

Chapter 2

Variables and Control Structures

What is in This Chapter ?
This chapter explains the notion of a variable which is a fundamental part of mathematics,
problem solving and computer programming. Variables are used throughout a program with
various control structures such as if statements as well as for and while loops. These are
discussed with various examples. The idea of writing procedures and functions is explained
in the context of the Processing language.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 40 -

 2.1 Problem-Solving With Variables

When we use a function in a program, it is necessary to store the result somehow so that it can
be used later in the program. Remember a “standard” computer only evaluates one
instruction at a time from your program. It is similar to the idea of having only one hand to
perform an operation. For example, recall the example from chapter 1 where we needed to
solve the thirst-quenching problem. If you wanted to perform pourDrink() with one hand, you
would probably need to expand on the instructions by making use of the counter top to put
things down occasionally so your hands are free:

Two-handed Algorithm One-handed Algorithm

AlgorithmX:
1. get off couch
2. walk to kitchen
3. go to refrigerator
4. chooseDrink()
5. drink it

chooseDrink():
1. open refrigerator
2. if there is a carton of juice then {
3. pourDrink()
 }
4. otherwise if there is a soda then {
5. take soda
6. open soda
 }
7. close refrigerator

pourDrink():
1. take the carton
2. close refrigerator
3. getGlass()
4. pour lemonade or juice into glass
5. go to refrigerator
6. open refrigerator
7. put carton in refrigerator

getGlass():
1. go to the cupboard
2. open cupboard
3. take a glass
4. close cupboard

chooseDrink():
1. open refrigerator
2. if there is a carton of juice then {
3. pourDrink()
 }
4. otherwise if there is a soda then {
5. take soda
6. open soda
7. go to counter
8. put soda down on counter
9. go to refrigerator
 }
10. close refrigerator
11. go to counter
12. pick up drink
pourDrink():
1. take the carton
2. go to counter
3. put carton down on counter
4. go to refrigerator
5. close refrigerator
6. getGlass()
7. pick up carton
8. pour lemonade or juice into glass
9. put down carton
10. go to refrigerator
11. open refrigerator
12. go to counter
13. pick up carton
14. go to refrigerator
15. put carton in refrigerator
getGlass():
1. go to the cupboard
2. open cupboard
3. take a glass
4. put glass down on counter
5. close cupboard

COMP140

Notice a
one han
one “han
make us
memory
that the
counter

Notice in
refrigera
in order
counter,
there. L
from the

In reality
Howeve
stored s
juice dow
later the
informat

A

A single
variable

Conside
need to
algorithm
and the
variable

For each
can refe
store the
result.

05/1005 – Va

all the chang
nd available
nd” (i.e., pro
se of “count
y) to “put do
program ca
top is analo

n the algori
ator. This w
for the refr
 that’s like
Likewise, g

e computer’

y, such deta
er, it is impo
o that we c
wn somewh

en. So, it is
tion/data. A

A variable

 algorithm o
must be gi

er our one-h
place both

m. In the p
carton are
s (i.e., two

h variable, w
er to it later.
e carton. H
So, perhap

ariables and C

ges that are
e. Since a t
ocessor) ru
ter tops” (i.e

own” (i.e., s
an continue
ogous to th

thm that the
was becaus
rigerator an
going to the
oing back t
s memory a

ails are usu
ortant to ind
can use it la
here but for
s important
A variable is

e is a locati

or program
iven a uniq

handed algo
the glass

pourDrink(
e sitting on t
unique loca

we need to
 It makes
However, w
ps instead o

Control Struct

e necessar
typical com
unning your
e., storage

store) the in
e performing
e compute

ere were re
se with only
d cupboard
e computer
to the refrig
and ready t

ually an obv
dicate what
ater in the p
rgot where
in our algo

s used to st

ion in the co

 may use m
ue name so

orithm for g
(or soda) a
() function, f
the counter
ations on th

o choose a
sense to u

when there
of “glass”, w

ures

 - 41 -

ry now beca
puter progr

r program, w
e space in t
ntermediate
g other ope
r’s internal

epeated trip
y one hand
d doors to b
r’s memory
gerator is lik
to do some

vious part o
t information
program. F

we put it ?
orithm to sp
tore data:

omputer’s m

many variab
o that it can

getting a dri
nd possibly
for example
r. That sho
he counter t

meaningful
se the labe
is no juice,

we could us

ause you ha
ram also ha
we will also
the comput
e values/obj
erations. T
memory.

ps back and
, the glass

be opened a
y to store or
ke going ba
ething).

of the solutio
n is being s
For example

 We would
pecify when

memory tha

bles to store
n be identifi

ink from the
y the carton
e, during st
ould help us
top) to store

l variable n
el “glass” to

the algorith
se the label

ave only
as only
o have to
ter’s
jects so

The

d forth from
and carton
and closed
r retrieve so
ack to the ta

on and nee
stored and w
e, what if w
d not be ab
and where

at stores a

e intermedi
ed later.

e refrigerato
n on the co
teps 9 throu
s to see tha
e these obj

name (i.e.,
store the g

hm gives ba
“drink” inst

 the counte
 had to be
. When we

omething th
ask at hand

ed not be m
where it is

we placed th
ble to fill up
e we are sto

single piece

ate results

or. Recall t
ounter top d
ugh 12, bot
at we need
ects.

a label) so
glass and “c
ack a soda
tead:

Fall 2011

er to the
put down
e go to the

hat we left
d (i.e., back

mentioned.
being

he carton of
our glass

oring

e of data.

. Each

that we
during the
h the glass
two unique

that we
carton” to
can as the

1

f

s
e

e

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 42 -

So, each variable that we make will have its own counter space on the counter top. When
we create (or declare) a variable, we are really reserving space for an object on the counter
top. And as with any reservation, we need to have a name for the reservation … which
corresponds to the label (i.e., variable name).

When a variable’s space has been reserved, usually there is nothing yet in that space … just
the label. The term null is often used to indicate that nothing has been stored in the variable
yet (i.e., noting is at that spot on the counter top). Once we put something in the variable (i.e.,
on the counter top at that label), the item that we place there is called the value of the variable.

Each variable that we declare (i.e., each time we
reserve space for something), we are actually
taking up space in the computer’s memory. You
may already know that your phone, your ipod,
your flash drive, your computer etc… all have
limited memory (or storage) space. The
computer’s memory space is called RAM, which
stands for (Random Access Memory). At the
time that these notes were written, some phones
had 512MB (roughly 512 million bytes) of storage,
while typical computers had 8GB (roughly 8 billion
bytes) of storage.

Consider, for example, a computer with 1GB of
storage. Each time we declare a variable, we are
reserving space in the RAM. That is, we are
using up a portion of the computer’s available
memory. The bigger the object that we are
storing, the more space that it takes up. So,
here, we see that the carton would take up a little
more space than a glass of orange juice.

The labels carton and drink are called references, since they are used to refer to a particular
object. The reference is actually just a number within the sequence of storage bytes in the
RAM. It is also known as a memory address, because it “sort of” represents the “home” of
the object, as a real life address uniquely identifies a home in the real world.

As we will see later, there are simple kinds of objects (such as numbers and letters) called
primitives that are stored in a simpler manner.

As with any real counter top, we can alter at any time what we place at that location on the
counter. Similarly, we can change a variable’s value at any time but putting a different value
there. What happens to the old value ? It simply disappears.

In real life the object at a specific spot on the counter does not disappear when we put a new
object there at the exact same location. So variables in a computer are a little different that
real life. When it comes to replacing a variable’s value with a new value, it is easiest to
understand that process as over-writing the variable’s value.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 43 -

You may already have experience with over-writing information, perhaps
from erasing mp3 songs from your ipod or phone, by putting new ones on
the ipod/phone … the old songs are replaced (or overwritten) by the new
ones. Variables are overwritten in the same manner.

So now, we should adjust our code to make use of the variables.

Notice what the code now looks like with two variables drink and carton:

AlgorithmX:
1. get off couch
2. walk to kitchen
3. go to refrigerator
4. drink ← result of chooseDrink()
5. drink the drink

chooseDrink():
1. open refrigerator
2. if there is a carton of lemonade or orange juice then {
3. drink ← result of pourDrink()
 }
4. otherwise if there is a soda then {
5. drink ← the soda
6. open drink
 }
7. close refrigerator
8. return drink

pourDrink():
1. carton ← the carton
2. drink ← result of getGlass()
3. pour carton contents into drink
4. go to refrigerator
5. put carton in refrigerator
6. return drink

getGlass():
1. go to the cupboard
2. open cupboard
3. drink ← the glass
4. close cupboard
5. return drink

Notice that the drink variable represents either a can of soda, an empty glass or a glass with
lemonade or orange juice in it, depending on the line of the program. The ← is used to
indicate that something is to be stored in the variable (i.e., that we want to give the variable a
new value).

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 44 -

Notice as well how go to the counter and put soda down on counter and go to refrigerator
are all combined into one storage step as drink ← soda. That’s because leaving the
refrigerator and heading over to the counter was done as a means to store the soda can on the
countertop so that the single hand is free again to close the refrigerator. The entire storage
process is now specified with just one instruction.

Similarly, the go to counter and pick up drink combination as well as the go to counter and
pick up carton combination is analogous to simply getting the value of the variable in that it
gets the object stored at that location on the countertop. The functions chooseDrink(),
pourDrink() and getGlass() all bring back (i.e., return) a drink, whether it is a full glass, an
empty glass or a soda can. The drink is returned (from each function) back to the function
that called it.

The return value is the value returned as a result of the function.

The idea of a return value becomes more obvious when the function is mathematical. For
example, sine(90) is naturally understood to return the value 1 and squareRoot(100) would
naturally return the value 10.

One more point to mention regarding the variables is with respect to where (and how often)
they are used. You will notice that the drink variable is used throughout the algorithm,
whereas the carton variable is used only within the pourDrink() function. Variables that are
used only with a single function/procedure (e.g., carton) are called local variables because
they are only used locally (i.e., within the vicinity of the function or procedure). In contrast,
variables that are used across many functions/procedures (e.g., drink) are known as global
variables.

Recall from chapter 1 that a parameter is a piece of data that is provided to a function. We
used a parameter to represent the number of glasses/plates and utensils that we wanted to get
from the cupboard: getGlasses(8). We also used
parameters to specify the values for drawing our
houses such as the (x, y) coordinates and width X
height dimensions.

A parameter is similar to a variable because it is a
value that is used in your program. A parameter is
different, however, in that it usually represents a
value that remains constant within the context of
where it is being used.

For example, when performing the getGlasses(8) function, the value of 8 is fixed (i.e.,
unchanging) while we are getting the glasses. Also, when we call rect(100, 50, 100, 100) in
Processing to draw a rectangle, these 4 parameters are fixed/constant while the rectangle is
being drawn. Since you (the algorithm designer and/or programmer) came up with these
constant values, we can say that these values represent incoming algorithm parameters.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 45 -

In general, an algorithm may have many initial parameters and like variables they are usually
given names. So inside an algorithm or computer program a parameter will usually look just
like a variable. However, you should understand that these parameters will not change
throughout the execution of the algorithm/program.

Later, you will create your own functions and procedures that may take incoming parameters.
You will assign a name/label to these incoming values. You should understand though that
the values of the parameters will NOT change throughout the function/procedure.

When developing your own algorithms to solve a problem, it is important to understand the
difference between what has already been given to you (i.e., parameters) and what you need
to figure out on your own. In the following examples, see if you can develop a computational
model and identify the incoming parameters and variables that you will need.

Example:

Bob and Steve went on a vacation together. During the trip Bob paid for all the food and for
the hotel. Steve paid for the gas and for the entertainment. Write an algorithm to compute
the amount of money that Bob owes Steve (or Steve owes Bob) after the trip, assuming that
they decided to split the expenses evenly ?

How many algorithm parameters are there ? What are they ?

Algorithm: TripExpenses
 f: food cost
 h: hotel cost
 g: gas cost
 e: entertainment cost

1. each ← (f + h + g + e) / 2
2. difference ← each – (g + e)
3. if difference < 0 then Bob owes Steve the difference
4. otherwise steve owes bob the difference

Example:

There are n kids in a room. As it turns out, some kids have socks on (with or without shoes),
some kids are wearing shoes (with or without socks), and some kids are wearing both socks &
shoes. Develop a computational model & algorithm to determine how many kids are barefoot?

