

Chapter 3

Simulation and User Interaction

What is in This Chapter ?
This chapter explains the concepts behind very simple computer simulations. All examples
are explained within a graphical context. The idea of a processing loop is explained and how
various simple 1D and 2D motion-related simulations can be programmed. Next, user
interaction is explained within the context of event handling within an event-loop. Examples
are given showing how to handle mouse-related events.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 114 -

 3.1 Simulation

Computers are often used to simulate real-world scenarios. Here is the wikipedia definition:

A computer simulation is an attempt to model a real-life or hypothetical
situation on a computer so that it can be studied to see how the system works. By
changing variables, predictions may be made about the behaviour of the system.

Computer simulation has become a useful part of modeling many natural systems in the
areas of physics, chemistry, biology, economics, social science and engineering.

Video games are prime examples of simulation, where some real (or imaginary) life
situations are simulated in a virtual world. As time progresses, video games are becoming
more life-like as graphics and physical modeling become more precise and realistic.

Other places that require computer simulation are:

• network traffic analysis
• city/urban simulation
• flight/space/vehicle/medical simulators
• disaster preparedness simulations
• film and movie production
• theme park rides
• manufacturing systems

There is much to know about simulation, enough material to fill a course or two. In this
course, however, we will just address two basic categories of simulations:

• Running a simulation to find an answer to a problem
• Virtual simulation (i.e., animation) of a real world scenario

When simulating, usually there is some kind of initialization
phase, followed by a processing loop that continuously
processes and (possibly) displays something on the screen.

Think of a simulation as a store. The initialization phase
corresponds to the work involved in getting the store ready to
open in the morning (e.g., tidying up, putting out signs,
stocking the shelves, preparing the cash register, unlocking
the door). The processing loop phase corresponds to the
repeated events that occur during the day (i.e., dealing with
customers one-by-one) until the store is to be closed.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 115 -

In Processing, the setup() procedure is called once at the beginning of your program and it
represents the initialization phase of your program. It is also used as the main entry point of
your program (i.e., your program starts there).

The processing loop phase is accomplished via the draw() procedure …
which is called repeatedly when your program is running. It is useful for
performing repeated computations and displaying information as well as
interacting with the user (e.g., via the mouse). By default, the draw()
procedure is called directly after the setup() procedure has been evaluated.
Your program does not need to have a draw() procedure, but if it is there,
your program will call it.

Example:

Recall the drawHouse() method that we wrote earlier. Here is how we could repeatedly draw
houses at random locations on the screen:

void setup() {
 size(600,600);
}

void draw() {
 drawHouse(int(random(width))-50,
 int(random(height))+50);
}

void drawHouse(int x, int y) {
 rect(x, y-100,100,100);
 triangle(x,y-100,(x+50),y-150,(x+100),y-100);
 rect(x+35,y-40,30,40);
 point(x+55,y-20);
}

The program represents the simplest kind of simulation … that of simply displaying something
in an endless loop. Notice that the draw() procedure simply calls drawHouse() with a random
x value from 0 to width=600 and a random y value from 0 to height=600 as well. Remember,
the draw() method is called repeatedly, so the program will continually (and endlessly) draw
the house at random positions.

Of course, we could vary the above program to make random sized houses with random colors
or we could have it draw the houses along a path (e.g., spiral). Regardless of what we are
drawing and how we are drawing it, the programs will all have the same notion of a repeated
draw() loop.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 116 -

Example:

Here is a more computational example that displays a spiraling sequence of circles.

You may notice a few differences in the code from the previous example:

int radius; // distance from center to draw from
float angle; // angle to draw at
int grayLevel; // color to display each round of spirals

void setup() {
 size(600,600);
 radius = 0;
 angle = 0;
 grayLevel = 0;
}

void draw() {
 stroke(255-grayLevel, 255-grayLevel, 255-grayLevel);
 fill(255-grayLevel, 255-grayLevel, 255-grayLevel);
 ellipse(int(cos(angle)*radius)+width/2,
 int(sin(angle)*radius) + height/2,
 10, 10);

 angle = angle + 137.51;
 radius = (radius+1) % 300;
 if (radius == 0)
 grayLevel = (grayLevel + 10) % 255;
}

There are three variables declared at the top of the program. These are declared outside the
setup() and draw() procedures because they are used in both procedures. Hence, they are
global variables. The radius represents the distance (from the center) that we are drawing
the circles at, while the angle represents the angle that we are drawing them at. The
grayLevel indicates the color that the spirals are drawn at, which begins with white and gets
darker for each round of spirals.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 117 -

You may notice that the draw() procedure first draws the circle (with appropriate gray-level fill
and border) and then simply updates the angle and radius for the next time that the draw()
procedure is called. The % operator is the modulus operator that gives the remained after
dividing by a specified number. The modulus operator is great for ensuring that an integer
does not exceed a certain value but that it begins again at 0. The following two pieces of code
do the same thing:

radius = (radius + 1) % 255;

radius = radius + 1;
if (radius >= 255)
 radius = 0;

For example if x was initially 0 and then we did x = (x + 1)%5, here would be the values for x:

0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2 … etc..

The angle of 137.51 is called the golden angle as it is found in nature
as the ideal angle for producing spirals as shown in the design of
seashells, flower petals, etc.. The angle is ideal as it minimizes
overlap during multiple rounds of spiraling.

While this example illustrates the ability to vary the computational
parameters during the processing loop of the simulation, it really does
not serve any particular purpose other than to produce a nice picture.
Now let us look at an example that actually attempts to compute
something interesting:

Example:

It is often the case that we need to compute an answer to some problem in which the
parameters are complex and/or uncertain. In some situations, it may be unfeasible or
impossible to compute an exact result to a problem using a well-defined and predictable
algorithm. There is a specific type of simulation method that is well-suited for situations in
which you need to make an estimate, forecast or decision where there is significant
uncertainty:

The Monte Carlo Method uses randomly generated or sampled data and
computer simulations to obtain approximate solutions to complex mathematical and
statistical problems.

There is always some error involved with this scheme, but the larger the number of random
samples taken, the more accurate the result.

