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Objectives
Understand what behavior -based programming is
Look at types of behaviors and the issues involved 

ith d l i  thwith developing them
Look at how to implement some simple behaviors

d d h  b h i   b  bi dUnderstand how behaviors can be combined
Examine how behaviors interact to control the robot
Understand what is involved with learning behaviors
Investigate simple neural networks
Learn how to hardwire instinctive behavior networks.
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What’s in Here ?
B h i Learning BehaviorsBehaviors
– Reflex Behaviors
– Taxic Behaviors

Adaptive Behavior

Learning Behaviors
− Overview 

Artificial Neural Networks
– Adaptive Behavior

Behavior Interaction
– Behavior Arbitration

− Neural Networks
− Back Propagation
− Neural Network – Leg 

Coordination
– Robustness

Programming Behaviors
lli i id

Coordination

Neuron Networks
− Overview

C lli i  A id– Collision Avoidance
– Escape
– Homing
– GPS Homing

− Collision Avoidance
− Escape
− Light Seeking
− Wandering– GPS Homing

– Wall-Following

Emergent Behaviors

Wandering
− Edge Following
− Arbitration
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BehaviorsBehaviors



A Definition
Behavior : 

The way a machine acts or functions

A behavior can be: 
– Explicitly programmed

• primitive behaviors are programmed 
t  d l  th t  l d i  t th• separate modules that are plugged in together

– Emergent
• combined primitive behaviors produce more complex behaviorsp p p
• often unforeseen behavior emerges
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Types
Robot reacts according to its pre-programmed
behaviors, which can be:

– Reflex
• A fast stereotyped response triggered by a particular type of

i t Th i t it d d ti f th i ti lsensor input. The intensity and duration of the response is entirely
governed by the intensity and duration of the sensor readings.

– Taxes
• Involve the orientation of the robot toward or away from some

environmental stimulus such as light, temperature, energy etc..g p gy
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Reflex Behaviors
Used for avoiding, escaping, or minimizing the 
effects of undesirable environmental stimuli.

Seven properties (as found in real life forms)
1. Threshold
2. Latency
3. Refractory Period
4 Temp al S mmati4. Temporal Summation
5. Spatial Summation
6. Momentum6. Momentum
7. Habituation
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Reflex Behaviors
1 - Threshold: 

The minimum sensor reading required to cause the robot 
to reactto react

e.g.,  Robot may sense obstacle ahead, but may not react 
until it is within certain rangeg

detection
range

threshold to
avoid collision Lots of 

time yet

Turn now
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Reflex Behaviors
2 - Latency:

The time it takes for the robot to react once the sensor 
readings reach the thresholdreadings reach the threshold

e.g.,  If threshold too small, robot cannot react in time.

detection
range

Oh No!

threshold
too small

Lots of 
time yet

Oh No! 
I’m not 
going to 
make it !!
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Reflex Behaviors
3 - Refractory Period:

The delay in response to the 2nd of two closely spaced 
stimulistimuli.

e.g.,  Time between sensor readings may be too slow, so 
robot may re-adjust thresholds under certain y j
environments (perhaps in slippery floors)

These two obstacles cannot 
be distinguished since sensor 
Detects obstacle constantly.

These two obstacles cannot 
be distinguished since sensor 
Detects obstacle constantly.

This detected as new 
obstacle since sensor 
had no reading recently.
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Reflex Behaviors
4 - Temporal Summation:

One sensor reading not enough to cause reaction, but when 
followed by additional sensory input  the reaction occursfollowed by additional sensory input, the reaction occurs

e.g., Security robot may sense a loud noise, but then wait 
for movement before sounding an alarmf f g

L d iLoud noise

What was 
that ?

Intruder
Alert !

I just saw 
something move
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Reflex Behaviors
5 - Spatial Summation:

One sensor reading not enough to cause reaction, but when 
a seco d simulta eous se sor readi g is observed  the a second simultaneous sensor reading is observed, the 
reaction occurs
e.g.,  Due to sensor noise, invalid sensor readings occur and must 

b f d b dd l b dbe verified by additional nearby readings

Sensor 2
readings

Sensor 1
readings

It looks like 
that is not one 

big object

Invalid
sensor 1
readings
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Reflex Behaviors
6 - Momentum:

The time that the robot’s reflex takes to complete after the 
se sor stimulus has bee  removedsensor stimulus has been removed

e.g.,  Upon encountering an obstacle, the robot may turn away 
for a specific amount of time or specific anglefor a specific amount of time or specific angle.

momentum

Avoid collision Avoid obstacle
altogether

Detect obstacle
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Reflex Behaviors
7 - Habituation:

The reduction in trustworthiness of a sensor over time, 
perhaps due to repeated false or i accurate readi gsperhaps due to repeated false or inaccurate readings

e.g.,  Infrared light sensors are not trustworthy for collision 
avoidance in environments with many glass doorsavoidance in environments with many glass doors.

Objects behind door are detected

Glass door is not detected

j
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Taxic Behaviors
h f hThere are 4 types of taxic reactions that represent 

the basic types of orientation strategies of a robot 
towards a stimulus:

1. Klinotaxis

i2. Tropotaxis

3. Telotaxis

i h i4. Light-compass reaction

Robot may use a variety of these at once 
d di    t  d th  B h i  depending on sensor types and the Behavior 
desired.
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Taxic Behaviors
l1 - Klinotaxis:
The use of successive comparisons to orient towards a 
sensor stimulussensor stimulus

e.g.,  Temperature sensing

I’m closer 
than before

heat
source

I’m very 
close now

I seem 
further away 
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Taxic Behaviors
2 - Tropotaxis:

The balancing of two sensors, where the robot turns until 
sensors have equal readings, then proceeds forwardsensors have equal readings, then proceeds forward

e.g.,  light seeking
light source

light
stronger
reading

weaker
reading

light source

g
source

reading

light
sensors

There’s the 
light source
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Taxic Behaviors
l3 - Telotaxis:   

When two sensor readings require opposing directions, 
robot must make decision by choosing and approaching onerobot must make decision by choosing and approaching one

e.g.,  Light seeking or corner escape

Oh no. 
I’m stuck

robot path
without
telotaxis Stuck in corner

(turning either left 
Must make decision

to turn one way 

robot path
with telotaxis

( g
or right results in 

obstacle detection)

y
and stick with it
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Taxic Behaviors
h4 - Light-compass reaction:

Maintaining a fixed angle between the path of motion and 
the direction of the sensed stimulusthe direction of the sensed stimulus

e.g.,  Light seeking

Maintain this angle
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Adaptive Behaviors
Adaptive Behavior: 

A behavior that adapts (or adjusts) to the environment in 
hi h it twhich it acts

Robot can “adapt” by automatic variation in the 
strengths of the behavior properties and strengths of the behavior properties and 
parameters that we just discussed.

– Results in more efficient and safe behaviorResults in more efficient and safe behavior.

– Degree of adaptability may be:

• Built-in – fine-tuned like instincts for certain environmentsBuilt in fine tuned like instincts for certain environments

• Learnt – from past experiences
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Adaptive Behaviors
fl d d d lReflexes and taxes depend only on recent events

– limits overall usefulness towards adaptable behavior

– most reflexes almost independent of feedback

In this course:
– we will not investigate adaptive behaviors

– we will use instinctive hard-wired behaviors

Areas of neural networks and evolutionary 
computing are two strategies for generating computing are two strategies for generating 
behaviors that adapt to their environments.
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Behavior InteractionBehavior Interaction



Behavior Interaction
Individual reflex and taxic “primitive” behaviors

– provide basic functionality of robot

– never stop running, but will not always affect robot

– should be simple, not handling every situation that arises

Overall robot behavior depends on interaction of 
the individual “primitive” behaviorsp

Primitive behaviors all run at the same 
time and compete for control of the robot.

