Behavior—Based
Programming

Chapter 4

Objectives

" Understand what behavior -based programming is

"Look at types of behaviors and the issues involved
with developing them

"Look at how to implement some simple behaviors

= Understand how behaviors can be combined

= Examine how behaviors interact to control the robot

" Understand what is involved with learning behaviors

" Investigate simple neural networks

=Learn how to hardwire instinctive behavior networks.

Chapter 4 — Behavior-Based Programming

What's in Here

» Behaviors

— Reflex Behaviors
— Taxic Behaviors
— Adaptive Behavior

= Behavior Interaction

— Behavior Arbitration
— Robustness

= Programming Behaviors

— Collision Avoidance
Escape
Homing
GPS Homing
Wall-Following

= Emergent Behaviors

— Overview

Chapter 4 — Behavior-Based Programming

Learning Behaviors
- Overview

Artificial Neural Networks
- Neural Networks
- Back Propagation

- Neural Network — Leg
Coordination

Neuron Networks

- Overview

- Collision Avoidance

- Escape
Light Seeking
Wandering
Edge Following
Arbitration

4-3
Winter 2012

Behaviors

A Definition

» Behavior :

The way a machine acts or functions

= A behavior can be:

— Explicitly programmed

* primitive behaviors are programmed
« separate modules that are plugged in together
— Emergent
« combined primitive behaviors produce more complex behaviors

* often unforeseen behavior emerges

4-5

Chapter 4 — Behavior-Based Programming Winter 2012

Types

" Robot reacts according to its pre-programmed
behaviors, which can be:

— Reflex

* A fast stereotyped response triggered by a particular type of
sensor input. The intensity and duration of the response is entirely
governed by the intensity and duration of the sensor readings.

— Taxes

* Involve the orientation of the robot toward or away from some
environmental stimulus such as light, temperature, energy etc..

4-6

Chapter 4 — Behavior-Based Programming Winter 2012

Reflex Behaviors

= Used for avoiding, escaping, or minimizing the
effects of undesirable environmental stimuli.

* Seven properties (as found in real life forms)
1. Threshold
Latency
Refractory Period
Temporal Summation
Spatial Summation
Momentum
Habituation

Chapter 4 — Behavior-Based Programming

Reflex Behaviors
1 - Threshold:

The munimum sensor reading requived to cause the robot
Lo react

e.g., Robot may sense obstacle ahead, but may not react
until it is within certain range

range

S
detection &

4-3

Chapter 4 — Behavior-Based Programming Winter 2012

Reflex Behaviors

2 - Latency:

The time 1t takes for the robot to react once the sensor
readings reach the threshold

e.g., If threshold too small, robot cannot react in time.

detection

range I .
o

° Oh No!

I’'m not
Lots of going to
time yet make it !!
4-9

Chapter 4 — Behavior-Based Programming Winter 2012

Reflex Behaviors

3 - Refractory Period.:

The delay in response to the 2°% of two closely spaced
stimull.

e.g., Time between sensor readings may be too slow, so
robot may re-adjust thresholds under certain
environments (perhaps in slippery floors)

These two obstacles cannot This detected as new
be distinguished since sensor obstacle since sensor
Detects obstacle constantly. had no reading recently.

4-10

Chapter 4 — Behavior-Based Programming Winter 2012

Reflex Behaviors

4 - Temporal Summation:

One sensor reading not enough to cause reaction, but when
followed by additional sensory imput, the reaction occurs

e.g., Security robot may sense a loud noise, but then wait
for movement before sounding an alarm

Loud noise

something move Alert !

4-11

Chapter 4 — Behavior-Based Programming Winter 2012

Reflex Behaviors

S - Spatial Summation:

One sensor reading not enough to cause reaction, but when
a second simultaneous sensor reading Is observed, the

reaction occurs

e.g., Due to sensor noise, invalid sensor readings occur and must
be verified by additional nearby readings

Sensor 2

Sensor 1 >
readings

readings

Invalid
SendS_OI' 1 It looks like
readings that is not one
big object

Chapter 4 — Behavior-Based Programming WMtef;;;i

Reflex Behaviors

6 - Momentum:

The time that the robot’s reflex takes to complete after the
sensor stimulus has been removed

e.g., Upon encountering an obstacle, the robot may turn away
for a specific amount of time or specific angle.

1 st S

Detect obstacle Avoid collision Avoid obstacle
altogether

4-13

Chapter 4 — Behavior-Based Programming Winter 2012

Reflex Behaviors

7 - Habituation:

The reduction in trustworthiness of a sensor over time,
perhaps due to repeated false or inaccurate readings

e.g., Infrared light sensors are not trustworthy for collision
avoidance in environments with many glass doors.

Objects behind door are detected

Glass door is not detected

4-14

Chapter 4 — Behavior-Based Programming Winter 2012

Taxic Behaviors

* There are 4 types of taxic reactions that represent
the basic types of orientation strategies of a robot

towards a stimulus:

. Klinotaxis
. Tropotaxis
. Telotaxis

. Light-compass reaction

* Robot may use a variety of these at once
depending on sensor types and the Behavior

desired.

Chapter 4 — Behavior-Based Programming

Taxic Behaviors

1 - Klinotaxis:

The use of successive comparisons to orient towards a
sensor Sstimulus

e.g., Temperature sensing

I’'m closer \ !
than before
- %

heat
) source

(L)
¥) 3 ’
i ¥ - - JBS
o° close now
| seem
further away

Chapter 4 — Behavior-Based Programming 4-16

Winter 2012

Taxic Behaviors
2 - Tropotaxis:

The balancing of two sensors, where the robot turns until
sensors have equal readings, then proceeds forward

‘ light source

weaker

2 _ stronger reading
. light reading

‘o source
light

‘ ‘ SEensors

e.g., light seeking

@™ o e
(1)
X
® There’s the

4-17

Chapter 4 — Behavior-Based Programming Winter 2012

Taxic Behaviors

3 - Telotaxis:

When two Sensor readings requive opposing directions,
robot must make decision by choosing and approaching one

e.g., Light seeking or corner escape

robot path “
without

-

telotaxis Stuck in corner
(turning either left
or right results in
obstacle detection)

Chapter 4 — Behavior-Based Programming

!

Must make decision
to turn one way
and stick with it

4-18
Winter 2012

Taxic Behaviors

4 - Light-compass reaction:

Mamtaming a tixed angle between the path of motion and
the direction of the sensed stimulus

e.g., Light seeking

Chapter 4 — Behavior-Based Programming

Adaptive Behaviors

" Adaptive Behavior:

A behavior that adapts (or adjusts) to the environment in
whICh 1t acts

" Robot can “adapt’ by automatic variation in the
strengths of the behavior properties and
parameters that we just discussed.

— Results in more efficient and safe behavior.

