:\Users\lanth\Documents\COMP 2406\code\MyWebsite\) and install the mongodb module in NPM: npm install mongodb
Now we are ready to use the database in our code. Keep in mind that steps 3 & 4 will be necessary every time that we want to run our server because the Mongo server daemon must also be running at all times for us to be able to access our database. Our server will become a client of the MongoDB server.

Let’s first look at how to write a JavaScript program (i.e., test_mongo_connect.js) that communicates with MongoDB and then later we will see how to do this with a server.

Now, in our course examples, we usually have a simple, single server, so we only need one module that talks to the database. In that case, it would be fine to put both the server code and the database code together in the same file. However, in larger applications the server-to-database communication code is often required across multiple modules (e.g., users.js, products.js, auth.js, etc.). Each of these modules may need to access different collections in the same database.
[image: A cartoon of a child holding a book and giving a thumbs up

AI-generated content may be incorrect.]
If every module managed its own connection, we would end up with repeated code and possibly multiple unnecessary connections to the database. By moving the connection logic into a separate file (e.g., db.js), we centralize that responsibility so that the whole application shares a single connection. This also makes the system easier to maintain. If, for example, the connection details change (e.g., the database URL or error-handling strategy), we only need to make updates in one location and the entire app benefits.

So, what does our database module (db.js) look like? It needs to first get/require the MongoClient class from the mongodb module so that we can connect and talk to the database server. Then we can set up variables to indicate the address of the MongoDB server as well as the name of our database.

Finally, we will maintain a client object that will represent our connection to the database and a db variable that will represent the database that we are connected to … as follows:

 // Get the MongoClient class from the mondodb module
 const { MongoClient } = require("mongodb");

 // Connection URL for the MongoDB server (default port for Mongo is 27017)
 const url = "mongodb://localhost:27017";
 const dbName = "store"; // This is the name of our database

 // Create a MongoClient instance
 const client = new MongoClient(url);

 let db = null; // The database connection (null upon start)

Now, we will need to use the MongoClient to connect to & disconnect from the MongoDB server. We can set things up so that whenever we need to access something from the database, we call a function to connect to it, and get back a database object that we can work with. Then we can call a disconnect function to release the connection.

The latest version of MongoDB requires us to use the async/await approach that we discussed a while ago in our AJAX chapter. Here is the code that we will add to our db.js file:

// Connect to the database
async function connectToDatabase() {
 if (!db) { // If not already connected, connect now
 await client.connect();
 console.log("Connected to MongoDB: " + dbName);
 db = client.db(dbName);
 }
 return db;
}

// Disconnect from the database
async function disconnectFromDatabase() {
 await client.close();
 db = null; // Reset so next call to connectToDatabase() works properly
 console.log("Disconnected from MongoDB: " + dbName);
}

module.exports = { connectToDatabase, disconnectFromDatabase };

Notice how the connection code checks to see if the database is already set before connecting again. This prevents someone from trying to connect again after they are already connected. The db object is returned to the caller so that we can use it. Closing the connection is also quite simple.

Take notice that these two function make use of await. So, the function that we call these from will have to have async in front of it.

Finally, notice that we are exporting the two functions. So, to use them in our code, we will need to do something like this:

const { connectToDatabase, disconnectFromDatabase } = require("./db");

In typical real-world Node.js apps, we wouldn't call disconnectFromDatabase() after every query. That function is mainly used when the app/server is shutting down. Therefore, in the require() above, we will often see modules only importing the connectToDatabase() function.

Notice as well that the code above assumes that db.js is in the same folder as wherever we write this code.
[image: A cartoon of a child with a surprised expression

AI-generated content may be incorrect.]
But wait!

Our functions do not have any error-checking in them! What if something goes wrong (e.g., someone forgot to start the MongoDB server)?

Let’s add some error-handling code.

