Roadmap-Based Path Planning

Chapter 7

Objectives

- Understand the definition of a Road Map
- Investigate techniques for roadmap-based goaldirected path planning in 2D environments
- geometry-based algorithms that decompose the environment into regions between which robot can travel
- sampling-based algorithms that choose fixed or random locations in the environment and then interconnect them to form potential paths.
- To understand some issues in applying these algorithms to real robots

What's in Here?

- Road Maps
- Geometry-Based Road Maps
- Visibility Graph Paths
- Shortest Paths in 2D Among Obstacles
- Real Robot Shortest Paths
- Shortest Paths in a Grid
- Triangulation Dual Graph Paths
- Generalized Voronoi Diagram Paths
- Cell Decomposition Paths
- Trapezoidal Decomposition
- Boustrophedon Decomposition
- Canny's Silhouette Algorithm
- Sampling-Based Road Maps
- Grid Based Sampling
- Probabilistic Road Maps
- Rapidly Exploring Random Tree Maps

Road Maps

- A Road Map is:
- a kind of topological map
- represents a set of paths (or roads) between
 two points in the environment that the robot can travel on without collision
- Road Maps assume that global knowledge of the environment is available.
- They are commonly used to compute pre-planned paths.
- i.e., the first step towards goal-directed path planning

Road Maps

- Usually, the set of paths are stored as:
- a graph of nodes and edges

- a raster grid (graph is implied by cell arrangement)
- Usually, the graph is pre-computed ahead of time without knowledge of start/goal locations.
- start/goal locations are given later as a query.
- a few edges are sometimes added to graph to answer query
- In all cases, the graph is searched to find an efficient (e.g., shortest) path to the goal.
- usually Dijkstra's algorithm, A^{*} or something similar

Road Map Algorithms

- They are categorized into two main categories:
- Geometry-based algorithms
- Sampling-based algorithms

- Geometry-based algorithms use computational geometry methods to compute nodes and graph edges based on various constraints.
- Sampling-based algorithms select random robot configurations (e.g., points) as nodes and then interconnect them based on some constraints.

Geometry-Based Road Maps

Geometry-Based Road Maps

- There are a few that we will look at based on:
- Visibility graphs
- Triangulations dual graphs
- Generalized Voronoi diagrams
- Cell decompositions
- Trapezoidal decompositions
- Boustrophedon decompositions
- Canny's Silhouette algorithm

Visibility Graph Paths

Shortest Path Problem

- How do we get a robot to move efficiently without collisions from one location to another?

Shortest Path Problem

- Moving without collisions is simple with adequate sensors, but how do we direct it towards a goal ?
-What if the environment is complex?

Shortest Path Problem

- Need to examine the map and plan a path
- Consider simpler problem where robot is a point \& obstacles are convex.

Shortest Path Properties

- Shortest path will travel around obstacles, touching boundaries.
- Consider the robot standing at point s.
- Determine support lines of polygon p :

- A support line is a line intersecting p such that p lies completely on one side of that line.
- exactly two called left support and right support lines.
- defined by 2 vertices of p called left \& right support vertices $\left(p_{L} \& p_{R}\right)$

Shortest Path Properties

- Can find p_{L} and p_{R} by checking each vertex using left/right turn test:
- For convex polygons, $p_{i}=p_{L}$ (resp. p_{R}) if both $s p_{i} p_{i-1}$ and $s p_{i} p_{i+1}$ are right (resp. left) turns.
- Just compute:

$$
\begin{aligned}
& \mathrm{t} 1=\left(p_{\mathrm{ix}}-s_{\mathrm{x}}\right)\left(p_{\mathrm{i}+1 \mathrm{y}}-\mathrm{s}_{\mathrm{y}}\right)-\left(p_{\mathrm{iy}}-\mathrm{s}_{\mathrm{y}}\right)\left(\mathrm{p}_{\mathrm{i}+1 \mathrm{x}}-\mathrm{s}_{\mathrm{x}}\right) \\
& \mathrm{t} 2=\left(p_{\mathrm{ix}}-\mathrm{s}_{\mathrm{x}}\right)\left(\mathrm{p}_{\mathrm{i}-1 \mathrm{y}}-\mathrm{s}_{\mathrm{y}}\right)-\left(p_{\mathrm{iy}}-\mathrm{s}_{\mathrm{y}}\right)\left(\mathrm{p}_{\mathrm{i}-1 \mathrm{x}}-\mathrm{s}_{\mathrm{x}}\right) \\
& \text { IF }((\mathrm{t} 1<0) \text { AND }(\mathrm{t} 2<0)) \text { THEN } \mathrm{p}_{\mathrm{L}}=\mathrm{p}_{\mathrm{i}} \\
& \text { IF }(\mathrm{t} 1>0) \text { TND }(\mathrm{t} 2>0)) \text { THEN } \mathrm{p}_{\mathrm{R}}=\mathrm{p}_{\mathrm{i}}
\end{aligned}
$$

Shortest Path Properties

- This support-finding algorithm can take $O(n)$ time but it is practical for small polygons.
- A more efficient algorithm can use a binary search for the left/right support vertices in $O(\log n)$ time. can YOU do this?
- There are some numerical issues with collinearity:

- May have to allow for computational margins.