Must define rules of interaction to decide which 
behavior has control of the robot at any one time.
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Behavior Interaction
Behaviors interact according to 3 principles:
1. Inhibitory

incompatible behaviors compete for control of robot

e.g., obstacle avoidance vs. obstacle mapping/tracing

2. Cooperative
two behaviors may agree as to how to direct robot

e.g., seek light source and seek energy source

3. Successive
one behavior may cause another behavior to be exhibited

e.g., seek base station and then recharge robot
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Behavior Interaction
Two Inhibiting behaviors cannot both control robot

– must compete for control of robot’s actuators

– only one may be active at any given time

e.g., Controlling robot direction:

Wander
Left
motor
Left
motor

Right
t

Right
t

Left
motor

Right
t

Behaviors
wants to turn left

Obstacle Avoid

Light Seeking

motormotor motormotormotor motor

Sensor
Data

wants to turn right

wants to turn left

A behavior arbitration scheme is required.

Wall Following
wants to go straight

CONFLICTING
DECISIONS
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Behavior Arbitration
Arbitration scheme:

The manner, priority and timing in which behaviors
hibi i fl b ’exhibit influence over a robot’s actuators

Behaviors plug-in to an arbitrator which decides
hi h b h i ( ) h ld b i l lli hwhich behavior(s) should be actively controlling the

robot’s actuators at any particular time.

Wander

Obstacle Avoid Left
motor
Left
motor

Right
motor
Right
motor

Left
motor

Right
motorSensor A bit tLight Seeking

Wall Following

motormotor motormotormotor motorSensor
Data

Arbitrator
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Behavior Arbitration
Can have multiple arbitrators
– one per actuator

b h i b d– behavior can be connected to many

Recharge Battery

Collision Avoidance
Arm

Arbitrator

Perform Task

Mapping
Motor

Arbitrator
Left
motor
Left
motor

Right
motor
Right
motor

Left
motor

Right
motor

Wander
Bluetooth
Arbitrator

Find Target for Task
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Behavior Arbitration
Various ways to resolve conflicts
– Round robin – each behavior gets equal turn

ll b h i h i– Average – average all behaviors to choose action 
– Vote – majority of desired actions wins

These conflict resolution strategies do not account for 
urgent, time-critical or opportunistic behaviors

e  c llisi  av ida ce  l w batte  etc– e.g., collision avoidance, low battery, etc..

Need a way to prioritize behaviors:
– High priority behaviors greater influence on robot’s action
– Low priority behaviors ignored unless no high-priority 

available
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Behavior Arbitration
There are two main arbitration schemes:
1. Fixed Priority

i bl i i2. Variable Priority

Each differs in the way it prioritizes the behaviors

Based on the subsumption architecture Rodney Brooks (1986).

– Low-priority behaviors implemented first, higher ones Low priority behaviors implemented first, higher ones
added later

– Higher level behaviors contain (i.e., subsume) or inhibit 
(i e  disable) lower level ones(i.e., disable) lower level ones
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Behavior Arbitration
1. Fixed Priority Arbitration
– Priorities decided in advance (hard-wired)

i i i h ld b i– Priorities should be unique

S Fi d

Recharge Battery

Collision Avoidance

1

2

Perform Task

Light Seeking

Sensor
Data

Fixed
Priority

Arbitrator

Higher
Priority

3

4

5
Wander

5
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Behavior Arbitration
How do you choose priorities ?  Rules of thumb…
– Behaviors critical to safe operation should be high

k i d i i i h ld b di– Task-oriented priorities should be medium
– “Free-time” tasks (e.g., wander, map) may be low

Here is one way of doing this using “weights”:

Recharge Battery
16

B h i i ht d di

Perform Task

Recharge Battery

Collision Avoidance

Left
Motor8

4

Behaviors weighted according 
to priority.   “Recharge Battery” 
has weight high enough to 
cancel lower priorities when 
enabled since 16 > (8+4+2+1)

16

8

4

Light Seeking

Wander

Right
Motor

2

1
Similar for right motor

( )4

2
1
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Behavior Arbitration
2. Variable Priority Arbitration
– Priorities unique and decided in advance

i i i h i– Priorities may change over time Task performance 
may only be possible 
AFTER map is built

Collision Avoidance

Mapping

1

2

Collision Avoidance

Perform Task

1

2

Perform Task

Light Seeking

Variable
Priority

Arbitrator

3

4

5

Light Seeking

Mapping

3

4

5

Variable
Priority

Arbitrator

Wander
5

Wander
5

Mapping may become lower priority 
after a reasonable map is built.
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Behavior Arbitration
Various questions arise:
– What determines new priorities order ?

d d i l d i f i ( )• depends on environment & learned information (e.g., maps)
– How do we make sure 2 priorities are never the same ?

• perhaps simply swapping with other behaviorsperhaps si ply swapping with other behaviors
– How often should we re-order ?

• can depend on environmental structure changes or task-related 
changeschanges

Allows for more time-flexible behavior taking 
advantage of opportunismadvantage of opportunism.

Can be more complex to debug
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Behavior Arbitration
In generalized subsumption architecture, behaviors 
may also “inhibit” or “disable” others.

For example, when exhibiting a mapping behavior, 
robot may wish to ignore other behaviors.

– May need to disable collision avoidance or escape 
behaviors in order to get close enough to obstacles 
for mapping.

– May not disable behavior but simply allow thresholds and 
t l  t  b  dj t d  tolerances to be adjusted. 

4-34
Winter 2012Chapter 4 – Behavior-Based Programming



Robustness
Behavior-based approach is more robust than 
top-down approach.

+ Behaviors typically rely on multiple low-level sensors rather 
than few high-level ones.

+ Some behaviors may fail, others “kick-in”

+ Robot performance degrades gracefully
when behaviors fail, but still performs

+ Don’t have to think of all scenarios
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Robustness
Consider the following hierarchy of obstacle 
avoidance where system performance degrades 
gracefully.  For example,gracefully.  For example,

Robot is navigating
• Sonar detects obstacle from far off,

starts steering away

What if sonar fails to detect ?1

IR Obj t A id Fixed

Navigate

Sonar Object Avoid

What if sonar fails to detect ?
• IR detects obstacle when closer

(less time to turn, more awkward)

What if IR also fails ?

1

2

3
IR Object Avoid

Bumper Avoid

Current Avoid

Fixed
Priority

Arbitrator

• Bumper switches hit, must backup

What if robot hits where no bumper ?
• Robot hits, motors draw more current
• Must backup

4

5
Current Avoid

Panic Move

Must backup

What if wheels slip, robot stuck ?
• Can detect lack of motion
• Try “panic” movement to get unstuck

6
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Programming BehaviorsProgramming Behaviors



Wandering
How do we program behaviors and arbitrators ?
Simplest is a Wandering behavior.

int wanderLeft = 0;
int wanderRight = 0;
Random ranGen = new Random();

Decide to make a 
random turn 1/5 = 
20% of the time.  

if (ranGen.next() % 5 == 0)
if (ranGen.next() % 2 == 0)

wanderLeft = 1;
l

Tweak this to 
adjust amount of 
wandering

else
wanderRight = 1; Decide to turn 

left or right.  
Turn left 

Can also incorporate degree (amount) of turning 

1/2 = 50% of 
the time.
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Wandering
Connect multiple behavior requests to the arbitrator, 
using their priorities:

int leftTotal = (wanderLeft * wanderPriority) + 
(avoidLeft * avoidPriority) + 
(lightLeft * lightPriority) + ...;

int rightTotal (wanderRight * wanderPriority) +int rightTotal = (wanderRight * wanderPriority) + 
(avoidRight * avoidPriority) + 
(lightRight * lightPriority) + ...;

if (leftTotal > rightTotal)if (leftTotal > rightTotal)
// Turn on LEFT motor backwards & RIGHT motor forwards

else if (leftTotal < rightTotal)
// Turn on LEFT motor forwards & RIGHT motor backwards

elseelse
// Turn on LEFT & RIGHT motors forward
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Collision Avoidance
What about Collision Avoidance behavior ?
Simple using 2 “boolean” proximity sensors, although 

   d/  i  tcan use more and/or various types.