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 46 -

Algorithm: Barefoot
 n: # of kids in total
 x: # kids with socks on
 y: # kids with shoes on
 z: # kids with socks & shoes on

1. socksOnly ← x – z
2. shoesOnly ← y – z
3. print (n – z – socksOnly – shoesOnly)

Can you re-write the algorithm without using the socksOnly and shoesOnly variables ?

Example:

A team of n people work together painting houses for the summer. For each house they paint
they get $256.00. If the people work for 4 months of summer and their expenses are $152.00
per month, how many houses must they paint for each of them to have one thousand dollars at
the end of the summer?

Algorithm: PaintHouses
 n: # people on team

1. goal ← ((n * $1000) + (4 months * $152 per month))
2. houses ← (goal / $256 per house)
3. print houses

Notice that the 1000, 4, 152 and 256 here are all fixed/constant values, as opposed to
parameters.

A constant is a single piece of data that does not change throughout the algorithm

In a more general version of this problem, we can make any (or all) of these values to be
adjustable parameters.

In each of the above examples, the parameters and variables are all numbers. When
programming, however, sometimes the variables and parameters may be of a different nature.
For example, sometimes the input to an algorithm may be in the form of text, such as a
person’s name or an address. Or perhaps the variables come in the form of yes/no answers
(i.e., true/false). Consider these examples:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 47 -

Example:

Assume that you are given a name of a person in one of the following formats:

“Firstname Lastname”
“Lastname, Firstname”
“Firstname MiddleInitial. LastName”
“Lastname, Firstname MiddleInitial.”

You want to develop an algorithm that will determine whether or not the name is properly
formatted to one of these formats. The output should be “YES” if properly formatted,
otherwise “NO”. How would you write the algorithm ? Assume that the name is the only
incoming parameter in the form of a bunch of consecutive characters.

Algorithm: NameFormat
 n: the name

1. if (n does not start with capital letter) then print NO
2. if (n has a lower case letter after a space character) then print NO
3. if (n has weird characters in it) then print NO
4. if (n has a comma and there is no space after it or no letter before it) then print NO
5. if (n has a middle initial that has more than one character) then print NO
6. otherwise print YES

Example:

Assume that you want to take a vote among 5 friends to find out whether or not
they agree to some issue (e.g., like not wearing speedos at a pool party). Each
person votes yes or no. Develop an algorithm that determines the majority
response (either yes or no).

To begin the algorithm, consider first getting all 5 votes and storing them. Then
use the votes to determine the majority.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 48 -

Algorithm: Majority
 v1, v2, v3, v4, v5: the votes of the 5 people

1. yesCount ← 0
2. noCount ← 0
3. if v1 = yes then yesCount ← yesCount + 1
4. otherwise noCount ← noCount + 1
5. if v2 = yes then yesCount ← yesCount + 1
6. otherwise noCount ← noCount + 1
7. if v3 = yes then yesCount ← yesCount + 1
8. otherwise noCount ← noCount + 1
9. if v4 = yes then yesCount ← yesCount + 1
10. otherwise noCount ← noCount + 1
11. if v5 = yes then yesCount ← yesCount + 1
12. otherwise noCount ← noCount + 1
13. if yesCount > noCount then display YES
14. otherwise display NO

In this example, the yes and no parameters are considered to be boolean values.

A boolean is a value that is either true or false.

So we can say that yes is the same as true and no is the same as false.

Now that you understand how to identify algorithmic parameters and variables, as well as how
to develop and use simple computational models, it is important to discuss how these variables
are represented in a real computer.

 2.2 Variable Representation

All information in the computer is actually stored in the electronics
as voltages … high and low voltages that can be thought of as
billions of 1’s and 0’s that have some kind of meaning to them.
That is, all user information (whether it is a name, phone number,
picture, email, database, game, etc..) is stored as 1’s and 0’s which
we call bits.

As humans, we have a hard time working at such a low level. We
do better working with things like numbers, characters and real-
world objects. So, rather than work with single bits, we group
these bits into more abstract or higher-level packages.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 49 -

A group of 8 bits is known as a byte. A byte can represent 256
combinations of 1’s and 0’s. That is, if we think of each bit as being
a switch which is either on or off, we can flip the 8 switches in 256
unique combinations. This allows a single byte to store a number
from 0 to 255.

When two bytes are required to represent a number, the pair of bytes is called a word. A word
can store a number in the range from 0 to 65535. We can continue to group bytes together to
store even larger integer numbers.

So, the bit and the byte are the two most
primitive forms that a computer uses for
number representation. Most computers will
use the term boolean to represent a 0 or 1,
but instead of saying “0” or “1” the terms
“false” and “true” are used.

Bytes can also be used to represent letters, digits, punctuation, etc. which are called
characters. How so ? Well, back in 1968 it was decided that computers conform to a
numbering standard called ASCII (American Standard Code for Information Interchange).
That is, each combination of numbers in the range from 0 through 127 was mapped to (i.e.,
corresponds to) a particular keyboard character.

Here is the ASCII table (provided as a reference only … DO NOT try to memorize it):

ASCII value Character(s)
0 null

1-31 various special characters
10 line feed
13 carriage return
32 space

33-47 !”#$%&'()*+,-./
48-57 0123456789
58-64 :; ?@
65-90 ABCDEFGHIJKLMNOPQRSTUVWXYZ
91-96 [\]^_`

97-122 abcdefghijklmnopqrstuvwxyz
123-127 {|}~□

So, for example, the letter “A” corresponds to number 65 in the ACSII table which is number
01000001 in binary bits (we will not discuss bit representation any further in this course).
There are also versions of extended ACSII tables covering the numbers from 128 to 255. In
addition, since computers began to be used internationally, 256 combinations were not enough
to represent the letters of various international languages. Therefore, a new standard called
Unicode has been developed (and continues to be expanded) to account for the other
characters. However, a single byte is no longer sufficient to represent the character … two or
more bytes are required.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 50 -

In addition, we can actually use bytes to represent real numbers (also called floating-point
numbers) such as 3.14159265. Also, by making assumptions on one particular bit in a byte
(i.e., the most significant bit, also called the sign bit), we can allow the numbers to be either
negative or positive. There are many details regarding number representation, but we will not
discuss them further in this course.

The point is that bits are grouped to form bytes (or characters) which are also grouped to form
larger numbers. Ultimately, this leads to what are known as primitive data types that are
used in most programming languages. Here are the four basic primitives that are available in
most programming languages (although the names may differ in each language):

• boolean – true or false
• integer – a positive or negative whole number
• floating-point number – a positive or negative real number with decimal places
• character – a letter, digit, punctuation or some other keyboard character

These are called primitive because they are the most basic types of data that we can store on
the computer. Some languages will further distinguish between various types of integers or
floats. For example, the following are the four official primitive data types in Processing (&
JAVA) that can represent integers of various sizes:

Type Bytes Used Can Store an Integer Within this Range
byte 1 -128 to +127
short 2 -32,768 to +32,767

int 4 -2,147,483,648 to +2,147,483,647
long 8 -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

Notice that the various types take up a different amount of memory space.

Similarly, there are two official primitive data types in Processing (& JAVA) to store floating-
point numbers:

Type Bytes Used Can Store a Real Number Within this Range
float 4 -1038 to +1038

double 8 -10308 to +10308

Regardless of how we group the bytes, all information/data can be represented through the 4
basic primitives of boolean, integer, floating point numbers and characters.

So why are we talking about this ? Well, when programming, some languages (like
Processing and JAVA) force you to specify the types for all of your variables. That means,
for every variable that you create, you must indicate its type and its name.

In Processing and JAVA, for example, in order to use a variable to store a primitive kind of
value (e.g., a boolean, integer, floating-point number or character), you must specify in your

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 51 -

program the type followed by the name (must be unique) of the variable. Here are some
examples:

boolean hungry;
int days;
byte age;
short years;
long seconds;
char gender;
float amount;
double weight;

The above examples show all 8 primitive possible types that you may use in Processing/JAVA
programs. Note that these will differ from language to language. Notice as well that there is
a ; character after each line, as with any step of an algorithm.

Each line above is responsible for declaring a variable. That means that a space is reserved
in the computer’s memory (with the given label) that can hold a value of the given type.

Declaring a variable, DOES NOT assign it any value, it only reserves space for the variable. In
processing, after you declare a variable, you MUST give it a value before you use it. For
example, suppose that tried to do this within one of your Processing functions:

 int days;
 print(days); // prints out the day variable’s value

You would get the following error, preventing your program from running:

Interestingly, Processing allows you to create global variables (i.e., variables outside of a
function which are available through your entire program). In this case, it will assign a value of
0 to your variable and it will not produce an error.

A note about variable names … make sure to pick meaningful names that are not too long !!
The name must be unique and it is case-sensitive (i.e., Hello and hello would not be
considered the same).

Variable names may contain only letters, digits and the ‘_’ character (i.e., no spaces in the
name). As standard convention, multiple word names should have every word capitalized
(except the first).

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 52 -

Here are some good examples of variable names:

• count
• average
• insuranceRate
• timeOfDay

• poundsPerSquareInch
• aString
• latestAccountNumber
• weightInKilograms

There is one more restriction when it comes to writing processing code. It is a good
idea NOT to use width and height as variable names because these are variables
that are already defined in Processing, which represent the width and height of the
drawing area.

We use the term assign to represent the idea of “giving a value” to a variable. In Processing,
the assignment operator is the = sign. So, we use = to put a value into a variable.

Here are a few example of how we can do this with some of the variables that we declared
earlier:

hungry = true;
days = 15;
gender = 'M';
amount = 21.3f; // (in JAVA only) floats must have an 'f' after them
weight = 165.23;

Something VERY important to remember when learning to program is that the value of the
variable must be the same type of object (or primitive) as the variable’s type that was
specified when you declared it earlier. So for example, in the following table, make sure that
you understand why the examples on the left are wrong, while the right examples are correct:

int days;
days = 10.2789;

int days;
days = 10;

boolean hungry;
hungry = 'y';

boolean hungry;
hungry = false;

char sex;
sex = "F";

char sex;
sex = 'F';

To help cut down the number of lines of code in our program, we are allowed to both declare
and assign a value to our variables all on one line. So, from our earlier examples, we can do
the following:

boolean hungry = true;
int days = 15;
char gender = 'M';
float amount = 21.3f;
double weight = 165.23;

A variable may be declared only once in the program, but we may assign a value to it multiple
times.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 53 -

Can you determine the output of this piece of code:

int days;

days = 43;
print(days); // prints out 43
days = 15;
print(days); // prints out 15

So, variables can be re-assigned a value, but cannot be declared again. Therefore, the
following code will NOT compile:

int days = 365;
print(days);

int days = 7; // cannot declare days again
print(days);

Here are some more pieces of code. Do you know what the output is ?

int x;
int y;
x = 34;
y = 23;
print (x + y);

Here is a similar example. Notice in Processing (and JAVA) that we are allowed to declare
multiple variables of the same type on the same line, each separated by a ',':

int x, y;
x = 34;
y = x;
print(x + y);

Here is another one:

int x, y, z;

x = 3*2*1;
y = x + x;
z = x;
print(z);

Note that even though we use x a few times, it does not change its value.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 54 -

Here is one that is a little more interesting:

int total;
float average;

total = 12 + 25 + 36 + 15;
average = total / 4;
print("The average is ");
print(average);

Here is the output:

The average is 22.0

Notice that the print() function also allows you to display a fixed set of characters defined
within double quotes. This fixed set of characters is called a String.

Each time we call print() , the information will appear on the same line, so it is important to
have the extra space character at the end of the string above, otherwise the result would be
crowded close to the text like this:

The average is22.0

We can also combine the two print statements into one line as follows:

print("The average is " + average);

This code will append the average variable’s value to the string by using the '+' operator.

A similar function called println() is available that will allow you to stop printing on one line and
start another:

println("The average is ");
print(average);

will produce:

The average is
22.0

If you have a value that will remain constant throughout your program you can use the
keyword final (implying that it has its final value and will not change again) before the
variable’s type. In this case, you must assign the value to the constant when it is declared:

final int DAYS = 365;
final float INTEREST_RATE = 4.923;
final double PI = 3.1415965;

Normally, constants use uppercase letters with underscores (i.e., _) separating words.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 55 -

 2.3 Conditional Statements

We have already seen the need to make decisions in our program based on various input and
certain calculations. Recall, for example, the TripExpenses algorithm:

Algorithm: TripExpenses

1. each ← ((f + h + g + e) / 2)
2. difference ← (each – (g + e))
3. if difference < 0 then Bob owes Steve the difference
4. otherwise steve owes bob the difference

Notice here that a decision had to be made as to whether Bob owed Steve the difference or
vice-versa. The if/then/otherwise here is known as a conditional statement (often simply
called an if statement).