Here is a better version of these functions …

 // Connect to the database
 async function connectToDatabase() {
 if (!db) { // If not already connected, connect now
 try {
 await client.connect();
 db = client.db(dbName);
 console.log("Connected to MongoDB: " + dbName);
 } catch (err) {
 console.error("Error connecting to MongoDB:", err);
 throw err; // re-throw this error so that the caller knows it failed
 }
 }
 return db;
 }

 // Disconnect from the database
 async function disconnectFromDatabase() {
 try {
 await client.close();
 db = null; // Reset so next call to connectToDatabase() works properly
 console.log("Disconnected from MongoDB: " + dbName);
 } catch (err) {
 console.error("Error disconnecting from MongoDB:", err);
 }
 }

At this point, we have a nice clean module that allows us to connect to one database on one MongoDB server. If we wanted to use multiple databases at the same time, we would need to maintain multiple database variables or use an array to hold them. If we needed to communicate with multiple database servers, this would require us to have multiple clients, each with their own connect/close functionality. In all cases, we will want to reuse connections, not create a new one every time. In this course, we will keep things simple with one database on one server.

Here is a basic test program that will use our db.js module to connect to a database, display its collections and then disconnect from the database:

// Get the database connect/disconnect functions
const { connectToDatabase, disconnectFromDatabase } = require("./db");

// We made a main() function because we are required to use "async"
async function main() {
 try {
 const db = await connectToDatabase();

 const collections = await db.collections();
 console.log("Collections:", collections.map(c => c.collectionName));

 } catch (err) {
 console.error("Error ... something went wrong:", err);
 } finally {
 await disconnectFromDatabase();
 }
}
main();

Notice that the code is simple and clean with the use of db.js.

Once we connect to the database, we can begin to use it to do interesting things. We have already seen how to do various operations with the MongoDB shell mongosh. As it turns out, the same functionality is available for MongoDB under Node.js.

Here is a comparison of the mongosh functionality with Node.js. We will notice that most function calls require the use of await since they are asynchronous calls that return promises.

> mongosh

const client = new MongoClient("mongodb://localhost:27017");
await client.connect();

> use store

[bookmark: _Hlk211453824]const db = client.db("store");

> show collections

const collections = await db.collections(); // returns an array of Collection objects

> db.users.findOne({name: "Steve"})

const doc = await db.collection("users").findOne({name: "Steve"});

> db.users.find({})

const docs = await db.collection("users").find().toArray(); // .toArray() executes the query

A little bit of explanation is needed for this one. The call to .find() does not immediately return the documents. Instead, it returns a Cursor object … which is like a pointer to the matching documents on the server. It allows us to iterate over the results without loading everything into memory at once. The call to .toArray() actually executes the query on the server, fetches all the documents, and then returns them as a JavaScript array. There are multiple ways to use the cursor object. Here are a few:

const cursor = db.collection("users").find();
const firstDoc = await cursor.next(); // gets the first object from the collection

const cursor = db.collection("users").find();
let doc;
while ((let doc = await cursor.next()) !== null) { // gets one object at a time
 console.log(doc);
}

const cursor = db.collection("users").find({});
for await (const doc of cursor) { // iterates through each object, one at a time
 console.log(doc);
}

The last one (above) is the preferred pattern, especially when we are doing multiple operations with each document, including other async calls.

Here are some more comparisons of functions with mongosh. Most of these return a value with useful data about the operation that was completed.

> db.users.insertOne({name: "Abdul"})

const result = await db.collection("users").insertOne({name: "Abdul"});

In the above code, result will hold a JavaScript object like this:
{ acknowledged: true, insertedId: ObjectId("66cc2f42e317a841dce293b7") }
in which we can determine if the operation was a success and even get back the ID of the inserted item (e.g., by using result.acknowledged or result.insertedId).

> db.users.insertMany([{name:"Chen"}, {name:"Hans"}])

const result = await db.collection("users").insertMany([{name:"Chen"}, {name:"Hans"}]);

Similar to inserting one item, result will return a JavaScript object but it will also list multiple IDs:
{
 acknowledged: true,
 insertedCount: 2,
 insertedIds: {
'0': ObjectId("…"),
'2': ObjectId("…")
 }
}

The other functions also have return objects that let us query the result … but I won't list them here.