Shortest Path Algorithm

- We can now apply this by finding all support vertices of our obstacles:

Shortest Path Algorithm

- Now determine which support lines represent valid paths for the robot to travel (i.e, the visible support verrices):

Shortest Path Algorithm

- Do this by eliminating any support line segments that intersect another polygon.

Shortest Path Algorithm

- Since obstacles are convex, it is enough to compare support lines against line segments joining polygon support vertices:

Line Intersection test

- How do we check for line-segment intersection?

- Can use well-known equation of a line:

$$
\begin{aligned}
& =m_{a}+b_{a} \\
& =m_{b}+b_{b}
\end{aligned}
$$

where

$$
\begin{aligned}
& m_{a}=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right) \\
& m_{b}=\left(y_{4}-y_{3}\right) /\left(x_{4}-x_{3}\right) \\
& b_{a}=y_{1}-x_{1} m_{a} \\
& b_{b}=y_{3}-x_{3} m_{b}
\end{aligned}
$$

Line Intersection test

- Intersection occurs when these are equal:

$$
\begin{aligned}
& m_{a}+b_{a}=m_{b}+b_{b} \\
& \rightarrow=\left(b_{b}-b_{a}\right) /\left(m_{a}-m_{b}\right)
\end{aligned}
$$

- If $\left(m_{a}=m_{b}\right)$ the lines are parallel and there is no intersection
- Otherwise solve for, plug back in to get
- Final test is to ensure that intersection (,) lies on line segment ... just make sure that each of these is true:

$$
\begin{aligned}
& -\max \left(x_{1}, x_{2}\right) \geq x \geq \min \left(x_{1}, x_{2}\right) \\
& -\max \left(x_{3}, x_{4}\right) \geq x \geq \min \left(x_{3}, x_{4}\right)
\end{aligned}
$$

More Efficient Approach - Radial Sweep

- More efficient approach can compute and remove all intersections in $O(n \log n)$ time by using a radial sweep.

2nd: Choose a right support line that you know is visible. In a rare case, none are visible, then we must split polygons.

More Efficient Approach - Radial Sweep

-3rd: Do a radial sweep, keeping track of the closest (visible) polygon.

More Efficient Approach - Radial Sweep

- When left support vertex encountered:

If it belongs to current visible polygon, mark it as visible and then set current polygon to null.

More Efficient Approach - Radial Sweep

-When left support vertex encountered:

If it does not belong to current visible polygon, the vertex is not visible, so discard it.

Shortest Path Algorithm (Continued)

- Repeat this process iteratively by letting each visible support vertex become point s
(i.e., assume robot moved there):

Shortest Path Algorithm (Continued)

- By appending all these visible segments together, a visibility graph is obtained:

Shortest Path Algorithm (Continued)

- We can then search this visibility graph for the shortest path from the start to the goal:

Shortest Path in Graph

- We can use Dijkstra's shortest path algorithm to compute the shortest path in this graph.
- Takes $O(V \log V+E)$ time for a V-vertex / E-edge graph

```
I function Dijkstra(G, s,t)
2 for (each vertex v in V[G]) do
3}d[v]=\mathrm{ infinity
4
5
6}\quadQ=queue of all vertice
while ( }Q\mathrm{ is not empty) do
    u = Extract-Min(Q)
    if (u==t) then return;
            for each edge (u,v) outgoing from }u\mathrm{ do
            if (d[v] > d[u] + dist(u,v)) then Relax all edges from u to v, by updating
                    d[v]=d[u]+\operatorname{dist(u,v) (reducing) the cost d[v] at each v if can be}<0
                    previous[v] = u
            Q = Update (Q)
            previous[v] = undefined }\longrightarrow\mathrm{ Remembers how we got to this node.
        d[s]=0
                Initialize all distances to vertices (i.e., d[v]) to \(\infty\), except
                Initialize all distances to vertices (i.e., d[v]) to \(\infty\), except
                start which has distance 0
                start which has distance 0
            Priority queue sorted by distances from s.
```

 Priority queue sorted by distances from s.
    ```

Get the next closet unprocessed vertex. If it is the destination, we are done.

