

Chapter 4

Data Structures

What is in This Chapter ?
Almost all programs require the use of some data as input to the problem being solved. It is
often advantageous to group (or structure) related data together. This chapter discusses the
idea of creating data structures in Processing, which are also known as objects. Objects
are used as a way of keeping your data organized in a logical manner. In a later course, we
will further develop the notion of an Object.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 149 -

 4.1 Data Structures and Objects

Recall that we used functions and procedures to provide control abstraction in order to hide
low-level conceptual details within our algorithms so that they are simpler to read and
understand. There is another type of abstraction known as data abstraction. In this type of
abstraction we are interested in hiding information (or data) that will unnecessarily clutter up
an algorithm. The idea behind data abstraction is to group simple data values together which
have a well understood relationship.

For example, if we are mailing out an envelope within the same country, then an address is
assumed to have this information:

1. name
2. street number
3. street name
4. city
5. province
6. postal Code

Whenever most people hear the word “address”, they understand that such information is
actually made up of some smaller, specific kinds of information. The address itself is not
complete unless it is has all of that information. In a sense, the individual pieces of
information make up (or define the structure of) the address.

We can create such “more abstract” types of data (e.g., like an address) simply by combining
or structuring the more primitives (i.e., simpler) pieces of data together in meaningful ways:

A data structure is a particular way of combining, storing and organizing
data so that it may be used more efficiently and in a more abstract manner.

We also use the word data type which is somewhat analogous to the term data structure. In
object-oriented programming languages, such as Processing and Java, a data type is also
known as a class or category, and defining a data type is also called defining an object.

A object represents multiple pieces of information that are grouped together.

Recall that a primitive data type represents a single simple piece of information such as a
number or character. An object, however, is a bundle of data, which can be made up of
multiple primitives or possibly other objects as well. You
can think of an object as a bunch of small pieces of
information with an elastic around it

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 150 -

Perhaps the simplest data structure is called a string which is a group of one or more
characters with a specific ordering. Characters by themselves are not very interesting.
However, when we group them together, we form a huge variety of words and seemingly
unlimited variety of sentences. Each word in the English language, for example, represents a
string data structure, as does each sentence, paragraph, page of text, etc…

In many programming languages (including Processing and JAVA), strings are represented by
placing double quotes around a set of characters like this:

name ← “Patty O. Lantern”

A string is not a primitive data type because it is made up of characters…which themselves are
the primitive data types. In fact, we can abstract out the notion of a string even further by
grouping strings together in a meaningful way to create an even more abstract data structure.

For example, consider an address as described above. A full address may be represented
using multiple numbers and strings as follows:

name ← “Patty O. Lantern”
streetNumber ← 187
streetName ← “Oak St.”
city ← “Ottawa”
province ← “ON”
postalCode ← “K6S8P2”

Together, all of the variables above represent a full address. It would be advantageous if we
could define a single variable, perhaps called address, that can store all of the above
information:

address ← … ? …

Of course, we could combine everything into one big string …

address ← “Patty O. Lantern, 187 Oak St., Ottawa, ON, K6S8P2”

… but then it would be more difficult/cumbersome to extract the needed pieces of information
(e.g., street number or last name).

Many programming languages allow you to “group” variables together into a structure of some
type. The process of defining which variables and types of data should be grouped together is
called defining a data structure (or defining a data type). In object-oriented languages
(such as JAVA) this is also called defining an object and sometimes defining a class.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 151 -

When defining such a structure, we need to specify the name of the new type of data (e.g.,
Address) as well as the names and types of data that is contained within it.

We will use the following notation to define a structure in our
pseudocode (below), as well as visually (shown to the right):

define Address to be made of {
.name
.streetNumber
.streetName
.city
.province
.postalCode

}

Notice that we capitalized the data type Address. This is proper coding style and any definition
of data structure, data type or object should always be capitalized.

The above notation shows that an address is made up of 6 pieces of
data with the given name labels. It is as if the Address data type is
a “blank form” onto which we can fill in appropriate values. It
defines a kind of template for creating data of this type.

That is how we will define a new data type. However, defining a
data type does not actually create any variables, it only creates a
definition. When we actually want to use a data type, we need a
way of specifying that we want to create a new instance of this data type.

An instance of a data structure (or object) is a particular group of values for each of
the individual variables that make up the data structure (or object).