> db.users.updateOne({name:"Martha"}, {$set:{age:20}})

const result = await db.collection("users").updateOne({name:"Martha"}, {$set:{age:20}});

> db.users.updateMany({age:{$lt:18}}, {$set:{minor:true}})

const result = await db.collection("users").updateMany({age:{$lt:18}}, {$set:{minor:true}});

> db.users.deleteOne({name:"Priyal"})

const result = await db.collection("users").deleteOne({name:"Priyal"});

> db.users.deleteMany({minor:true})

const result = await db.collection("users").deleteMany({minor:true});

> db.users.countDocuments({})

const count = await db.collection("users").countDocuments({});

> db.users.drop()

const result = await db.collection("users").drop();

> db.dropDatabase()

const result = await db.dropDatabase();

Here is a simple test program that connects to the database, adds a few products to a products database and then performs some queries (assume though that we changed the name of the database in db.js as follows: const db = client.db("myDatabase"); because it uses some of the same product ideas as the store we had before and we want it to start fresh):

// This code will connect to a database add some toys to a products collection and then perform
// some queries/updates and then quit.

// Get the database connect/disconnect functions
const { connectToDatabase, disconnectFromDatabase } = require("./db");

// Here are some toys that we will insert
const toys = [
 { _id: 1, name: "LEGO Classic Bricks", category: "Building", price: 29.99, stock: 120, ageRange: "4+"},
 { _id: 2, name: "Barbie Dreamhouse", category: "Dolls", price: 199.99, stock: 25, ageRange: "3+"},
 { _id: 3, name: "Hot Wheels Track Set", category: "Vehicles", price: 49.99, stock: 75, ageRange: "5+"},
 { _id: 4, name: "NERF Blaster Elite", category: "Outdoor", price: 39.99, stock: 60, ageRange: "8+"},
 { _id: 5, name: "Play-Doh Party Pack", category: "Arts&Crafts", price: 12.99, stock: 200, ageRange: "3+"},
 { _id: 6, name: "Rubik’s Cube", category: "Puzzles", price: 9.99, stock: 150, ageRange: "6+"}
];

// We made a main() function because we are required to use "async"
async function main() {
 try {

 const db = await connectToDatabase();

 // Create a products collection
 const products = db.collection("products");

 // Insert the toys in the above-defined array
 let result = await products.insertMany(toys);
 console.log(result.insertedCount + " products were added.");

 // Display all added products
 let prods = await products.find();

 console.log("Here are the products that were added:");
 for await (const p of prods) {
 console.log(p);
 }

 // Display all products with a price under $30
 let cheap = await products.find({price:{$lt:30}});
 console.log("Here are the products under $30:");
 for await (const p of cheap) {
 console.log(p);
 }

 // Update the price of the Barbie Dreamhouse
 result = await products.updateOne({name:"Barbie Dreamhouse"}, {$set: {price: 179.99}});
 if (result.acknowledged)
 console.log("Price has been updated for Barbie Dreamhouse");
 else
 console.log("Price has NOT been updated for Barbie Dreamhouse");

 // Update the price of the Barbie Dreamhouse
 let product = await products.findOne({name:"Barbie Dreamhouse"}).toArray();
 console.log("Price is now at $" + product[0].price);

 // Alternatively, we can do the following to use the cursor instead of the lines above:
 //	let product = await products.find({ name: "Barbie Dreamhouse" });
 //	console.log("Price is now at $" + (await product.next()).price);

 // Replace the NERF Blaster Elite with a new prouct (using the same _id)
 result = await products.replaceOne({_id: 4}, {_id: 4, name: "RC Monster Truck",
 category: "Remote Control", price: 59.99, stock: 40, ageRange: "6+"});
 if (result.acknowledged)
 console.log("NERF Blaster Elite has been replaced by RC Monster Truck");
 else
 console.log("NERF Blaster Elite has NOT been replaced");

 // Display all products
 prods = await products.find();
 console.log("Here are the products in the database:");
 for await (const p of prods) {
 console.log(p);
 }

 } catch (err) {
 console.error("Error ... something went wrong:", err);
 } finally {
 await disconnectFromDatabase();
 }
}

main();

The code shows that we can connect to the database and perform various operations on the database in a similar way to interacting with the database via the mongosh. The above code will run once, but if we try to run it again, it will throw an error because we would be trying to add 6 more products with the same _id values as the ones already in there. This was just a proof-of-concept program. We would not typically set up our code like this. Most interactions will be user-driven.