The simplest example that is used to describe the Monte Carlo method is that of computing an
approximation of π (i.e., pi). π is a mathematical constant whose value is the ratio of
any circle’s circumference to its diameter. It is approximately equal to 3.141593 in the usual
decimal notation. π is a very important number in math and computer science as it relates to
many trigonometric functions and geometric algorithms and is used in graphics and animation.

COM

The

Kno
circl
an a
4 to

We
unifo
Som
circl
appr
will e

Here

We
conv
purp
and

MP1405/1005

value of π

Given a c
square),

wing this, if
e as well a

approximati
get an app

can estima
ormly scatte

me will lie w
e. The mo
roximation
eventually b

3

e is the algo

Algorithm
 R:

1. poin
2. poin
3. repe
4. x
5. y
6. p
7. if
8.
 }
9. print

can stop th
vergence to
posefully ch
so the app

– Simulation

can be app

circle inscr
the ratio o

f we can ge
s the area o
on for π / 4

proximation

ate the area
ering some

within the cir
ore points t
of the area
be covered

.12546

orithm, ass

: Compute

ntsInCircle
ntsInSquar
eat for a us

x ← random
y ← random
pointsInSqu
f ((the dista

point

t (pointsInC

he loop at a
o a better a
hosen only
proximation

and User Inte

proximated

ribed in a s
of the area

et an estima
of the squa
4, of course

for π.

a of the squ
e points thro
rcle, some w
hat we add

a, as the wh
d as time go

 3.1

suming that

ePi
the radius

e ← 0
re ← 0
ser-chosen
m value from
m value from
uare ← po
nce from (x
tsInCircle ←

Circle / po

any time. A
approximatio
around the
will be poo

eraction

- 11

using a Mo

square (i.e
of the circ

ate for the a
are, then we
e then multi

are and circ
oughout the
will lie outs
, the better

hole square
oes on.

13725

the circle a

s of a circle

amount of
m 0 to 2R-1
m 0 to 2R-1
intsInSqua
x,y) to (R,R
← pointsIn

intsInSqua

As the loop
on as more
 center of t

or. An appr

 18 -

onte Carlo m

e., the large
cle to that o

area of the
e can find
plying by

cle by
e square.
ide the
r the
 and circle

 3.14

and square

e and ½ wid

iterations {

are + 1

R) < R) then
nCircle + 1

are * 4)

goes on, h
e data point
he circle, th
roximation w

method bas

est circle th
of the squa

4465

are center

dth & ½ heig

n

owever, the
ts are samp
hey will not
will also be

sed on this

hat fits in t
are is π / 4

3.141

red at point

ght of a squ

e algorithm
pled. If the p

be uniform
poor if only

Fall

principle:

the
.

144

(R,R):

uare

 will slowly
points are

mly distribute
y a few poin

2011

ed,
nts

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 119 -

are randomly chosen throughout the whole square. Thus, the approximation of π will become
more accurate both with more points and with their uniform distribution.

Here is an example showing how the approximated value (blue) will converge towards the
optimal value (solid red line).

In processing, we can write a program that shows us visually what is happening by drawing
each point that is randomly chosen. For those inside the circle we can draw them as red and
those outside as blue. We can use the draw() procedure as our repeat loop from our above
algorithm since it repeats “forever” (or until the program is manually stopped).
Here is the corresponding Processing code:

int pointsInCircle = 0;
int pointsInSquare = 0;
int R = 250;

void setup() {
 size(2*R,2*R);
}

void draw() {
 int x, y;
 x = (int)random(2*R);
 y = (int)random(2*R);
 pointsInSquare = pointsInSquare + 1;
 if (dist(x,y,R,R) < R) {
 pointsInCircle = pointsInCircle + 1;
 stroke(255,0,0); // red
 }
 else
 stroke(0,0,255); // blue
 point(x,y);
 println("PI estimated to: " + (double)pointsInCircle/pointsInSquare*4);
}

3.06

3.08

3.1

3.12

3.14

3.16

3.18

3.2

0 50000 100000 150000 200000 250000 300000 350000 400000

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 120 -

Notice that the code is very similar to the pseudocode. The random(2*R) function returns a
random number from 0.0 to 2R-1. This is a floating point number, and so we need to
typecast to (int) in order to store them in variables x and y. Alternatively, we could have set
the types of x and y to be float instead of int. The dist(x,y,R,R) function is a pre-defined
routine that computes and returns the distance (in pixels) from point (x,y) to point (R,R).
Notice as well the use of (double) in the code. This ensures that the calculations are done as
doubles, and not as integers, otherwise the result would always be 0.

Each time through the draw loop, the code adds one new point It will take a long time for this
code to produce a reasonable approximation for PI. We could add a for loop in the draw()
procedure to add many points each time such as 100 or a 1000 … in order to speed up the
approximation process.

Here is the adjusted code.

double pointsInCircle = 0;
double pointsInSquare = 0;
int R = 250;

void setup() {
 size(2*R,2*R);
}

void draw() {
 float x, y;

 for (int i=0; i<1000; i++) {
 x = random(width);
 y = random(height);
 pointsInSquare = pointsInSquare + 1;
 if (dist(x,y,R,R) < R) {
 pointsInCircle = pointsInCircle + 1;
 stroke(255,0,0); // red
 }
 else
 stroke(0,0,255); // blue
 point(x,y);
 }

 println("PI estimated to: " + pointsInCircle/pointsInSquare*4);
}

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 121 -

Example:

In the real world we objects have what is known as state. The state of an object is normally
considered to be some condition of the object with respect to a previous state. For example,
a light bulb is considered to be in a "working" state when we buy it, but if we smash it on the
ground it would then be in a "broken" state.

How can we simulate a traffic light ? It should have 3 states ... RED, GREEN
and YELLOW. Assume that the traffic light starts in a RED state and that we
want it to cycle continuously between these states. We will assume that the
light remains RED for 20 seconds, then GREEN for 30 seconds, then
YELLOW for 3 seconds. To simulate the traffic light, it is good to think of it as
a state machine.

A state machine is any device that stores the status of something at a given time
and can operate on input to change the status and/or cause an action or output to take
place for any given change.

We can then draw a state diagram to show how the traffic light changes from one state to
another as time goes by:

Notice how the state changes from RED to GREEN only when the time has reached 20
seconds. Note as well that inside the state of GREEN, we reset the time counter to 0 so that
we can count 30 seconds again in order to decide when to switch to the yellow state.