Example:

Often, the otherwise part can be left off of an if statement. For example, consider developing
a simple computational model that computes a price for patrons who want to go to the theatre.
Assume that there is a discount of 50% for women that are senior (i.e., 65 or older) or to girls
who are 12 and under. For all other people, the discount should otherwise be 0%.

Develop an algorithm that displays the appropriate discount for a particular person buying the
ticket:

Algorithm: TheatreDiscount
 p: person buying theatre ticket

1. discount ← 0
2. gender ← gender of p
3. age ← age of p
4. if gender is female and age > 64 or gender is female and age < 13 then {
 discount ← 50
 }
5. print discount

Notice that there was no need for an otherwise statement here because the discount was set
to zero and a decision was only necessary to set it to 50 in the two particular cases.

You may notice that step 4 is a little ambiguous because of the “and”s and “or”s being used.
That is, notice how the decision differs based on the placement of parentheses:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 56 -

if (gender is female and age > 64 or gender is female and age < 13) then …
if (gender is female and age > 64) or (gender is female and age < 13) then …
if (gender is female and (age > 64 or gender is female) and age < 13) then …
if (gender is female and (age > 64 or gender is female and age < 13)) then …

Which is the correct understanding of the problem ? The 2nd one. When programming, it is
important to be as clear as possible in your code. Therefore, try to be aware of the need for
parentheses when the code seems complex.

As it turns out, “and”, “or” and “not” are common operators in computer science, called logical
operators. They allow you to work with Boolean values (i.e., true/false values) to combine
them in logical ways in order to achieve an overall Boolean result.

For example, age>64 results in either true or false as does age < 13. Also, gender is
female will also produce a true or false result. When we and/or these true/false values
together, we end up with an overall true/false result that is used by the if statement to decide
whether or not to evaluate the code within the body of the if statement.

Below is a “truth table” explaining the results of using any two boolean values, say b1 and b2,
in an if statement:

b1 b2 if (b1 and b2) if (b1 or b2) if (not b1) if (b1)
false false false false true false
false true false true true false
true false false true false true
true true true true false true

Notice that the and results in true only when both Booleans are true, and false otherwise.
Conversely, the or results in false only when both Booleans are false, and true otherwise.
Also note that the not results in the opposite value of the Boolean. Of course, we can
combine multiple and/or/not operators within the same if statement as in our example.

Example:

Consider writing an algorithm that takes the number grade of a student (i.e., from 0% to 100%)
and outputs a letter grade (from F to A+). To do this, we need to first understand the
computational model … that is, which letter grade corresponds to which number grades:

A = 80% - 100%
B = 70% - 79%
C = 60% - 69%
D = 50% - 59%
F = 0% - 49%

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 57 -

Algorithm: GradeToLetter
 grade: the number grade of a student

1. if (grade is between 80 and 100) then
2. print "A"
3. if (grade is between 70 and 79) then
4. print "B"
5. if (grade is between 60 and 69) then
6. print "C"
7. if (grade is between 50 and 59) then
8. print "D"
9. otherwise
10. print "F"

Notice how each if statement checks to see whether the grade lies within a specific range.
We can re-write this using and operators as follows:

Algorithm: GradeToLetter2
 grade: the number grade of a student

1. if (grade >= 80 and grade <= 100) then
2. print "A"
3. if (grade >= 70 and grade <=79) then
4. print "B"
5. if (grade >= 60 and grade <= 69) then
6. print "C"
7. if (grade >= 50 and grade <= 59) then
8. print "D"
9. otherwise
10. print "F"

This is more realistic when programming because very few (if any at all) programming
languages have a “between” kind of command that allows you to check values within a certain
range.

There is a small issue with the above code in regards to efficiency. The algorithm is correct,
but it is not efficient. Assume that the grade entered was 92%. Step 1 and 2 will be
evaluated. However, the algorithm will then continue with steps 3, 5, and 7 by checking those
if statements … which will all evaluate to false anyway.

We can avoid this inefficiency by created nested if statements. This means that we insert
successive if statements into the otherwise part of the earlier if statements as follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 58 -

Algorithm: GradeToLetter3
 grade: the number grade of a student

1. if (grade >= 80 and grade <= 100) then
2. print "A"
3. otherwise {
4. if (grade >= 70 and grade <=79) then
5. print "B"
6. otherwise {
7. if (grade >= 60 and grade <= 69) then
8. print "C"
9. otherwise {
10. if (grade >= 50 and grade <= 59) then
11. print "D"
12. otherwise
13. print "F"
 }
 }
 }

Notice how the successive if statements are shown indented, as they lie within the otherwise
part of the previous if statement. What happens if 92% is entered ? Steps 1 and 2 are
evaluated, but then since steps 4 through 13 are inside the otherwise part of step 1’s if
statement, they are not evaluated. This is more efficient.

Notice as well the if statement of step 4. Since it is in the otherwise part of step 1’s if
statement, the grade must be less than or equal to 79, since if not, the algorithm would have
stopped on step 2. So, we don’t need to check whether or not grade <= 79 in step 4.
Likewise, the upper bound of 69 and 59 need not be checked in steps 7 and 10. Here is the
better code:

Algorithm: GradeToLetter3
 grade: the number grade of a student

1. if (grade >= 80 and grade <= 100) then
2. print "A"
3. otherwise if (grade >= 70) then
4. print "B"
5. otherwise if (grade >= 60) then
6. print "C"
7. otherwise if (grade >= 50) then
8. print "D"
9. otherwise
10. print "F"

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 59 -

Notice how the otherwise statements are also aligned nicely one after another. Since there is
only one line to evaluate in each if statement, we do not need the braces { }. In such a
scenario it is often the case that we line up the statements as shown, since it is more intuitive
to read.

Example:

Consider another example in which we are given an integer representing a month and we
would like to determine the number of days in that month (we will assume that it is not a leap
year). Here is the table of information that we need to know to begin:

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Days 31 28 31 30 31 30 31 31 30 31 30 31

Here is the algorithm:

Algorithm: DaysInMonth
 month: a month from 1 to 12

1. if (month is 1) then
2. print 31
3. otherwise if (month is 2) then
4. print 28
5. otherwise if (month is 3) then
6. print 31
7. otherwise if (month is 4) then
8. print 30
9. etc..
…

However, you can see that the combined if statements will be 24 lines long! Since there are
only 3 values for the months (i.e., 31, 30 and 28), there should be a way to arrange it in a
format like this …

if (...) then // Jan, Mar, May, Jul, Aug, Oct, Dec
 print 31
otherwise if (...) then // Apr, Jun, Sep, Nov
 print 30
otherwise // Feb only
 print 28

We would just need to group the months into the appropriate category and use or operators to
decide which ones match the corresponding if statement:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 60 -

Algorithm: DaysInMonth2
 month: a month from 1 to 12

1. if ((month is 1) or (month is 3) or (month is 5) or (month is 7) or
 (month is 8) or (month is 10) or (month is 12)) then
2. print 31
3. otherwise if (month is 4) or (month is 6) or (month is 9) or (month is 11) then
4. print 30
5. otherwise print 28

This seems much shorter. How can we shorten the algorithm description even further ?

We can re-arrange the code to check for the 28 day month first, and the 31 day months last:

Algorithm: DaysInMonth2
 month: a month from 1 to 12

1. if (month is 2) then
2. print 28
3. otherwise if (month is 4) or (month is 6) or (month is 9) or (month is 11) then
4. print 30
5. otherwise print 31

Wow. The code works the same way, but is much shorter, cleaner and nicer. It is often the
case that we can re-arrange our algorithm steps in this manner like this in order to make it
more readable and simpler to understand.

Example:

Here is a larger, more complex example. See if you can understand where you should use
nested if statements.

Consider writing a program that will be placed at a kiosk in front of a
bank to allow customers to determine whether or not they qualify for
the bank’s new “Entrepreneur Startup Loan”. Assume that this kind
of loan is only given out to someone who is currently employed and
who is a recent University graduate, or someone who is employed,
over 30 and has at least 10 years of full-time work experience.

The program should display information to the screen as well as ask
the user various questions … and then determine if the person
qualifies.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 61 -

What questions should be asked ?

• Are you currently employed ?
• Did you graduate with a university degree in the past 6 months ?
• How old are you ?
• How many years have you been working at full time status ?

Here is an algorithm:

Algorithm: LoanQualificationKiosk

1. print welcome message
2. employed ← ask user if he/she is currently employed
3. hasDegree ← ask user if he received a university degree within past 6 months
4. age ← ask user for his/her age
5. yearsWorked ← ask user for # years worked at full time status

6. if (employed is true) then {
7. if (hasDegree is true) then
8. print “Congratulations, you qualify!”
9. otherwise {
10. if (age >= 30) then {
11. if (yearsWorked >= 10) then
12. print “Congratulations, you qualify!”
13. otherwise
14. print “Sorry, you do not qualify. You must have
 worked at least 10 years at full time status.”
 }
15. otherwise
16. print “Sorry, you do not qualify. You must be a
 recent graduate or at last 30 years of age.”
 }
 }
17. otherwise
18. print “Sorry, you must be currently employed to qualify.”

You may have noticed that some if statements are nested within others. Of course, the order
that the if statements are evaluated in can vary. That is, the check in step 6 for employment
can be done after the check for the degree, age and years worked. However, since
employment is necessary in all special cases, it is good to check for that first so that the user
code completes quicker when the user is unemployed.

In fact, we could intermix the user input (from lines 2 through 5) with the if statements as
follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 62 -

Algorithm: LoanQualificationKiosk

1. print welcome message
2. employed ← ask user if he/she is currently employed
3. if (employed is false) then
4. print “Sorry, you must be currently employed to qualify.”
5. otherwise {
6. hasDegree ← ask user if he received a univ. degree within past 6 months
7. if (hasDegree is true) then
8. print “Congratulations, you qualify!”
9. otherwise {
10. age ← ask user for his/her age
11. if (age < 30) then
12. print “Sorry, you do not qualify. You must be a
 recent graduate or at last 30 years of age.”
13. otherwise {
14. yearsWorked ← ask user for # years worked at full time status
15. if (yearsWorked >= 10) then
16. print “Congratulations, you qualify!”
17. otherwise
18. print “Sorry, you do not qualify. You must have
 worked at least 10 years at full time status.”
 }
 }
 }

This code may seem a little more cluttered, but it has the advantage that the program ends
quickly and abruptly as soon as any information is entered from the user that disqualifies
him/her. After all, there is nothing more annoying that having to fill out a form with a lot of
information in it only to find out that the first piece of information disqualified you!

In time, you will get used to adjusting your code accordingly to make it more efficient and user-
friendly.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 63 -

 2.4 Counting

Consider a common situation in which you want to count the total of a set of values. For
example, assume that you are having a pizza lunch and you want your employees to tell you
how many slices they each want. Your goal is to determine how many pizzas to buy (assume
8 slices per pizza … and all just plain pepperoni). Write an algorithm for doing this, assuming
that there are n people:

Algorithm: PizzaCount

1. start with a total of 0 slices
2. repeat n times {
3. ask a person for the number of slices that they want
4. add those slices to the total
 }
5. divide the total slices by 8 and print the answer

It seems straight forward. Here is a more formal version:

Algorithm: PizzaCount

1. total ← 0
2. repeat n times {
3. number ← ask a person for the number of slices that they want
4. total ← total + number
 }
5. print total / 8

The code is logical and straight forward. In real life though, the code will usually produce a
non-integer number (e.g., 4.3 pizzas). In this example we would want to increase 4.3 to the
whole number 5 so that we have an integer number of pizzas. In math, the ceiling function is
used to get the nearest integer above the given real value (likewise, the floor function gives us
the nearest integer below the given value).

Example:

What would differ in the above code if we wanted to find the average number of pizza slices
that each person will eat ? Only one thing will change… can you figure it out ?