	[bookmark: _Hlk211347270] 12.4 Products Management Site Example

Let’s look at an example of making a simple website to manage the products in our database. The folder hierarchy will be as shown on the right below. We will use Express and PUG to make our dynamic pages. The main site will have the simple look as shown on the left below:
[image: A screen shot of a computer code

AI-generated content may be incorrect.][image: A screenshot of a list

AI-generated content may be incorrect.]

The navigation bar will allow us to View, Add, Update, Delete and Search for products. The products will be the ones that are currently in the products collection of the myDatabase database that we made earlier. We will use the same db.js module that we created earlier to connect to the database. We will set up our routes under a products router so that we use the following URLs to access the appropriate behavior:

http://localhost:3000/products/
http://localhost:3000/products/add
http://localhost:3000/products/update
http://localhost:3000/products/delete
http://localhost:3000/products/search

Let’s start by examining the simple front-end pages. Here is the common PUG header partial:

head
 meta(charset="UTF-8")
 title Product Management
 link(rel="stylesheet" href="/styles/style.css")
body
 nav
 a(href="/products/") View
 a(href="/products/add") Add
 a(href="/products/update") Update
 a(href="/products/delete") Delete
 a(href="/products/search") Search
 hr

Here is the main page (i.e., index.pug) that uses this header and displays a list of products currently in the database:
[image: A screenshot of a list

AI-generated content may be incorrect.]
doctype html
html
 include partials/header.pug

 h1 Products List
 table
 tr
 th ID
 th Name
 th Category
 each p in products
 tr
 td= p._id
 td= p.name
 td= p.category

Here is what the add.pug will look like:
[image: A screenshot of a computer

AI-generated content may be incorrect.]
doctype html
html
 include partials/header.pug

 h1 Add Product
 form(action="/products/add" method="POST")
 div
 label(for="name") Name
 input#name(name="name" placeholder="Name" required)
 div
 label(for="category") Category
 select#category(name="category" required)
 option(value="" disabled selected) Select Category
 option(value="Building") Building
 option(value="Dolls") Dolls
 option(value="Vehicles") Vehicles
 option(value="Outdoor") Outdoor
 option(value="Arts & Crafts") Arts & Crafts
 option(value="Puzzles") Puzzles
 option(value="Games") Games
 div
 label(for="price") Price
 input#price(name="price" placeholder="Price" type="number" step="0.01" required)
 div
 label(for="stock") Stock
 input#stock(name="stock" placeholder="Stock" type="number" required)
 div
 label(for="ageRange") Age Range
 input#ageRange(name="ageRange" placeholder="Age Range" required)
 div
 button(type="submit") Add

[image: A screenshot of a computer

AI-generated content may be incorrect.]Here is the update.pug file, which lists ALL products:

doctype html
html
 include partials/header.pug

 h1 Update Products

 each p in products
 form(action="/products/update" method="POST")
 div
 input(type="hidden" name="id" value=p._id)
 div
 label(for="name") Name
 input#name(name="name" value=p.name required)
 div
 label(for="category") Category
 select#category(name="category" required)
 option(value="" disabled) Select Category
 option(value="Building" selected=(p.category=="Building")) Building
 option(value="Dolls" selected=(p.category=="Dolls")) Dolls
 option(value="Vehicles" selected=(p.category=="Vehicles")) Vehicles
 option(value="Outdoor" selected=(p.category=="Outdoor")) Outdoor
 option(value="Arts & Crafts" selected=(p.category=="Arts & Crafts")) Arts & Crafts
 option(value="Puzzles" selected=(p.category=="Puzzles")) Puzzles
 option(value="Games" selected=(p.category=="Games")) Games
 div
 label(for="price") Price
 input#price(name="price" type="number" step="0.01" value=p.price required)
 div
 label(for="stock") Stock
 input#stock(name="stock" type="number" value=p.stock required)
 div
 label(for="ageRange") Age Range
 input#ageRange(name="ageRange" value=p.ageRange required)
 div
 button(type="submit") Update
 hr