— Degree of adaptability may be:
e Buillt-in — fine-tuned like instincts for certain environments

* Learnt — from past experiences

4-20

Chapter 4 — Behavior-Based Programming Winter 2012

Adaptive Behaviors

" Reflexes and taxes depend only on recent events

— limits overall usefulness towards adaptable behavior

— wmost reflexes almost independent of feedback

= [n this course:

— we will not investigate adaptive behaviors

— we will use instinctive hard-wired behaviors

= Areas of neural networks and evolutionary
computing are two strategies for generating
behaviors that adapt to their environments.

4-21

Chapter 4 — Behavior-Based Programming Winter 2012

Behavior Interaction

Behavior Interaction

" Individual reflex and taxic “primitive” behaviors

— provide basic functionality of robot
— never stop running, but will not always affect robot

— should be simple, not handling every situation that arises

Overall robot behavior depends on interaction of

the individual “primitive” behaviors

Primitive behaviors all run at the same
time and compete for control of the robot.

Must define rules of interaction to decide which
behavior has control of the robot at any one time.

Chapter 4 — Behavior-Based Programming

Behavior Interaction

* Behaviors interact according to 3 principles:

Z. Inbrtory
= incompatible behaviors compete for control of robot

e.g., obstacle avoidance vs. obstacle mapping/tracing

2. Cooperative
= two behaviors may agree as to how to direct robot

e.g., seek light source and seek energy source

3. Successive
= one behavior may cause another behavior to be exhibited

e.g., seek base station and then recharge robot

4-24

Chapter 4 — Behavior-Based Programming Winter 2012

Behavior Interaction

= Two Inhibiting behaviors cannot both control robot

— must compete for control of robot’s actuators
— only one may be active at any given time
e.g., Controlling robot direction:

Behaviors

wants to turn left
Wander - I
: | motor motor
P— ! Obstacle Avoid ;
wants to turn right

Sensor
— I Wall Following nggllé%w\ga

wants to go straight

Left Right

= A behavior arbitration scheme (s required.

Chapter 4 — Behavior-Based Programming

4-25
Winter 2012

Behavior Arbitration

» Arbrtration scheme:

The manner, priority and timing in which behaviors
exirbrt mfluence over a robot’s actuators

*Behaviors plug-in to an arbitrator which decides
which behavior(s) should be actively controlling the

robot’s actuators at any particular time.

.0
5 Obstacle Avoid Left Right

. motor motor
SZ?:Or — K nght Seeking —p Arbitrator =

SN Wall Following (s

4-26

Chapter 4 — Behavior-Based Programming Winter 2012

Behavior Arbitration

*Can have multiple arbitrators

— one per actuator
— behavior can be connected to many

| Recharge Battery
P Arm
| Collision Avoidance » Arbitrator

' | Perform Task —— —:

. : > Motor Left Right
| Mapping : Arbitrator motor motor
| Find Target for Task

— |
\Wander » Arbitrator

Chapter 4 — Behavior-Based Programming w:'nter4;0iz_

Behavior Arbitration

= Various ways to resolve conflicts

— Round robin — each behavior gets equal turn
— Average — average all behaviors to choose action
— Vote — majority of desired actions wins

" These conflict resolution strategies do not account for

urgent, time-critical or opportunistic behaviors

—e.g., collision avoidance, low battery, etc.. \ﬁ\ -
=

*Need a way to prioritize behaviors:

— High priority behaviors greater influence on robot’s action

— Low priority behaviors ignored unless no high-priority
available

Chapter 4 — Behavior-Based Programming W,'nte,:,;ozli

Behavior Arbitration

= There are two main arbitration schemes:

1. Fixed Priority
2. Variable Priority

= Each differs in the way it prioritizes the behaviors

* Based on the subsumption archrtecture roiney srooks (1aso)

— Low-priority behaviors implemented first, higher ones
added later

— Higher level behaviors contain (i.e., subsume) or inhibit
(i.e., disable) lower level ones

Chapter 4 — Behavior-Based Programming

Behavior Arbitration
1. Fixed Priority Arbitration

— Priorities decided in advance (hard-wired)
— Priorities should be unique

| Recharge Battery

| Collision Avoidance o]

SENSOFEEEEEN — B Fixed
Data | Perform Task > Priority

> Arbitrator

"1 Light Seeking |_,
| Wander

Chapter 4 — Behavior-Based Programming

: | Q‘g '§m’

Higher
Priority

4-30
Winter 2012

Behavior Arbitration

" How do you choose priorities ? Rules of thumb...

— Behaviors critical to safe operation should be high
— Task -oriented priorities should be medium
— “Free-time” tasks (e.g., wander, map) may be low

"Here is one way of doing this using “weights’:

Behaviors weighted according
to priority. “Recharge Battery”
has weight high enough to
cancel lower priorities when
enabled since 16 > (8+4+2+1)

Similar for right motor

Chapter 4 — Behavior-Based Programming W,’y\tgr42_031§

Behavior Arbitration

2. Variable Priority Arbitration

— Priorities unique and decided in advance

— Priorities may change over time

1

| Collision Avoidance (emmsmsd i

2

Mapping PE——

Variable

3
| Perform Task e PriOFitY
4 Arbitrator

| Light Seeking e ——
3}
| Wander Lo

Mapping may become lower priority
after a reasonable map is built.

Chapter 4 — Behavior-Based Programming

Task performance
may only be possible
AFTER map is built

1

| Collision Avoidance &
2
Perform Task e

Variable

3
| Light Seeking > PrioOFity

Arbitrator
4

\ETeJol[ale _

S
| Wander s

4-32
Winter 2012

Behavior Arbitration

=Various questions arise:

— What determines new priorities order ?
« depends on environment & learned information (e.g., maps)
— How do we make sure 2 priorities are never the same ?
» perhaps simply swapping with other behaviors
— How often should we re-order ?

* can depend on environmental structure changes or task-related
changes

* Allows for more time-flexible behavior taking
advantage of opportunism.

*Can be more complex to debug

Chapter 4 — Behavior-Based Programming Winte f;o'?;i

Behavior Arbitration

" In generalized subsumption architecture, behaviors
may also “inhibit” or “disable’ others.

" For example, when exhibiting a mapping behavior,
robot may wish to ignore other behaviors.

— May need to disable collision avoidance or escape F

behaviors in order to get close enough to obstacles Vgl
for mapping.

— May not disable behavior but simply allow thresholds and
tolerances to be adjusted.

Chapter 4 — Behavior-Based Programming

Robustness

" Behavior-based approach is more robust than
top -down approach.

+ Behaviors typically rely on multiple low-level sensors rather
than few high-level ones.