Assuming that we store the state of the traffic light as a string, how can we write the
pseudocode to simulate the light ?

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 122 -

Algorithm: TrafficLight

1. state ← "Red
2. elapsedTime ← 0
3. repeat {
4. if (state is "Red") and (elapsedTime is 20) then {
5. state ← "Green"
6. elapsedTime ← 0
 }
7. otherwise if (state is "Green") and (elapsedTime is 30) then {
8. state ← "Yellow"
9. elapsedTime ← 0
 }
10. otherwise if (state is "Yellow") and (elapsedTime is 3) then {
11. state ← "Red"
12. elapsedTime ← 0
 }
13. elapsedTime ← elapsedTime + 1
 }

The code correctly counts properly-
proportioned time for each state of
the traffic light. However, on a
real computer, the repeat loop
would run much faster than once
per second. We would need to
slow the whole simulation down so
that the elapsed time increases
only once per second. In
Processing, the repeat loop would
be represented by the draw()
procedure which repeats
indefinitely. The frameRate(1)
function sets the re-draw rate of
the draw() procedure so that it gets
called once per second. This will
allow the traffic light to operate at
the correct speed.

String state;// either red, green or yellow
int time; // time elapsed since state changed

void setup() {
 state = "Red";
 time = 0;
 frameRate(4);
}

void draw() {
 if ((state == "Red") && (time == 20)) {
 state = "Green";
 time = 0;
 println(state);
 }
 else if ((state == "Green") && (time == 30)) {
 state = "Yellow";
 time = 0;
 println(state);
 }
 else if ((state == "Yellow") && (time == 3)) {
 state = "Red";
 time = 0;
 println(state);
 }
 time++;
}

For some fun, try writing code to draw the traffic light as it changes state.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 123 -

 3.2 Simulating Motion

For visually-appealing simulations, it is often necessary to show one or more objects moving
on the screen. Such is certainly the case in the area of game programming. We will discuss
here some code for doing very simple motion.

Example:

Recall the algorithm that we wrote for moving a car across the screen:

Algorithm: DrawCar
 windowWidth: width of the window

1. for successive x locations from 0 to windowWidth {
2. draw the car at position x
3. x ← x + 10
 }

 To do this in processing, the code would look like this:

int x, y;

void setup() {
 size(600,300);
 x = 0;
 y = 300;
}

void draw() {
 background(255,255,255);
 drawCar(x);
 x = x + 10;
}

void drawCar(int x) {
 // Draw the body
 fill(150,150,150); // gray
 rect(x, y-30, 100, 20);
 quad(x+20,y-30,x+30,y-45,x+55,y-45,x+70,y-30);
 // Draw the wheels
 fill(0,0,0); // black
 ellipse(x+20, y-10, 20, 20);
 ellipse(x+75, y-10, 20, 20);
 fill(255,255,255); // white
 ellipse(x+20, y-10, 10, 10);
 ellipse(x+75, y-10, 10, 10);
}

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 124 -

The code above shows the car travelling from the left side of
the screen to the right. Notice that the background()
procedure is called in order to erase the background (makes
it white) before drawing the car each time. If we did not do
this step, then the previous car positions would be visible.

The code above, however, does not stop the car at the edge
of the screen. In order to stop the car, we need to do one of two things:

1) either stop changing the x value so that the car is redrawn at the same spot
2) stop the looping

The first solution is easy. We just need to change the last line of the draw() procedure to
check if we have reached the end and only update when we are not there yet:

if (x+100 < width)
 x = x + 10;

Notice that we check for the position of the front bumper of the car (i.e., x + 100), not the back
bumper (i.e., x). Recall as well that width is a pre-defined variable that represents the width
of the window.

The other option is to stop the loop. There are two ways. First, we can simply call the exit()
procedure within the draw() procedure in order to quit the program. However, this will cause
our program to stop and the window will close. The 2nd way is to call noLoop() which
temporarily disables the draw() procedure until loop() is called that will begin calling the
draw() procedure again:

void draw() {
 background(255,255,255);
 drawCar(x);
 x = x + 10;
 if (x+100 > width)

 exit();
}

void draw() {
 background(255,255,255);
 drawCar(x);
 x = x + 10;
 if (x+100 > width)

 noLoop();
}

Example:

The above example showed our car moving rather quickly across the screen. If we adjusted
the increment from 10 to a smaller value, the car would move much slower.

Recall our algorithm for accelerating the car until it reaches the middle of the window and then
decelerating until it reached the right side of the window again:

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 125 -

1. speed ← 0
2. for x locations from 0 to windowWidth by speed {
3. draw the car at position x
4. if x < (windowWidth /2)
5. speed ← speed + 0.10
6. otherwise
7. speed ← speed – 0.10
 }

It is quite easy to adjust our previous code to accomplish this:

int x, y;
float speed;

void setup() {
 size(600,300);
 x = 0;
 y = 300;
 speed = 0;
}

void draw() {
 background(255,255,255);
 drawCar(x);
 x = int(x + speed);
 if (x+100 > width)

noLoop();
 if (x < width/2)

speed = speed + 0.10;
 else

speed = speed - 0.10;
}

void drawCar(int x) {
 // Draw the body
 fill(150,150,150); // gray
 rect(x, y-30, 100, 20);
 quad(x+20,y-30,x+30,y-45,x+55,y-45,x+70,y-30);

 // Draw the wheels
 fill(0,0,0); // black
 ellipse(x+20, y-10, 20, 20);
 ellipse(x+75, y-10, 20, 20);
 fill(255,255,255); // white
 ellipse(x+20, y-10, 10, 10);
 ellipse(x+75, y-10, 10, 10);
}