Here is the delete.pug file, which lists ALL products as well:
[image: A screenshot of a computer

AI-generated content may be incorrect.]
doctype html
html
 include partials/header.pug

 h1 Delete Products

 table(border="1"
 cellpadding="8"
 cellspacing="0"
 style="border-collapse:collapse;")
 thead
 tr
 th ID
 th Name
 th Stock
 th Action
 tbody
 each p in products
 tr
 td #{p._id}
 td #{p.name}
 td #{p.stock}
 td
 form(action="/products/delete" method="POST")
 input(type="hidden" name="id" value=p._id)
 button(type="submit") Delete

Finally, the search.pug allows to perform basic matching searches:

doctype html
html
 include partials/header.pug

 h1 Search Products
 form(action="/products/search" method="POST")
 select(name="field")
 option(value="name") Name
 option(value="category") Category
 option(value="ageRange") Age Range

 input(type="text"
 name="value"
 id="valueInput"
 placeholder="Enter search value" required)

 button Search
[image: A screenshot of a search engine

AI-generated content may be incorrect.]
 if products.length
 h2 Results
 table
 tr
 th ID
 th Name
 th Category
 th Price
 th Stock
 th Age Range
 each p in products
 tr
 td= p._id
 td= p.name
 td= p.category
 td $#{p.price}
 td= p.stock
 td= p.ageRange

Of course, we can add a lot of functionality to these pages (especially the search page), but the idea of connecting to the database server is all we are trying to show here. Also, the style.css file is not described here but is fairly basic.

So, what does our server look like? Here is the server.js file. The “interesting stuff” is in the products.js router page which we will look at in a moment:

// Get the database module. Notice that we are never disconnecting
const { connectToDatabase } = require("./db");
const PORT = 3000;

// Get the Express object
const express = require("express");
const app = express();

// Set up Pug as the view engine
app.set("view engine", "pug");

// Middleware to parse HTML form data into req.body
app.use(express.urlencoded({ extended: true })); // true allows nested objects

// Tell Express where the styles and views are
app.use('/styles', express.static("styles"));

// Main function that starts the server
async function main() {
 const db = await connectToDatabase();
 const products = db.collection("products");

 // Mount products router
 app.use("/products", require("./routes/products")(products));

 // Home redirects to list products
 app.get("/", (req, res) => res.redirect("/products"));

 // Start server
 app.listen(PORT);
 console.log(`Server is listening at http://localhost:${PORT}`);
}

main();

Notice that we add middleware to indicate that we want to be able to parse the HTML form data query strings. The use of {extended: true} allows the parser to handle nested objects. We don’t have any nested objects in our example, so we could use false here. However, if we wanted to use a similar template for our FutureTech Corp. site which has nested objects, then true would be needed. We also indicate to serve the style.css file as a static file. We do not have any other static files.

The code to connect to the database is in our main() function. We make sure to then handle the routing to the /products/ API in a different file and also allow a redirect of http://localhost:3000/ to http://localhost:3000/products/.

Notice that we do not call listen() until AFTER we connect to the database. It is good to also notice that we do not do any error-checking here for connections to the database. That error-checking is in db.js, so we do not have to worry about it here.

So, what does our products.js look like? It does all the routing fun and communicates to the database. The structure of the code will look as shown below. The routing of the home page is handled in this code as well.

const express = require("express");
const router = express.Router();

module.exports = (products) => {

 // "View" products page
 router.get("/", async (req, res) => {
 const allProducts = await products.find().toArray();
 res.render("index", { products: allProducts });
 });

 // "Add" product page
 ...

 // "Update" product page
 ...

 // "Delete" product page
 ...

 // "Search" products page
 ...

 return router;
};

Previously, we simply did module.exports = router; to export our router. However, in the above code, we are exporting a function that takes a products parameter and this function returns the router. The use of a function here, allows use to pass in the database’s products collection … which is required by the code. If we did not use a function here, the router itself would have to get access to the database collection internally by doing something like this in the router code:

let products; // Will hold the collection

// Immediately connect to DB when this module is loaded
(async () => {
 const db = await connectToDatabase();
 products = db.collection("products");
})();

In summary, by using the function with the products passed in, our code is cleaner, safer and easier to test and maintain than if we had to put the connection code in like this.