+ Some behaviors may fail, others “kick-in”’

+ Robot performance degrades gracefully
when behaviors fail, but still performs

' N~
+ Don't have to think of all scenarios '«;\r
& :

Chapter 4 — Behavior-Based Programming

Robustness

= Consider the following hierarchy of obstacle
avoidance where system performance degrades
gracefully. For example,

| Navigate

Sonar Object Avoid
IR Object Avoid Fixed

Priority
Bumper Avoid , Arbitrator

Current Avoid

| Panic Move

Chapter 4 — Behavior-Based Programming

Robot is navigating
» Sonar detects obstacle from far off,
starts steering away

What if sonar fails to detect ?
* |R detects obstacle when closer
(less time to turn, more awkward)

What if IR also fails ?
« Bumper switches hit, must backup

What if robot hits where no bumper ?
* Robot hits, motors draw more current
» Must backup

What if wheels slip, robot stuck ?
« Can detect lack of motion
« Try “panic” movement to get unstuck

4-36
Winter 2012

Programming Behaviors

Wandering

" How do we program behaviors and arbitrators ?
*Simplest is a Wandering behavior.

int wanderLeft = O; Decide to make a
Int wanderRight = 0O; random turn 1/5 =
Random ranGen = new Random(); 20% of the time.
Tweak this to
1T (ranGen.next() % 5 == 0) adjust amount of
IT (ranGen.next() % 2 == wandering
wanderLeft = 1;
else
wanderRight = 1; Decide to turn
left or right.
Turn left
1/2 = 50% of
the time.

*Can also incorporate degree (amount) of turning

Chapter 4 — Behavior-Based Programming W‘.nte;’;j’i

Wandering

* Connect multiple behavior requests to the arbitrator,
using their priorities:

int leftTotal = (wanderLeft * wanderPriority) +
(avoidLeft * avoidPriority) +
(lightLeft * lightPriority) + ..._.;

int rightTotal = (wanderRight * wanderPriority) +
(avoidRight * avoidPriority) +
(lightRight * lightPriority) + ..._;

iIT (leftTotal > rightTotal)

// Turn on LEFT motor backwards & RIGHT motor forwards
else 1T (leftTotal < rightTotal)

// Turn on LEFT motor forwards & RIGHT motor backwards

else
// Turn on LEFT & RIGHT motors forward

Chapter 4 — Behavior-Based Programming Winte f;oiz_

Collision Avoidance

= What about Collision Avoidance behavior ?

*Simple using 2 “boolean” proximity sensors, although
can use wore and/or various types.

.

| |

Turn
Arbitrarily

Chapter 4 — Behavior-Based Programming

Collision Avoidance

*Similar to wandering, decide to turn left or right:

int avoidLeft
int avoidRight =
Random ranGen = new Random();

iIT (leftProxSensor.getValue() > 0)
iIT (rightProxSensor.getValue() > 0)
IDecide to make a\

IT (ranGen.next() % 2 == 0)
avoidLeft = 1; random turn if

else obstacle straight
avoidRight = 1; ahead. Other

else approaches can

avoidRight = 1; betakenhena..//

else
iIT (rightProxSensor.getValue() > 0)
avoidLeft = 1;

Chapter 4 — Behavior-Based Programming W,-ntf;oﬁ

Collision Avoidance
*May end up in corner, oscillating back and forth.

" Random turns “may’’ get robot unstuck, but clumsy

" Perhaps ensure 120° to 180° turn or until one
sensor does not read collision anymore.

Can get stuck turning left, then right, then left, then right etc...

Chapter 4 — Behavior-Based Programming

Collision Avoidance

*Can include counter to ensure turn is complete:

(iersgtgmcount > 0) turnCount--; If already turning (since last
time this code was called) don't

avoidLeft = avoirdRight = 0; .
if (leftProxSensor.getvalue() > 0) { make any new turn decisions,

if (rightProxSensor.getvalue() > 0) { | just keep doing the turn as
if (ranGen.next() % 2 == 0) decided upon before.
avoidLeft = 1;
else avoidRight = 1;
turnCount = 12; " Turn for 12 “units”, which is 120
¥ o degrees if each unit makes 10
else avoidRight = 1; degrees
3 :
else 1T (rightProxSensor.getvValue() > 0)
avoirdLeft = 1;

Chapter 4 — Behavior-Based Programming W,-ntf;oﬁ

Escape

" An extension to obstacle avoidance is escaping (i.e.,
keeping away) from obstacles.

— collision avoidance takes care of turning away from obstacles
in the robot’s path

— if detecting obstacles on the side, can also turn away.

Detect side obstacle,

Detect rear obstacle,
turn away

move forward

4-44

Chapter 4 — Behavior-Based Programming Winter 2012

Escape

=Code easily written:

If detect rear obstacle,

iIT (backProxSensor.getvValue() == 0) {

iIT ((leftSideProxSensor.getvValue() > 0) &&
(rightRideProxSensor.getvValue() == 0))
escapeRight = 1;

Turn only if one of the
side sensors detects. If
both detect, simply move
if ((leftSideProxSensor.getvalue() == 0) &&\ forward.

(rightRideProxSensor.getvValue() > 0))
escapelLeft = 1;

Chapter 4 — Behavior-Based Programming w:'nter42—0‘§,§

Homing

" How do we program code for the robot to “home”
towards an object (e.g., light seeking) ?

*Need 2 sensors whose readings increase when pointed
towards homing source (recall tropotaxis)

readings indicates
homing source is
straight ahead (or
behind). Cannot
“‘home-in” unless one

Sensor reading sensor is

depends on angle - significantly stronger
& distance from than the other.
homing source

.

Homing Source
Near-equal sensor

Chapter 4 — Behavior-Based Programming W,'nte;,;;i

Homing

*Simply compute difference between incoming sensor
readings to determine direction.

= Choose threshold according to sensor sensitivity and
range abilities.

Threshold depends
on sensor reading

int lightLeft = O; range and sensitivity.

int lightRight = 0;
int threshold = 2;
int diff = leftSensor.getValue() - rightSensor.getvValue();

iIf (diff < (-1*threshold e
fightRigr(m = 1- 2 ' Only turn if difference

if (diff > threshold) is significant (i.e.,
lightLeft = 1: above threshold)

4-47

Chapter 4 — Behavior-Based Programming Winter 2012

Homing

= Other forms of homing:

— Beacon Following
* Beacon emits pulsed signal
which is more reliably detected
by closer sensor
— Line Following
* Photodetectors read stronger
on white, can detect when a
sensor leaves black line
— Hill Climbing
o Climb hill by minimizing roll
while keeping pitch positive

using inclinometers

Chapter 4 — Behavior-Based Programming

‘ left readings
‘ right readings
Some pulses undetected =

2 Inclinometers at 45°

4-48
Winter 2012

GPS Homing

*Can use a Global Positioning System (GPS) to
determine desived homing direction

— Gives (r,,r,) robot position, (g,.9,) goal position

— Desired direction to travel can be computed using simple
trigonometry

][]
========II!III=IIIII=
EEEEEEEERY "'«III"IIII“IIHI
Sssseece || Seeemass
SNEEEEEEEL__JAFAEEEEE

4-44

Chapter 4 — Behavior-Based Programming Winter 2012

GPS Homing

*Need to look at the where robot is heading and
decide whether or not to turn right or left to goal:

(g’“g?) current (rl r'

Wt ‘}F)
, ' direction —--c)
. . ¥ .‘hh
direction / - ~E
ﬂ-h“‘i

L) "'"1...‘_
togoal } (rx,r,y) N
- direction =~ .

to goal

(8,,8,)

" Examine type of turn from (r,, r))=>(r'y, ¥',)=>(g. 9,)-
—(r'y, ¥')) is any point forward in robot’s current direction

—If it is a straight line, the robot will need to either move
straight ahead, or straight backwards (depending on where
the goal location is).