COM

If we
seem
the b
we s
spee
the c

To f
cent

 i

 el

If yo
forth

Wel
then
beco
mak

We j
to do

if

Ex

Now
wind
com

To k
cons
its x
facin
We
wind

MP1405/1005

e were to ru
ms to crash
back bump
split the win
ed of 0 aga
car before t

ix this, we s
ter of the ca

f ((x+50
speed

lse
speed

ou make the
h now! Do

l, if you wer
n back down
omes nega
king the car

just need to
o this … by

(speed <
 speed =

xample:

w what abou
dow so that

mputational

keep things
stant speed

x and y loca
ng should c
will assume

dow border

– Simulation

un the code
h (i.e., stop
er of the ca

ndow ½ wa
ain when the
that (i.e., w

simply need
ar as follow

) < widt
= speed

= speed

e change a
o you know

re to print o
n to 0 … bu
tive. Whe

r move back

o ensure th
y adding on

< 0)
= 0;

ut 2-dimens
t it remains
model.

 simpler, le
d at all time
ations will c
change. B
e that it onl
s.

and User Inte

e, it seems
abruptly) a

ar (i.e., pos
y for accele
e back bum

when the fro

d to adjust
ws:

th/2)
+ 0.10;

- 0.10;

nd run the c
why ?

out the spee
ut then the
n we add th
kwards. S

hat the spee
e of these t

sional motio
within the w

ets assume
es. As the b
hange. Al
ut when do
y changes

eraction

- 12

as though t
at the end o
ition x) to d
erating and

mper reache
ont bumper

the if state

code again

ed value, y
value conti
his negative

So, how do w

ed never be
to the end o

on ? How
window bor

that the ba
ball moves,
so, the dire

oes the ball’
direction w

 26 -

the car spe
of the windo
decide when
 deceleratin
es the end o
reaches th

ment to acc

n, you will n

you would n
nues going
e speed to
we fix it ?

ecomes neg
of the draw

speed =

could we g
rders ? To

all is moving
 we know t

ection that t
’s direction

when it hits t

eeds up, the
ow. That is
n to speed
ng, then the
of the wind
e window’s

celerate/de

otice that th

notice that it
g backwards
the x value

gative. Th
w() procedu

= max(0,

get a ball to
o do this, w

g at a
hat both
the ball is
change ?

the

en slows do
s because w
up or slow
e car will on
ow. Howe

s end).

ecelerate ba

he car oscil

t goes from
s to -6.6!!

e, it reduces

ere are a c
re:

speed);

bounce aro
e must und

Fall

own, but the
we are usin
down. Sin

nly reach a
ever, we sto

ased on the

llates back

m 0 to 7.5 an
So, the spe

s the x valu

couple of wa

ound the
derstand the

2011

en it
ng
nce

op

e

and

nd
eed

ue,

ays

e

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 127 -

So, we will need to keep track of the ball’s (x,y) location as well as the direction (i.e., angle).

As with our moving car, we simply need to keep updating the ball’s location and check to see
whether or not it reaches the window borders. Here is the basic idea:

Algorithm: BouncingBall

1. (x, y) ← center of the window
2. direction ← a random angle from 0 to 2π
3. repeat {
4. draw the ball at position (x, y)
5. move ball forward in its current direction
6. if ((x, y) is beyond the window border) then
7. change the direction accordingly
 }

It seems fairly straight forward, but two questions arise:

1) How do we “move the ball forward in its current direction” ?
2) How do we “change the direction accordingly” ?

The first is relatively simple, since it
is just based on the trigonometry that
we discussed it in the previous
chapter. Given that the ball at
location (x,y) travels distance d in
direction θ, the ball moves an
amount of d•cos(θ) horizontally and

d•sin(θ) vertically as shown in the
diagram. So, to get the new
location, we simply add the
horizontal component to x and the
vertical component to y to get (x +
dcos(θ) , y + dsin(θ)). Line 5 in the
above algorithm therefore can be
replaced by this more specific code (assuming that the ball moves at a speed of 10 pixels per
iteration):

x ← x + 10 * cos(direction)
y ← y + 10 * sin(direction)

Now what about changing the direction when the ball encounters a window “wall” ? Well, we
would probably like to simulate a realistic collision. To do this, we must understand what
happens to a real ball when it hits a wall.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 128 -

You may recall the law of reflection from science/physics class.
It is often used to explain how light reflects off of a mirror. The
law states that the angle of reflection is the same as the angle
of incidence, under ideal conditions. That is, the angle at which
the ball bounces off the wall (i.e., θr in the diagram), will be the
same as the angle at which it hit the wall (i.e., θi in the diagram).

However, where do we get the angle of incidence from ? Well,
we have the direction of the ball stored in our direction variable.

This direction will always be
an angle from 0 to 360° (or
from 0 to 2π radians).

So, our ball’s direction
(called α for the purpose of this discussion) is always
defined with respect to 0° being the horizontal vector
facing to the right. 360° is the same as 0°. As the
direction changes counter-clockwise, the angle will
increase. If the direction changes clockwise, the angle
decreases. It is also possible that an angle can become
negative. This is ok, since 330° is the same as -30°.

Now, if you

think back to the various angle theorems that you
encountered in your math courses, you may
remember these two:

1) the opposite angles of two straight crossing
lines are equal

2) the interior angles of a triangle add up to
180°

So, in the diagram on the right, for example, the 1st
theorem above tells us that opposite angles β2 and
β3 are equal. From the law of reflection, we also
know that β1 and β3 are equal. Finally, α and β3
add up to 90°.

What does all this mean ? Well, since α is the ball’s direction, then to reflect off the wall, we
simply need to add β1 and β2 to rotate the direction counter-clockwise. And since β1, β2 and
β3 are all equal … and equal to 90° - α, then to have the ball reflect we just need to do this:

direction = direction + (β1 + β2)
 = direction + (90° - α + 90° - α)
 = direction + (180° - 2 x direction)
 = 180° - direction

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 129 -

The vertical bounce reflection is similar. In the
diagram here, it is easy to see that β1 = 90° - α.
To adjust for the collision on the top of the
window, we simply need to subtract 2α from the
direction:

direction = direction - 2 x direction)
 = - direction

To summarize then, when the ball reaches the
left or right boundaries of the window, we
negate the direction and add 180°, but when it
reaches the top or bottom boundaries, we just negate the direction. Here is how we do it:

Algorithm: BouncingBall
 windowWidth, windowHeight: dimensions of the window

1. x ← windowWidth/2
2. y ← windowHeight/2
3. direction ← a random angle from 0 to 2π
4. repeat {
5. draw the ball at position (x, y)
6. x ← x + 10 * cos(direction)
7. y ← y + 10 * sin(direction)
8. if ((x >= windowWidth) OR (x <= 0)) then
9. direction = 180° - direction
10. if ((y >= windowHeight) OR (y <= 0)) then
11. direction = - direction
 }

Our calculations made the assumption that the window boundaries are
horizontal and vertical. Similar (yet more complex) formulas can be used
for the case where the ball bounces off walls that are placed at some
arbitrary angle. Also, all of our calculations assumed that the ball was a
point. In reality though, the ball has a shape. If, for example, the ball was
drawn as a circle centered at (x,y), then it would only detect a collision
when the center of the ball reached the border.