Turn
Right

Turn
Arbitrarily

Turn
Left
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Collision Avoidance
Similar to wandering, decide to turn left or right:

int avoidLeft = 0;
i t idRi ht 0int avoidRight = 0;
Random ranGen = new Random();

if (leftProxSensor.getValue() > 0)
if ( i htP S tV l () > 0)if (rightProxSensor.getValue() > 0)

if (ranGen.next() % 2 == 0)
avoidLeft = 1;

else
idRight 1

Decide to make a 
random turn if 
obstacle straight 
h d OthavoidRight = 1;

else
avoidRight = 1;

else
if ( i htP S tV l () > 0)

ahead.  Other 
approaches can 
be taken here…

if (rightProxSensor.getValue() > 0)
avoidLeft = 1;
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Collision Avoidance
May end up in corner, oscillating back and forth.
Random turns “may” get robot unstuck, but clumsy
Perhaps ensure 120° to 180° turn or until one 
sensor does not read collision anymore.

Can get stuck turning left, then right, then left, then right etc…
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Collision Avoidance
Can include counter to ensure turn is complete:

if (turnCount > 0) turnCount--; If l d t i ( i l tif (turnCount > 0) turnCount ;
else {

avoidLeft = avoidRight = 0;
if (leftProxSensor.getValue() > 0) {

if (rightProxSensor.getValue() > 0) {
if ( G () % 2 0)

If already turning (since last 
time this code was called) don’t 
make any new turn decisions, 
just keep doing the turn as 
decided upon beforeif (ranGen.next() % 2 == 0)

avoidLeft = 1;
else avoidRight = 1;
turnCount = 12;

}
Turn for 12 “units”, which is 120 
degrees if each unit makes 10

decided upon before.

}
else avoidRight = 1;

}
else if (rightProxSensor.getValue() > 0)

avoidLeft = 1;
}

degrees if each unit makes 10 
degrees.

}
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Escape
An extension to obstacle avoidance is escaping (i.e., 
keeping away) from obstacles.

collisio  avoida ce takes care of tur i g away from obstacles – collision avoidance takes care of turning away from obstacles 
in the robot’s path

– if detecting obstacles on the side, can also turn away.

Detect side obstacle, 
turn away

Detect rear obstacle, 
move forward
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Escape
Code easily written:

int escapeLeft = escapeRight = 0;

If detect rear obstacle, 
move forward

int escapeLeft = escapeRight = 0;

if (backProxSensor.getValue() == 0) {

if ((leftSideProxSensor.getValue() > 0) && Turn only if one of the
(rightRideProxSensor.getValue() == 0))
escapeRight = 1;

if ((leftSideProxSensor.getValue() == 0) &&
(rightRideProxSensor.getValue() > 0))

Turn only if one of the 
side sensors detects.  If 
both detect, simply move 
forward.

(rightRideProxSensor.getValue() > 0))
escapeLeft = 1;

}
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Homing
How do we program code for the robot to “home” 
towards an object (e.g., light seeking) ?
N d 2  h  di  i  h  i t d Need 2 sensors whose readings increase when pointed 
towards homing source (recall tropotaxis)

θ

Homing Source
Near-equal sensor 
readings indicates 
homing source is 
straight ahead (orθ

Sensor reading 
depends on angle 

straight ahead (or 
behind).  Cannot 
“home-in” unless one 
sensor is 
significantly stronger 
th th th

Left sensor has 
stronger reading

& distance from 
homing source

than the other.
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Homing
Simply compute difference between incoming sensor 
readings to determine direction.
Ch  th h ld di  t   iti it  d Choose threshold according to sensor sensitivity and 
range abilities.

Threshold depends 
di

int lightLeft = 0;
int lightRight = 0;
int threshold = 2;
int diff = leftSensor.getValue() - rightSensor.getValue();

on sensor reading 
range and sensitivity.

t d e tSe so .get a ue() g tSe so .get a ue();

if (diff < (-1*threshold))
lightRight = 1;

if (diff > threshold)

Only turn if difference 
is significant (i.e., 

)
( )
lightLeft = 1; above threshold)
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Homing
Other forms of homing:
– Beacon Following

i l d i l

left readings

• Beacon emits pulsed signal 
which is more reliably detected 
by closer sensor

right readings

y
– Line Following

• Photodetectors read stronger 
hi d h

Some pulses undetected

on white, can detect when a 
sensor leaves black line

– Hill Climbing
Turn left

2 Inclinometers at 45°g
• Climb hill by minimizing roll 

while keeping pitch positive
i i li

2 Inclinometers at 45
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GPS Homing
Can use a Global Positioning System (GPS) to 
determine desired homing direction

Gives (r r ) robot positio  (g g ) goal positio– Gives (rx,ry) robot position, (gx,gy) goal position
– Desired direction to travel can be computed using simple 

trigonometry

Homing Source(gx,gy)

θ

(rx,ry)
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GPS Homing
Need to look at the where robot is heading and 
decide whether or not to turn right or left to goal:

Examine type of turn from (rx, ry)→(r'x, r'y)→(gx, gy).  
– (r'x, r'y) is any point forward in robot’s current direction

If it i   t i ht li  th  b t ill d t  ith   – If it is a straight line, the robot will need to either move 
straight ahead, or straight backwards (depending on where 
the goal location is).
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GPS Homing
Make use of the cross product of vector from 
(rx, ry) → (r'x, r'y) and vector from (rx, ry) → (gx, gy)

Cross product a X b is a vector perpendicular to the 
plane containing vectors a and b, computed as 
f llfollows:
(r'x - rx)(gy - ry) - (r'y - ry)(gx - rx)

where:
r'x = rx + d*cos(rθ)x x ( θ)
r'y = ry + d*sin(rθ)
d = any non-zero positive value, rθ is the robot’s direction
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GPS Homing
The cross product will either be:

• positive = a left turn
ti   i ht t• negative = a right turn

• zero = no turn (i.e., vectors form 180° angle)
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GPS Homing
If robot’s orientation rθ is also available from GPS, 
then turn decision for homing is easy.

Robot ca  also remember its previous locatio  a d compute r– Robot can also remember its previous location and compute rθ
by comparing with current location.

Easy to write the code now:Easy to write the code now:

int goalLeft = 0;
int goalRight = 0;
int d = 10; // any constantint d  10; // any constant
Point r = GPS.getRobotLocation();
Point rTheta = GPS.getRobotDirection();
Point g = GPS.getGoalLocation();
Point r2 = new Point(r.x + d*cos(rTheta), r.y + d*sin(rTheta));

int turn = (r2.x – r.x)(g.y – r.y) - (r2.y – r.y)(g.x – r.x);
if (turn > 0) goalLeft = 1;
if (turn < 0) goalRight = 1; 
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GPS Homing
What if robot’s direction not provided by GPS ?
– Must rely on other means (e.g., compass)

diff di– May use different coordinate system

Must determine compass reference Cθ (e.g., North) in 
GPS coordinate system beforehand: GPS coordinate system beforehand: 

(gx,gy) NORTH
Robot angle now 

t

rσ = -22.43°

Fixed angle relating 
compass orientation to 
GPS coordinate system

w.r.t. compass, 
NOT w.r.t. GPS

(rx,ry)

σ

gθ = 121.76° Cθ = 48.99°
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GPS Homing
Similar code as before:

Hard-coded or 
perhaps calibrated 
upon startup

static float C_THETA = 49.0f;

int goalLeft = 0;
int goalRight = 0;
int d = 10; // any constant

upon startup.