COM

Ex

Assu
Dev
stair

To b
mod

Som
we a
migh
addi

The
that
coun
incre
exac

The
adds
will i

MP1405/1005

xample:

ume that w
velop an alg
rcase n sta

begin, you s
del ? This

1 + 2 + 3

me of you m
are unawar
ht realize th
ing an incre

Algorithm

1. t
2.
3.
4.
5.
 }
6.

above algo
of counting

nter is calle
eases by 1
ctly the valu

currentHe
s 1 each tim
involve thes

– Variables a

we want to s
gorithm that
irs high ?

should real
 is how ma

3 + 4 + … +

may realize
re of that nif
hat some ki
easingly lar

m: Stairs

total ← 0
currentHe
repeat n tim

total
curre

}
print total

orithm dem
g from 1 to
ed currentH
. Hence, c
ues that we

eight variab
me through
se simple fo

and Control S

stack concre
t will determ

ize that n m
any number

+ n

that this va
fty formula.
nd of count

rge integer

ight ← 1
mes {
← total + c

entHeight ←

onstrates a
some fixed

Height and
currentHeig
e want to ad

ble above is
the loop. M

orms of cou

Structures

- 6

ete slabs o
mine how m

may be a ve
rs we need:

alue can be
. How wou
ter is requir
to the coun

currentHei
← currentH

a very popu
d value (i.e.

that it start
ght goes th
dd together

s an examp
Most loops
unters.

 64 -

n top of eac
many slabs w

ery large nu

computed
uld you go a
red (i.e., a v
nt. Here is

ight
Height + 1

ular form of
, n in this c
ts at 1 but e
hrough the
r … and we

ple of a loop
that you w

ch other to
would be n

umber. Wh

as n(n+1)/2
about solvin
variable) an
one possib

repetition i
case). You m
each time th
values of 1
 do so with

p counter
will use whe

form a stai
eeded to cr

hat is our m

2. Howeve
ng this prob
nd that we n
ble solution

n computer
may notice
hrough the
, 2, 3, 4, …
 the total v

or loop ind
n you are p

Fall

rcase.
reate a

mathematica

er, assume
blem ? You
need to kee

n:

r programs
that the
loop it

…, n. These
variable.

dex becaus
programmin

 2011

al

e that
u
ep

…

e are

se it
ng

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 65 -

Example:

Another kind of counting involves searching through some items to enumerate (i.e., count)
them. Perhaps we need to count the number of items that match some kind of search
criteria. For example, how would we write an algorithm that went through a list of n people
and count how many people were adults ?

Algorithm: CountAdults

1. set the total of the adults to 0.
2. repeat n times {
3. get a person and look at his/her age
4. if the person is 18 years of age or older then {
5. add one adult to the total
 }
 }
6. display the total number of adults

Can you identify the variables being used here ? You should have identified:

• total - since it changes during the program.
• age - since it is found in step 3 and used later in step 4.

Here is the more formal version:

Algorithm: CountAdults

1. total ← 0
2. repeat n times {
3. age ← the age of a person
4. if age >= 18 then {
5. total ← total + 1
 }
 }
6. print total

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 66 -

Example:

Suppose that we wanted to print out the even numbers from 1 to 100. How could we do this ?
Do you know how to check whether or not a number is even ? We can check if the remainder
after dividing by two is zero. The modulus operator (% in Processing and JAVA) gives the
remainder after dividing. We just need to put this into a loop:

Algorithm: OddNumbers

1. for each number n from 1 to 100 {
2. if n modulus 2 = 0 then {
3. print n
 }
 }

This kind of loop is called a for loop (or for each loop) because it repeats the loop for a set of
particular values. Notice that it iterates through each location number from 1 through to 100
and that the numbers are used within the loop (i.e., in step 2). The number n itself is called
the loop variable because it varies (i.e., changes) each time through the loop. In this case,
the loop variable is the same as the loop index or loop counter, as it simply counts from 1 to n.

Example:

Imagine that you are creating a game where two players are moving along a one-dimensional
grid (i.e., path). One player always jumps forward 2 steps at a time, while the other always
jumps forward 3 steps at a time. Develop an algorithm that figures out how many grid
locations have not been landed on if the two players start at the same location (i.e., 0) and they
each jumped up to grid location n.

How do we approach this problem ? First, examine the grid locations covered by player 1:

0, 2, 4, 6, 8, 10, 12, 14, … (seems to be the even numbered locations)

and those covered by player 2:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 67 -

0, 3, 6, 9, 12, 15, 18, 21, … (seems to be the locations that are multiples of 3)

We could try to figure out a formula… but can we do this with some kind of loop counter ?
What if we examine each location at a time … can we determine by the location number
whether or not it would be landed on ?

Algorithm: HopCoverage

1. spotsNotLandedOn ← 0
2. for each locationNumber from 0 to n {
3. if the locationNumber is not divisible by 2 and not divisible by 3 then {
4. spotsNotLandedOn ← (spotsNotLandedOn + 1)
 }
 }
5. print spotsNotLandedOn

Again, we see the for loop used as a way of counting now from 0 to n.

Example:

How could we change the algorithm so that we displayed a list of all the locations that the two
players met at along the way ?

We would just need to find the locations that were multiples of 2 or 3:

Algorithm: HopMeetings

2. for each locationNumber from 0 to n {
2. if locationNumber is divisible by both 2 and 3 then {
3. print locationNumber
 }
 }

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 68 -

Example:

Often, a situation arises where we have a 2-dimensional grid of locations. For example,
imagine selling seats for an event taking place at a stadium. The seats are often arranged in
rows and columns for each section of the stadium. Imagine that some seats are sold (red),
but others are available (gray):

How could we write an algorithm that counted the available seats ?

Algorithm: CountSeats

1. seatsAvailable ← 0
2. for each seat {
3. if the seat is available then {
4. seatsAvailable ← seatsAvailable + 1
 }
 }
5. print seatsAvailable

Its not too difficult to come up with this algorithm and it is logical. Now although the algorithm
above is correct, step 2 is often not precise enough when it comes to programming. There
would need to be a systematic way of getting each seat. Somehow, we need to indicate what
order to get the seats in. Just think of how you would count the seats. You would likely count
the available seats in each row and then go to the next row…and the next one… and so on
until you completed all rows.

So, to do this, we would choose one row (e.g., row 0) and then loop through the seats in that
row… which is the same as going through the columns of the grid. This loop would then need
to be inside a bigger loop that made sure that we systematically went through each row. Here
is what we would do:

COMP140

Algo

1.
2.
3.
4.
5.

6.

Notice th
for each
looping

Nested l
data arra
images,

Exam

Conside
the wind
can be d
before.

Now we
moves a
car’s po
location
image …

05/1005 – Va

orithm: Co

sea
for

}
prin

hat the inne
h row. Whe
g, or simply

loops are q
anged in a
and graph

mple:

er writing a
dow, moving
drawn easil

 need to un
along to the
ints. So, w
of the car a

… perhaps

ariables and C

ountSeatsS

atsAvailab
r each row

for each
 if th

 }
}

nt seatsAv

er loop goe
enever we
nested loo

quite commo
grid pattern
ics involvin

program th
g across th
y, kinda like

nderstand w
e right ? Th
we would ne
and use it i
the top/left

Control Struct

Systematic

ble ← 0
{

h column {
he seat at t

seatsA

vailable

s through t
include one
ops.

on in progra
n such as a
g x/y coord

at will caus
e window t
e drawing t

what is hap
he horizont
eed to intro
n our progr
tmost point

ures

 - 69 -

cally

this row an
Available ←

he seats in
e loop insid

amming. T
applications
dinate syste

se a car to b
to the right.
the house a

pening as t
tal position
oduce a var
ram. Likely
:

nd column
← seatsAv

 a particula
e another l

They often
s that manip
ems.

be displaye
 The car

as we did

the car mov
changes …

riable, say x
y the x refer

is available
ailable + 1

ar row and t
ike this, it is

appear in s
pulate data

ed on

ves. What
… which is t
x, to repres
rs to some

e then {

that this is r
s known ad

situations in
tables, pict

changes as
he x coord

sent the hor
fixed part o

Fall 2011

repeated
d nested

nvolving
tures or

s the car
inate of the
rizontal
of the car’s

1

e

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 70 -

Algorithm: DrawCar

1. for successive x locations from 0 to windowWidth {
2. draw the car at position x
3. x ← x + 10
 }

windowWidth here is a fixed constant representing the width of the window. Notice how x
starts at 0 and then continues to increase by some constant value (in this case 10). The value
of 10 will represent the speed. If we use a smaller number, such as 5, the car will appear to
move slower across the screen, as it will move only half as far each time that we redraw it. A
larger value, such as 20, will double the speed.

A more “proper” way to write the for loop in our algorithm is to specify this fixed increase
amount each time (called the loop increment). We can re-write this as follows:

Algorithm: DrawCar2

1. for x locations from 0 to windowWidth by 10 {
2. draw the car at position x
 }

The “by 10” here is a way of saying that x will be increased by 10 each time the loop restarts.

Example:

Now what if we wanted the car to speed up ? The value of 10 would have to start smaller,
perhaps at 1 and then increase. So the loop increment (i.e., the speed in this case) would
need to increase each time as well as the x value.

Algorithm: AccelerateCar

1. speed ← 0
2. for x locations from 0 to windowWidth by speed {
3. draw the car at position x
4. speed ← speed + 2
 }

Notice the need for a new speed variable and how this variable is used to move the car. The
2 here is the rate of acceleration. For smaller numbers, the car accelerates slower, but for
larger numbers it accelerates faster.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 71 -

Example:

How can you adjust the code above so that the car speeds up until it gets to the center of the
window and then slows down (i.e., decelerates) so that it stops at the right of the window ?

Algorithm: DecelerateCar

1. speed ← 0
2. for x locations from 0 to windowWidth by speed {
3. draw the car at position x
4. if x < (windowWidth /2) then
5. speed ← speed + 2
6. otherwise
7. speed ← speed – 2
 }

 2.5 Conditional Iteration

In the above examples, we used variables and loops to show how we can count within an
algorithm. In each case there was a fixed number of items to iterate through. However, the
situation often arises if real life when the total number of items to iterate through is unknown.

For example, a cashier must be able to repeat the scanning of items from a customer without
knowing exactly how many items there will be. In fact, in this case the number of items is not
important, only the final cost of the items being purchased is required. In such a situation, the
repeated scanning of items will occur until some kind of condition is satisfied. For example,
scanning continues until there are no more items. We will now consider a few more examples
that show the need for conditional looping (i.e., looping that requires some kind of stopping
condition).

Example:

Consider the slight variation of the problem in which we want to find the average of a set of
grades… but we don’t know in advance how many there will be (i.e., n is no longer a
parameter). How would we write the algorithm ?

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 72 -

Algorithm: Average

1. sum ← 0
2. repeat until no more grades available {
3. x ← the next grade
4. sum ← sum + x
 }
5. compute the average to be sum / (total number of grades).
6. print the average.

The condition for stopping the loop is when no more grades are available. Depending on
where the grades came from, this condition would need to be specified more clearly (e.g., if the
user has stopped entering them manually, or if we reached the end of a file, or if some time
limit has been reached, etc..).

Both sum and x are variables here, but there is another “hidden” variable. We need to have
the total number of grades in order to compute the average. Where is this total ? We need to
keep count of the number of grades that have been entered. So, we’ll need this variable
which starts at 0 and then increases each time we get a new grade.

Here is the more formal version:

Algorithm: Average1

1. sum ← 0
2. count ← 0
3. repeat until no more grades are available {
4. x ← the next grade
5. sum ← sum + x
6. count ← count + 1
 }
7. average ← sum / count
8. print average

This kind of repeat loop is called a repeat-until loop because it repeats a loop until a certain
condition occurs.

Often, it is re-written with the “until” part at the bottom as follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 73 -

Algorithm: Average2

1. sum ← 0
2. count ← 0
3. repeat {
4. x ← the next grade
5. sum ← sum + x
6. count ← count + 1
7. } until no more grades are available
8. average ← sum / count
9. print average

The “until part” is called the loop condition, since it is the part of the algorithm that decides
whether or not to continue looping or to stop. Sometimes the word while is used to describe
the condition for looping as follows:

Algorithm: Average3

1. sum ← 0
2. count ← 0
3. while (more grades are available) {
4. x ← the next grade
5. sum ← sum + x
6. count ← count + 1
 }
7. average ← sum / count
8. print average

This kind of repeat loop is called a while loop because it repeats the loop as long as (or while)
a certain condition still occurs. The while loop is more popular in programming than the
repeat-until loop, although they do the same thing. Notice that the condition is the opposite
from the repeat-until. That is, the condition of the “while loop” indicates when to continue the
loop, whereas the condition of the “repeat-until” loop indicates when to stop the loop.

We will make use of the while loop construct more often now in our examples, since this is
used in JAVA and Processing, whereas the repeat-until looping construct is not.