4-50

Chapter 4 — Behavior-Based Programming Winter 2012

GPS Homing

*Make use of the cross product of vector from

(re 1)) = (ry, 7)) and vector from (v, r,) = (9. 9,)

*Cross product a X b is a vector perpendicular to the
plane containing vectors a and b, computed as
follows:

(VJX 3 x)(gy > y) = (VJg 2 g)(gx 2 x)

where:
r', = r, + d*cos(rp)
r'y = ry + d*sin(ry)
d = any non-zero positive value, ry is the robot’s direction

Chapter 4 — Behavior-Based Programming

GPS Homing

" The cross product will either be:

* positive = a left turn
* negative = a right turn
* zero = no turn (i.e., vectors form 180° angle)

[_;r:rogfitive l

e
- -~
e

-

Chapter 4 — Behavior-Based Programming

4-52
Winter 2012

GPS Homing

= If robot’s orientation ry is also available from GPS,
then turn decision for homing is easy.

— Robot can also remember its previous location and compute ry
by comparing with current location.

= Easy to write the code now:

int goallLeft = 0;

int goalRight = O;

int d = 10; // any constant

Point r = GPS.getRobotLocation();

Point rTheta = GPS.getRobotDirection();

Point g = GPS.getGoalLocation();

Point r2 = new Point(r.x + d*cos(rTheta), r.y + d*sin(rTheta));

int turn = (r2.x — r.x)(@.y —r.y) - (r2.y — r.y)(g-x — r.x);
if (turn > 0) goallLeft = 1;
if (turn < 0) goalRight = 1;

4-53

Chapter 4 — Behavior-Based Programming Winter 2012

GPS Homing

*What if robot’s direction not provided by GPS ?

— Must rely on other means (e.g., compass)

— May use different coordinate system

* Must determine compass reference Cy (e.g., North) in
GPS coordinate system beforehand.:

AEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEIEP -V -.Y- TN
EEEEEEEVEEEEEFEEEEEEEEEEEEEEEEEEEEEEEINNI)] 40 N -
HEEN llllllllllllllllllll!lﬂl ANLER

ll']|
T Robot angle now -
-H w.r.t. compass, [
NOT w.r.t. GPS Fixed angle relating
1] compass orientation to

GPS coordinate system

4-54

Chapter 4 — Behavior-Based Programming Winter 2012

GPS Homing

=Similar code as before:

Hard-coded or
perhaps calibrated

upon startup.
static float C THETA = 49.0f;

int goallLeft = 0O;
int goalRight = 0; Now use compass to
int d = 10; // any constant t di ti

Point r = GPS.getRobotLocation(); get direction.

Point rTheta = compassSensor().getValue():

Point g = GPS.getGoalLocation();
Point r2 new Point(r.x + d*cos(rTheta+C THETA), r.y + d*sin(rTheta+C_THETA));

(rz.x —r.x)(g.y —r.y) - (r2.y — r.y)(g-x — r.x);
0) goallLeft = 1;
0) goalRight =

Transformation to new
coordinate system.

Chapter 4 — Behavior-Based Programming Winte r4;051.§

Wall Following

*Wall following behavior is useful for mapping,
navigation, seeking wall outlets, performing cleaning
tasks etc...

= Strategy varies depending on types of sensors.

" Robot usually follows wall by keeping itself aligned to
the wall on its left or right side

Chapter 4 — Behavior-Based Programming

Wall Following

"Key is to maintain alignment along edge
*Can be done with 2 whisker sensors:

LS N

Move fwd while Lost contact Turn right until Move fwd until Turn left until
side contact must re-align front contact side contact no front contact

*Robot moves in a bumpy motion along wall:

Z
8
AN

Chapter 4 — Behavior-Based Programming W,'nte,fz—oslz_

Wall Following

* Additional handling of concave/convex corners:

Chapter 4 — Behavior-Based Programming

Wall Following

* Can follow state diagram as follows:

— assumes right side edge following

Move Forward.

Assume robot moves a

little forward BEFORE
Follow checking sensor contact.

Orient

Detect Front Contact

- - 4-59
Chapter 4 — Behavior-Based Programming i S

Wall Following

. WthV\g code is now easy. Set this once to initialize the
starting of edge following. May be

i = FOLLOW;
fnt currentiiode = FOLLO T ——— FOLLOW, ALIGN or ORIENT

int edgeFollowLeft = O
int edgeFollowRight
boolean detectFront
boolean detectSide = r
switch (currentMode) {

case FOLLOW:
iIT (ldetectSide) currentMode = ALIGN;

iIT (detectFront) currentMode ORIENT; break;

case ALIGN:
edgeFollowRight - 1;
iIT (detectSide) currentMode = FOLLOW;
IT (detectFront) currentMode = ORIENT; break;

case ORIENT:

edgeFollowLeft = 1;
iIT (IdetectFront) currentMode = FOLLOW;

rontWhiskerSensor.getValue() > 0;
ghtWhiskerSensor.getValue() > 0O;

0
f
1

Chapter 4 — Behavior-Based Programming Winte r42—061§

Wall Following

* More whiskers allow for more sophisticated object
shape detection:

@ ., B.E .

g 4= U

*Various wall shapes considered as new edges to orient

Chapter 4 — Behavior-Based Programming

Wall Following

*Can allow squeezing into tight spaces

— Need careful choice of whisker lengths on front & side

l'\\l,/ '\ I '

\
Ignored

Chapter 4 — Behavior-Based Programming

Wall Following

*Need to change state diagram to accomplish this:

[Turn Right

Squeeze

Orient

Detect Front Contact

4-63

Chapter 4 — Behavior-Based Programming Winter 2012

Wall Following

*Can use proximity sensors instead of whiskers

— Works the same but can set threshold easily (like setting
whisker length)

=Can use Just one sensor, requires arcing motion:

Robot must make inward arcs
instead of aligning to edge.

* * * * 2 * 4
*
o A *es® M4 .'n‘

*Can use range sensors as well to allow variable
distances from edges during following.