Now use compass to 
get directiony

Point r = GPS.getRobotLocation();
Point rTheta = compassSensor().getValue();
Point g = GPS.getGoalLocation();
Point r2 = new Point(r.x + d*cos(rTheta+C_THETA), r.y + d*sin(rTheta+C_THETA));

i t ( 2 )( ) ( 2 )( )

get direction.

int turn = (r2.x – r.x)(g.y – r.y) - (r2.y – r.y)(g.x – r.x);
if (turn > 0) goalLeft = 1;
if (turn < 0) goalRight = 1; 

Transformation to new 
coordinate systemcoordinate system.

4-55
Winter 2012Chapter 4 – Behavior-Based Programming



Wall Following
Wall following behavior is useful for mapping, 
navigation, seeking wall outlets, performing cleaning 
tasks etc…tasks etc…

Strategy varies depending on types of sensors.

Robot usually follows wall by keeping itself aligned to 
the wall on its left or right side
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Wall Following
Key is to maintain alignment along edge
Can be done with 2 whisker sensors:

Move fwd while 
side contact

Lost contact
must re-align

Turn right until 
front contact

Move fwd until 
side contact

Turn left until 
no front contact

Robot moves in a bumpy motion along wall:

side contact must re-align front contact side contact no front contact
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Wall Following
Additional handling of concave/convex corners:
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Wall Following
Can follow state diagram as follows:
– assumes right side edge following

Follow

Move Forward.
Assume robot moves a 
little forward BEFORE 
checking sensor contact.o o

Edge
checking sensor contact.

O i t

Turn Left
Turn Right

Align
to edge

Orient
to new
edge

Detect Front Contact
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Wall Following
Writing code is now easy:

int currentMode = FOLLOW;

i t d F ll L ft 0

Set this once to initialize the 
starting of edge following.  May be 
FOLLOW, ALIGN or ORIENT

int edgeFollowLeft = 0;
int edgeFollowRight = 0;
boolean detectFront = frontWhiskerSensor.getValue() > 0;
boolean detectSide = rightWhiskerSensor.getValue() > 0;
switch (currentMode) {{
case FOLLOW:

if (!detectSide) currentMode = ALIGN;
if (detectFront) currentMode = ORIENT; break;

case ALIGN:
edgeFollowRight 1;edgeFollowRight = 1;
if (detectSide) currentMode = FOLLOW;
if (detectFront) currentMode = ORIENT; break;

case ORIENT:
edgeFollowLeft = 1;
if (!detectFront) currentMode = FOLLOW;

}
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Wall Following
More whiskers allow for more sophisticated object 
shape detection:

Various wall shapes considered as new edges to orient 
to:to:
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Wall Following
Can allow squeezing into tight spaces
– Need careful choice of whisker lengths on front & side

Ignored
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Wall Following
Need to change state diagram to accomplish this:

Turn Right

Follow
Edge

Squeeze
attempt

Turn Right

Edge

Align OrientDetect Front ContactAlign
to edge to new

edge

Detect Front Contact
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Wall Following
d f h kCan use proximity sensors instead of whiskers

– Works the same but can set threshold easily (like setting 
whisker length)g )

Can use just one sensor, requires arcing motion:

Robot must make inward arcs 
instead of aligning to edge.

ll ll blCan use range sensors as well to allow variable 
distances from edges during following. 
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Emergent BehaviorsEmergent Behaviors



Emergent Behaviors
When combined, behaviors produce additional 
emergent behavior.

Emerge t behavior is higher level– Emergent behavior is higher level
– Should have degree of randomness

C id   i l i  l  bi i  Consider some simulation results combining 
wandering and escape behaviors:

The additional escape 
behavior keeps robot in R b t’ t d th h p
center of environment 

more often.

Robot’s traced path shows 
much time spent rubbing 
up against boundaries 

when only wandering and 
collision avoidance 

Wander Wander + Vacancy

behaviors are used.

Wander Wander + Escape
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Emergent Behaviors
Combining wandering with light seeking also helps 
alleviate the telotaxis problem:

Additional wandering

(b)

Robot spent much 
time at this light 
source.

Li ht S ki W d

Additional wandering 
behavior allows more 
balanced distribution 
of light exploration.

(a) Light Seeking + Wander
Light Seeking Only
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Emergent Behaviors
C bi i  d i  li ht ki  d Combining wandering, light seeking and escape
behaviors results in a more “life-like” behavior 
patternp

Rubs up against wall trying 
to get to light source. More time spent 

away from wall.

Light Seeking Light Seeking + WanderLightSeeking + WanderLightSeeking

y

Light Seeking + Vacancy Light Seeking + Wander + VacancyLightSeeking + Wander + EscapeLightSeeking + Escape

No more rubbing 
against wall.

More random 
behavior like a fly 
bouncing against 
a window.
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Emergent Behaviors
Can use certain combinations to make robot more Can use certain combinations to make robot more 
efficient:
– e.g., random cleaning task can be improved if combined with g , g p

light seeking (e.g., cleaning rooms with the lights on in an 
office building)

Clean near light

Some untouched
Cleaning objective is 

Before Cleaning After CleaningAfter cleaningBefore cleaning

Some untouchedto push dirt to side of 
environment
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Emergent Behaviors
With variety of sensors, may develop more 
sophisticated behavior (e.g., block sorting)
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Emergent Behaviors
More interesting behavior requires rich sensory input 
as well as environmental knowledge

We will discuss more later about:
– various sensors
– mapping the environment
– navigation
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Learning BehaviorsLearning Behaviors



Learning Behaviors
Until now, we have assumed that individual robot 
behaviors were well-defined and hardwired.

Can also “learn” how to perform simple behaviors.

– robot improves over time and is eventually able to exhibit the robot improves over time and is eventually able to exhibit the
behavior (similar to the learning of a child).

Most common approaches are based on:pp
– Genetic Algorithms and Evolutionary Computing
– Neural Networks

Idea: Not always easy to code behaviors, let the robot 
figure it out by itself.

4-73
Winter 2012

g y

Chapter 4 – Behavior-Based Programming



Learning Behaviors
Typical “things” that are learnt by robots:
– “How” to perform various behaviors: 

li h ki bl k hi b l id ll f ll i- light seeking, block pushing, obstacle avoidance, wall following
– “When” to exhibit certain behaviors 
– How to walk … robot develops a walking “gait”How to walk … robot develops a walking gait
– Trajectory planning
– Navigation and Localization

The “learning” approach is useful when the problem 
is not well understood and when it is difficult to 
hard-code solutions. 
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Learning Behaviors
There are advantages:
+ can produce solutions that may have otherwise 

been difficult to program  been difficult to program. 
+ solutions can be more robust and handle unpredicted 

scenarios

There are disadvantages: 
- takes time to “train” the robot (may be impractical on real-( y p

robots with real sensors and battery limitations)
- difficult to determine useful and efficient “fitness 

functions” (for GAs) for complex problemsfunctions  (for GAs) for complex problems
- optimal solution is not always found.
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Learning Behaviors
Perhaps a hybrid compromise is best:
– Hardwire simple (obvious) behaviors (e.g., obstacle avoidance, 

wall following  light seeking)wall following, light seeking)
– Learn “when” to exhibit the behaviors.