As it turns out, every repeat or for loop can be expressed in terms of a while loop.

For example, recall the AccelerateCar algorithm:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 74 -

Algorithm: AccelerateCar

1. speed ← 0
2. for x locations from 0 to windowWidth by speed {
3. draw the car at position x
4. speed ← speed + 2
 }

Here it is re-written using a while loop:

Algorithm: AccelerateCarWhileLoop

1. speed ← 0
2. x ← 0
3. while (x <= windowWidth) {
4. draw the car at position x
5. speed ← speed + 2
6. x ← x + speed
 }

However, as a “rule of thumb”, a while loop should only be used when there is uncertainty in
how many times the loop will occur. That is, you should only use a while loop when the
condition to stop the loop is generated from an unexpected event, not when a fixed counter is
to be used.

The while loop of the Average3 algorithm, for example, could get its grades one-by-one from
the user, who may type-in a special number to stop the process (e.g., -1). That would be an
unexpected event to trigger the stopping of the loop. Therefore the while loop would be a
good choice. If however, we knew that there were exactly 75 grades available, a for loop may
be used more naturally, asking for grades from 1 to 75 and then stopping automatically.

Here is another example requiring a while loop …

Example:

Consider this example that simulates a cashier scanning items at a checkout line in a store.
A while loop here would fit naturally since there is no way the cashier could know in advance
how many items will be scanned ... it could be 1, 10, 50, etc… In real life, the cashier would
likely press a particular button (e.g., total, or done) once all items are scanned.

Try to identify the variables that would be needed by looking for values that will “vary” during
the program or values that are needed in multiple parts of the program

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 75 -

Algorithm: CashierSales

1. while (there are more items) {
2. scan the next item
 }
3. add the tax to the total
4. get the payment from the user
5. compute the change as payment – total - tax
6. give the change to the customer

You should have identified:

• total cost - since it changes during the program.
• tax - since it is computed in step 3 and used later in step 5.
• payment - since it is received in step 4 and used later in step 5.
• change - since it is computed in step 5and used later in step 6.

Likely, however, you may have missed a “hidden” variable. Notice that step 2 is kind of
vague. Within that step, we need to add the price of the item to the total cost. Likely it would
make sense to first get the price and afterwards add it to the total in a second sub step. Here
is the more formal code with the variables:

Algorithm: CashierSales

1. total ← 0
2. while (there are more items) {
3. price ← result of next scanned item
4. total ← total + price

}
5. tax ← total * 0.13
6. payment ← payment from customer
7. change ← payment – total – tax
8. give back change to customer

The 0.13 here is a constant. While it is true that the tax value may change after a few
years,(and so it is not a permanent value forever) the value does not change while the
program is running and is therefore considered constant.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 76 -

Example:

Assume that you have a nice rectangular
room that measures Wcm x Hcm. You
want to place tiles down on the floor
arranged in a grid pattern so that the
entire floor is covered. However, you do
not want to cut any tiles! Assuming that
you can buy pre-cut square tiles of any
size, what size of tiles should you buy ?

How do we approach the problem ? Once
again, make sure that we understand the
problem.

Consider the picture to the right which has
a 350cm x 500cm room. In order for the
tiles to fit properly, we can only have
whole tiles across any row and any
column. That means, if we have R tiles across a row, then for tiles that are Tcm x Tcm , then
RxT must equal exactly 350. In other words, 350 / T must be a whole number, not a fraction.
So the T must divide evenly into 350. Similarly, T must divide evenly into 500 if we are to fit
them properly in each column as well.

Certainly we could use 1cm x 1cm tiles in our example above, but that would require 175000
tiles (surely you would not want to lay those down yourself) ! In fact, here are all the possible
solutions for our example:

Tile Size Tiles Required
1cm x 1cm 350 x 500 = 175000
2cm x 2cm 175 x 250 = 43750
5cm x 5cm 70 x 100 = 7000

10cm x 10cm 35 x 50 = 1750
25cm x 25cm 14x 20 = 280
50cm x 50cm 7 x 10 = 70

Likely, the favored solution is the one that requires the least amount of tiles … which is the
50cm x 50cm tile solution. The number 50 happens to be the greatest common divisor (i.e.,
GCD) … or greatest common factor (i.e., GCF) of the numbers 350 and 500. In fact, the
problem that we are trying to solve requires us to find the GCD of our two numbers. Can you
think of a simple solution to find that number ?

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 77 -

Algorithm: SimpleGCD
 n1, n2: numbers to which we need to find the GCD

1. gcd ← minimum of n1 and n2
2. found ← false
3. while (not found) {
4. if (gcd divides evenly into n1) AND (gcd divides evenly into n2) then
5. found ← true
6. otherwise
7. gcd ← gcd - 1

}
8. print(gcd)

This program will start off with an attempt to see whether or not the smaller number divides
evenly into the larger one. If that is true, then we have our answer and the while loop quits.
Otherwise, the program keeps subtracting 1 from the potential gcd until one is found.
Ultimately, this number will keep decreasing to 1, and that will be a common divisor to any
number (although it’s the least common divisor). The program assumes that neither number
is zero or negative to begin with.

The above solution will require 300 iterations of the while loop (i.e., gcd decreases from 350,
349, 348, 347, … down to 50). There are more efficient solutions. For example, since the
gcd divides both 350 and 500, we can see that it is still possible to find the gcd by ignoring a
large 350cm x 350cm portion of the floor area and concentrating on the remaining area:

As seen in the diagram, given that we have an n x m floor area remaining, we can continually
extract an n x n floor area (if n < m) or an m x m floor area (if m < n) until we end up with a
remaining floor area in which n = m. In this case, n (or m, since they are equal) is the gcd.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 78 -

We can adjust our algorithm do compute the answer in this manner by repeatedly extracting
the minimum of the dimensions:

Algorithm: BetterGCD
 n1, n2: numbers to which we need to find the GCD

1. a ← n1
2. b ← n2
3. while (a is not equal to b) {
4. if a > b then
5. a ← a - b
6. otherwise
7. b ← b - a

}
8. print(a)

This algorithm produces a better solution … which requires only 5 iterations of the while loop!

In fact, it can be improved even further (i.e., only 3 iterations of the while loop) by using the
modulus operator which takes multiples of the lower dimension away in one step:

We’ll leave the details for you to figure out as a practice exercise.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 79 -

 2.6 Control Structures in Processing

As we have seen already through various examples, the need to repeat steps of an algorithm
often arises as well as the need to make a decision using if/otherwise statements. These are
called control structures in that they specify the flow of control through the program.

The control structures that we have been using in our pseudocode is quite similar to that which
is used in Processing (and JAVA). Here, for example is some code that will run in
Processing:

int grade = 0;
if (grade >= 50) {
 print("Congratulations! ");
 print(grade);
 println(" is a passing grade.");
}
else {
 print(grade);
 println(" is quite low. Oh well, there's always next term.");
}

Notice how the if statements are not capitalized and that we do not use the word then. Also,
notice that in place of otherwise, we use the word else.

The braces { } specify the code that is inside the if or else part of the conditional statement. If
there is only one line within the if or else body, then the braces are not needed. It is often a
good idea to use the braces anyway, even if you have only one line of code because it may
prevent you from making some mistakes.

For example, the following code is not the same as above:

int grade = 0;
if (grade >= 50)
 print("Congratulations! ");
 print(grade);
 println(" is a passing grade.");
else
 print(grade);
 println(" is quite low. Oh well, there's always next term.");

The code above will not compile. Since the brackets are missing, the code is assumed to
have only one line in the if body as follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 80 -

int grade = 0;
if (grade >= 50)
 print("Congratulations! ");
print(grade);
println(" is a passing grade.");
else
 print(grade);
println(" is quite low. Oh well, there's always next term.");

It then sees the else as being out of place. In processing, the else, and anything after it will
then be ignored completely. So the result would be:

0 is a passing grade.

In JAVA, the situation is different. You would get a compile error saying: ‘else’ without ‘if’
and the code would not run at all.

An even worse scenario is when Processing/JAVA does not notice the error at all. Consider
the following:

int grade = 0;
if (grade >= 50)
 print("Congratulations! ");
 print(grade);
 println(" is a passing grade.");
println("All Done.");

In the above code, here is the output:

0 is a passing grade.
All Done.

Clearly this is wrong but the program continues as if nothing bad happened. Also, be careful
not to place a semi-colon ; after the if statement brackets:

int grade = 0;
if (grade >= 50);
 println("Congratulations! " + grade + " is a passing grade.");

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 81 -

In the above code, here is the output:

Congratulations! 0 is a passing grade.

Why ? Because the semi-colon ; at the end of the first line tells Processing/JAVA that there is
no body for the if statement. Thus, the println(…) line is outside the if statement altogether
and is therefore always evaluated.

Recall the GradeToLetter3 algorithm:

Algorithm: GradeToLetter3
 grade: the number grade of a student

1. if (grade >= 80 and grade <= 100) then
2. print "A"
3. otherwise if (grade >= 70) then
4. print "B"
5. otherwise if (grade >= 60) then
6. print "C"
7. otherwise if (grade >= 50) then
8. print "D"
9. otherwise
10. print "F"

Here is the Processing/JAVA equivalent:

int grade = ___; // ignore for now where we got this grade from

if ((grade >= 80) && (grade <=100)) print("A");
else if (grade >= 70) print("B");
else if (grade >= 60) print("C");
else if (grade >= 50) print("D");
else print("F");

Of course, we could space this out on a few more lines, but the result would be the same.

Notice the use of &&. This is called a Boolean operator in Processing/JAVA. Here are three
useful boolean operators:

• && … the same as saying and
• || … the same as saying or
• ! … the same as saying not

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 82 -

You will notice as well that the code used the >= operator. This is called a logical operator
that determines whether one number is greater than or equal to another. It takes the two
values, compares them, and then determines a boolean result of true or false. Here is the
list of all the available logical operators that we can use:

• < less than
• <= less than or equal to
• == equal to
• != not equal to
• >= greater than or equal to
• > greater than

Notice that when we want to ask if something is equal to another thing we use two equal signs
==, not one. The single equal sign = is only used to assign (i.e., give) a value to a variable.

Recall as well the DaysInMonth2 algorithm:

Algorithm: DaysInMonth2
 month: a month from 1 to 12

1. if (month is 2) then
2. print 28
3. otherwise if (month is 4) or (month is 6) or (month is 9) or (month is 11) then
4. print 30
5. otherwise print 31

This could be implemented in Processing/JAVA as follows:

int month = ___; // ignore for now where we got this month from

if (month == 2)

print(28);
else if ((month == 4) || (month == 6) || (month == 9) || (month == 11))

print(30);
else

print(31);

In special cases where there is a list of fixed values that we want to make a decision on (e.g.,
month is a number from 1 to 12), we can use what is known as a switch statement.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 83 -

The switch statement has the following format:

switch (aPrimitiveExpression) {
case val1:

/*one or more lines of JAVA code*/;
break;

case val2:
/*one or more lines of JAVA code*/;
break;

...
case valN:

/*one or more lines of JAVA code*/;
break;

default:
/*one or more lines of JAVA code*/;
break;

}

In the above code, aPrimitiveExpression is either a primitive variable (e.g., a variable of type
int, char, float, etc…) or any code that results in a primitive value. The values of val1, val2,
…, valN must all be primitive constant values of the same type as aPrimitiveExpression.

The switch statement works as follows:

1. It evaluates aPrimitiveExpression to obtain a value (the expression MUST result in a
primitive data type, it cannot be an object (more on this later)).

2. It then checks the values val1, val2, …, valN in order from top to bottom until a value is

found equal to the value of aPrimitiveExpression. If none match, then the default
case is evaluated.

3. It then evaluates the statements corresponding to the case whose value matched.

4. If there is a break at the end of the lines of code for that case, then the switch

statement quits. Otherwise it continues to evaluate all the successive case statements
that follow ... until a break is found or until no more cases remain.

Here is how we can use a switch statement for our DaysInMonth code …

int month = ___; // ignore for now where we got this month from

switch(month) {
 case 2: print(28); break;
 case 4:
 case 6:
 case 9:
 case 11: print(30); break;
 default: print(31);
}

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 84 -

Note that when the month is 4, 6, 9, or 11, then the print(30); is evaluated. The code is not
necessarily much shorter, but it is simpler to read. This is the main advantage of a switch
statement.