Chapter 4 — Behavior-Based Programming W{nter4; 0611'

Emergent Behaviors

Emergent Behaviors

*When combined, behaviors produce additional
emergent behavior.

— Emergent behavior is higher level
— Should have degree of randomness

" Consider some simulation results combining

wandering and escape behaviors:

The additional escape
behavior keeps robot in
center of environment
more often.

Robot’s traced path shows
much time spent rubbing
up against boundaries
when only wandering and
collision avoidance
behaviors are used.

q:.ihll_.lllllll
L T R L

Wander Wander + Escape

Chapter 4 — Behavior-Based Programming Winte r42—061§

Emergent Behaviors

* Combining wandering with light seeking also helps
alleviate the telotaxis problem:

C e e e Additional wandering
Robot spent much | #7=-r, ™. "~ Sy behavior allows more
time at this light S L IR balanced distribution
SOIEe: I of light exploration.

. . Light Seeking + Wander
Light Seeking Only

Chapter 4 — Behavior-Based Programming Winte r42—0611

Emergent Behaviors

" Combining wandering, light seeking and escape
behaviors results in a more “life-like’”’ behavior
pattern

Rubs up against wall trying .
to get to light source. . _ 0 More time spent

away from wall.

LightSeeking LightSeeking + Wander

More random
behavior like a fly
bouncing against

LightSeeking + Escape LightSeeking + Wander + Escape Gl

4-068

Chapter 4 — Behavior-Based Programming Winter 2012

Emergent Behaviors

=Can use certain combinations to make robot more
efficient:

—e.g., random cleaning task can be improved if combined with
light seeking (e.g., cleaning rooms with the lights on in an

office building)

Cleaning objective is " R ‘ i_
to push dirt to side of L. Some untouched

environment

Before cleaning After cleaning

4-69

Chapter 4 — Behavior-Based Programming Winter 2012

Emergent Behaviors

*With variety of sensors, may develop more
sophisticated behavior (e.g., block sorting)

Chapter 4 — Behavior-Based Programming

Emergent Behaviors

" More interesting behavior requires rich sensory input
as well as environmental knowledge

=We will discuss more later about:

— Various Sensors
— mapping the environment

— navigation

4-71

Chapter 4 — Behavior-Based Programming Winter 2012

Learning Behaviors

Learning Behaviors

= Until now, we have assumed that individual robot
behaviors were well-defined and hardwired.

*Can also “fearn” how to perform simple behaviors.

— robot improves over time and is eventually able to exbub:t the
behavior (similar to the learning of a child). ~

* Most common approaches are based on:

— Genetic Algorithms and Evolutionary Computing ﬁa

— Neural Networks

= ldea: Not always easy to code behaviors, let the robot
figure it out by itself.

Chapter 4 — Behavior-Based Programming

Learning Behaviors
*Typical “things” that are learnt by robots:

— “How” to perform various behaviors:

- light seeking, block pushing, obstacle avoidance, wall following
— “When” to exhibit certain behaviors

— How to walk ... robot develops a walking “gait” (’\>

— Trajectory planning SR\

— Navigation and Localization i)

*The “learning” approach is useful when the problem
(s not well understood and when it is difficult to
hard-code solutions.

Chapter 4 — Behavior-Based Programming

Learning Behaviors

*There are advantages:

+ can produce solutions that may have otherwise
been difficult to program.

+ solutions can be more robust and handle unpredicted
scenarios

*There are disadvantages:

- takes time to “train’ the robot (may be impractical on real-
robots with real sensors and battery limitations)

— difficult to determine useful and efficient “fitness
functions” (for GAs) for complex problems

- optimal solution is not always found.

Chapter 4 — Behavior-Based Programming Winter 2012

Learning Behaviors

" Perhaps a hybrid compromise is best:

— Hardwire simple (obvious) behaviors (e.g., obstacle avoidance,
wall following, light seeking)

— Learn “when’’ to exhibit the behaviors.

*Only seems interesting when robot is sufficiently
complex, containing many:

— sensors (e.g., proximity, light, sound, vision)
— actuators (e.g., wheels, arms, etc...)
— internal monitors (e.g., clock, battery life)

* Unfortunately, most work so far is based on learning
simple behaviors on very simple robots.

Chapter 4 — Behavior-Based Programming

Learning Behaviors

* Although genetic algorithms and neural networks can
result is “good’ behaviors, they are usually
impractical for real robots due to the need for
extensive training iterations.

*Also, for simple behaviors, there is no benefit to
learning them as opposed to hardwiring them as

Instincts. \
e.g., research on training a &-legged robot to r
walk results in a standard walking pattern that

&
can be very easily hard-coded. ‘“

=We will examine a neural network to do this.

Chapter 4 — Behavior-Based Programming

Avrtificial Neural Networks

Neural Networks

" There are opinions as to how to precisely
v y . i ,'
define what a neural network is ;}‘w "

= [t is commonly agreed upon that a neural network is
a network of simple processing elements (called
neurons) which can exhibit complex global behavior,
determined by the connections between the
processing elements and element parameters.

*They are also called Artificral Meural Networks (ANN)
or Simulated Neural Networks (SNN).

Chapter 4 — Behavior-Based Programming

Neural Networks

* Neural Networks are commonly used for:

— system identification and control

* (e.g., vehicle control, process control)
— game-playing and decision making
* (e.g., backgammon, chess, racing)

— pattern recognition

* (e.g., radar systems, face identification, object recognition)

— sequence recognition
* (e.g., gesture, speech, handwritten text recognition)

— medical diagnosis

4-80

Chapter 4 — Behavior-Based Programming Winter 2012

Neural Networks

" They are typically used to learn over time

— They are typically trained to produce desired output

—They are quite robust at handling unexpected data and
dealing with noisy input

— Their performance depends on various parameters

*There are many, kinds of networks that differ in:

— The number of neurons

— The organization and interconnectivity of neurons
— The number of processing layers

— The order of processing

— The type of processing at each neuron

4-81

Chapter 4 — Behavior-Based Programming Winter 2012

Neural Networks

" Each neuron has multiple inputs [, 1,, ..., |

n

— these are typically outputs from other neurons
—they are represented by real number from O to 1

—each input [; has a corresponding weight w; indicating the
“significance’ of the input for the neurons computation

— it is a function of the inputs, usually a weighted sum

—also represented by real number from O to 1

4-82

Chapter 4 — Behavior-Based Programming Winter 2012

Neural Networks

" A neuron continually repeats this process:

1. compute activation (usually a weighted sum)
2. perform a simple operation based on inputs e

. L
3. emit an output o ﬁr

or more hidden layers of

: Layei///v
" A network usually has an input ® 0
layer, an output layer and one 0. Ze
Q\

-/

NEUromns.

» Activation begins at the input layer and
spreads throughout the network to the outputs.