O ly seems i teresti g whe  robot is s fficie tly Only seems interesting when robot is sufficiently 
complex, containing many:
– sensors (e.g., proximity, light, sound, vision)sensors (e.g., proximity, light, sound, vision)
– actuators (e.g., wheels, arms, etc…)
– internal monitors (e.g., clock, battery life)

Unfortunately, most work so far is based on learning 
simple behaviors on very simple robots.
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Learning Behaviors
Although genetic algorithms and neural networks can 
result is “good” behaviors, they are usually 
impractical for real robots due to the need for impractical for real robots due to the need for 
extensive training iterations.

Also  for simple behaviors  there is no benefit to Also, for simple behaviors, there is no benefit to 
learning them as opposed to hardwiring them as 
instincts.
e.g., research on training a 6-legged robot to 
walk results in a standard walking pattern that 

b il h d d dcan be very easily  hard-coded.

We will examine a neural network to do this.
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Artificial Neural NetworksArtificial Neural Networks



Neural Networks
There are opinions as to how to precisely 
define what a neural network is.

It is commonly agreed upon that a neural network is 
a network of simple processing elements (called 

hi h hibi l l b l b h ineurons) which can exhibit complex global behavior, 
determined by the connections between the 
processing elements and element parameters.processi g ele e ts a ele e t para eters

They are also called Artificial Neural Networks (ANN) 
or Simulated Neural Networks (SNN)or Simulated Neural Networks (SNN).
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Neural Networks
Neural Networks are commonly used for:

– system identification and controly
• (e.g., vehicle control, process control)

– game-playing and decision makingg p y g g
• (e.g., backgammon, chess, racing)

– pattern recognition p g
• (e.g., radar systems, face identification, object recognition)

– sequence recognition q g
• (e.g., gesture, speech, handwritten text recognition)

– medical diagnosis
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Neural Networks
They are typically used to learn over time
– They are typically trained to produce desired output

h i b h dli d d d– They are quite robust at handling unexpected data and 
dealing with noisy input

– Their performance depends on various parametersp p p

There are many, kinds of networks that differ in:
– The number of neurons– The number of neurons
– The organization and interconnectivity of neurons
– The number of processing layersp g y
– The order of processing
– The type of processing at each neuron
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Neural Networks
Each neuron has multiple inputs I1, I2, …, In
– these are typically outputs from other neurons

– they are represented by real number from 0 to 1

– each input Ii has a corresponding weight wi indicating the p i p g g i g
“significance” of the input for the neurons computation 

I

I1
w2

w1

A neuron has one output, Out
it is a function of the inputs  usually a weighted sum

In

I2
Neuron

Out
w2

wn

– it is a function of the inputs, usually a weighted sum
– also represented by real number from 0 to 1
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Neural Networks
A neuron continually repeats this process:  
1. compute activation (usually a weighted sum)

f i l i b d i2. perform a simple operation based on inputs
3. emit an output

Output
Layer

Input
Layer

Hidden
Layer

A network usually has an input
layer, an output layer and one

Layer

or more hidden layers of 
neurons.

Activation begins at the input layer and 
spreads throughout the network to the outputs
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Neural Networks
Over time, the values of each neuron as well as the 
weights are adjusted so as to produce the correct 
output.output.

Initially the values are adjusted dramatically (usually 
using some sort of punishment/reward using some sort of punishment/reward 
learning strategy) and then over time, 
only small changes are made to the 

t k lnetwork values.

The most commonly used type of neural network is a y yp
feed-forward neural network in which there are no 
feedback connects (i.e., no loops).
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Back Propagation
The training of a feed-forward neural network is 
commonly based on a supervised learning strategy 
called back propagation:called back propagation:

1.  Present a training sample to the neural network.

2   Compare the etwork's output to the desired output from that sample  2.  Compare the network's output to the desired output from that sample. 
Calculate the error in each output neuron. 

3.  For each neuron, calculate what the output should have been, and a scaling factor, how 
m ch lowe  o  highe  the o tp t m st be adj sted to match the desi ed o tp t  This is much lower or higher the output must be adjusted to match the desired output. This is 
the local error.

4.  Adjust the weights of each neuron to lower the local error. 

5.  Assign "blame" for the local error to neurons at the previous level, giving greater 
responsibility to neurons connected by stronger weights. 

6.  Repeat the steps above on the neurons at the previous level, using each one's "blame" as 
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Back Propagation
Here is an example of how back-propagation works 
(example from http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html):

x1
f1(e1)

f4(e4) w4,6

w1,4

x2

f2(e2)

f5(e5)

y6f6(e6)

w5,6

x2 f3(e3)

E.g., y6 = f6(e6) is some (possibly non-linear) function 
of e6 where e6 = f4(e4)·w4,6 + f5(e5)·w5,6
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Back Propagation
Assume that inputs are presented to the network.

Compute activations for first level of network:p

x1
f1(e1) w1,4

f2(e2)

f4(e4)
y6f6(e6)

w4,6

x2 f3(e3)

f5(e5) w5,6

y1 = f1(e1) = f(wx1 1·x1 + wx2 1·x2)y1  f1(e1)  f(wx1,1 x1  wx2,1 x2)
y2 = f2(e2) = f(wx1,2·x1 + wx2,2·x2)
y3 = f3(e3) = f(wx1,3·x1 + wx2,3·x2)
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Back Propagation
Compute activations for second and third levels of 
network:

x1
f1(e1)

f (e )

w1,4

f2(e2)

f4(e4)

f5(e5)

y6f6(e6)

w5,6

w4,6

x2 f3(e3)

y4 = f4(e4) = f(w1,4·y1 + w2,4·y2 + w3,4·y3)
y5 = f5(e5) = f(w1,5·y1 + w2,5·y2 + w3,5·y3)
y6 = f6(e6) = f(w4,6·y4 + w5,6·y5)
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Back Propagation
Now the output signal y6 is compared with the 
desired output z which is usually found in the set of 
data used to train the network:data used to train the network:

δx1
f1(e1)

f2(e2)

f4(e4)

y6f6(e6)

w4,6

w1,4
δ6 = z - y6

zδ6

x2

f2(e2)

f3(e3)

f5(e5)

y6f6(e6)

w5,6
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Back Propagation
Now the output error δ6 is propagated backwards to 
the previous layer, using the same weights as when 
computing the output:computing the output:

δ4 = w4 6·δ6
x1

f1(e1)

f2(e2)

f4(e4)

f6(e6)

w4,6

w1,4

δ4 4,6 δ6
δ5 = w5,6·δ6δ4

δ6

x2

f2(e2)

f3(e3)

f5(e5)

f6(e6)

w5,6

δ5
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Back Propagation
Similarly, these errors are also propagated 
backwards:

δ1 = w1,4·δ4 + w1,5·δ5

δ
δ2 = w2,4·δ4 + w2,5·δ5

x1
f1(e1)

f4(e4) w4,6

w1,4

δ4

δ2

δ1 δ3 = w3,4·δ4 + w3,5·δ5

x2

f2(e2)

f ( )

f5(e5)

f6(e6)

w5,6

δ5

δ3

f3(e3)
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Back Propagation
Now we update the weights throughout the network, 
starting at the first layer:  

wx1,1 = wx1,1 + ηδ1 + df1(e1)/de1 ·x1
wx2,1 = wx2,1 + ηδ1 + df1(e1)/de1 ·x2
wx1 2 = wx1 2 + ηδ2 + df2(e2)/de2 ·x1

dfdfii(e(eii)/de)/deii is the derivative of the is the derivative of the 
neuron activation function.neuron activation function.