That means an instance is a particular object belonging to the category of objects defined by
the data type. For example, each of the following is an instance of the Address data type,
because they represent particular addresses:

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 152 -

Recall that when we created variables, we had to reserve space in the computer’s memory
that would allow us to store information in the variable. Similarly, in order to make a new
variable that can hold a data type, we have to also declare the variable in order to allocate
sufficient memory.

When we declare a variable that belongs to the new data type, however, it is as if we are
declaring space for all of its pieces. In fact, the pieces of a particular instance of a data type
are actually called instance variables, since they are just regular variables … that happen to
be grouped together to form a particular instance.

In some programming languages, you have to allocate/reserve space (i.e., memory) for the
instance of the data structure yourself. The popular languages C, for example, requires you to
call a function that will allocate the memory for you
(e.g., malloc()). Once you are done with the variable,
it is your responsibility to free up that memory space
once again by calling another function (e.g., free()).

The allocating and freeing up of memory is known as
dynamic memory allocation & deallocation and is
quite tedious and unpleasant. It can also be a source
of many problems/bugs/errors in a program. For
example, if memory is allocated many times, but never
freed, the program will fill up the computer’s memory
and the program will crash. These are called memory
leaks. Also, you have to make sure that you allocate
enough memory to hold everything that you need and
that you don’t free memory that you still want to use …
otherwise your program will likely crash.

In order to make programmers live happier lives, some language designers have decided that
it would be convenient and safer to perform this memory management for you. That is, they
provide a means of allowing you to automatically reserve memory when you want to make a
new instance of a data type (i.e., when you want to use a new object in your program).
Object-oriented languages such as C++, C#, JAVA and Processing have built-in memory
management.

In order to allocate enough memory for a new instance of a data type and start using it, the
new keyword is used. For example, here is how we will indicate that we want a new instance
of the Address data type in our pseudocode:

anAddress ← new Address

This will allocate enough memory to hold all of the address’ information.

You may want to think of the Address class as a factory that makes Address objects (i.e.,
makes instances of the Address class). In general, every time we use new, it is as if we go
to the factory for that class and buy a instance of the object. So… the class is the “factory”,
and the instance is the particular “object” that we can start using now in our programs.

The Address Class new Address Instance of type Address

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 153 -

The Person Class new Person Instance of type Person

The House Class new House Instance of type House

We will then assign values to the individual components (i.e., instance variables) of
anAddress by using the dot operator as follows:

anAddress ← new Address
anAddress.name ← “Patty O. Lantern”
anAddress.streetNumber ← 187
anAddress.streetName ← “Oak St.”
anAddress.city ← “Ottawa”
anAddress.province ← “ON”
anAddress.postalCode ← “K6S8P2”

The dot operator indicates that we are going inside the data type to get a piece of information.
That is, we are getting more specific as to what particular piece of data we want. Whenever
we use, for example, anAddress.name, it behaves just like any other variable and refers to the
data stored in that part of the address’s memory.

Sometimes, however, some information may be missing. For example, when we give a local
person our address on a piece of paper, it is likely that we’ll only give them the street number
and name.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 154 -

In this situation there will be some missing information. Perhaps the missing information is
assumed to be particular values. For example, we may assume that the city and province are
local to where we received the piece of paper. Nevertheless,
when data is missing, we would want to make sure that we
don’t assume potentially wrong data. Our data structure, may
therefore be missing data.

What is the value of the instance variables in this case, since
we did not supply any values ? It actually depends what is in
the computer’s memory at the location where the city,
province and postal code is stored. It could be “garbage” data
that was from a data type whose memory was previously freed
up. With memory-managed languages, however, these values are usually set to 0 (when the
variable’s type is a number) or null (when the variable’s type is a data type).

Null is a word that represents an undefined value. If a variable has a
value of null, it means that it does not yet have a value.

Therefore, the following code logic is flawed:

anAddress ← new Address
print (anAddress.name)

The code does not make sense because we are trying to print out the address’s name before
we have assigned a value to it. Depending on the language used, the result may be null or
perhaps even random “garbage” data.

We can actually go deeper into each piece of data as well, making them more abstract. For
example, we created the address’s instance variable to store the name as a single string as
follows:

anAddress.name ← “Patty O. Lantern”

It is sometimes desirable to be able to distinguish between the first name, last name and
middle name(s) of the person. To do this, we would need to separate the names into different
variables as follows:

anAddress.firstName ← “Patty”
anAddress.middleName ← “Ohh”
anAddress.lastName ← “Lantern”

Then we can choose which portion of the person’s name that we want to
use at any time. A downside is that we now have to use 3 variables
instead of 1.