Relax all edges from \(u\) to \(v\), by updating (reducing) the cost \(d[v]\) at each \(v\) if can be reached quicker from u.
```

 Re-sort the queue since priorities may have changed.
    ```

\section*{Shortest Path in Graph}
- Alternatively, we can use the \(A^{*}\) algorithm.
- employs "heuristic estimate" that ranks each node by an estimate of the best route that goes through that node.
- Dijkstra employs breadth-first-search, while A* does a best-first-search.

Dijkstra has no particular focus, all nodes treated equal.


A* has more focused propagation pattern.

\section*{\(t\)}

\section*{Shortest Path in Graph}
- A* algorithm is the same as Dijkstra's except that:
- In Dijkstra's alg., nodes \(v_{i}\) in queue are sorted by \(d\left[v_{i}\right]\)
\(-\ln A^{*}\), they are sorted by \(d\left[v_{i}\right]+E\left[v_{i}, t\right]\) where \(E\left[v_{i}, t\right]\) is an underestimate of the distance from \(v_{i}\) to \(t\).
- Only the Extract-Min(Q) function of line 8 is affected.
- E is often simply the straight line distance from \(v_{i}^{\prime}\) s coordinate to \(t\) 's coordinate.
- This is always an underestimate since the real cost from \(v_{i}\) to \(t\) can never be greater than the straight line cost.

\section*{Shortest Path Traversal}
- From this produced path, we have a set of points and angles.
- We can then apply inverse kinematics for our robot to move it along this path.
- But wait a minute! Our robot is not a point, it's a rectangle. We cannot simply hug along the obstacle boundaries!


\section*{Real Robot Shortest Path}
- Our real-robot will collide with obstacles if it travels along a path computed as we described:


\section*{Real Robot Shortest Path}

\section*{- We need a kind of "safety buffer" around each} obstacle according to the robot's size \& shape:

As long as robot's center stays outside safety buffer, robot's body won't hit the actual obstacle.

In some cases, there may be no safe way between the obstacles (usually when two buffers intersect).

\section*{Real Robot Shortest Path}
- If robot is symmetrical in all directions, we can still work with our same algorithm.
- Only circles are symmetrical in all directions.
- For simplicity, assume a square.

We will use this point (arbitrarily chosen) as our reference point.


\section*{Real Robot Shortest Path}
-Can apply a "growing" procedure to each obstacle:
- Determine edge vectors along model in CCW order:
- Determine edge vectors along polygon in CW order:
- Sort combined edge vectors by angle


\section*{Real Robot Shortest Path}
- Traverse the vectors radialy clockwise starting at \(m_{1}\).
- When sweeping between model vector \(m_{i}\) and polygon vector \(p_{i}\), translate the model such that \(m_{i}=p_{i}\)


Connect reference points of all model translations to form the grown obstacle which will have at most \(\mathrm{n}+4\) vertices.

\section*{Real Robot Shortest Path}
- It is easy to see that as long the reference point of our model lies on our outside the grown obstacle, then the robot will not collide with the real obstacle.


Reference point lies on or outside grown obstacle.

\section*{Real Robot Shortest Path}
- Apply this to all obstacles to obtain the grown obstacle space.


\section*{Real Robot Shortest Path}
- Now apply previous point-robot algorithm.

New starting and destination points are found by centering robot model shape about original start and destination, then using the reference points.

\section*{Real Robot Shortest Path}
- Robot now moves safely along path:


\section*{Real Robot Shortest Path}
- But our robot should be able to fit in between those obstacle. Why doesn't our solution allow this?


\section*{Real Robot Shortest Path}
- Use a more accurate model to produce a more accurate path.

Robot still cannot fit through some places.


\section*{Real Robot Shortest Path}
- We could use a more complicated approach that allows the robot to pass through certain areas only in specific directions.
- can shrink the model.
- must allow model to rotate.
- Too complicated for us in this course, but can be done.
- Realistically, robot sensors are not reliable enough nor accurate enough to ensure safe travel within areas that require a small margin of error.

\section*{Non-Convex Obstacles}
-What about non-convex obstacles ?
- Can divide them into convex polygons and then apply the same algorithms (although better solutions exist).


\section*{Non-Convex Obstacles}
-What about non-convex obstacles ?
- Can divide them into convex polygons and then apply the same algorithms (although better solutions exist).


\section*{Shortest Paths in Grids}
- How do we find the shortest path in a binary grid?
- Can apply Dijkstra's algorithm by creating an "implicit" graph from the grid.
- Assign weights to nodes according to realistic distance


\section*{Shortest Paths in Grids}
- As cells are processed in order of distance from source, a wavefront propagates through the grid:


\section*{Shortest Paths in Grids}
- For an \(M \times N\) grid, the graph has \(O(M N)\) vertices and O(MN) edges.
- Algorithm thus takes \(O(M V \log M N)\) runtime.
- More accurate paths can be produced if we increase the number of edges:

Additional edges affect runtime by a factor of around 2.

May set to \(\mathbf{2}\) assuming rectilinear travel around obstacle:


\section*{Shortest Paths in Grids}
- It takes no effort to handle complicated obstacles since algorithm merely concentrates on moving from one grid unit to another.
-What about non-point robots?
- Since robot shape is known ahead of time, we can adjust the weights of adjacent nodes in the grid accordingly.


\section*{Shortest Paths in Grids}
- For each grid location, center robot model (i.e., a collection of grid cells) around that point.
- If any obstacle locations intersect it, disable this grid location either by:
- removing the node from the graph entirely
- setting the weights of edges going in and out of it to \(\infty\).


\section*{Shortest Paths in Grids}
- Another solution to the grid shortest path problem is to convert the grid into vector obstacles, then apply the vector-based algorithm:


\section*{Shortest Paths in Grids}
- Of course we can even do the reverse if we prefer to work with grids (i.e., convert vector to grid):

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline  & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline  & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline - & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline  & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline  & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline  & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline  & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline  & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline  & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline  & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\square\) & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Shortest Paths in Grids}
- A problem does arise however in the more realistic maps (i.e., certainty grids) since sensor data is noisy and we no longer have binary values.

Not clear whether an obstacle lies here or not.

We can always choose some threshold to produce binary grid (e.g., >40\% certainty indicates obstacle)

Realistically, robots cannot operate in such a cluttered environment since its sensors would produce too much noise and false readings. So choosing threshold is reasonable.

Triangulation Dual Graph Paths

\section*{Triangulation}
- A geometric strategy is based on computing a triangulation of the environment:
- Decompose into triangular free-space regions


\section*{Triangulation}
- There are MANY such triangulations and also many algorithms for obtaining them.
- One approach is to start by decomposing the freespace region into \(y\)-monotone polygons.
- A simple polygon is called \(y\)-monotone if any horizontal line is connected.


\section*{Triangulation}
- We need to understand different types of vertices:
- A regular vertex is a vertex that is adjacent (connected to) at least one vertex with a larger \(y\)-coordinate and one with a smaller \(y\)-coordinate.
- A irregular up vertex is a vertex that is not connected to any vertices with a larger \(y\)-coordinate.
- A irregular down vertex is a vertex that is not connected to any vertices with a smaller \(y\)-coordinate.


\section*{Triangulation}
- We need to regularize the polygon with holes:
- Break it into a subgraph such that all vertices are regular except the most extreme vertices in the \(y\) direction.
- Result is a decomposition into monotone pieces.
- Basic idea:
- Vertical sweep from top to bottom regularizing vertices that are irregular down
- Vertical sweep from bottom to top, regularizing vertices that are irregular up.

\section*{Triangulation}
- Can do this by first sorting vertices in vertical order:


\section*{Triangulation}
- Perform vertical sweep downwards connecting irregular down vertices to the next nearby vertex:


\section*{Triangulation}
- Perform vertical sweep upwards connecting irregular up vertices to the next nearby vertex:


Chapter 7 - Roadmap-Based Path Planning

\section*{Triangulation}
- Some details have been left out, but result is a set of monotone polygons:


\section*{Triangulation}
- Monotone pieces each triangulated separately:
- Do vertical sweep downward, connect vertices from left monotone chain to right


\section*{Triangulation}
- Monotone pieces each triangulated separately, then results are joined together:


\section*{Triangulation}
- Better algorithm is a Constrained Delaunay Triangulation
- Produces "fatter" triangles
- Nicer looking decomposition
- More complicated, but still practical
- Beyond the scope of this course


VS.


\section*{The Dual Graph}
- Compute the dual graph which gives a rough idea as to the paths that the robot may travel.

To get dual graph, place vertex at center of each triangle. Connect vertices only if they share a triangle edge.


\section*{Computing a Path}
- Robot can compute path in dual graph from start triangle to goal triangle:
- Can use Dijkstra's algorithm

Path not necessarily efficient.


\section*{Computing a Path}
- The efficiency of the path solutions are highly dependant on the triangulation:


\section*{Refining the Path}