One thing that needs mentioning is that the value of the cases must be primitive literals.
That is, they cannot be expressions, ranges (nor Strings). Nor can we make use of the logical
operators such as and and or. So these three examples will not work:

switch (age) {
 case 1 to 12: price = 5.00; break; // Won’t compile
 case 13 to 17: price = 8.00; break; // Won’t compile
 case 18 to 54: price = 10.00; break; // Won’t compile
 default: price = 6.00;
}

switch (name) {
 case "Mark": bonus = 3; break; // Won’t compile
 case "Betty": bonus = 2; break; // Won’t compile
 case "Jane": bonus = 1; break; // Won’t compile
 default: bonus = 0;
}

switch (month) {
 case 2: print(28); break;
 case 4 || 6 || 9 || 11: print(30); break; // Won’t compile
 default: print(31);
}

Getting back to the IF statement, although they are quite easy to use, it is often the case that
students do not fully understand how to use boolean logic. As a result, sometimes students
end up writing overly complex and inefficient code ... sometimes even using an IF statement
when it is not even required!

To illustrate this, consider the following examples of "BAD" coding style. Try to determine why
the code is inefficient and how to improve it. If it is your desire to be a good programmer, pay
careful attention to these examples.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 85 -

Example 1:

boolean male = ...;

if (male == true) {
 println("male");
else
 println("female");

Here, the boolean value of male is already true or false, we can make use of this fact:

boolean male = ...;

if (male) {
 println("male");
else
 println("female");

Example 2:

boolean adult = ...;

if (adult == false)
 discount = 3.00;

Here is a similar situation as above, but with a negated boolean. Below is better code.

boolean adult = ...;

if (!adult) {
 discount = 3.00;

Example 3:

boolean tired = ...;

if (tired)
 result = true;
else
 result = false;

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 86 -

Above, we are actually returning the identical boolean as tired. No if statement is
needed:

boolean tired = ...;

result = tired;

Example 4:

boolean discount;

if ((age < 6) || (age > 65))
 discount = true;
else
 discount = false;

The discount is solely determined by the age. No if statement is needed:

boolean discount;

discount = (age < 6) || (age > 65);

Example5:

boolean fullPrice;

if ((age < 6) || (age > 65))
 fullPrice = false;
else
 fullPrice = true;

Just like above, we do not need the if statement:

boolean fullPrice;

fullPrice = !((age < 6) || (age > 65));
or …
fullPrice = (age >= 6) && (age <= 65);

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 87 -

Now what about the repeat, for and while loops ? They too are control structures. Recall
the stair-counting algorithm:

Algorithm: Stairs

1. total ← 0
2. currentHeight ← 1
3. repeat n times {
4. total ← total + currentHeight
5. currentHeight ← currentHeight +1
 }
6. print total

What would this look like in Processing ? Here is the solution:

int total = 0;
for (int currentHeight = 1; currentHeight <= n; currentHeight++) {
 total = total + currentHeight;
}
println(total);

Let us discuss this code a bit. Notice that the total starts off at 0 and then the currentHeight
is added to it, just as in our pseudocode, and finally the total is printed.

Notice that the for loop has what looks like parameters and code within the parentheses ()
and that it has braces { } just as a function of procedure does. The code within the braces is
called the loop body, and it can be any chunk of code which will be evaluated over and over
again depending on the code within the parentheses.

Lets break down the code within the paretheses. You may notice that there are two semi-
colons that break things into two portions as follows:

(initializer ; loopTest ; countExpression)

Each of these portions is explained here:

• initializer – this is usually used to declare and initialize (i.e., set the starting value for) a
variable (called the loop variable) which will be used as a counter within the loop. The
loop variable can be used anywhere within the for loop but not outside of it. In most
situations, this counter starts off at 0 or 1, but there are some times when you will use
other values.

• loopTest – this is any coding expression that results in a boolean result. It is used to
determine whether or not to go back into the loop again for another round. Usually, this

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 88 -

loop will check if the loop variable has reached some kind of limit. As long as the
boolean expression results in true, the loop will repeat again.

• countExpression – this is a portion of code that is evaluated AFTER each time the
loop has completed one iteration (i.e., one round). It is usually used to increase or
decrease the value of the loop variable by some value (such as 1), although this not
always the case.

So in our example, the loopTest checks to see if the currentHeight <= n. If it evaluates to
true, then it keeps looping, otherwise it no longer repeats the loop code. The loopTest is
checked before the loop starts. If it is false right away, then the entire for loop is ignored and
never evaluated. Otherwise, the loop is evaluated at least once. At the end each loop
iteration (i.e., after the loop body has been evaluated), the countExpression is evaluated and
then the loopTest is performed again in order to decide whether or not to continue another
round at the top of the loop.

The countExpression has a ++ at the end of the currentHeight variable. This is called the
increment operator. It has the same result as doing:

currentHeight = currentHeight + 1;

This is evaluated AFTER each iteration of the loop and BEFORE the loopTest is performed
again.

There is also a decrement operator -- which has the same result as subtracting 1 from the
variable. It is very useful when you are counting down from a number.

Often, in order to keep code simple to read, a programmer will use the letter i to represent the
loop variable (i being short for “index”). Here is how our code will look with i instead:

for (int i=1; i<=n; i++) {
 total = total + i;
}

The code looks much simpler. In addition, if the body of a for loop has only one line of code
in it, then the brace { } characters are not needed:

for (int i=1; i<=n; i++)
 total = total + i;

Recall as well that we sometimes want to count by more than 1 each time.

For example, the code to accelerate a car increased the x value by a speed component as
follows:

COMP140

Algo

1.
2.
3.
4.

Here is w

int
for

}

A few th
width of
window
each tim
What wo
follows:

for (in
 .
}

In this ca
equal to
… your

A simila
round br

for (in
 .
}

In this si
body to
outside

Hence th

05/1005 – Va

orithm: Ac

speed
for x lo
 d
 s
}

what the Pro

t speed =
r (int x=

drawCar
speed =

hings to note
the window
(in pixels).

me.
ould happe

nt x=0; x>
..

ase, x start
 width. Th
program ig

r unintentio
rackets by

nt x=0; x>
..

ituation, JA
be evaluate
of the for lo

he above c

ariables and C

ccelerateCa

← 0
ocations fro
raw the car
peed ← sp

cessing cod

= 0;
=0; x<=wid
rAt(x); /
= speed +

e. First, w
w (in pixels)
 Notice as

n if the stop

>=width;

ts at 0 and
hus, the loo
nores it.

onal situatio
mistake:

>=width;

AVA assume
ed. In this
oop and it is

code is unde

Control Struct

ar

om 0 to win
r at position
peed + 2

de would loo

dth; x=x+s
// detail
2;

width is a pr
). Similarly
s well now t

pping-expre

x++) {

the stoppin
op body nev

on may occ

x++); {

es that the
case, the b
s evaluated

erstood as:

ures

 - 89 -

dowWidth
n x

k like:

speed) {
ls left ou

re-defined p
y, there is a
hat the x va

ession of a

ng condition
ver gets ev

ur if you ac

for loop en
body of the
d once.

 by speed

ut

parameter
height par

alue is incre

for loop ev

n determine
valuated. T

ccidentally p

nds at that s
loop is con

{

in Processi
rameter set
eased by s

valuated to

es that it is n
That is, the

place a sem

semi-colon
sidered to

ng that is s
t to the heig

speed inste

false right

not greater
for loop do

mi-colon ; a

; and that
be regular

Fall 2011

set to the
ght of the
ad of by 1

away as

than or
oes nothing

after the

it has no
code

1

g

COM

for
}
...

Alte

You
outs
oppo

Just
othe
the s

whil

}

As w
cont

whil

MP1405/1005

(int x=0

rnatively, in

int tota
int curr

while (c
 tota
 curr
}
println(

int spee
int x=0;
while (x
 draw
 spee
 x =
}

 should not
side the loo
osed to som

t as with for
erwise your
stopping co

le (n < 1
println

with the if s
tains a sing

le (n >=
println

– Variables a

; x>=widt

n Processin

al = 0;
rentHeight

currentHei
l = total

rentHeight

(total);

ed = 0;
;
x <= width
wCarAt(x)
ed = spee
x + spee

tice that the
p. Howeve
me counter

r loops, you
loop body

ondition ma

00); {
n(n++);

tatements a
gle coding e

0)
n(n--);

and Control S

th; x++) {

ng, we could

t = 1;

ight <= n
l + curren
t++;

h) {
;
d + 2;
d;

e currentHe
er, it is ofte
r reaching a

u should be
will not be

ay never cha

and for loo
expression:

Structures

- 9

{

d have use

n) {
ntHeight;

eight and x
en the case
a known lim

e careful no
evaluated.
ange to fals

ops, the bra

 90 -

d while loo

x variables
that a whil

mit. We will

ot to put a s
 Usually y
se:

// This c

ces { } are

ops in our s

are still nee
le loop wait
l do more e

semi-colon
your code w

code will

e not neces

solutions as

eded, but is
ts for some
examples la

; after the p
will loop fore

loop for

sary when

Fall

s follows:

s now defin
e event, as
ater.

parenthese
ever becaus

rever

the loop bo

 2011

ned

es,
se

ody

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 91 -

Some students tend to confuse the while loop with if statements and try to replace an if
statement with a while loop. Do you understand the difference in the two pieces of code
below ?

if (age > 18) while (age > 18)
 discount = 0; discount = 0;

Assume that the person’s age is 20. The leftmost code will set the discount to 0 and move on.
The rightmost code will loop forever, continually setting the discount to 0.

 2.7 Procedures & Functions in Processing

You may recall, from our discussion of abstraction, that it is often a good idea to simplify our
overall algorithm by making it higher-level. That means, we could hide details that are
unnecessary. For example, if we wanted to create a home scenery, it may make sense to
develop a high-level algorithm like this:

Algorithm: DrawScenery

1. draw the house
2. draw the laneway
3. draw the car
4. draw the lawn
5. draw the trees

This is an easily understood algorithm which hides all the unnecessary details of “how” to draw
the various things. Recall our program for drawing a simple house:

size(300,300);

// Draw the house
rect(100,200,100,100);
triangle(100,200,150,150,200,200);
rect(135,260,30,40);
point(155,280);

How could we abstract out and make this a higher-level algorithm ? We could create a
drawHouse() procedure that will draw the house. Then our program would like simpler like
this:

size(300,300);
drawHouse();

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 92 -

What would the drawHouse() procedure look like ? Well in Processing and JAVA, this is the
format for declaring a simple procedure:

void procedureName () {
 // Write your procedure’s code here
}

Notice that procedure has void at the front. This indicates that there is no value to be
returned from the procedure.

The brace characters (i.e., { }) indicate the code’s body:

The body of a function or procedure is the code that is evaluated each
time that the function or procedure is called.

 So then, our drawHouse() procedure would look as follows:

size(300,300);
drawHouse();

void drawHouse() {
 rect(100,200,100,100);
 triangle(100,200,150,150,200,200);
 rect(135,260,30,40);
 point(155,280);
}

The code itself looks more complicated because nothing looks hidden at all! Actually, the
above code, by itself, will not compile in Processing. In general, when writing a program in
Processing, all of our program code must lie within a function or procedure of some kind.
There are exceptions to this:

• we may declare “global variables” outside a function at the top of our program
• when we are not creating any functions or procedures of our own, Processing will allow

us to write a simple sequence of code that does not need to be inside a function or
procedure.

So, Processing has provided a useful procedure called setup() into which we can place our
code. The setup() procedure is called one time automatically by Processing whenever we
start or restart the program. Here is code that will now compile and run in Processing:

void setup() {
 size(300,300);
 drawHouse();
}

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 93 -

void drawHouse() {
 rect(100,200,100,100);
 triangle(100,200,150,150,200,200);
 rect(135,260,30,40);
 point(155,280);
}

Notice that the code is simply made up of two procedures. Again, there seems to be more
code, but notice how the main algorithm (i.e., the code in the setup() procedure) is much
simpler now.

As a side point, in JAVA, C, C#, C++ and similar languages, there is a procedure similar to
setup() called main() … which is called automatically upon program startup. You will see
more of this in the follow-up course.