We could re-define the Address data type as shown in the picture here

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 155 -

This would suffice. However, the address seems more complicated. We could perform
additional data abstraction by combining the first, middle and last names into their own unique
data structure:

define FullName to be made of {
.firstName
.middleName
.lastName

}

Then we could make use of this within our Address
data structure as shown here. From the picture
you can see that the name stored in the Address
structure is no longer a simple string of characters.
Now it is a different kind of data structure (i.e., object)
of type FullName.

Here is what our example would look like now:

The code for setting the name of anAddress would be as follows:

anAddress ← new Address
anAddress.name ← new FullName
anAddress.name.firstName ← “Patty”
anAddress.name.middleName ← “Ohh”
anAddress.name.lastName ← “Lantern”

Notice now that the dot operator is used twice: once to get into the address to get the name,
then again to get into the name to set the first, middle and last values.

An additional advantage of creating the separate FullName data structure is that we can use it
in other applications. Consider, a BankAccount data structure that is defined as follows:

define BankAccount to be made of {
.owner
.accountNumber
.balance

}

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 156 -

We could then set the owner to be a FullName data type as well:

The fun does not stop here. In fact, it is often the case that data structures use multiple kinds
of data structures within them. For example, could you determine the code that would
produce this image ?

Now we should look at examples of using a data structure.

Example:

Recall the “Loan Qualification Kiosk” program that we implemented earlier which was to allow
a people to enter personal information and then inform them as to whether or not they qualify
for the loan.

1. print welcome message
2. employed ← ask user if he/she is currently employed
3. hasDegree ← ask user if he received a univ. degree within past 6 months
4. age ← ask user for his/her age
5. yearsWorked ← ask user for # years worked at full time status

6. if (employed is true) then {
7. if (hasDegree is true) then print “Congratulations…”
8. otherwise {
9. if (age >= 30) then {
10. if (yearsWorked >= 10) then print “Congratulations, …”
11. otherwise print “Sorry, …”
 }
12. otherwise print “Sorry,”
 }
 }
13. otherwise print “Sorry, ...”

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 157 -

How can we adjust the code to combine all of the employee information into one data structure
? Notice what the code looks like now when an Employee data structure is used:

define Employee to be made of {
 .employed
 .hasDegree
 .age
 .yearsWorked
}

Algorithm: LoanQualificationKiosk

1. print welcome message
2. employee ← new Employee
3. employee.employed ← ask user if he/she is currently employed
4. employee.hasDegree ← ask user if he received a univ. degree within past 6 months
5. employee.age ← ask user for his/her age
6. employee.yearsWorked ← ask user for # years worked at full time status

7. if (employee.employed is true) then {
8. if (employee.hasDegree is true) then print “Congratulations…”
9. otherwise {
10. if (employee.age >= 30) then {
11. if (employee.yearsWorked >= 10) then print “Congratulations, …”
12. otherwise print “Sorry, …”
 }
13. otherwise print “Sorry,”
 }
 }
14. otherwise print “Sorry, ...”

All of the employee’s information is packaged into the single Employee data structure and
stored in the employee variable. The code seems longer, however, the data is now set up for
more abstract use. For example, assume that we created a function to get the user’s
information and another to determine whether or not they qualify.

Notice the simple main code (i.e., lines 1 to 4):

Algorithm: LoanQualificationKiosk2

1. print welcome message
2. employee ← getUserInformation()
3. determineQualifications(employee)
4. print “Thank you, have a nice day.”

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 158 -

Notice how the Employee object is created in the getUserInformation() procedure, populated
with information from the user, and then returned to the main algorithm:

 getUserInformation() {
5. print welcome message
6. employee ← new Employee
7. employee.employed ← ask if currently employed
8. employee.hasDegree ← ask if received a univ. degree within past 6 months
9. employee.age ← ask for age
10. employee.yearsWorked ← ask for # years worked at full time status
11. return employee
 }

The determineQualifications() procedure then accepts an incoming Employee object (which
is labelled as emp) and uses it for various computations and decisions:

 determineQualifications(emp) {
12. if (emp.employed is true) then {
13. if (emp.hasDegree is true) then
14. print “Congratulations…”
 otherwise {
15. if (emp.age >= 30) then {
16. if (emp.yearsWorked >= 10) then
17. print “Congratulations, …”
18. otherwise print “Sorry, …”
 }
19. otherwise print “Sorry,”
 }
 }
20. otherwise print “Sorry, ...”
 }

Within the determineQualifications() procedure we simply use the dot operator to get at the
specific piece of employee information that we need.