- Can also simplify (i.e., refine) any path in the dual graph by computing the shortest path in the sleeve formed by connected triangles:


\section*{Refining the Path}
- As a result, the computed path will be more efficient in terms of length
- But path will generally travel close to boundaries.

\section*{Possible} collision due to inaccurate sensors.


\section*{Refining the Path}
- The zig-zag effect essentially disappears when path is refined.


\section*{Problems}
- If traveling between centers of triangles, this could be dangerous, for thin triangles:
- Computing refined path will always correct this:


\section*{Problems}
- Alternatively, we can connect vertices at midpoints of triangulation edges:


\section*{Generalized Voronoi Diagram Paths}

\section*{Voronoi Road Maps}
- A Voronoi road map is a set of paths in an environment that represent maximum clearance between obstacles.

-They are sometimes preferred in robotics since they reduce the chance of collisions because sensors are often inaccurate and prone to error.
- Other names for this roadmap are generalized Voronoi diagram and retraction method.
- It is considered as a generalization of the Voronoi diagram for points.

\section*{Voronoi Diagram}
- Let \(S\) be a set of \(n\) points. For each point \(p\) of \(S\), the Voronoi cell of \(p\) is the set of points that are closer to \(p\) than to any other points of \(S\).
- The Voronoi diagram is the space partition induced by Voronoi cells.

-If the points were obstacles, a robot would travel along the edges of a Voronoi diagram if it wanted to keep maximum distance away from the obstacles.


\section*{Voronoi Diagram}
- Multiple ways of computing a Voronoi Diagram.
- We consider the simplest, and leave the more advanced algorithms for a computational geometry course.
- Basically, we compute each Voronoi cell as the intersection of a set of half-planes: \(O\left(n^{2} \log n\right)\) time.


\section*{Generalized Voronoi Diagram}
-What if the obstacles are polygons?
- Now we compute the Generalized Voronoi Diagram in which the edges forming it maintain maximal distance between edges of the environment, as opposed to just points.


\section*{Generalized Voronoi Diagram}
- Edges formed based on three types of interaction:

Edge-Edge


Edge-Vertex

- There are different ways of computing this diagram:
- Exact computation
- Approximation - Discretize Obstacles
- Approximation - Discretize Space

\section*{Computing the GVD}
- Exact computation
- Based on computing analytic boundaries
- Boundaries may be composed of high-degree curves and surfaces and their intersections.
- Complex and difficult to implement
- Robustness and accuracy problems


\section*{GVD Approximation - Method 1}
- Approximation - Discretize Obstacles
- Convert each obstacle into a set of points by selecting samples along boundaries.
- Compute regular Voronoi diagram on resulting point sets.
- Will produce some diagram edges that are not traversable. Must prevent travel along these portions.
- Can be slow to compute, depending on samples.

obstacle.

\section*{GVD Approximation - Method 1}
- Approximation - Discretize Obstacles (continued)
- Consider computing the GVD for the following example:


GVD Approximation - Method 1
- Approximation - Discretize Obstacles (continued)
- Compute sample points along obstacle border.


\section*{GVD Approximation - Method 1}
- Approximation - Discretize Obstacles (continued)
- Here is the Voronoi Diagram for the point set:


\section*{GVD Approximation - Method 1}
- Approximation - Discretize Obstacles (continued)
- Can discard (ignore) all edges of GVD that are defined by two consecutive points from the same obstacle:


Can also discard all edges that lie completely interior to any obstacle (i.e., green ones here).

\section*{GVD Approximation - Method 1}
- Approximation - Discretize Obstacles (continued)
- Resulting GVD edges can be searched for a path from start to goal (e.g., store GVD as graph, run Dijkstra's shortest path algorithm)

First/Last edges connect start/goal to closest vertex of GVD.


\section*{GVD Approximation - Method 2}
-Approximation - Discretize Space
- Convert the environment into a grid.
- Compute the Voronoi diagram on resulting grid by propagating shortest paths from each obstacle point.
- Remember which obstacle point the shortest path came from for each non-obstacle grid cell.
- Can be slow to compute, depending on samples.


A finer grid produces a more accurate answer but takes longer

\section*{GVD Approximation - Method 2}
-Approximation - Discretize Space (continued)
- Create a grid from the environment


\section*{GVD Approximation - Method 2}
-Approximation - Discretize Space (continued)
- Compute the Voronoi diagram by running a grid shortest path, setting each obstacle cell as a source

All cells in each obstacle i given unique
\(I_{i}\).

\section*{Environment}
border
included as
obstacle.


Roadmap paths found when point is equally reachable by two different sources: That is,
\(I D_{i}==I D_{j}\) where \(\mathbf{i} \neq \mathbf{j}\).

\section*{GVD Approximation - Method 2}
-Approximation - Discretize Space (continued)
- Use secondary-ID's to get path portions in between areas of non-convex obstacles.