How could we fix this ?

We just need to account for the ball’s radius during our collision checks:

if (((x+radius) >= windowWidth) OR (x-radius) <= 0)) then
 …
if ((y+radius) >= windowHeight) OR (y-radius) <= 0)) then
 …

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 130 -

In processing, the code follows directly from, the pseudocode:

int x, y; // location of the ball at any time
float direction; // direction of the ball at any time

static float SPEED = 10; // the ball’s speed
static int RADIUS = 15; // the ball’s radius

void setup() {
 size(600,600);
 x = width/2;
 y = height/2;
 direction = random(TWO_PI);
}

void draw() {
 // erase the last ball position and draw the ball again
 background(0,0,0);
 ellipse(x, y, 2*RADIUS,2*RADIUS);

 // move the ball forward
 x = x + int(SPEED*cos(direction));
 y = y + int(SPEED*sin(direction));

 // check if ball collides with borders and adjust accordingly
 if ((x+RADIUS >= width) || (x-RADIUS <= 0))
 direction = PI - direction;
 if ((y+RADIUS >= height) || (y-RADIUS <= 0))
 direction = -direction;
}

Notice that the angles are in radians, instead of degrees. That is because the trigonometric
functions cos() and sin() require angles in radians. Just for reference, TWO_PI and PI are
constants defined in Processing that represent 2π (i.e., 0° or 360°) and π (i.e., 180°)

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 131 -

 3.3 Event Handling

In many simulations, especially games, it is important to interact with the user. Sometimes the
interaction is in regards to setting various simulation parameters before the simulation begins
(i.e., wind speed, sensing diameter, start/end times, etc.). For gaming, there are other
appropriate parameters such as difficulty settings, level of detail, game level, etc..

However, it is often necessary to interact with the user during
the simulation by the means of buttons being pressed on the
window, data being entered through dialog boxes, mouse
clicks and keyboard presses, etc..

A problem arises, however, when dealing with such events.
The problem is that the program is usually busy processing
and displaying data in an endless loop. Since typical
computers have only one processor (ignore multi-core for
now), they can only literally do one thing at a time. However,
the operating system of the computer is set up to handle user
interaction events that arise while the computer is running.

An event is something that happens in the program based on some kind of
triggering input which is typically caused (i.e., generated) by user interaction
such as pressing a key on the keyboard, moving the mouse, or pressing a mouse
button.

These are called low-level events because they deal directly with physical interaction with the
user. There are higher-level events that differentiate what the user is actually tying to do. For
example, in JAVA, there are window-related events that get generated when the user clicks on
a button, enters text in a text field or selects something from a list, etc. Regardless of the type
of event that occurs, the programmer can decide what to do when these events occur by
writing event handling routines:

An event handler is a procedure that specifies the code to be executed
when a specific type of event occurs in the program.

Typically, when dealing with user-interaction in an application, a programmer will write many
event handlers, each corresponding to unique types of events. In fact, the event handlers
may have different code to evaluate depending on the context of the program. For example, in
a game, a mouse click may cause the game character to shoot a weapon when in one “mode”
of the game, but when in another mode, the same mouse click may simply allow objects to be
selected and moved around.

Some programs rely solely on events to determine what they will do. These are known as
event-driven programs. After initializing some values and perhaps opening a window to
display something, event-driven programs enter into an infinite loop, called an event loop.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 132 -

An event loop is an infinite loop that waits for events to occur. When an
event arrives, it is handled and then the program returns to the loop to wait for
the next event.

The idea of an event loop is similar to the notion of a store clerk waiting for
customers ... the clerk does nothing unless an “event” occurs. Here are
some events which may occur, along with how they may be handled:

• a customer arrives – store clerk wakes up and looks sharp
• a customer asks a question - store clerk gives an answer
• a customer goes to the cash to buy - store clerk handles the sale
• time becomes 6:00pm - store clerk goes home

When multiple customers arrive at the same time, only one can be served, so the others wait
in line. Once a customer has been served, the next customer in line is served. This repeats
until there are no more customers, in which case the store clerk waits patiently again for more
customers or “events”.

This line-up of customers is similar to what happens with the event loop. There is an event
queue which is a “line-up” of incoming events that need to be handled (e.g., mouse click, key
press, mouse move, etc…). Once an event has been handled to completion, the event loop
extracts the next event from the queue and handles it:

Events are handled one at a time on a first-come-first-served basis. Event-driven programs
continually operate in this manner. Often, the event queue is empty. In a typical application,
the time between mouse clicks and keyboard presses is so large, that it is rare to have more
than one or two events in the queue at any time. However, when a timer is used, it may
generate events very quickly (e.g., once per millisecond) and the event queue can fill up
quickly if the event handler is too slow.

For example, assume that your program sent an email when you clicked on a “Send” button.
The clicking on the button is an event which will call an event-handling procedure. Assume
that the event handler attempts to send the email. If it takes too long (as it usually does) to
send the email then the event handler will not return right way. Meanwhile, the user may be

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 133 -

trying to click on various places on the window … but with no response. The window itself
cannot be closed. What is happening is that when the user clicks, moves the mouse, presses
a key etc.., these events are simply placed into the queue. However, the event loop is not
taking any new events from the queue since it has not returned from the previous event. So
the system has locked up until the “send email” event handler has returned.

So, it is important to make sure that event handling procedures do not take up too much time.
If there is no choice in that the event handler may take a long time, then we can get around
this “program lock-up” by spawning (i.e., starting up) what is called a thread.