ηη is a “learning constant” which can is a “learning constant” which can 
titi

x f1(e1)
δ1

x1,2 x1,2 ηδ2 d 2(e2)/de2 1
wx2,2 = wx2,2 + ηδ2 + df2(e2)/de2 ·x2
wx1,3 = wx1,3 + ηδ3 + df3(e3)/de3 ·x1
wx2,3 = wx2,3 + ηδ3 + df3(e3)/de3 ·x2

vary over time.vary over time.

x1
f1(e1)

f2(e2)

f4(e4)

f6(e6)

w4,6

w1,4

δ2

x2 f3(e3)

f5(e5) w5,6
δ3
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Back Propagation
Update the weights again for the next layer, using 
the outputs from the previous layer: 

δ df ( )/dw1,4 = w1,4 + ηδ4 + df4(e4)/de4 ·y1
w2,4 = w2,4 + ηδ4 + df4(e4)/de4 ·y2
w3,4 = w3,4 + ηδ4 + df4(e4)/de4 ·y3
w = w + ηδ + df (e )/de ·y

x1
f1(e1) w1,4 δ4

w1,5 = w1,5 + ηδ5 + df5(e5)/de5 ·y1
w2,5 = w2,5 + ηδ5 + df5(e5)/de5 ·y2
w3,5 = w3,5 + ηδ5 + df5(e5)/de5 ·y3

f2(e2)

f4(e4)

f ( )

f6(e6)

w

w4,6

δ5

δ4

x2 f3(e3)

f5(e5) w5,6
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Back Propagation
Finally update the weights in last layer.
– The coefficient η affects teaching speed. There are a few techniques 

to select this parameter   Often  however  this value is initially large to select this parameter.  Often, however, this value is initially large 
and decreases over time.   This allows “big” weight changes initially 
and eventually the network does not change much.

x1
f1(e1) w1 4

w4,6 = w4,6 + ηδ6 + df6(e6)/de6 ·y4
w5,6 = w5,6 + ηδ6 + df6(e6)/de6 ·y5

x1

f2(e2)

f4(e4)

f6(e6)

w4,6

w1,4

δ4

x2 f3(e3)

f5(e5) w5,6
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Neural Network Example
Consider a back propagation network 
used to teach a robot to walk.

Each leg can be in one of 3 modes:

St  l  d  d hi  b k d– Stance = leg down and pushing backward

– Still = leg not movingStill  leg not moving

– Swing = leg swinging forward
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Neural Network Example
Each leg must coordinate with the other legs in order 
to achieve walking.

Can build a neural network for each leg and then 
interconnect them.

One way of interconnecting is to only connect to the 
legs beside and behind it.

R1

R2

L1

L2

Each network 
examines the 
output of the 

R3L3

p
leg across 
and behind it.
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Neural Network Example
The output of each network is the mode of the leg
– 1 = stance, 0 = still, -1 = swing

Each network may look like this:

leg behind

leg beside
mode

g
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Neural Network Example
Each leg must learn the correct mode per leg

Networks begin with random weights on each linkg g

Weights are updated based on feedback from robot’s 
success at walking.success at walking.

– When robot falls down, networks are punished
• Based on backwards propagation which lessens• Based on backwards propagation which lessens

weight on links that led to the chosen mode
• more likely next time to use a different phase

i h ALL t k  (  if   t)• punish ALL networks (even if one was correct)

– When robot moves forward without falling they are all 
rewarded … by increasing weights along proper path.
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Neural Network Example
As a result, robot learns to coordinate the legs over 
time.

Typically, the “amount” of punishment and reward 
is large at the beginning and decreases over time.

i h d i k h i d– Larger weight updates cause quicker changes in modes
– Smaller weights can take a long time to converge to a proper 

behavior.

Typical tripod walking “gait” is obtained:
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Neural Network Example
Technique applies to robots with any 
number of legs.

Can also handle leg failure with minor adjustment:

– Will need to re-teach all networks again

– Better performance if reconnection p
of networks is allowed:

• can do this manually

R1

R2

L1

L2y
• can re-design all networks to have

inputs from ALL other legs.
R3L3

Re connect
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Neuron Networks
Consider a network containing a mix and match of 
various neurons to control a robot’s behavior.

We ca  create a etwork for each type of behavior a d the  – We can create a network for each type of behavior and then 
plug them all in together to steer the robot

Sensors ActuatorsBehaviors

Obstacle Avoidance

Sensors ActuatorsBehaviors

Wall Following

Light Seeking

Arbitrator

Light Seeking
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Neuron Networks
Many neural networks are trained to 
learn how to perform simple behaviors.

Hardwired Neuron Networks bypass the learning 
process of traditional neural networks
– Same idea as building instincts into the robot

Idea is to avoid training stage for behaviors that are Idea is to avoid training stage for behaviors that are 
already well-defined … for example:

– wandering, obstacle avoidance, light seeking, edge following, wandering, obstacle avoidance, light seeking, edge following, 
map building etc…
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Neuron Networks
Neuron networks can be better than programming:

+ neurons implemented with electronicsp

+ entire networks can be made 
on single electronic “chip”

+ can be made very small using very little power

+ cheap to produce+ cheap to produce
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Neuron Networks
Of course, traditional neural networks can be trained 
to accomplish the same thing.

Unlike neural networks, these hard-wired networks 
allow easy enabling and disabling of behaviors over 
timetime.

They can even be mixed and matched with 
t diti l l t kstraditional neural networks
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Neuron Networks
Consider modeling a behavior that always moves a Consider modeling a behavior that always moves a 
robot forward until it detects an obstacle ahead 
using its left or right IR proximity sensor.
– If it detects an obstacle on its left it should 

then turn right (and vice-versa).

We can create three types of neurons:
– sensor neuron that acts as a binary input neuron and outputs p p

a value of 0 if no obstacle is detected and 1 otherwise.
– motor neuron that acts as a binary output neuron that 

turns on a motor when its output is 1 and turns off 
otherwise.

– control neuron that enables a behavior
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Neuron Networks
We can also create two types of connections:
– excitatory – weight of 1.0

i hibi i h f– inhibitory – weight of -1.0

In general, a neuron computes its activation as 
– sum of its inputs (i.e., any real number, possibly negative)

times the weight of incoming connection:    act = ∑ Ii wi
i=1

n

The output of a neuron is the activation itself or 
some function of the activation 

i 1

– (e.g., binary neurons may output 1 if activation > 0 and 0 
otherwise).
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Neuron Networks
For example for the following neuron, the activation 
is computed as:

t I (1)  I ( 1)  I ( 1)  I (1) I I I I act outact = I1(1) + I2(-1) + I3(-1) + I4(1) I1 I2 I3 I4 act out

0 0 0 0 0 0

1 0 0 0 1 1

0 1 0 0 -1 0

1 0 0 1 2 1I 1 0 0 1 2 1

0 1 1 0 -2 0

1 1 1 1 0 0

-1 0 0 0 -1 0

0 -1 0 0 1 1

I2

I1

Binary
NeuronI3

out
act

The table to the right gives the 

0 -1 0 0 1 1

-1 0 0 -1 -2 0

0 -1 -1 0 2 1

-1 -1 -1 -1 0 0

1 -1 -1 1 4 1

I4
3

activation and output values of 
a binary neuron for some possible input values.

1 -1 -1 1 4 1

-1 1 1 -1 -4 0
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Neuron Nets – Collision Avoidance

Here is the network and a table showing the possible 
outputs:

The motor neurons

Move

L IR R IR Move L Mtr R Mtr

0 0 0 0 0

0 1 0 0 0

The motor neurons 
are binary neurons 
that output 1 if 
act > 0 and output 
0 otherwise.