Each cell \(\mathbf{k}\) in obstacle i given a unique \(I^{D_{i k}}\) such that consecutive cells along border given consecutive IDs as ID \({ }_{i}\), \(I D_{i+1}, I D_{1+2}\), etc..


Now also keep path-portions in which cell has been reached by two same primary sources with nonconsecutive secondary IDs. That is,
\(I D_{i k}=I D_{i m}\)
where
ABS(k-m) >

\section*{GVD Approximation - Method 2}
- Approximation - Discretize Space (continued)
- Compute a path in the Voronoi diagram


\section*{GVD Approximation - Method 2}
- Approximation - Discretize Space (continued)
- Resulting path is pretty good too:


Cell Decomposition Paths

\section*{Cell Decomposition}
- There are various ways to decompose (i.e., split up) the environment into cells.

- We have already looked at grid-based methods, which are based on the same idea
- Now we will look at how to geometrically break up the environment into small-sized polygonal regions called cells.
- We will then see how to determine a path through these cells.

\section*{Trapezoidal Decomposition}
- Perhaps a simpler way to compute paths is to decompose the environment into simpler vertical cells in the form of trapezoids or triangles:


\section*{Trapezoidal Decomposition}
- How do we make the trapezoids?
- extend rays vertically directed up and down from each vertex of each obstacle and (including outer boundary).

- when rays intersect obstacles (or boundary), the ray stops, becoming a trapezoid edge
- need to compute intersections of each
 ray with all other obstacles.
- can be done efficiently using a plane sweep technique, assuming vertices of all obstacles are sorted in \(x\) direction.

\section*{Trapezoidal Decomposition}
- While doing this, maintain which trapezoids are adjacent (i.e., beside) one another.
- Adjacent trapezoids will share an
 edge with the exact same endpoints.
- Determine midpoint of each trapezoid edge (except polygon/boundary edges).
- Form a graph where
- the nodes are the midpoints of the trapezoidal edges and two nodes are connected if they represent midpoints of edges belonging to the same trapezoid


\section*{Computing a Path}
- Easy to compute path now in the resulting graph:
- Just determine which trapezoid contains start/goal and connect the start/goal to each node of that trapezoid.


\section*{Improving the Path}
-Can we make the computed path more efficient?
- Add more points (not just midpoint):
- fixed number per edge, or
- fixed distance between points
-As a result, the path:
- may take different path around obstacles
- will be more efficient
- may travel closer to boundaries


\section*{Boustrophedon Cell Decomposition}
- Boustrophedon cell decomposition considers only critical points.
- critical points are obstacle vertices from which a ray can be extended both upwards and downwards through free space.
- Connect midpoints of formed line segments as with the trapezoidal decomposition technique.

- Cells, in general, are no longer trapezoids or triangles

\section*{Boustrophedon Cell Decomposition}
- Now less cells than trapezoidal, but cells are more complex

Critical points


\section*{Boustrophedon Cell Decomposition}
- Can interconnect cells, but connections are topological, not actual valid paths:


\section*{Boustrophedon Cell Decomposition}
- To find a path now, we can use various strategies:
- Bug algorithm, cell boundary following etc...


\section*{Canny's Silhouette Algorithm}
- Another approach is to decompose the environment into silhouette curves which represent borders of the obstacles:

Regions are no longer trapezoids or triangles (in general).


\section*{Canny's Silhouette Algorithm}
- To do this, consider a vertical line sweeping horizontally from the leftmost environment vertex to the rightmost

Sweep line is split into two vertical split

As the line sweeps, the topmost and bottommost extreme points form the silhouette boundary.

The points at which splits \& merges occur are called critical points
lines when an obstacle is encountered.


\section*{Canny's Silhouette Algorithm}
- Compute a path by determining extreme points of vertical line passing through start/goal and then following silhouette path:

Here are two solutions ... one going upwards, the other
downwards.


\section*{Sampling-Based Road Maps}

\section*{Sampling-Based Road Maps}
- There are a few that we will look at based on:
- Fixed Grid sampling
- Probabilistic sampling
- Random Tree expansion

- Such algorithms work by choosing fixed or random valid robot positions and then interconnecting them based on close proximity to form a graph of valid paths.

\section*{Grid-Based Sampling}

\section*{Grid-Based Sampling}
- Grid-based sampling is perhaps the simplest technique based on overlaying a grid of vertices and connecting adjacent ones.
- Accuracy and feasibility of resulting path depends on granularity of grid.
- We already looked at this strategy in terms of grid maps.

- Only interconnect vertices that do not intersect obstacle boundaries
-Multiple ways of interconnecting...

\section*{Grid-Based Sampling}
- Here is a straight forward 4-connectivity grid.
- Compute path from start to goal using graph search:


\section*{Grid-Based Sampling}