There are some advantages of using the data structure:

1) The main algorithm is more abstract and simpler to understand

2) If we add additional qualification parameters (e.g., marital status, # of dependants, credit
history, etc…) then the main program (lines 1 through 4) remains unchanged.

The code is thus simpler and more organized with the use of the data structure/object.

However, it is not always obvious to know what kind of information (i.e., components) should
make up a data structure/object. That is … there is not always a “well defined” set of data that
make up the object. For an Address data structure, it is somewhat obvious. However, what
about a Person data structure … what should “make up” a person ?

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 159 -

Some possible attributes of a person data structure may be firstName, lastName, age,
gender and retired. Why would we choose these ? In reality, doesn’t our choice of
attributes depend on the application that we are trying to develop. For example, while the age
and gender may be vital pieces of information for a program that determines players on a
team sport in some league, information about whether a person is retired is not necessary.
And for medical applications, perhaps weight and height are vital pieces of information. If it
is to be an online social network application, perhaps emailAddress is an important piece of
information that all Persons should have. The choice of a data structure’s components really
depends on the application.

As another example, consider defining a Car data structure. We should think of what
characteristics we will need to store for each car (e.g., make, model, color, mileage, etc..):

The choice will depend on the program/application you are making. Consider these possible
applications in which a Car data structure may be used:

• a program for a car repair shop
• a program for a car dealership
• a program for a car rental agency
• a program for an insurance company

So, now let us examine what kind of attributes (i.e., instance variables) that we would likely
need to define for a Car in each of these individual applications:

• repair shop
make, model, year, engine size, spark plug type, air/oil filter types, air hose
diameter, repair history, owner etc..
.

• car dealership
model, price, warranty, interior finish (leather/material), color, engine size, fuel
efficiency rating, etc...

• rental agency
sedan or coupe, make, model, license plate, price per hour, mileage, repair
history, etc...

• insurance company
year, make, model, owner, insurance type (fire/theft/collision/liability), color,
license plate, etc...

So you can see that it is not always straight forward to identify the components of a data
structure. You need to always understand how it fits into the application.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 160 -

Example:

Recall the algorithm that accelerates a car across the window:

1. speed ← 0
2. for x locations from 0 to windowWidth by speed {
3. draw car at position (x, windowHeight –100)
4. if x < (windowWidth /2) then
5. speed ← speed + 0.10
6. otherwise
7. speed ← speed – 0.10
 }

We can create a Car data structure and use it within the program. What should make up the
data structure ? What components can be grouped together to represent the car ?

define Car to be made of {
 .x
 .y
 .speed
}

1. myCar ← new Car
2. myCar.x ← 0
3. myCar.y ← windowHeight –100
4. myCar.speed ← 0
5.
6. for x locations from 0 to windowWidth by myCar.speed {
7. myCar.x ← x
8. draw(myCar)
9. if myCar.x < (windowWidth /2) then
10. myCar.speed ← myCar.speed + 0.10
11. otherwise
12. myCar.speed ← myCar.speed – 0.10
 }

Now all of the car’s parameters (i.e., location and speed) are kept together. Notice as well
that the draw() procedure now simply takes one parameter, representing the car. It can then
extract the x and y locations easily with the dot operator.

This may not seem like an advantage in this simple example, but as more and more car-
related functions or procedures are added, this will greatly reduce the number of parameters
being passed around. Also, if we add additional instance variables to the car’s structure (e.g.,
color, scale) then this information will be readily available in the draw() procedure and we will
not have to change line 8 of our program !! Once again, the code is cleaner and more
organized.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 161 -

 4.2 Using Objects in Processing/JAVA

In Processing (and Java), data structures are called objects. To define a new data structure,
we define a class using the class keyword and simply list the variables one after another
(along with their types) between braces. Here are a few examples:

Pseudocode Processing code

define FullName to be made of {

.firstName

.middleName

.lastName
}

class FullName {

String firstName;
String middleName;
String lastName;