Chapter 4 — Behavior-Based Programming

Neural Networks

=Over time, the values of each neuron as well as the
weights are adjusted so as to produce the correct
output.

= Initially the values are adjusted dramatically (usually
using some sort of punishment/reward
learning strategy) and then over time,
only small changes are made to the
network values.

* The most commonly used type of neural network is a
feed -forward neural network in which there are no
feedback connects (i.e., no loops).

Chapter 4 — Behavior-Based Programming

Back Propagation

" The training of a feed-forward neural network is
commonly based on a supervised learning strategy
called back propagation:

1. Present a training sample to the neural network.

2. Compare the network's output to the desired output from that sample.

Calculate the ervor in each output neuron.

3. For each neuron, calculate what the output should have been, and a scaling factor, how
much lower or higher the output must be adjusted to match the desired output. This is
the local ervor.

4. Adjust the weights of each neuron to lower the local error.

5. Assign "blame" for the local ervor to neurons at the previous level, giving greater
responsibility to neurons connected by stronger weights.

6. Repeat the steps above on the neurons at the previous level, using each one's "blame' as
its ervor.

4-85

Chapter 4 — Behavior-Based Programming Winter 2012

Back Propagation

*Here is an example of how back-propagation works
(example from http://galaxy.agh.edu.pl/~visi/Al/backp_t_en/backprop.html):

"E.g., Y, = f.(e.) is some (possibly non-linear) function
of e, where e, = f(e,)W, + fes)ws,

4-80

Chapter 4 — Behavior-Based Programming Winter 2012

Back Propagation

" Assume that inputs are presented to the network.

* Compute activations for first level of network:

Y1 = fi(eq) = f(wyg 1 Xq + Wy 4°X))
Yy, = f(e;) = (W, o X + Wyp X))

y3 = fi(e3) = f(wyy 37 Xq + W, 37X;)

4-87

Chapter 4 — Behavior-Based Programming Winter 2012

Back Propagation

= Compute activations for second and third levels of
network:

Vi =Fy(ey) =f(Wy 4y + Wy Yo+ W3 ,0Y3)
Y5 = f5(e5) = f(w, 5y, + Wy 5y, + W3 5°Y3)

Ve = fo(€6) = (W, 6Y4 + W5¢Y5)

4-88

Chapter 4 — Behavior-Based Programming Winter 2012

Back Propagation

= Now the output signal y, is compared with the
desired output z which is usually found in the set of
data used to train the network:

Chapter 4 — Behavior-Based Programming

Back Propagation

*Now the output ervor 6, is propagated backwards to
the previous layer, using the same weights as when
computing the output:

Chapter 4 — Behavior-Based Programming

Back Propagation

*Similarly, these ervors are also propagated
backwards:

4-91

Chapter 4 — Behavior-Based Programming Winter 2012

Back Propagation

* Now we update the weights throughout the network,
starting at the first layer:

df.(e,)/de, is the derivative of the
neuron activation function.

n is a “learning constant” which can
vary over time.

Wyq 4 = Wyq 4 + N8, + df(e,)/de, -
W, 4 = Wy, 4 + N8, + df(e,)/de, -
W,q 2 = Wy, + N8, + df,(e,)/de, -
W,o 0 = Wy, , + N8, + df,(e,)/de, -
W, 3 = Wy 3 + NO; + dfy(e;)/de; -
W, 3 = Wy, 3 + NO; + dfy(e;)/de; -

Chapter 4 — Behavior-Based Programming

4-92
Winter 2012

Back Propagation

"Update the weights again for the next layer, using
the outputs from the previous layer:

Wy 4= Wy 4+ N0, + dfy(ey)/de, -
Wy 4 = Wy, + N0, + dfy(e,)/de, -
W34 = W3, + N0, + dfy(e,)/de, -
Wi 5 = Wy 5+ NO; + dfs(es)/des -
Wy 5 = Wy 5 + NO; + dfs(es)/des -
W35 = W35+ Nds + dis(es)/des -

Chapter 4 — Behavior-Based Programming W{nter4; OZ‘;"

Back Propagation

" Finally update the weights in last layer.

— The coefficient affects teaching speed. There are a few techniques
to select this parameter. Often, however, this value is initially large
and decreases over time. This allows “big” weight changes initially
and eventually the network does not change much.

Wy = Wy g+ NOg + dfg(eg)/deg -y,
W56 = W5 ¢ + NOg + dfg(eg)/deg -ys

Chapter 4 — Behavior-Based Programming W,'nte;,;oz:

Neural Network Example

*Consider a back propagation network

used to teach a robot to walk.

*Each leg can be in one of 3 modes:

— Stance = leg down and pushing backward
— Still = leg not moving

— Swing = leg swinging forward

Chapter 4 — Behavior-Based Programming

Neural Network Example

"Each leg must coordinate with the other legs in order
to achieve walking.

*Can build a neural network for each leg and then
interconnect them.

*One way of interconnecting is to only connect to the

legs beside and behind it.
[X

Each network
examines the
output of the
leg across
and behind it.

Chapter 4 — Behavior-Based Programming

Neural Network Example
" The output of each network is the mode of the leg

—1 = stance, O = still, -1 = swing

* Each network may look like this:

leg behind

leg beside

Chapter 4 — Behavior-Based Programming

Neural Network Example

"Each leg must fearn the correct mode per leg

* Networks begin with random weights on each link

*Weights are updated based on feedback from robot’s
success at walking.

— When robot falls down, networks are punished

* Based on backwards propagation which lessens
weight on links that led to the chosen mode

* more likely next time to use a different phase
« punish ALL networks (even if one was correct)

— When robot moves forward without falling they are all
rewarded ... by increasing weights along proper path.

Chapter 4 — Behavior-Based Programming W,’y\tgr42_0q1i

Neural Network Example

*As a result, robot learns to coordinate the legs over
time.

" Typically, the “amount” of punishment and reward
is large at the beginning and decreases over time.

— Larger weight updates cause quicker changes in modes

— Smaller weights can take a long time to converge to a proper
behavior.

*Typical tripod walking “gait” is obtained.:
O\ —® O— L | —O &—_| .\

|
Y o—|

\.O_

—O
L —@
—O

Chapter 4 — Behavior-Based Programming

Neural Network Example
* Technique applies to robots with any

number of legs.

*Can also handle leg failure with minor adjustment:

— Wil need to re-teach all networks again

— Better performance if reconnection

of networks is allowed.:

* can do this manually

* can re-design all networks to have

inputs from ALL other legs.

Re-connect

Chapter 4 — Behavior-Based Programming

Instinctive Behaviors
Using Neuron Networks

Neuron Networks

*Consider a network containing a mix and match of
various neurons to control a robot’s behavior.