A thread (a.k.a. process) is a unit of processing that performs some tasks.
It generally results from a fork (i.e., split) of a program into two or more tasks
that run at the same time.

The diagram below describes how a thread is started:

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 134 -

As shown in the diagram, a thread (i.e., new task) is started, perhaps from an event handling
routine or from another thread. This thread acts just like a separate program (although it
shares the same variable space as the program that it started from (i.e., was spawned from).
The new thread continues on evaluating program code concurrently (i.e., at the same time as)
the code that spawned it. So, we could, for example, spawn a thread to go send that email
which takes a long time, while the original program continues on back to the event loop to
handle more events. The newly spawned thread may simply stop when it has completed, or it
too may loop repeatedly, performing other program-related tasks .. and it too can spawn
additional threads at any time.

Although creating and starting threads is easy, writing programs that have multiple inter-
communicating threads can be difficult. There are many timing-related issues that arise as
well as the area of resource management. Programming with many threads/processes falls
into the computer science areas of concurrent programming and parallel & distributed
computing. We will not discuss this any further in the course.

 3.4 User Interaction in Processing

Recall that in processing, the main event-handling loop is hidden. However, it allows you to
write your own event handling procedures for some pre-defined types of
events. Also, processing has a kind of “internal event handler” that sets the
values of some useful variables which are related to the mouse and
keyboard events. Here is a table of the mouse-related variables that are
automatically set:

Variable Description
mouseX The current x (i.e., horizontal) position of the mouse
mouseY The current y (i.e., vertical) position of the mouse
pmouseX The previous x (i.e., horizontal) position of the mouse
pmouseY The previous y (i.e., vertical) position of the mouse
mousePressed true if the mouse button is being pressed, otherwise false
mouseButton The mouse button that is being pressed

(i.e., always one of LEFT, RIGHT or CENTER).

We can make use of these variables if we want our program to interact with the user based on
the mouse movements and keyboard keys that are pressed.

Example:

The following code will draw a house with its bottom-left at the mouse’s current location:

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 135 -

void setup() {
 size(600,600);
}

void draw() {
 drawHouse(mouseX, mouseY);
}

void drawHouse(int x, int y) {
 rect(x, y-100,100,100);
 triangle(x,y-100,(x+50),y-150,(x+100),y-100);
 rect(x+35,y-40,30,40);
 point(x+55,y-20);
}

Notice how the house is draw repeatedly at whatever position the mouse is at currently. How
could we alter this code so that it erases the old house ? Here are 2 choices:

a) we can erase the background each time or
b) erase the house at its previous location before drawing the new one.

Here is solution a):

void draw() {
 background(200); // light gray = 200
 drawHouse(mouseX, mouseY);
}

We just needed to add one line at the top of the draw() procedure that repaints the
background … in this case gray with level 200 … a light gray.

Here is solution b):

void setup() {
 size(600,600);
 background(200);
}

void draw() {
 fill(200);
 stroke(200);
 drawHouse(pmouseX, pmouseY);
 fill(255);
 stroke(0);
 drawHouse(mouseX, mouseY);
}

void drawHouse(int x, int y) {} // same code as above… omitted to save space

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 136 -

Notice how it makes use of the previous mouse position (pmouseX, pmouseY) and “undraws”
the house at that previous location. Some programming languages do not have such
convenient variables. For example, if pmouseX and pmouseY were not available, how would
you accomplish the same thing ? We would need to keep track of the previous position
ourselves:

int previousX, previousY;

void setup() {
 size(600,600);
 background(200);
 previousX = mouseX;
 previousY = mouseY;
}

void draw() {
 fill(200);
 stroke(200);
 drawHouse(previousX, previousY);
 fill(255);
 stroke(0);
 drawHouse(mouseX, mouseY);
 previousX = mouseX;
 previousY = mouseY;
}

Example:

How could we adjust the above code so that when the left mouse button is pressed, the house
shrinks in scale but when the right mouse button is pressed, the house grows in scale ?

Well, to begin, we would need to recall our code that draws a house at a specific scale:

float scale = 1;

void drawHouse(int x, int y) {
 rect(x, y-100*scale,100*scale,100*scale);
 triangle(x,y-100*scale,(x+50*scale),

 y-150*scale,(x+100*scale),y-100*scale);
 rect((x+35*scale),y-40*scale,30*scale,40*scale);
 point((x+55*scale),y-20*scale);
}

We can then combine this code with some logic that increases or decreases the scale
depending on the mouse button that was pressed. Here is the logic that will
increase/decrease the scale by 1% each time:

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 137 -

if (left mouse button is being pressed) then
 scale ← scale * 0.99
if (right mouse button is being pressed) then

scale ← scale * 1.01

However, in processing, the determination of whether or not a mouse button is being pressed
is a separate function from the one that identifies which mouse button is being pressed. So,
we cannot tell if the “left mouse button is being pressed” with one function call. First, we must
determine whether or not a mouse button is being pressed by checking the mousePressed
boolean variable. Then we may check which button is being pressed by checking the
mouseButton variable as follows:

float scale;

void setup() {
 size(600,600);
 background(200);
 scale = 1;
}

void draw() {
 background(200);
 drawHouse(mouseX, mouseY);
 if (mousePressed) {
 if (mouseButton == RIGHT)
 scale = scale * 1.01;
 else
 scale = scale * 0.99;
 }
}

void drawHouse(int x, int y) {
 rect(x, y-100*scale,100*scale,100*scale);
 triangle(x,y-100*scale,(x+50*scale),

 y-150*scale,(x+100*scale),y-100*scale);
 rect((x+35*scale),y-40*scale,30*scale,40*scale);
 point((x+55*scale),y-20*scale);
}

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 138 -

Similarly, here is a table of the keyboard-related variables that are
automatically set:

Variable Description
keyPressed true if a keyboard key is being pressed, otherwise false
key A character representing the key that was most recently

pressed (e.g., ‘a’, ‘A’, ‘1’, ‘.’, etc.., BACKSPACE, TAB,
ENTER, RETURN, ESC, and DELETE).

keyCode A constant representing a “special” key that was most recently
pressed (i.e., UP, DOWN, LEFT, RIGHT arrow keys
and ALT, CONTROL, SHIFT).