}

define Address to be made of {

.name

.streetNumber

.streetName

.city

.province

.postalCode
}

class Address {

FullName name;
int streetNumber;
String streetName;
String city;
String province;
String postalCode;

}

define BankAccount to be made of {

.owner

.accountNumber

.balance
}

class BankAccount {

Address owner;
int accountNumber;
float balance;

}

define Employee to be made of {
 .employed
 .hasDegree
 .age
 .yearsWorked
}

class Employee {

boolean employed;
boolean hasDegree;
int age;
int yearsWorked;

}

define Car to be made of {
 .x
 .y
 .speed
}

class Car {

int x;
int y;
float speed;

}

Notice how the types must now all be specified. Also, notice that when one data structure is
contained within another (e.g., FullName inside Address), we must indicate the name of the
data structure (i.e., class) as the variable’s type.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 162 -

The above class definitions cannot be done within the setup() or draw() procedures, nor in
any other procedures or functions. They are defined on their own, separately, just like the
setup() and draw() procedures. It is a good idea to gather all your class definitions near the
top or bottom of your program. Here is an example template showing Car and House data
structures defined just above the setup() and draw() procedures:

int aVariable;
float anotherVariable;

class Car {

…
}

class House {

…
}

void setup() {
 …
}

void draw() {
 …
}

Later, in COMP1406, when we start doing Java programming, we will define each class in its
own separate file.

Now, to create a new instance of one of these classes, we usually need to first create a
variable to store it in and then we simply use the new keyword followed by the class name and
parenthesis. Then we assign values to the instance variables using the = operator. Here are
some examples of how this is done:

Pseudocode Processing code

myCar ← new Car
myCar.x← 0
myCar.y← windowHeight - 100
myCar.speed← 0

Car myCar;

myCar = new Car();
myCar.x = 0;
myCar.y = height – 100;
myCar.speed = 0;

aFullName ← new FullName
aFullName.firstName ← “Patty”
aFullName.middleName ← “Ohh”
aFullName.lastName ← “Lantern”

FullName aFullName;

aFullName = new FullName();
aFullName.firstName = "Patty";
aFullName.middleName = "Ohh";
aFullName.lastName = "Lantern";

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 163 -

addr ← new Address
addr.name ← new FullName
addr.name.firstName ← “Patty”
addr.name.middleName ← “Ohh”
addr.name.lastName ← “Lantern”
addr.streetNumber ← 187
addr.streetName ← “Oak St.”
addr.city ← “Ottawa”
addr.province ← “ON”
addr.postalCode ← “K6S8P2”

Address addr;

addr = new Address();
addr.name = new FullName();
addr.name.firstName = "Patty"
addr.name.middleName = "Ohh"
addr.name.lastName = "Lantern"
addr.streetNumber = 187
addr.streetName = "Oak St."
addr.city = "Ottawa"
addr.province = "ON"
addr.postalCode = "K6S8P2"

b ← new BankAccount
b.owner ← new Address
b.owner.name ← new FullName
b.owner.name.firstName ← “Patty”
b.owner.name.middleName ← “Ohh”
b.owner.name.lastName ← “Lantern”
b.owner.streetNumber ← 187
b.owner.streetName ← “Oak St.”
b.owner.city ← “Ottawa”
b.owner.province ← “ON”
b.owner.postalCode ← “K6S8P2”
b.accountNumber ← 829302
b.postalCode ← 2319.67

BankAccount b;
Address addr;

addr = new Address();
addr.name = new FullName();
addr.name.firstName = "Patty"
addr.name.middleName = "Ohh"
addr.name.lastName = "Lantern"
addr.streetNumber = 187
addr.streetName = "Oak St."
addr.city = "Ottawa"
addr.province = "ON"
addr.postalCode = "K6S8P2"

b = new BankAccount();
b.owner = addr;
b.accountNumber = 829302
b.postalCode = 2319.67

emp ← new Employee
emp.employed ← … some code …
emp.hasDegree ← … some code …
emp.age ← … some code …
emp.yearsWorked ← … some code …

Employee emp = new Employee();

emp.employed = /* some code */;
emp.hasDegree = /* some code */;
emp.age = /* some code */;
emp.yearsWorked = /* some code */;

Example:

Recall our example in which we drew 5 houses of
various sizes at adjacent locations on the window →