— We can create a network for each type of behavior and then
plug them all in together to steer the robot

Sensors Behaviors Actuators

Obstacle Avoidance

%

Wall Following

e g FF

Arbitrator

4-102

Chapter 4 — Behavior-Based Programming Winter 2012

Neuron Networks

= Many neural networks are trained to

learn how to perform simple behaviors.

" Hardwired NMeuron Networks bypass the learning
process of traditional neural networks

—Same idea as building /mnstincts into the robot

“ldea is to avoid training stage for behaviors that are
already well-defined ... for example:

— wandering, obstacle avoidance, light seeking, edge following,
map building etc...

Chapter 4 — Behavior-Based Programming

Neuron Networks

* Neuron networks can be better than programming:

+ neurons implemented with electronics

+ entire networks can be made =

’ . P . "Zf 7
on single electronic “chip” w

—
+ can be made very small using very little power

+ cheap to produce

4-104

Chapter 4 — Behavior-Based Programming Winter 2012

Neuron Networks

= Of course, traditional neural networks can be trained
to accomplish the same thing.

= Unlike neural networks, these hard-wired networks
allow easy enabling and disabling of behaviors over
time.

*They can even be mixed and matched with
traditional neural networks

Chapter 4 — Behavior-Based Programming

Neuron Networks

* Consider modeling a behavior that always moves a
robot forward until it detects an obstacle ahead
using its left or right IR proximity sensor.

— If it detects an obstacle on its left it should
then turn right (and vice-versa).

"We can create three types of neurons:

— sensor neuron that acts as a binary /nput neuron and outputs
a value of O if no obstacle is detected and 1 otherwise.
— motor neuron that acts as a binary output neuron that

turns on a motor when its output is 1 and turns off
otherwise.

— control neuron that enables a behavior

4-100

Chapter 4 — Behavior-Based Programming Winter 2012

Neuron Networks

*We can also create two types of connections:

— excitatory — weight of 1.0
— inhibitory — weight of -1.0

>

" In general, a neuron computes its activation as

— sum of its Inputs (ie., any real number, possibly negative) i

times the weight of incoming connection: act = 2 [; w;
i=1

" The output of a neuron is the activation itself or
some function of the activation

—(e.g., binary neurons may output 1 if activation > O and O
otherwise).

Chapter 4 — Behavior-Based Programming Wintjr—:ooiz

Neuron Networks

" For example for the following neuron, the activation
IS computed as:

aCt = ll(1> s 12(_.1) a 13<__1) B l4(1‘) L, 1, 13 1, act out

I1\ act

I
20O

o Binary
|3 / Neuron

4

" The table to the right gives the
activation and output values of

a binary neuron for some possible input values.

Chapter 4 — Behavior-Based Programming

Neuron Nets — collision Avoidance

"Here is the network and a table showing the possible
outputs:

The motor neurons

_ are binary neurons
This enables the that output 1 if LIR RIR Move LMtr RMtr

behavior to affect act > 0 and output 0
the motors. 0 otherwise.

0
0
0
1
1
1
1

= Notice that the motors turn in the appropriate
direction so as to avoid the obstacle.

Chapter 4 — Behavior-Based Programming Wintjr—;ooiz.

Neuron Nets — collision Avoidance

*Can allow robot to spin away from obstacle by
reversing opposite motor:

—allow motor neuron to output -1, O or 1 according to sign of
activation value

— supplying smaller weight from Move neuron

LIR R IR Move L Mtr R Mtr

0
0.5
@\
0.5

4-110

Chapter 4 — Behavior-Based Programming Winter 2012

Neuron Nets — collision Avoidance

*Recall the problem where the robot may

become “stuck’ in a corner, turning back ®
and forth ?]

*We can solve this by introducing another type of
neuron called a binary sustaim neuron which

computes its output based on the current activation
as well as the previous output:

—act >0 - =1 (‘)
—act=0 - = previous value
—act<oO0 - =0

Chapter 4 — Behavior-Based Programming

Neuron Nets — collision Avoidance

"Here is an updated network ... but it does not work
properly ... what’'s wrong ? o b e e L

IR IR Trn L Trn R Trn L Trn R Mtr Mtr
(0] (0] (0] (0]

Table 0 0 1 0
assumes 0 0 0 1
R Move L AR |+ o [o | 1 | t | o | o
0.5 0 1 0 1
@ *
0 1 0 1

@ >*EI KN RN ENEN RN
—p 1 0 1 0

1 0 1 0
> KN KN N KN RN R KRN

All yellow rows indicate no movement.
Basically, the Turn Left and Turn Right

neurons should NEVER be on together.
0 >EEEIEEENEREREN

Chapter 4 — Behavior-Based Programming Winter 2012

Neuron Nets — collision Avoidance

*Add inhibitory links to prevent one sustain neuron
FVOW\ tMVV\l’V\g OV\. I'F A race condition Prev Prev New New L

occurs here, TrnL TrnR TrnL TrnR Mtr
whichever neuron is 0 0 0 0

Other OV\e l.S OV\: processed first. Xis

either 0 or 1 in this
case.

.
/'QFQ? 05\ N\

—®

0
1

1-x

1
1
1
1
0
0
0

- = A A 0O O O O o o o

0
0
0
1
1
1
1
0
0
0
0

1
0
X
0
0
0
0
1
1
1
1

0

o [0 [+ |t [wa [|walwa

All yellow rows indicate an impossible state since we have n-__----
prevented the sustain neurons from being on together. > NIA NIA N/A NIA

K I A T T Y

SOMETHING IS STILL WRONG !t | » I HE NN AN A7 7 N T

Chapter 4 — Behavior-Based Programming

4-113
Winter 2012

Neuron Nets — collision Avoidance

" The network does not allow the robot to stop turning
once it has started turning away from the obstacle.

— should disable sustain neurons when collision is no longer
detected

" Introduce a new neuron called a pulse neuron:

— Falling Edge Pulse Neuron
= 1 when its activation changes from > O to < O

= 1 when its activation changes from < O to > O

— Rising Edge Pulse Neuron

— Output is O otherwise in both cases

Chapter 4 — Behavior-Based Programming

Neuron Nets — collision Avoidance

"Here is the completed collision avoidance network:

Names changed to distinguish
from other networks.

*Do you remember which way the robot turns when
both its front IR sensors detect an obstacle ?

Chapter 4 — Behavior-Based Programming

Neuron Nets - Escape

" The escape network is similar, but much easier:

*What happens when both side IR
sensors detect an obstacle ?

Chapter 4 — Behavior-Based Programming

Neuron Nets — Light Seeking

= Light-seeking behavior involves determining the
difference between two light sensor values.

*We will allow sensor neurons to have an output
corresponding to the intensity of the light

—(e.g., voltage value normalized so that it outputs a value from
0.0 to 1.0 depending on the light intensity)

— designate a non-binary output with a ~ symbol on the links
leaving the neuron:

»
»
\

Chapter 4 — Behavior-Based Programming

Neuron Nets — Light Seeking

=Here is a similar network:

= Notice the outputs in the

table below.