�
Example:

How would we adjust our above example code so that the house becomes darker when the up
arrow key is pressed and lighter when the down arrow is pressed ?

We would need to add a shade variable to keep track of the current color of the house and
adjust it accordingly:

shade ← 128
if (up arrow is being pressed) then
 shade ← shade + 1
if (down arrow is being pressed) then

shade ← shade – 1

Of course, we would need to ensure that our shade always remains in the range of 0 to 255:

if (up arrow is being pressed) AND (shade < 255) then
 shade ← shade + 1
if (down arrow is being pressed) AND (shade > 0) then

shade ← shade – 1

In processing, the code follows from this logic. We would first need to check to make sure that
a key is being pressed using the keyPressed variable, and then (since the arrow keys are
special keys) use keyCode to see whether or not it was the up or down arrow.

Here is the code:

COMP140

float s
int s

void se
 //
 sha
}

void dr
 bac
 fil
 dra
 if
 if

 }
}
void dr

You may
required
and ‘b’,

if (key
 if

 els

}

The abo
Howeve
example
necessa

Process
predefin
handler
importan
Process

05/1005 – Sim

scale;
shade;

etup() {
same cod

ade = 128

raw() {
ckground(
ll(shade)
awHouse(m
(mousePr
(keyPres
if (key
 if

 els

}

rawHouse(i

y have noti
d whenever

instead of

yPressed)
((key ==
shade++

se if ((k
 shade--

ove example
er, not all pr
e, if you wa
ary to write

sing allows
ned types of

called auto
nt to “spell”
sing is expe

mulation and

de as befo
8;

200);
;

mouseX, mo
ressed) {}
ssed) {
y == CODED
((keyCod
shade =

se if ((k
shade =

int x, in

ced that we
checking f
UP and DO

{
= 'a') &&
+;
key == 'b'
-;

es show ho
rogramming
nt to acces
your own e

you to write
f events. I

omatically w
the event h

ecting.

User Interact

ore ... om

ouseY);
} // same

D) { // R
de == UP)
= shade +
keyCode ==
= shade -

nt y) {} /

e checked t
for special k
OWN, the co

(shade <

') && (sha

ow to use so
g languages
ss the mous
event handl

e event han
n order to h

when the ev
handler exa

tion

 - 139 -

mitted to

e code as

Required b
&& (shade
1;

= DOWN) &&
1;

// same as

to see whet
keys. If, fo
ode would

255))

ade > 0))

ome of the
s have such
se position
er.

ndlers for so
have this ev
vent occurs
actly the wa

o save spa

s before .

before che
e < 255))

& (shade

s before

ther or not
or example
simply use

pre-defined
h variables
or determin

ome
vent
, it is
ay that

ace

... omitte

ecking “s

> 0))

... omitt

the key ==
we were ch
the key va

d variables
readily ava

ne the key t

ed to sav

special” k

ted to sav

 CODED.
hecking for
ariable as fo

 in Process
ailable. In
that was pr

Fall 2011

ve space

keys

ve space

This is
keys ‘a’

ollows:

sing.
JAVA, for
essed,, it is

1

s

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 140 -

Below is a table showing which procedures need to written in order to handle some specific
events:

Event Handling Procedure Description
void mousePressed() { … } called when a mouse button is pressed
void mouseReleased() { … } called when a mouse button is released
void mouseClicked() { … } called when a mouse button is pressed & released
void mouseMoved() { … } called when the mouse is moved
void mouseDragged() { … } called when the mouse is moved while a button is being pressed
void keyPressed() { … } called when a key is pressed on the keyboard
void keyReleased() { … } called when a key is released on the keyboard
void keyTyped() { … } called when a key is pressed and released on the keyboard

Example:

Can we adjust the car program so that it accelerates horizontally towards the right but then
when we press a mouse button, it should slow down and change directions, heading
backwards to the left. Again, if we press a mouse button it should slow down and head right
again. Therefore the car alternates from right to left all the while remaining within the window.

This is a good example of where an event handler could be used. The car should speed up at
all times, only slowing down on a direction change (indicated by a mouse press event).

As usual, we need to understand the model first. Below is the sequence of speed values
(assuming the speed starts at 0 and accelerating/decelerating with a value of 1) that would
occur as the car is moving. Notice how the speed changes when the event occurs (note that
this goes a bit beyond the car movement shown above):

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 141 -

Notice how the speed increases by the increment value until the mouse is clicked. It then
“increases” by a negative increment value (i.e., decreases) until the next mouse click. We can
make use of an acceleration variable that it is positive when speeding up and negative when
slowing down, corresponding to the increment value in the above table.

Recall our algorithm that caused the car to speed up until the car reached half way, then
slowed down:

Algorithm: AcceleratingCar
 windowWidth: width of the window

1. speed ← 0
2. repeat {
3. draw the car at position x
4. x ← x + speed
5. if x < (windowWidth /2) then
6. speed ← speed + 0.10
7. otherwise
8. speed ← speed – 0.10
 }

Our new algorithm will be similar except that we now need to incorporate the
acceleration/deceleration and also adjust to ensure that the car does not go beyond the
window boundaries:

Algorithm: AlternatingCar
 windowWidth: width of the window

1. speed ← 0
2. acceleration ← 0.10
3. repeat {
4. draw the car at position x
5. x ← x + speed
6. speed ← speed + acceleration
7. if x < 0 then {
8. speed ← 0
9. x ← 0
 }
10. if (x +100) > windowWidth then {
11. speed ← 0
12. x ← windowWidth - 100
 }
 }

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 142 -

All that remains is to set up an event handler for when the mouse button is clicked. In that
event handler, all we need to do is negate the acceleration:

acceleration ← acceleration * -1

That is all. Here is the corresponding Processing code:

int x, y;
float speed;
float acceleration;

void setup() {
 size(600,300);
 x = 0;
 y = 300;
 speed = 0;
 acceleration = 0.10;
}

void draw() {
 background(255,255,255);
 drawCar(x);

 x = int(x + speed);
 speed = speed + acceleration;

 if (x < 0) {
 x = 0;
 speed = 0;
 }
 else if (x+100 > width) {
 x = width - 100;
 speed = 0;
 }
}