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 164 -

Here is the code that we used:

void setup() {
 size(500,150);

 drawHouse(0, 150, 1);
 drawHouse(100, 150, 0.8);
 drawHouse(180, 150, 0.6);
 drawHouse(240, 150, 0.4);
 drawHouse(280, 150, 0.2);
}

void drawHouse(int x, int y, float s) {
 rect(x, y-100*s,100*s,100*s);
 triangle(x,y-100*s,(x+50*s),y-150*s,(x+100*s),y-100*s);
 rect((x+35*s),y-40*s,30*s,40*s);
 point((x+55*s),y-20*s);
}

How could we adjust this code to make use of a House data structure ? What information in
this example represents the attributes of the Houses ?

The x, y location are attributes of the houses as well as their scale factor. So, we could define
a house data structure (i.e., object) as follows:

class House {
 int x;
 int y;
 float s;
}

Then we can make use of this new House object in our code:

void setup() {
 House h1, h2, h3, h4, h5;

 size(500,150);

 h1 = new House();
 h1.x = 0;
 h1.y = 150;
 h1.s = 1.0;

 h2 = new House();
 h2.x = 100;
 h2.y = 150;
 h2.s = 0.8;

 h3 = new House();
 h3.x = 180;

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 165 -

 h3.y = 150;
 h3.s = 0.6;

 h4 = new House();
 h4.x = 240;
 h4.y = 150;
 h4.s = 0.4;

 h5 = new House();
 h5.x = 280;
 h5.y = 150;
 h5.s = 0.2;

 drawHouse(h1);
 drawHouse(h2);
 drawHouse(h3);
 drawHouse(h4);
 drawHouse(h5);
}

void drawHouse(House h) {
 rect(h.x, h.y-100*h.s,100*h.s,100* h.s);
 triangle(h.x, h.y-100*h.s,(h.x+50*h.s), h.y-150*h.s,
 (h.x+100*h.s), h.y-100*h.s);
 rect((h.x+35*h.s), h.y-40*h.s,30* h.s,40*h.s);
 point((h.x+55*h.s), h.y-20*h.s);
}

Notice how the houses are each stored in variables h1 through h5. That is, the x, y and s data
is all kept together for each individual house and stored in their own unique House variable.

Notice as well how the House objects are passed as parameters into the drawHouse
procedure. Within the procedure, each house is referred to as h, as indicated by the
parameter name. Then, inside the procedure, we simply access the x, y or s component of
the house by using h.x, h.y or h.s, respectively.

Example:

Here is how we could use a Car data structure in a modification of our accelerating car
example that uses two cars. Notice how the use of the data structure simplifies the code
when multiple cars are used.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 166 -

Car myCar, yourCar; // The two cars to move around

class Car { // Definition of what a “Car” actually is
 int x, y;
 float speed;
 int direction;
}

void setup() { // Initialize the cars by setting the values of their components
 size(600,300);
 myCar = new Car();
 myCar.x = 0;
 myCar.y = 300;
 myCar.speed = 0;
 myCar.direction = 1;

 yourCar = new Car();
 yourCar.x = 300;
 yourCar.y = 300;
 yourCar.speed = 0;
 yourCar.direction = -1;
}

void draw() { // Repeatedly draw and move each car
 background(255,255,255);
 drawCar(myCar);
 drawCar(yourCar);

 moveCar(myCar);
 moveCar(yourCar);
}

// Draw the car that is passed in as a parameter
void drawCar(Car aCar) {
 fill(150,150,150);
 rect(aCar.x, aCar.y-30, 100, 20);
 quad(aCar.x+20,aCar.y-30, aCar.x+30,aCar.y-45, aCar.x+55,aCar.y-45, aCar.x+70,aCar.y-30);

 fill(0,0,0); // black
 ellipse(aCar.x+20, aCar.y-10, 20, 20);
 ellipse(aCar.x+75, aCar.y-10, 20, 20);
 fill(255,255,255); // white
 ellipse(aCar.x+20, aCar.y-10, 10, 10);
 ellipse(aCar.x+75, aCar.y-10, 10, 10);
}