Now, notice how simple it is when someone requests the home page to view the products. We simply get all the products from the database and then render the index.pug page, making sure to pass in all the products into the products variable sent to the PUG page.

Now what about the /add page? It is also easy. We need to handle the GET for the /add page as well as the POST of the newly added item from the form. So, we need the two routes as follows:

// "Add" product page
router.get("/add", (req, res) => res.render("add"));

// Handle an add
router.post("/add", async (req, res) => {
 // Get the attributes from the request body
 const { name, category, price, stock, ageRange } = req.body;

 // Find the highest _id of all products
 const lastProduct = await products.findOne({}, { sort: { _id: -1 } });

 // Make sure to do an increment on the _id each time
 const nextId = lastProduct ? lastProduct._id + 1 : 1;

 // Now add the product
 await products.insertOne({
 _id: nextId,
 name,
 category,
 price: parseFloat(price),
 stock: parseInt(stock),
 ageRange
 });

 // Go back to the products view page
 res.redirect("/products");
});

Notice that rendering the add.pug page on a GET request is simple, since it needs no additional data. For the POST from the /add page, we first get the attributes from the request body. Then we look at all the products and find the largest _id so that we can choose an _id which is one higher (unless there are no products yet, in which case we choose an _id of 1). Then all we need to do is call the insertOne() function.

Notice the use of parseFloat() and parseInt() to convert the form strings to numbers. We end by redirecting to the view page.

The handling of the GET and POST to the /update page is similar. The GET will list all products again and the POST will be simple in that it just requires calling updateOne():

// "Update" product page
router.get("/update", async (req, res) => {
 const allProducts = await products.find().toArray();
 res.render("update", { products: allProducts });
});

// Handle an update
router.post("/update", async (req, res) => {
 const { id, name, category, price, stock, ageRange } = req.body;

 // Update the product now
 await products.updateOne(
 { _id: parseInt(id) },
 { $set: {name, category, price: parseFloat(price), stock: parseInt(stock), ageRange} }
);

 // Go back to the products view page
 res.redirect("/products");
});

This code simply updates all the fields with whatever is currently in the form. However, when calling updateOne() we only need to pass in the fields that have changed. But this would take more work. We would either need to get the current item again (i.e., the one with the same _id) and compare the new values to see which ones changed, or we can use JavaScript on the client side to keep track of which fields the user changed. The first approach would look something like this:

// Handle an update
router.post("/update", async (req, res) => {
 const { id, name, category, price, stock, ageRange } = req.body;

 // Get the current product with the same _id
 const current = await products.findOne({ _id: parseInt(id) });
 const updates = {};

 if (current.name !== name) updates.name = name;
 if (current.category !== category) updates.category = category;
 if (current.price !== parseFloat(price)) updates.price = parseFloat(price);
 if (current.stock !== parseInt(stock)) updates.stock = parseInt(stock);
 if (current.ageRange !== ageRange) updates.ageRange = ageRange;

 if (Object.keys(updates).length > 0) {
 await products.updateOne({ _id: parseInt(id) }, { $set: updates });
 }

 // Go back to the products view page
 res.redirect("/products");
});

This coding approach will work as long as the "id" form field on our rendered HTML page (that the user interacts with) is visibly "hidden":

input(type="hidden" name="id" value=p._id)

By hiding this input field, the user cannot alter it, thereby ensuring that we are looking up the same _id as the product being updated because the user cannot change it to some other _id, which would cause problems.

The /delete endpoint is also quite similar to handle, yet it is even simpler since we only need the _id field:

// "Delete" product page
router.get("/delete", async (req, res) => {
 const allProducts = await products.find().toArray();
 res.render("delete", { products: allProducts });
});

// Handle a delete
router.post("/delete", async (req, res) => {
 const { id } = req.body;
 await products.deleteOne({ _id: parseInt(id) });

 // Go back to the products view page
 res.redirect("/products");
});

Likewise, handling the /search page is also simple:

// "Search" products page
router.get("/search", (req, res) => res.render("search", { products: [] }));

// Handle a search
router.post("/search", async (req, res) => {
 const { field, value } = req.body;
 const query = {};
 if (field && value)
 query[field] = value;

 const results = await products.find(query).toArray();
 res.render("search", { products: results });
});

Notice that for a GET, we start off with no data (i.e., no products) so we do not need to access the database … we just pass in an empty list of products to render on the search.pug page. Otherwise, we look at the field and its value to search for and set it in our query variable (which is initially an empty object). Then we just call find() for the results and render them. We do not re-direct this time, since we want to see the results appear on this page.