This enables the 
behavior to affect 
the motors.

Left
Motor

Left
IR

0 1 0 0 0

1 0 0 0 0

1 1 0 0 0

0 0 1 1 1

Right
Motor

Right
IR

0 1 1 0 1

1 0 1 1 0

1 1 1 0 0

Notice that the motors turn in the appropriate 
direction so as to avoid the obstacle.
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Neuron Nets – Collision Avoidance

Can allow robot to spin away from obstacle by 
reversing opposite motor: 

allow motor euro  to output 1  0 or 1 accordi g to sig  of – allow motor neuron to output -1, 0 or 1 according to sign of 
activation value

– supplying smaller weight from Move neuron

L ftL ft

Move 0.5

L IR R IR Move L Mtr R Mtr

0 0 0 0 0

0 1 0 0 0
Left

Motor

Right

Left
IR

Right

0.5 1 0 0 0 0

1 1 0 0 0

0 0 1 1 1

0 1 1 1 1

Forward

Spin Leftg
Motor

g
IR 0 1 1 -1 1

1 0 1 1 -1

1 1 1 -1 -1

Spin Right

Backward
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Neuron Nets – Collision Avoidance

Recall the problem where the robot may 
become “stuck” in a corner, turning back 
and forth ?

We can solve this by introducing another type of We can solve this by introducing another type of 
neuron called a binary sustain neuron which 
computes its output based on the current activation 
as well as the previous output:as well as the previous output:
– act > 0   →  out = 1
– act = 0   →  out = previous out valueact = 0   →  out = previous out value
– act < 0   →  out = 0

4-111
Winter 2012Chapter 4 – Behavior-Based Programming



Neuron Nets – Collision Avoidance

Here is an updated network … but it does not work 
properly … what’s wrong ? L 

IR
R 
IR

Prev
Trn L

Prev
Trn R

New 
Trn L

New 
Trn R

L 
Mtr

R   
Mtr

Move
0.5

0 5

0 0 0 0 0 0 1 1

0 1 0 0 1 0 -1 1

1 0 0 0 0 1 1 -1

1 1 0 0 1 1 0 0

Table 
assumes 
Move = 1

T

Turn
Right

Left
Motor

Ri ht

0.5 0 0 0 1 0 1 1 -1

0 1 0 1 1 1 0 0

1 0 0 1 0 1 1 -1

1 1 0 1 1 1 0 0

Left
IR

Ri ht Turn
Left

Right
Motor

0 0 1 0 1 0 -1 1

0 1 1 0 1 0 -1 1

1 0 1 0 1 1 0 0

1 1 1 0 1 1 0 0

Right
IR

0 0 1 1 1 1 0 0

0 1 1 1 1 1 0 0

1 0 1 1 1 1 0 0

All yellow rows indicate no movement.   
Basically, the Turn Left and Turn Right
neurons should NEVER be on together.
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Neuron Nets – Collision Avoidance

Add inhibitory links to prevent one sustain neuron 
from turning on if
th   i  

L 
IR

R 
IR

Prev
Trn L

Prev
Trn R

New 
Trn L

New 
Trn R

L 
Mtr

R   
Mtr

0 0 0 0 0 0 1 1

A race condition
occurs here, 
whichever neuron isother one is on:

Move

0 0 0 0 0 0 1 1

0 1 0 0 1 0 -1 1

1 0 0 0 0 1 1 -1

1 1 0 0 x 1-x 1|-1 -1|1

0 0 0 1 0 1 1 1

whichever neuron is 
processed first.  X is 
either 0 or 1 in this 
case.

Turn
Right Left

Motor

0.5
0.5

Left
IR

0 0 0 1 0 1 1 -1

0 1 0 1 0 1 1 -1

1 0 0 1 0 1 1 -1

1 1 0 1 0 1 1 -1

0 0 1 0 1 0 1 1

Turn
Left

Right
Motor

Right
IR

0 0 1 0 1 0 -1 1

0 1 1 0 1 0 -1 1

1 0 1 0 1 0 -1 1

1 1 1 0 1 0 -1 1

0 0 1 1 N/A N/A N/A N/A

0 1 1 1 N/A N/A N/A N/A

1 0 1 1 N/A N/A N/A N/A

1 1 1 1 N/A N/A N/A N/A

All yellow rows indicate an impossible state since we have 
prevented the sustain neurons from being on together.

SOMETHING IS STILL WRONG !!!!
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Neuron Nets – Collision Avoidance

The network does not allow the robot to stop turning 
once it has started turning away from the obstacle. 

should disable sustai  euro s whe  collisio  is o lo ger – should disable sustain neurons when collision is no longer 
detected

Introduce a new neuron called a pulse neuron:Introduce a new neuron called a pulse neuron:
– Falling Edge Pulse Neuron

out = 1 when its activation changes from > 0 to ≤ 0
Pulse

g f
– Rising Edge Pulse Neuron

out = 1 when its activation changes from ≤ 0 to > 0 Pulse

– Output is 0 otherwise in both cases
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Neuron Nets – Collision Avoidance

Here is the completed collision avoidance network:

Names changed to distinguish 
from other networks

Avoid
L ft

Move

Left
IR

from other networks.

Right Left
Motor

Right

Pulse

IR

Ri ht Avoid
Left

g
MotorRight

IR

Do you remember which way the robot turns when 
both its front IR sensors detect an obstacle ?
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Neuron Nets – Escape
h k l b hThe escape network is similar, but much easier:

Escape
Right Left

Move

Left
Side IR

Escape

Right
Motor

Right
MotorRight Escape

Left
Motorg

Side IR

What happens when both side IR 
sensors detect an obstacle ?
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Neuron Nets – Light Seeking

Light-seeking behavior involves determining the 
difference between two light sensor values.

We will allow sensor neurons to have an output 
corresponding to the intensity of the light 

– (e.g., voltage value normalized so that it outputs a value from 
0.0 to 1.0 depending on the light intensity)

– designate a non-binary output with a ~ symbol on the links 
leaving the neuron:

Left
Light

~
~
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Neuron Nets – Light Seeking

Here is a similar network:

Notice the outputs in the
Move

0.5
0 5L ft

p
table below.

Thi  k  b t   

L > R Left
Motor

Ri ht

0.5Left
Light

~
~

This works, but can you 
foresee any problems with 

i l i l i

R > L

Right
MotorRight

Light

~
~

a practical implementation 
on a real robot ?

L Lgt R Lgt L > R R > L L Mtr R Mtr

0 0 0 0 1 1

0 > 0 0 1 1 -1

0 0 1 0 1 1> 0 0 1 0 -1 1

x x 0 0 1 1

x < x 1 0 -1 1

x > x 0 1 1 -1
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Neuron Nets – Light Seeking

Yes, when the light sensors are both pointed towards 
or away from the light source equally, real sensors 
will fluctuate in t heir readingswill fluctuate in t heir readings

– causes robot to “flutter” or zig-zag
can be hard on motors– can be hard on motors

Turns are also “spins” so robot 
actually stops at each zig and zag.

Can reduce this effect a little by only turning when C ff l l y ly g
one sensor has a value “significantly” larger than the 
other.
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Neuron Nets – Light Seeking

Just modify the weights from the sensors and to 
motors:

L Lgt R Lgt L > R R > L L Mtr R MtrInsignificant differences g g

0 0 0 0 1 1

0 > 0 0 1 1 0

> 0 0 1 0 0 1

Insignificant differences 
do not cause turning.

Choose threshold 
according to desired 
sensitivity

L > R Left
M t

Move
0.5

0.5Left
Light

~
~

x
≥0.75x 

&  
≤1.33x

0 0 1 1

x <0.75x 1 0 0 1

x >1 33x 0 1 1 00.5
0.75

sensitivity.