Abstraction, is just one reason for creating a procedure or function. However, efficiency (in
the amount of code that is to be written) is another. In order to more fully understand the
benefits of creating functions and procedures consider how we can efficiently draw 3 houses
side-by-side. Here is an inefficient way to do it:

void setup() {
 size(300,300);

 // 1st house
 rect(0,200,100,100);
 triangle(0,200,50,150,100,200);
 rect(35,260,30,40);
 point(55,280);

 // 2nd house
 rect(100,200,100,100);
 triangle(100,200,150,150,200,200);
 rect(135,260,30,40);
 point(155,280);

 // 3rd house
 rect(200,200,100,100);
 triangle(200,200,250,150,300,200);
 rect(235,260,30,40);
 point(255,280);
}

The program is inefficient because we are duplicating portions of code. Notice that the only
differences in the code is with respect to the values shown underlined in red. Do you notice
how these values differ from the 1st house to the 2nd house and from the 2nd house to the 3rd ?

We are actually adding 100 to these values each time that we draw a house. Notice as well
that the value is always the x coordinate of the shape being drawn … the width and height

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 94 -

values do not change. In other words, we are offsetting the x value of our house by a fixed
amount (i.e., 100) each time we re-draw it.

 An x-offset is the difference by which one graphical object is out of
 horizontal alignment from some fixed horizontal reference (e.g., origin or

another object’s position).

 A y-offset is the difference by which one graphical object is out of
vertical alignment from some fixed vertical reference (e.g., origin or
another object’s position).

Notice how we can re-write the code with an x-offset:

void setup() {
 int xOffset; // Make a variable to store the offset

 size(300,300);

 // 1st house
 xOffset = 0;
 rect((0+xOffset),200,100,100);
 triangle((0+xOffset),200,(50+xOffset),150,(100+xOffset),200);
 rect((35+xOffset),260,30,40);
 point((55+xOffset),280);

 // 2nd house
 xOffset = 100;
 rect((0+xOffset),200,100,100);
 triangle((0+xOffset),200,(50+xOffset),150,(100+xOffset),200);
 rect((35+xOffset),260,30,40);
 point((55+xOffset),280);

 // 3rd house
 xOffset = 200;
 rect((0+xOffset),200,100,100);
 triangle((0+xOffset),200,(50+xOffset),150,(100+xOffset),200);
 rect((35+xOffset),260,30,40);
 point((55+xOffset),280);
}

It seems that we have written more code now, so how could this be more efficient ? As
written, it is NOT more efficient. However, you should notice that the portion of the code that
actually draws each house is exactly the same!

That means, we could create a procedure for drawing the house and simply call it three times
as follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 95 -

void setup() {
 int xOffset; // Make a variable to store the offset

 size(300,300);

 // draw 3 houses with different x offsets
 xOffset = 0;
 drawHouse(xOffset);

 xOffset = 100;
 drawHouse(xOffset);

 xOffset = 200;
 drawHouse(xOffset);
}

What would the drawHouse() procedure look like now ? Well, you may notice that we need
to pass in a parameter to the procedure in order to indicate the x offset. Here is the format for
passing in parameters to a function:

void procedureName (t1 n1, t2 n2, …, tk nk) {
 // Write your procedure’s code here
}

Each parameter must be declared like a variable (i.e., with a type followed by a name), with
commas in between. So, t1, t2, …, tk are the types of the parameters to the function while n1,
n2, …, nk are the names of the parameters. While inside the function, each parameter is
available for us to use as … just as we would use any other variable.

So then, our drawHouse() procedure would now look like this:

void drawHouse(int xOffset) {
rect((0+xOffset),200,100,100);
triangle((0+xOffset),200,(50+xOffset),150,(100+xOffset),200);
rect((35+xOffset),260,30,40);
point((55+xOffset),280);

}

As you can see, the xOffset parameter looks just like a variable declaration, but inside the
brackets now. It tells the Processing/JAVA compiler to reserve space for this incoming integer
value which can be used within the procedure.

Where does xOffset get its value ? When we call the procedure. Each time we call it with a
different offset.

Here is the simplified code:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 96 -

void setup() {

size(300,300);

// draw 3 houses with different x offsets
drawHouse(0);
drawHouse(100);
drawHouse(200);

}

void drawHouse(int xOffset) {

rect((0+xOffset),200,100,100);
triangle((0+xOffset),200,(50+xOffset),150,(100+xOffset),200);
rect((35+xOffset),260,30,40);
point((55+xOffset),280);

}

Notice that we no longer need the xOffset variable that was declared outside the procedure
because we can simply pass in the value for the offset each time we call the procedure.

Example:

Can you write a program that would produce this picture:

What is different from the last program ?

• 6 houses instead of 3
• The size of the window is different … now 500 x 150
• offset is not 100 anymore, but less (since houses overlap)…80 ?
• the color of gray changes as the houses are drawn
• the first 3 houses have black border while the last three have white

So, now that we understand the differences, how do we write the code that uses the same
drawHouse() procedure that we wrote earlier ?

We need to vary the stroke color and the fill color for each house as follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 97 -

void setup() {
 size(500,150);

 stroke(255); // use a white border on everything
 fill(0);drawHouse(0);
 fill(50);drawHouse(80);
 fill(100);drawHouse(160);

 stroke(0); // use a white border on everything
 fill(150);drawHouse(240);
 fill(200);drawHouse(320);
 fill(255);drawHouse(400);
}

void drawHouse(int x) {
 rect(x,50,100,100);
 triangle(x,50,x+50,0,x+100,50);
 rect(x+35,110,30,40);
 point(x+55,130);
}

Notice how the drawHouse() procedure remains the same, but that the main algorithm
differed. How would we change the drawHouse() function so that it takes two more
parameters that specify the stroke and fill colors ? Here it is:

void drawHouse(int x, int s, int f) {
 stroke(s);
 fill(f);
 rect(x+0,50,100,100);
 triangle(x+0,50,x+50,0,x+100,50);
 rect(x+35,110,30,40);
 point(x+55,130);
}

Notice how we simply indicate two additional parameter types and names in the parameter list
to the function and that we make use of these values on the first two lines of the function.
How does the simplified setup code now look ?

void setup() {
 size(500,150);

 drawHouse(0, 255, 0);
 drawHouse(80, 255, 50);
 drawHouse(160, 255, 100);
 drawHouse(240, 0, 150);
 drawHouse(320, 0, 200);
 drawHouse(400, 0, 255);
}

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 98 -

Wow. That looks like nice and clean code.

What would happen if we forgot the order of the parameters and mixed the order up between
the stroke and the fill. What is we passed the parameters in this order (xOffset, fill, stroke) ?

Or even worse, if we did it in this order (stroke, fill, xOffset) ?

The point is…that lots can go wrong if you mix up the order of your parameters.
But what if we forget to pass in a parameter ? What if you tried drawHouse(100, 0) …
unintentionally forgetting the fill color ? Well, this would be caught as a compile error
indicating:

The method drawHouse(int, int, int) … is not applicable for the arguments (int, int)

A similar error would also occur if you passed in too many parameters to the procedure.

Example:

Adjust the drawHouse() procedure to take both an x and y value representing the bottom-left
corner of the house and have the house drawn with respect to that coordinate. For example,
if this was the code in the setup() method, then the picture shown would result:

void setup() {
 size(500,150);
 drawHouse(0, 150);
 drawHouse(200, 150);
 drawHouse(400, 150);
}

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 99 -

To do this, we will need to re-compute the coordinate values for our house points with respect
to the (x,y) being the bottom left:

Now we can re-write our procedure accordingly to take the extra parameter and adjust the
points:

void drawHouse(int x, int y) {
 rect(x,(y-100),100,100);
 triangle(x,(y-100),(x+50),(y-150),(x+100),(y-100));
 rect((x+35),(y-40),30,40);
 point((x+55),(y-20));
}

That was not too difficult, but it did require some computations.

Example:

Add a scale parameter (i.e., a float between 1 and 0) as a third parameter to the
drawHouse() procedure from the previous example.

Use the scale parameter so that the following code produces the image shown:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 100 -

void setup() {
 size(500,150);

 drawHouse(0, 150, 1);
 drawHouse(100, 150, 0.8);
 drawHouse(180, 150, 0.6);
 drawHouse(240, 150, 0.4);
 drawHouse(280, 150, 0.2);
}

The code is not too difficult, but we must understand how the scale works. The setup()
method has already adjusted for the position of the bottom-left corner of the houses. All that
remains is to ensure that the dimensions are all somehow adjusted by the scale value:

void drawHouse(int x, int y, float s) {
 rect(x, y-100*s,100*s,100*s);
 triangle(x,y-100*s,(x+50*s),y-150*s,(x+100*s),y-100*s);
 rect((x+35*s),y-40*s,30*s,40*s);
 point((x+55*s),y-20*s);
}

Notice that we simply multiply all dimensions and offsets (i.e., any constant numbers) by the
scalar value of s.

Example:

What if we wanted to have a random value for the scale so that our houses had different sizes
each time we ran the program:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 101 -

This can be done simply by moving the scale parameter into the procedure and making use of
the random() function in Processing. The random(r) function will return a random float value
in the range from 0 to r.

Here is how we could adjust the code:

void drawHouse(int x, int y) {
 float s;

 s = random(1);
 rect(x, y-100*s,100*s,100*s);
 triangle(x,y-100*s,(x+50*s),y-150*s,(x+100*s),y-100*s);
 rect((x+35*s),y-40*s,30*s,40*s);
 point((x+55*s),y-20*s);
}

Notice how the variable s is declared within the procedure as a local variable. That means
that s cannot be used outside of the procedure.

Of course, if we don’t want our houses to overlap, we should ensure that we adjust our x
offsets to be at least 100 pixels from one another:

void setup() {
 size(500,150);

 for (int x=0; x<=400; x=x+100)
 drawHouse(x, 150);
}

Sometimes we need to return a value from our procedure so that we can make use of it in our
main program. For example, what would we have to change in order to adjust our previous
code so that it packs 8 houses close together according to their scale as follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 102 -

Think of what has changed and develop the algorithm. It is only the x-offset for each house
that must vary each time. How much does it vary each time ? It varies according to how
much we have scaled the house. For example, in the above image, perhaps the first house
had a width of 30. In that case the 2nd house would have an offset of 30 as its bottom-left
corner. Assuming then that the 2nd house had a width of 95, then the third house would have
an offset of 95 from the 2nd house’s corner (or 30+95=125 from the left side of the screen). So
we can piece this together into an algorithm:

Algorithm: DrawPackedHouses

1. xOffset ← 0
2. width ← random value
3. draw the 1st house at xOffset
4. xOffset ← xOffset + width
5. width ← random value
6. draw the 2nd house at xOffset
7. xOffset ← xOffset + width
8. width ← random value
9. etc…

You may notice from our previous code that the width of the house is actually 100*s, where s
is the randomly chosen scale:

void drawHouse(int x, int y) {
 float s;

 s = random(1);
 rect(x, y-100*s,(100*s),100*s);
 ...
}

Comparing our algorithm with the code that we already have tells us that step 2 of the
algorithm is done as the first couple of lines while we are drawing the house (i.e., within the

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 103 -

drawHouse() procedure). Lines 4 and 7 of the algorithm, however, require the width of the
previously drawn house in order to compute the offset for the next house to be drawn.

You should realize that we need to get back the width of the house after we draw it, so that it
can be used to compute the offset of the next house. That means, our drawHouse()
procedure must actually become a function … in that we now need a value returned from it.

Functions are created the same way that procedures are, but with one exception. Instead of
void, a function must declare the type of the value returned as follows:

tr functionName (t1 n1, t2 n2, …, tk nk) {
 // Write your function’s code here
}

 tr here is the return type of the function:

A return type is the type of the value that is returned from a function.
So a function is exactly the same as a procedure, except that it must return a value of the type
specified as its return type.

In our example, the width of the house (i.e., 100*s) is the value that must be returned. This is
an int type. So, here is the function that we need:

int drawHouse(int x, int y) {
 float s;

 s = random(1);
 rect(x, y-100*s,100*s,100*s);
 triangle(x,y-100*s,(x+50*s),y-150*s,(x+100*s),y-100*s);
 rect((x+35*s),y-40*s,30*s,40*s);
 point((x+55*s),y-20*s);

 return 100*s;
}

Notice the return type (shown underlined in red) and that we use what is called a return
statement at the bottom to indicate what value will be returned as a result of the function call.

The above code, however will not compile. It will return an error saying:

 cannot convert from float to int .

It gives this error because the function requires an integer to be returned (i.e., return type is
int) but we are trying to return 100*s which is a float. We need to convert the return value to
an integer.