As we have seen in this chapter, by connecting a PUG Express server to a MongoDB database, we open up a whole new world of data for our website. Instead of just showing fixed content, our site can store and retrieve information, let users add new items, update existing ones, delete old ones, and search through all the data in real time.

Once we become comfortable with this kind of setup, it’s almost like giving our website a memory: it can remember user actions, respond to changes, and adjust over time. From here, we can start experimenting, add more advanced features, and really explore the power of working with live, dynamic data.

- 8 -
	
image3.png
))),

image4.svg

image5.png
>

image6.svg

image7.png

image8.svg

image9.png

image10.png

image11.png
C:\Users\lanth\Documents\For School\Courses (Current)\COMP 2406\Chapter 12 - MongoDB\code\Lecture>mongosh
Current Mongosh Log ID: 68eea5f192818aabf2cebea3

Connecting to: mongodb://127.0.0.1:27017/?directConnection=true&serverselectionTimeoutMS=20@@&appName=mon

gosh+2.5.8
Using MongoDB: 8.2.1
Using Mongosh: 2.5.8

For mongosh info see: https://www.mongodb.com/docs/mongodb-shell/

The server generated these startup warnings when booting

2025-10-14T15:27:32.192-04:00: Access control is not enabled for the database. Read and write access to data an
d configuration is unrestricted

image12.png

image13.svg

image14.png

image15.svg

.MsftOfcThm_Accent4_lumMod_60_lumOff_40_Fill_v2 {
 fill:#B3A2C7;
}

image16.png

image17.png

image18.png

image19.png
+v o | 33X

. PowerShell 1 powershell

Git Bash Hmongod
Command Prompt
{ JavaScript Debug Terminal

4 SplitTerminal >

Configure Terminal Settings
Select Default Profile

Run Task...
] Configure Tasks...

image20.png

image21.png

image22.png

image23.png
£7 product-management
|— & routes

| L— products.js
|— £7 styles

| L— style.css

|— & views

| | £7 pages
| | F— add.pug

| | = delete.pug
| | | index.pug
| | | search.pug
| | '— update.pug
| '— 27 partials
I
db.

s

L— header.pug

r.js

image24.png
View Add Update Delete Search

Products List

B N RN

Name
LEGO Classic Bricks
Barbie Dreamhouse
Hot Wheels Track Set
RC Monster Truck
Play-Doh Party Pack
Rubik's Cube

Crayola Art Kit

Category
Building
Dolls
Vehicles
Remote Control
Atts &Crafts
Puzzles

Arts & Crafts

image25.png
View Add Update Delete Search

Add Product

Name

Category

‘Select Category -

Price

Price

Stock

Stock

Age Range

Age Range

image26.png
View Add Update Delete Search

Update Products

Name | LEGO Classic Bricks

Category [Buiging ~

Price [20.09

Stock| 120

Name | Barbie Dreamhouse

Category [Dois ~

Price [179.99

Stock 25

Age Range | 3+

image27.png
View Add Update Delete Search

Delete Products

D

Name

LEGO Classic Bricks

Barbie Dreamhouse

Hot Wheels Track Set

RC Monster Truck

Play-Doh Party Pack

Rubik's Cube

Crayola Art Kit

200

150

Action

Delete.

Delete.

Delete.

image28.png
View Add Update Delete Search

Search Products

Name] [Enter search vaiue

Results
D Name Category Price Stock Age Range
5 Play-Doh Party Pack Arts & Crafts =~ $12.99 200 3+

7 Crayola Art Kit Arts & Crafts | $2499 50

image1.jpeg

image2.png