R > L

Motor

Right
MotorRight

~

~

x >1.33x 0 1 1 00.5

0.5
1/0.75 = 1.33333

R > Lg
Light ~ 0.75

New weights prevent spinning, but simply turning 
off one motor instead of reversing it.

No more negative, 
means smoother 
turning.
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Neuron Nets – Light Seeking

Finally, can add neurons to decide whether to be 
attracted or repelled from light source:

Move Move

Repel
Right Left

Motor

Left
Light

~
~

0.75
Attract

Left Left
Motor

Left
Light

~
~

0.75

Repel
Left

Right
MotorRight

Light
~
~ 0.75

Attract
Right

Right
MotorRight

Light
~
~ 0.75

Repel from Light Attract to Light

4-121
Winter 2012Chapter 4 – Behavior-Based Programming



Neuron Nets – Wandering

For wandering, we must introduce the notion of a 
random neuron that can produce a random value:

– value neuron hard-codes a fixed probability value P
representing the likelihood of producing a binary output

– act = input sum * random value from 0.0 to 1.0
– if act > P →  out = 0 

if act ≤ P →  out = 1 P– if act ≤ P →  out = 1

For smooth wandering, we need to decide: 

P

– when to make a turn
– which way to turn

how long to turn
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Neuron Nets – Wandering

This network allows the robot to make a random 
turn roughly 1/30 = 3% of the time:

Wander
L ft

Move
0.5

0.5Wander
Left Left

Motor

Right

Turn
1/2

Decide
1/30

Enable

0 5

0.5

Problem:

Wander
Right

g
Motor1/30 0.5

– robot makes a single turn … will appear as a “twitch”

Must keep turning by some random amount

4-123
Winter 2012

p g y

Chapter 4 – Behavior-Based Programming



Neuron Nets – Wandering

Use sustain neurons and disable them randomly:

5% f th ti th

Move

5% of the time the 
turning is disabled 

Wander
Left Left

Motor

Move
0.5

0.5

Stop
1/20

Wander
Enable 0.5

Wander
Right

Right
Motor

Turn
1/2

Decide
1/30 0.5

Right

These stay on now 
until disabled.
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Neuron Nets – Wandering

Can also disable whenever enabling neuron is disabled 
by using a pulse neuron.  Here is the final network:

Move

Wander
Left Left

Motor

Move
Stop
1/20

Wander
Enable

Wander
Right

Right
Motor

Turn
1/2Decide

1/30

Right

Pulse
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Neuron Nets – Edge Following

Recall the stages of edge following:

Follow
Edge

Align
to edge

Orient
to new

Detect Front Contact

to edge edge
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Neuron Nets – Edge Following

Consider following an edge on the 
right and moving forward as long as 
the right sensor detects the edge:

Turn
Ri ht Left

Move
0.5

0.5

Right
Side IR

Ri ht Right Left
Motor

Right
M t

Follow
EdgeCollide

Right
IR

Left
IR

What happens if the robot loses contact ?

Turn
Left

MotorIR
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Neuron Nets – Edge Following

When contact lost, must turn right to regain:

Turns right until collision 
d t t d h d

Disabled when side 
contact is regained. 

Move
Right

Side IR Align
Right

detected ahead. 

Turn
Right Left

Motor
Follow
Edge

Right

Right
IR

Turn
Left

Right
Motor

Edge

Collide

IR

Left
IR
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Neuron Nets – Edge Following

Whenever a collision is detected, turn left to avoid it 
… unless we are aligning to the edge again:

Don’t turn away 
while aligning to 
edge again. 

Turn

Move
Right

Side IR Align
Right

Turn
Right Left

Motor

Right

Follow
Edge

Right
IR

Turn
Left

Right
Motor

Left
IR Orient

Right
Collide
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Neuron Nets – Edge Following

Here is the completed edge-following network:

Edge
L ft

Move
Right

Side IR Align
Right

Right Left
Motor

Right

Follow
Edge

Right
IR

Edge
Left

g
Motor

Left
IR Orient

Right
Collide

A similar network can be constructed to follow edges 
on the left side of the robot.
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Neuron Nets – Arbitration

Notice that all networks access the motors.
– Must arbitrate to decide which one has motor control

Move

Wander
Right

Edge
Right

Repel
Right

Attract
Right

Avoid
Right

Escape
Right

Need to resolve

Turn
Right

Left
Motor

Need to resolve 
the conflict here. 

Turn
Left

Right
Motor

Need to resolve 
the conflict here. 

Wander
Left

Edge
Left

Repel
Left

Attract
Left

Avoid
Left

Escape
Left
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Neuron Nets – Arbitration

Must assign weights so that more important 
behaviors override the less important ones:

Wander
Right

Edge
Right

Repel
Right

Attract
Right

Avoid
Right

Escape
Right

Turn
Right

Priorities set by 
weights.  Higher 
weights completely 
dominate sum of lower 
weights so that 
subsumption occurs

These two have same weight because 
only one is on at a time~

Turn
Left

subsumption occurs. only one is on at a time.~ ~

Wander
Left

Edge
Left

Repel
Left

Attract
Left

Avoid
Left

Escape
Left
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Neuron Nets – Arbitration

Here is an example of how edge following can 
override the other behaviors:

Wander
Right

Edge
Right

Repel
Right

Attract
Right

Avoid
Right

Escape
Right

Turn
Right

out = 0.8

out = 0.4 + 0.2 + 0.1 + 0.05 ~
Turn
Left

= 0.65~

Wander
Left

Edge
Left

Repel
Left

Attract
Left

Avoid
Left

Escape
Left
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Neuron Nets – Arbitration

Arbitration problem with edge following:
– If the robot is following edge and wants to move forward, 

neither Turn neurons are excited  which allows other neither Turn neurons are excited, which allows other 
behaviors to take control of the steering.

WanderEdge RepelAttractAvoid EscapeTh t it d h lli i

Turn
Right

Wander
Right

Edge
Right

Repel
Right

Attract
Right

Avoid
Right

Escape
Right

Right
Side IR

Align
Right

These are not excited when no collision 
detected while following edge.

Turn
Left

g

~ ~

Edge
f

Edge
Right

Follow
Edge

Right
IR

Left
Wander

Left
Edge
Left

Repel
Left

Attract
Left

Avoid
Left

Escape
Left

LeftLeft
IR Orient

Right

Collide

Hence, other behaviors will cause turn.
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Neuron Nets – Arbitration

Must fix this by allowing a “go straight ahead” 
neuron in the edge following network that disables 
turning:turning:

Right
Side IR Align

Right

Right
IR

Follow
Edge

Edge
Right

Right

EdgeIR

Left
IR Collide

Edge

Edge
L ft

Edge
Straight

Orient
Right

Left
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Neuron Nets – Arbitration

The new Edge Straight neuron must have the same 
weight as the Edge Left and Edge Right:

Wander
Right

Edge
Right

Repel
Right

Attract
Right

Avoid
Right

Escape
Right

Move

Turn
RightEdge

Left
Motor

Turn
Left

~ ~
g

Straight

Right
Motor

Wander
Left

Edge
Left

Repel
Left

Attract
Left

Avoid
Left

Escape
Left

Problem remains:   
Light seeking and wandering had weights 
of 0.5 here so as to avoid the “spinning” 
movement.  How can YOU fix this ?
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Summary
You should now understand: 

– What behaviors are and how they interact togethery g

– How to program simple behaviors

Th  id  b hi d l i  b h i– The ideas behind learning behaviors

– How to program behaviors using neuron networks
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