// This is the mouse pressed event handler
void mousePressed() {
 acceleration = acceleration * -1;
}

void drawCar(int x) {
 // … same code as before … omitted to save space.
}

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 143 -

Example:

Recall our bouncing ball example. Below is the adjusted code to ensure that the ball remains
within the screen and with a speed variable added:

Algorithm: BouncingBall
 windowWidth, windowHeight: dimensions of the window
 radius: the ball’s radius

1. x ← windowWidth/2
2. y ← windowHeight/2
3. direction ← a random angle from 0 to 2π
4. speed ← 10
5. repeat {
6. draw the ball at position (x, y)
7. x ← x + speed * cos(direction)
8. y ← y + speed * sin(direction)
9. if ((x+radius >= windowWidth) OR (x-radius <= 0)) then
10. direction = 180° - direction
11. if ((y+radius >= windowHeight) OR (y-radius <= 0)) then
12. direction = - direction
 }

How can we adjust this code using event handlers so that the ball
can be “grabbed” and “thrown” by the mouse ? That is, if the user
places the mouse cursor over the ball and clicks, then the ball stops
moving and appears to be “stuck” to the mouse cursor until the
mouse is released. Then when we let go of the mouse button, the
ball should “fly off” in the direction that we threw it with a speed that
varies according to how “hard” we threw it.

To do this, we should break the problem down into more
manageable steps:

1. Add the ability to grab the ball and carry it around
2. Add the ability to throw the ball
3. Adjust the speed of the ball according to how “hard” we threw it.

To grab the ball, we would need to prevent lines 7 and 8 from being evaluated while the ball is
being held. Instead, we would set the ball’s location to be the mouse location.

We can create a boolean to determine whether or not the ball is being held:

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 144 -

grabbed ← false
repeat {
 …
 if not grabbed then {
 x ← x + speed * cos(direction)
 y ← y + speed * sin(direction)
 }
 otherwise {
 x ← x position of mouse
 y ← y position of mouse
 }
 …
}

All that would be left to do is to set the grabbed variable accordingly. When the user would
click on the ball, we should set it to true and when the user releases the mouse button, we
should set it to false. So we need two event handlers:

mousePressed() {
 grabbed ← true
}
mouseReleased() {
 grabbed ← false
}

But this will ALWAYS “grab” the ball, even if the mouse cursor was not on it. How can we
determine whether or not the mouse cursor is over the ball ? We can check to see whether or
not the mouse location is within (i.e., ≤) the ball’s radius.

We can compute the distance from the ball’s center (i.e., (x,y)) to the
location of the mouse (mX, mY). If this distance is less than or
equal to the ball’s radius, then we can assume that the user has
“grabbed” the ball. Here is the adjusted code:

mousePressed() {
 d ← distance from (x, y) to (mX, mY)
 if (d <= radius) then
 grabbed ← true
}

When the user lets go of the ball, it will continue in the direction that it was in before it was
grabbed. Now how do we adjust the code so that we are able to “throw” the ball in some
particular direction ?

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 145 -

Well, upon releasing the mouse, we will need to determine which direction the ball was being
thrown in and then set the direction variable directly. We can determine the direction that the
ball was thrown in by examining the current mouse location (mX, mY) with respect to the
previous mouse location (pX, pY).

The angle (i.e., θ) at which the ball should be thrown will be the arctangent of the differences
in x and y coordinates as shown here.

However, in the case that we throw vertically, the difference in x coordinates will be zero and
we are not allowed to divide by zero. Fortunately, many computer languages have a function
called atan2(y, x) which allows you to find the angle that a point makes with respect to the
origin (0,0). We can make use of this by assuming that (pX,pY) is the origin and translate
(mX,mY) accordingly as follows: atan2(mY-pY, mX-pX)

So, upon a mouse release, we can do this:

mouseReleased() {
 if grabbed then {
 direction ← atan2(mY-pY, mX-pX)
 grabbed ← false
 }
}

Notice that we only change the direction when we have already grabbed the ball.

One last aspect of the program is to allow the ball to be thrown at various speeds. Likely, we
want the ball to slow down as time goes on.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 146 -

We should add the following to the algorithm’s main repeat loop:

speed ← speed – 0.1
if (speed < 0) then
 speed ← 0

Now to determine the speed at which the ball is thrown, we can take notice of how the mouse
location varies according to the speed at which it is moved.

If the mouse is moved fast, the successive locations of the mouse will be further apart, while
slow mouse movements will have successive locations that are relatively closer together.

So, as a simple strategy, the amount of “throw hardness” can be computed as a function of the
distance between the current mouse location and the previous mouse location.

We can simply set the speed to this distance in the mouseReleased() handler as follows:

mouseReleased() {
 if grabbed then {
 direction ← atan2(mY-pY, mX-pX)
 speed ← distance from (pX,pY) to (mX,mY)
 grabbed ← false
 }
}

Here is the resulting Processing code:

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 147 -

int x, y; // location of the ball at any time
float direction; // direction of the ball at any time
boolean grabbed; // true if the ball is being held
float speed; // the ball’s speed

final int RADIUS = 40; // the ball’s radius
final float ACCELERATION = 0.10; // acceleration/deceleration amount

void setup() {
 size(600,600);
 x = width/2;
 y = height/2;
 direction = random(TWO_PI);
 grabbed = false;
 speed = 10;
}

void draw() {
 background(0,0,0);
 ellipse(x, y, 2*RADIUS,2*RADIUS);

 // move the ball forward if not being held
 if (!grabbed) {
 x = x + int(speed*cos(direction));
 y = y + int(speed*sin(direction));
 }
 else {
 x = mouseX;
 y = mouseY;
 }

 speed = max(0, speed - ACCELERATION);

 if ((x+RADIUS >= width) || (x-RADIUS <= 0))
 direction = PI - direction;
 if ((y+RADIUS >= height) || (y-RADIUS <= 0))
 direction = -direction;
}

void mousePressed() {
 if (dist(x,y,mouseX,mouseY) < RADIUS)
 grabbed = true;
}

void mouseReleased() {
 if (grabbed) {
 direction = atan2(mouseY - pmouseY, mouseX - pmouseX);
 speed = int(dist(mouseX, mouseY, pmouseX, pmouseY));
 }
 grabbed = false;
}