-With additional "neighbor" connections, the graph allows more efficient paths... at a cost of increased space and slower computation time.


Can use a variety of neighbor interconnection strategies per node:

\section*{Grid-Based Sampling}
- Here is the result with a reduced-size sample set (i.e., more coarse grid)


\section*{Setting the Grid Size}
- We can ensure that a path exists:
- choose grid size (i.e., width between connected nodes) to be smaller than minimum distance between any two obstacle edges that do not share a vertex:

Minimal edge distance here. Choose grid size accordingly:



\section*{Setting the Grid Size}
- How do we determine the shortest distance between two line segments \(L_{1}\) and \(L_{2}\) ?
- Consider first the distance from a point \(p\) to a line \(L\) :

\(-p\) will intersect line \(L\) at a right angle, say at point \(q\)
- let be the distance of \(q\) along \(L\) from \(a\) to \(b\)
\[
=\frac{\left(x_{p}-x_{a}\right)\left(x_{b}-x_{a}\right)+\left(y_{p}-y_{a}\right)\left(y_{b}-y_{a}\right)}{\left(x_{b}-x_{a}\right)^{2}+\left(y_{b}-y_{a}\right)^{2}}
\]
- the coordinates of \(q\) are:
\[
x_{q}=x_{a}+\left(x_{b}-x_{a}\right) \quad \text { and } y_{q}=y_{a}+\left(y_{b}-y_{a}\right)
\]
\(\varepsilon\) is then just the distance between \(\mathbf{p}\) and \(\mathbf{q}\).

\section*{Setting the Grid Size}
- We then need to determine whether or not \(q=\left(x_{q}, y_{q}\right)\) lies on the segment \(L=a b\).
- If \(0 \leq 1\) then 9 lies on the segment and therefore \(\varepsilon=|\overline{p q}|\) else \(\varepsilon=\min (|\overline{p a}|,|\overline{p b}|)\)


Setting the Grid Size
- Let \(\varepsilon=\delta(p, L)\) be the shortest distance function from a point \(p\) to a segment \(L\).
- We can use this to find the minimum distance between two segments \(L_{1}\) and \(L_{2}\) as:
\[
\varepsilon=\operatorname{Min}\left(\delta\left(a, L_{2}\right), \delta\left(b, L_{2}\right), \delta\left(c, L_{1}\right), \delta\left(d, L_{1}\right)\right)
\]


\section*{Grid-Based Sampling}
- The main problem here is it causes too many grid points in open areas.

Wasteful to have many grid points here.


\section*{Grid-Based Sampling}
- Can always do a quad-tree-like decomposition, determining the smallest gaps within certain areas, recursively.


Details have been left out as to how to connect at borders.

Probabilistic Road Maps

\section*{Probabilistic Road Maps}
- Probabilistic Road Maps (PRM) are sampling-based mapping strategies.

- They are created by selecting random points (i.e., samples) from the environment and interconnecting points that represent valid short path lengths.
- They perform fairly well, but are best for situations in which robot configurations are more complex than a single point robot.
- Solution depends on how many nodes are used and how much interconnectivity there is between nodes.

\section*{Probabilistic Road Maps}
- Algorithm produces a graph \(G=(V, E)\) as follows:

LET \(V\) and \(E\) be empty.

\section*{REPEAT}

Let \(v\) be a random robot configuration (i.e., random point)
IF ( \(v\) is a valid configuration) THEN
// i.e., does not intersect obstacles add \(v\) to \(V\)
UNTIL \(V\) has \(n\) vertices
FOR (each vertex \(v\) of \(V\) ) DO
Let \(C\) be the \(k\) closest neighbors of \(v\) // i.e., the \(k\) closest vertices to \(v\) FOR (each neighbor \(c_{i}\) in \(C\) ) DO

IF ( \(E\) does not have edge from \(v\) to \(c_{i}\) ) AND (path from \(v\) to \(c_{i}\) is valid) THEN

Add an edge from \(v\) to \(c_{i}\) in \(E\)
ENDFOR
ENDFOR

\section*{Probabilistic Road Maps}
- Here is an example of randomly added nodes and their interconnections (roughly, \(n=52\) and \(k=4\) ):


\section*{Probabilistic Road Maps}
- How do we find the \(k\)-nearest neighbors?
- Multiple strategies:
- "Brute Force" (check everything \(O\left(n^{2} \log n\right)\) ) - KD-Trees
- \(R\)-Trees
- VP-Trees

- The KD tree is the most popular since it is relatively straight forward to implement.
- Basically, divides recursively the sets of points in half...alternating with vertical/horizontal cuts.

\section*{\(K-D\) Trees}
- Here is how to a KD-Tree is constructed:


\section*{\(K-D\) Trees}
- Once constructed, we find the \(k\)-nearest neighbors of a leaf.
- Start by recursively searching down the tree to godgagoggog do find the rectangle that contains the vertex \(v\) (for which we are trying to find its neighbors)


\section*{\(K-D\) Trees}

\section*{- Compute closest neighbor on way back from} recursion:


We can find the \(\mathbf{k}\) neareast neighbors as follows:
1. Let closest neighbor \(\mathbf{v}_{\mathbf{c}}\) be the point in the first window on way back from recursion.
2. Compute a circle with radius \(\mathbf{v v}_{\mathbf{c}}\).
3. Check vertices in all rectangles that intersect the circle for a better neighbor.
4. If a better neighbor \(\mathbf{v}_{\mathrm{c}}{ }_{\mathrm{c}}\) is found, shrink the circle to a smaller radius defined by \(\mathbf{v v}^{\prime}{ }_{\mathbf{c}}\).
5. Continue in this way until the root is reached.

Repeat the above procedure \(\mathbf{k}\) times...making sure to flag the closest neighbor each time so that it is not found again.

\section*{Probabilistic Road Maps}