= This works, but can you

foresee any problems with

a pmctical [M}Ol@W\@l/\tatl’OV\ LLgt RLgt L

R L LMtr RMtr

on a real robot ?

>
0
0
1
0
1
0

>
0
1
0
0
0
1

Chapter 4 — Behavior-Based Programming

Neuron Nets — Light Seeking

"Yes, when the light sensors are both pointed towards

or away from the light source equally, real sensors
will fluctuate in t heir readings

— causes robot to “flutter’ or zig-zag
— can be hard on motors

*Turns are also “spins” so robot
actually stops at each zig and zag.

*Can reduce this effect a little by only turning when

one sensor has a value “significantly” larger than the
other.

Chapter 4 — Behavior-Based Programming

Neuron Nets — Light Seeking

“Just modify the weights from the sensors and to
motors:

Insignificant differences Llgt RLlgt L>R R>L LMtr RMtr
do not cause turning.

Choose threshold
according to desired
sensitivity.

No more negative,
means smoother

turning.
New weights prevent spinning, but simply turning

off one motor instead of reversing it.

4-120

Chapter 4 — Behavior-Based Programming Winter 2012

Neuron Nets — Light Seeking

" Finally, can add neurons to decide whether to be
attracted or repelled from light source:

Repel from Light Attract to Light

4-121

Chapter 4 — Behavior-Based Programming Winter 2012

Neuron Nets - Wandering

" For wandering, we must introduce the notion of a
random neuron that can produce a random value:

— value neuron hard-codes a fixed probability value P
representing the likelihood of producing a binary output

—act = input sum * random value from 0.0 to 1.0

—iFact Ba =0
—ifact< P - =g 0\0

= For smooth wandering, we need to decide:

— when to make a turn
— which way to turn
— how long to turn.

4-122

Chapter 4 — Behavior-Based Programming Winter 2012

Neuron Nets - Wandering

= This network allows the robot to make a random
turn roughly 1/30 = 3% of the time:

- 5
Enable / Left i

Decide ¥

1/30
\ Wander

Right

= Problem:

— robot makes a single turn ... will appear as a “twitch’

" Must keep turning by some random amount

Chapter 4 — Behavior-Based Programming

Neuron Nets - Wandering

" Use sustain neurons and disable them randomly:

5% of the time the
turning is disabled

0.5 QS

Decide il \0 0.5
15510 \ Wander 7 40
Right

These stay on now
until disabled.

Wander / \0 Wander
Enable K Left 05

Chapter 4 — Behavior-Based Programming

4-124
Winter 2012

Neuron Nets - Wandering

*Can also disable whenever enabling neuron is disabled
by using a pulse neuron. Here is the final network:

4-125

Chapter 4 — Behavior-Based Programming Winter 2012

Neuron Nets — Edge Following
*Recall the stages of edge following:

Follow

Orient

Detect Front Contact

4-126

Chapter 4 — Behavior-Based Programming st

Neuron Nets — Edge Following

" Consider following an edge on the

right and moving forward as long as ?
the right sensor detects the edge: A

;dsw /@ 05
=9

*What happens if the robot loses contact ?

Chapter 4 — Behavior-Based Programming

Neuron Nets — Edge Following

*When contact lost, must turn right to regain:

4
-:
N

Disabled when side

contact is regained.
Turns right until collision

detected ahead.

N
©
(@)

0.
Follow

/} Edge :

N\

4-128

Chapter 4 — Behavior-Based Programming Winter 2012

Neuron Nets — Edge Following

*Whenever a collision is detected, turn left to avoid it
. unless we are aligning to the edge again:

Don’t turn away
while aligning to
edge again.

4-129

Chapter 4 — Behavior-Based Programming Winter 2012

Neuron Nets — Edge Following

"Here is the completed edge-following network:

* A similar network can be constructed to follow edges
on the left side of the robot.

Chapter 4 — Behavior-Based Programming

Neuron Nets — Arbitration

= Notice that all networks access the motors.

— Must arbitrate to decide which one has motor control
Edge Avoid Escape YW Attract i Repel Wander
Right Right Right Right Right Right
Need to resolve \ / 2
the conflict here. &

the conflict here.

o
% ¢
Need (6 resolve ®><S

Edge Avoid Escape Repel Wander
Left Left Left Left Left

Chapter 4 — Behavior-Based Programming 4-131

Winter 2012

Neuron Nets — Arbitration

= Must assign weights so that more important
behaviors override the less important ones:

Edge Avoid Escape Attract Jf Repel Wander
Right Right nght Right A Right Right
Priorities set by 0 0 ‘\3 Q /

weights. Higher 'S

weights completely
dominate sum of lower

These two have same weight because
only one is on at a time.

weights so that
subsumption occurs.

Wander
Left

205
Repel
Left

Chapter 4 — Behavior-Based Programming Winter 2012

4-132

Neuron Nets — Arbitration

"Here is an example of how edge following can
override the other behaviors:

Edge Avoid Escape W Attract i Repel Wander
Right Right nght nght Right Right
> Ao

out=04+0.2+0.1+0.05
=0.65

// K A
Edge Avoid Escape Repel Wander
Left Left Left Left Left

Chapter 4 — Behavior-Based Programming

4-133
Winter 2012

Neuron Nets — Arbitration
" Arbitration problem with edge following:

— If the robot is following edge and wants to move forward,
neither Turn neurons are excited, which allows other
behaviors to take control of the steering.

q a-A Edge Avoid Escape | Attract Repel Wander
These are not excited when no collision Right Right Right JA Right A Right Right
detected while following edge.
O
Right % P
Side IR \O Al o®
ign
Right
<1

e @

Edge Av0|d Escape Repel Wande
Left Left Left Left Left

Hence, other behaviors will cause turn.

05

4-134

Chapter 4 — Behavior-Based Programming Winter 2012

Neuron Nets — Arbitration

*Must fix this by allowing a “go straight ahead”
neuron in the edge following network that disables
turning:

Edge
Right

Edge
B\ Straight

/)

Orien
Right

Chapter 4 — Behavior-Based Programming

Neuron Nets — Arbitration

*The new Edge Straight neuron must have the same
weight as the Edge Left and Edge Right:

Edge Avoid Escape Y Attract Y Repel Wander
Right Right nght nght Right Right

Qz

Problem remains:
Light seeking and wandering had weights
ande of 0.5 here so as to avoid the “spinning”

Left movement. How can YOU fix this ?

205
Repel
Left

Chapter 4 — Behavior-Based Programming Winter 2012

v0|d
Left

4-130

Summary

*You should now understand:

— What behaviors are and how they interact together
— How to program simple behaviors

— The ideas behind learning behaviors

— How to program behaviors using neuron networks

4-137

Chapter 4 — Behavior-Based Programming Winter 2012