Processing offers some pre-defined conversion functions for converting between the various
data types:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 104 -

• int(x) // converts x into an int
• float(x) // converts x into a float
• byte(x) // converts x into a byte
• char(x) // converts x into a char

So in our function, we need to use return int(100*s) in order to get the integer that we need as
a result. As a side note, however, JAVA does not have such conversion functions. Instead, it
uses something called type-casting with different syntax as follows:

• (int)x // converts x into an int
• (float)x // converts x into a float
• (byte)x // converts x into a byte
• (char)x // converts x into a char

So then, how do we make use of this new function ? Well, we need to use the width from the
previous drawHouse() function call as the xOffset for the next house:

Algorithm: DrawPackedHouses2

1. xOffset ← 0
2. xOffset ← xOffset + drawHouse(xOffset)
3. xOffset ← xOffset + drawHouse(xOffset)
4. xOffset ← xOffset + drawHouse(xOffset)
5. etc…

Notice that since the drawHouse() call returns the width of the drawn house, we simply keep
adding these widths to the xOffset to draw each successive house. Here is the Processing
code:

void setup() {
 size(500,150);

 int xOffset = 0;
 for (int i=0; i<8; i++)
 xOffset = xOffset + drawHouse(xOffset, 150);
}
int drawHouse(int x, int y) {
 float s;

 s = random(1);
 rect(x, y-100*s,100*s,100*s);
 triangle(x,y-100*s,(x+50*s),y-150*s,(x+100*s),y-100*s);
 rect((x+35*s),y-40*s,30*s,40*s);
 point((x+55*s),y-20*s);

 return int(100*s);
}

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 105 -

You will be creating many functions and procedures throughout the course. There isn’t much
more to say about them at this point.

 2.8 Math & Trigonometry

Obviously, a computer can compute solutions to mathematical expressions. We can actually
perform simple math expressions such as:

30 + 5 * 2 - 18 / 2 – 2

In such a math expression, we need to understand the order that these calculations are done
in. You may recall from high school the BEDMAS memory aid which tells you to perform
Brackets first, then Exponents, then Division & Multiplication, followed by Addition and
Subtraction.

So, for example, in the above Processing/JAVA expression, the multiplication * operator has
preference over the addition + operator. In fact, the * and / operators are evaluated first from
left to right and then the + and -. Thus, the step-by-step evaluation of the expression is:

30 + 5 * 2 - 18 / 2 - 2
30 + 10 - 18 / 2 - 2
30 + 10 - 9 - 2
40 - 9 - 2
31 - 2
29

We can always add round brackets (called parentheses) to the expression to force a different
order of evaluation. Expressions in round brackets are evaluated first (left to right):

(30 + 5) * (2 - (18 / 2 - 2))
35 * (2 - (18 / 2 - 2))
35 * (2 - (9 - 2))
35 * (2 - 7)
35 * -5
-175

In Processing/JAVA, it is good to add round brackets around code when it helps the person
reading the program to understand what calculations/operations are done first.

Another operator that is often useful is the modulus operator which returns the remainder after
dividing by a certain value.

In Processing/JAVA we use the % sign as the modulus operator:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 106 -

10 % 2 // results in the remainder after dividing 10 by 2 which is 0
10 % 3 // results in the remainder after dividing 10 by 3 which is 1
10 % 4 // results in the remainder after dividing 10 by 4 which is 2
39 % 20 // results in the remainder after dividing 39 by 20 which is 19

Note that using a modulus of 2 will allow you to determine if a number is an odd number or an
even number … which may be useful in some applications. Perhaps a more often usage of
the modulus operator is to provide a kind of wrap-around effect when increasing or decreasing
an integer.

Example:

Recall our algorithm to move a car across the window:

Algorithm: DrawCar

1. for successive x locations from 0 to windowWidth {
2. draw the car at position x
3. x ← x + 10
 }

What if we wanted the car to drive off the right edge of the window and then re-appear on the
left side again ? We could adjust the algorithm as follows:

Algorithm: DrawCarWrapAround1

1. x ← 0
2. repeat {
3. draw the car at position x
4. x ← x + 10
5. if (x > windowWidth) then
6. x ← 0
 }

We can eliminate the IF statement and reduce this code simply by using the modulus operator:

Algorithm: DrawCarWrapAround2

1. x ← 0
2. repeat {
3. draw the car at position x
4. x ← (x + 10) % windowWidth
 }

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 107 -

Of course, the above code examples cause the car to re-appear suddenly on the left side of
the window. How could we adjust it so that the car "drives in" from the left side instead of
appearing suddenly ? See if you can figure this out.

Processing actually has many other pre-defined functions that you can use within your
programs. Here are just a few of the standard mathematical ones:

• min(a, b) – returns the smallest of a, b, and c(optional)
• max(a, b) – returns the largest of a, b, and c(optional)
• round(a) – rounds a up or down to the closest integer
• pow(a, b) – returns a to the power of b
• sqrt(a) – returns the square root of a
• abs(a) – returns the absolute value of a (i.e., it discards the negative sign)

Similar functions are usually available in all programming languages, although their syntax and
parameters may vary a little. For example, in JAVA, here is what these functions would be
called:

• Math.min(a, b) – returns the smallest of a and b
• Math.max(a, b) – returns the largest of a and b
• Math.round(a) – rounds a up or down to the closest integer
• Math.pow(a, b) – returns a to the power of b
• Math.sqrt(a) – returns the square root of a
• Math.abs(a) – returns the absolute value of a (i.e., it discards the negative sign)

Example:

As an example, consider how to write a program that computes the
volume of a ball (e.g., how much space a ball takes up).

How would we write Processing code that computes and displays the
volume of such a ball with radius of 25cm ?

We need to understand the operations. We need to do a division,
some multiplications, raise the radius to the power of 3 and we need
to know the value of π (i.e., pi).

In Processing, PI is defined as a constant with the value 3.14159265358979323846 (in Java,
we use Math.PI). Here is the simplest, most straight forward solution:

int r = 25;
println(4 * PI * pow(r,3) / 3.0);

The following would also have worked, but requires the radius r to be duplicated:

println(4 * PI * (r*r*r) / 3.0);

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 108 -

We could even substitute our own value for π :

println(4 * 3.14159265358979323846 * (r*r*r) / 3.0);

Or we could even pre-compute 4π/3 first (which is roughly 4.1887903) :

println(4.1887903 * pow(r,3));

The point is that there are often many ways to write out an expression. You will find in this
course that there are many solutions to a problem and that everyone in the class will have their
own unique solution to a problem (although much of the code will be similar because we will all
usually follow the same guidelines when writing our programs).

Besides these basic math functions, there are other VERY useful functions that are often
needed in computer science. For example , trigonometric functions are central to computer
graphics and for modeling and simulating objects that move around on the screen.

Trigonometry is all based on the angles of a
right-angled triangle. Recall that a right-
angled triangle has a hypotenuse ... which is
the edge opposite to the right angle:

Given one of the other angles, θ, of the
triangle (either of the ones that is not 90°),
we can relate the lengths of the triangle's
sides with one other as follows:

sine(θ) = o/h → "soh"
cosine(θ) = a/h → "cah"
tangent(θ) = o/a → "toa"

You may also remember the following formula
for calculating the length of h:

 h = √ a2 + o2

What does all of this have to do with computer science ?
Well, for one thing, geometry problems are often
encountered in computer science and they often require us
to determine the distance between two points as follows:

 d = √ (x2 - x1)2 + (y2 - y1)2

In Processing, however, there is a function for doing this:

• dist(x1, y1, x2, y2) – returns the distance between points (x1, y1) and (x2, y2)

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 109 -

and in JAVA, here is the function:

• Point.distance(x1, y1, x2, y2) – returns the distance between points (x1, y1) and (x2, y2)

There are countless situations in computational geometry and in computer graphics where
knowing the distance between two points is important. We will see examples of this later in
the course.

Getting back to the trigonometric functions, they are required in many computational problems
as well as simulation and computer graphics problems.

Example:

Consider programming a game in which a ball is
moving along at some direction d (in degrees with
respect to the horizontal axis) and speed s (in pixels
per second). Given that the ball starts at position
(x,y), where do we redraw the ball after t seconds ?

To solve this problem, we simply apply trigonometry.
To begin, we need to understand the triangle formed
between the start and end location.

The distance between the start and end location cannot
be directly computed using the dist() function since we
do not know the ending location. However, we do
know that the distance travelled is (speed x time). The
speed is in pixels per second and the time is in seconds,
so the distance travelled, h, will have units of pixels.

To determine the final location of the ball at time t,
we just need to determine the amount of movement
in the horizontal and vertical directions (i.e., xDist
and yDist). Then we can add those distances to
the original (x, y) location to get the final location.

We can plug in our known trigonometric formulas:

sin(d) = yDist/h → yDist = h·sin(d)
cos(d) = xDist/h → xDist = h·cos(d)

And voila! We have the final location!!

Whenever doing trigonometry, we must always understand the difference between degrees
and radians. Recall that all angles are represented as either degrees or radians. However, in

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 110 -

most programming languages, all trigonometric functions require angles to be specified in
radians. Here are the functions in Processing:

• sin(a) – returns the sine of angle a (which must be in radians)
• cos(a) – returns the cosine of angle a (which must be in radians)
• tan(a) – returns the tangent of angle a (which must be in radians)

Here are the JAVA equivalent functions:

• Math.sin(a) – returns the sine of angle a (which must be in radians)
• Math.cos(a) – returns the cosine of angle a (which must be in radians)
• Math.tan(a) – returns the tangent of angle a (which must be in radians)

Do you remember what radians are ? All degrees and radian values are with respect to a
horizontal line that points right … which is the 0° (and 0 radians) angle. A positive increase in
angle represents a counter-clockwise spin around a circle, while negative angles represent a
clockwise spin. Here is how angles and radians relate to each other:

Just a few common values are shown above. Note also that the negative values all have
equivalent positive values as well. So, for example, an angle of 300° (or 5π/3 radians) is the
same as the angle -60° (or -π/3 radians).

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 111 -

It is a good idea to understand the above diagram to get used to working with angles.
Although the functions all require angles in radians, it is sometimes conceptually easier to
store angles as degrees (since it is more intuitive to think in degrees). Because of this, there
are conversion functions for converting back and forth between radians and degrees.
Here are the conversion functions in Processing:

• degrees(r) – returns the degree value for radian angle r (computed as 360*r/2π)
• radians(d) – returns the radians value for degree angle d (computed as 2π*d/360)

Here are the JAVA equivalent functions:

• Math.toDegrees(r) – returns the degree of angle r (which is in radians)
• Math.toRadians(d) – returns the radians of angle d (which is in degrees)

One more important pre-defined function in most programming languages is the random
function. In computer science it is often necessary to use random numbers in order to
provide variety in our program. For example,

• If we are simulating a colony of ants roaming around on the screen, if we want the ants
to seem realistic in their movements, there is a certain degree of unpredictability that
must be allowed in the way they
move. If, for example, the ants
always moved in the same
patterns, the simulation would not
look realistic.

• If we are testing our program to
see if it behaves with unpredictable user input, we may need to generate random data
or supply data at random intervals to test the timing of our program. Some algorithms
in computer science are based on data that is assumed to be in truly random order.

Obtaining a truly random number is difficult with a computer which is based on 1's and 0's
stored in memory. The problem of generating truly random numbers
is an open area in computer science that is still being studied.
However, many languages supply functions that produce what is
called pseudo-random numbers. That is, the numbers "seem"
random, but are actually a fixed sequence of numbers based on
some starting point (called the seed) and some function that is
applied to that seed successively. Some random number generators
simply use the computer's current clock value (i.e., time of day in
milliseconds) as a means of obtaining the seed or computing the next
random number.

Anyway, there is no need for an in-depth discussion on random number generators. All that is
important is that you know that there is a function in Processing that computes a pseudo-
random floating point number in the range of 0 to n:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 112 -

• random(n) – returns a random floating point number x such that 0.0 ≤ x < n.

So, to get a random number from 0.0 to 99.9999999999, we would call random(100). We
can "adjust" the result of this function to obtain a number in any range that we want.
For example, if we wanted an integer in the range from 15 to 67, inclusively, we would do this:

 int(random(53)) + 15 // where 53 = 67 - 15 + 1

In JAVA, the random number generator is different:

• Math.random() – returns a random floating point number x such that 0.0 ≤ x < 1.0.

It always generates a random number from 0.0 to 0.999999999 and if we want to get it within a
certain range we need to do additional multiplications:

100 * Math.random() // from 0.0 to 99.99999999
(int)(53 * Math.random()) + 15 // from 15 to 67