- Here are some maps for various \(n\) and \(k\) values:

\(\mathrm{n}=100, \mathrm{k}=5\)

\(\mathrm{n}=500, \mathrm{k}=5\)

\(\mathrm{n}=100, \mathrm{k}=10\)

\(\mathrm{n}=500, \mathrm{k}=10\)

\(\mathrm{n}=100, \mathrm{k}=20\)


\section*{Probabilistic Road Maps}
- PRMs perform well in practice, but are susceptible to missing vertices in narrow passages
- Could lead to disconnected graphs and no solution:


\section*{Probabilistic Road Maps}
-PRMS perform well when the robot configurations are more complex
- when robots are not just points, but different shapes in different positions.
- performs very well for robot arm kinematics


\section*{Rapidly-Exploring Random Tree Maps}

\section*{Rapidly Exploring Random Trees}
- Rapidly Exploring Random Trees (RRTS):
- each node represents random robot configuration (i.e., point representing valid robot location in environment).
- single query planner which covers the space between the start/goal locations quickly
- root starts at the current robot position.

- grows outwards from the start either completely randomly or somehow biased towards the goal location.
- input parameters are the number of nodes to be used in the tree and the length (i.e., step size) of edges to add.

RRT Algorithm
-The algorithm produces a tree \(G=(V, E)\) as follows:
LET \(V\) contain the start vertex and \(E\) be empty.
REPEAT
LET q be a random valid robot configuration (i.e., random point)
LET \(v\) be the node of \(v\) that is closest to \(q\)
LET \(p\) be the point along the ray from \(v\) to \(q\) that is at distance \(s\) from \(v\).
IF (vp is a valid edge) THEN // i.e., does not intersect obstacles
add new node \(p\) to \(V\) with parent \(v / /\) i.e., add edge from \(v\) to \(p\) in \(E\)
UNTIL \(V\) has \(n\) vertices


\section*{RRT Maps}
- Here are some maps for various \(n\) and \(s\) values:

\(\mathrm{n}=100, \mathrm{~s}=10\)

\(n=1000, s=10\)

\(n=100, s=25\)

\(n=1000, s=25\)

\(n=100, s=50\)

\(\mathrm{n}=1000, \mathrm{~s}=50\)

\section*{RRT Problems}
- RRTs have problems expanding through narrow passages and getting around obstacles:


\section*{RRT Guiding}
-Can we bias the results to head towards the goal ?
- Use goal point for expand direction instead of random


\section*{Greedy RRTS}
- A greedy approach to the RRT growth is to allow the tree to expand beyond the step size s:


\section*{Reaching the Goal}
- We have yet to see how to stop the growth when the goal is reached.
- Make the following changes to the algorithm:

LET \(V\) contain the start vertex and \(E\) be empty.

\section*{REPEAT}

LET \(q\) be a random valid robot configuration (i.e., random point)
LET \(v\) be the node of \(V\) that is closest to \(q\).
IF (distance from \(v\) to goal < \(s\) ) THEN
\[
p=\text { goal }
\]

ELSE
LET \(p\) be the point along the ray from \(v\) to \(q\) that is at distance \(s\) from \(v\). IF (vp is a valid edge) THEN // i.e., does not intersect obstacles add new node \(p\) to \(V\) with parent \(v\) // i.e., add edge from \(v\) to \(p\) in \(E\)
UNTIL \(V\) has \(n\) vertices

\section*{Dual Trees}

\section*{- It is more beneficial (faster) to maintain two trees \(G_{1}=\left(V_{1}, E_{1}\right)\) and \(G_{2}=\left(V_{2}, E_{2}\right)\)}

LET \(V_{1}\) contain the start vertex, \(V_{2}\) contain the goal vertex, LET \(E_{1}\) and \(E_{2}\) be empty.

\section*{REPEAT}

LET \(q\) be a random valid robot configuration (i.e., random point)
LET \(v\) be the node of \(v_{1}\) that is closest to \(q\).
LET \(p\) be the point along the ray from \(v\) to \(q\) that is at distance \(s\) from \(v\).
IF ( \(p\) is a valid configuration) THEN
add new node \(p\) to \(V_{1}\) with parent \(v\)
LET \(q^{\prime}\) be \(p\)
LET \(v^{\prime}\) be the node of \(v_{2}\) that is closest to \(q^{\prime}\).
LET \(p^{\prime}\) be the point along the ray from \(v^{\prime}\) to \(q^{\prime}\) that is at distance \(s\) from \(v^{\prime}\).
IF ( \(p^{\prime}\) is a valid configuration) THEN
add new node \(p^{\prime}\) to \(V_{2}\) with parent \(v^{\prime}\) Swap \(G_{1}\) and \(G_{2}\)
ENDIF


\section*{Merging Trees}
- As a result, the trees grow towards each other and eventually (hopefully) merge:

\(\mathrm{n}=100, \mathrm{~s}=10\)

\(\mathrm{n}=200, \mathrm{~s}=10\)

\(n=300, s=10\)
- Trees remain separate graphs, but merge when a node from one tree is within distance s from the other tree.

\section*{Merging Trees}
- A variety of environments work using this strategy:


Each of these results have
\(\mathrm{n}=100\)
\(\mathrm{s}=20\)

\section*{Merging Trees}
- Sometimes, it takes a while to get them to merge:

\(n=100, s=20\)

\(n=1000, s=20\)

\(\mathrm{n}=500, \mathrm{~s}=20\)

\(\mathrm{n}=10000, \mathrm{~s}=20\)

There are not 10,000 points here...the path was found before that.

\section*{Summary}
- You should now understand:
- How to efficiently plan the motion of a robot from one location to another in a 2D environment.
- Various techniques for computing planned paths.
- How to "grow" obstacles to accommodate real robot solutions.
- How to combine what we've learned here with what we learned in robot position estimation and navigation to fully control a robot's position at all times.```