// Move the car that is passed in as a parameter
void moveCar(Car aCar) {
 aCar.x = int(aCar.x + aCar.speed*aCar.direction);

 if (mousePressed)
 aCar.speed = min(100, aCar.speed + 0.10);
 else
 aCar.speed = max(0, aCar.speed - 0.10);

 if (abs(aCar.x+50 - mouseX) <= aCar.speed)
 aCar.speed = 0;

 if (mouseX < aCar.x+50)
 aCar.direction = -1;
 else
 aCar.direction = 1;
}

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 167 -

Creating an instance of a data structure that has many instance variables, may require many
lines of code. For example, creating and initializing myCar, in our previous example required
5 lines of code as follows:

 myCar = new Car();
 myCar.x = 0;
 myCar.y = 300;
 myCar.speed = 0;
 myCar.direction = 1;

In Processing (and Java) we can significantly reduce the amount of code that we need to write
when we create and initialize objects by making use of something called a constructor.

A constructor is a special procedure that is automatically called to initialize
a new object.

In fact, the parentheses that appear when we do new Car() indicate that Car() is in fact a kind
of procedure or function. This is actually a special kind of function known as the default
constructor. What it actually does is that it creates and returns a new fully-initialized object.
That is, it reserves space for the data structure’s components and sets them all to a value of
“zero”.

In our above example, however, we wanted to set the y value of the car to 300 and the
direction to 1 … we did not want zeros. In the yourCar variable, we further set the x value to
300 and direction to -1. The point is … each object that we create will often have their own
unique initial values. In a way, the idea is analogous to building our own computer … we
would like to have control to configure our own system with our choice of internal components
(i.e., we pick the hard drive, the video card, the motherboard, the monitor, etc..).

We are allowed to write our own constructor procedures so that we can supply our own initial
values for our objects. Making a constructor is almost identical to defining a function that
takes a bunch of parameters (i.e., one for each of the data structure’s instance variables) and
then uses these parameters to set the instance variable. The constructor must be written
within the data structure’s class definition as follows:

class Car { // Definition of what a "Car" actually is
 int x, y;
 float speed;
 int direction;

 Car(int p1, int p2, float p3, int p4) { // a constructor
 x = p1;
 y = p2;
 speed = p3;
 direction = p4;
 }
}

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 168 -

Notice that the constructor’s name is identical to the class name (always uppercase letter to
start). Also, notice how there is one parameter for each of the 4 instance variables. The
types of the parameters must match the types of the instance variables. The names of the
parameters (i.e., p1, p2, p3 and p4) are arbitrary, but they must be unique from one another
and MUST NOT be the same as any instance variable names.

The code for the body of the constructor is simple. It simply sets each instance variable to
have the value of its corresponding parameter.

So what does this all mean ? It means that once we define this constructor, we can then call
the constructor with the parameter values that we want to have set in the instance variables.
Below shows the previous setup() code before we had the constructor … along with the new
code that makes use of the constructor:

Without the constructor: With the constructor:

Car myCar, yourCar;

class Car {
 int x, y;
 float speed;
 int direction;
}

void setup() {
 size(600,300);
 myCar = new Car();
 myCar.x = 0;
 myCar.y = 300;
 myCar.speed = 0;
 myCar.direction = 1;

 yourCar = new Car();
 yourCar.x = 300;
 yourCar.y = 300;
 yourCar.speed = 0;
 yourCar.direction = -1;
}

Car myCar, yourCar;

class Car {
 int x, y;
 float speed;
 int direction;

 Car(int p1, int p2, float p3, int p4) {
 x = p1;
 y = p2;
 speed = p3;
 direction = p4;
 }
}

void setup() {
 size(600,300);
 myCar = new Car(0, 300, 0, 1);
 yourCar = new Car(300, 300, 0, -1);
}

Notice the drastic reduction of code within the setup() procedure. The saving in code space
can be much more drastic when multiple kinds of objects are used together. For example,
consider that we created constructors for the FullName, Address and BankAccount objects:

class FullName {
 String firstName, middleName, lastName;

 FullName(String p1, String p2, String p3) {
 firstName = p1;
 middleName = p2;
 lastName = p3;
 }
}

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 169 -

class Address {
 FullName name;
 int streetNumber;
 String streetName, city, province, postalCode;

 Address(FullName p1, int p2, String p3, String p4, String p5, String p6) {
 name = p1;
 streetNumber = p2;
 streetName = p3;
 city = p4;
 province = p5;
 postalCode = p6;
 }
}

class BankAccount {
 Address owner;
 int accountNumber;
 float balance;

 BankAccount (Address p1, int p2, float p3) {
 owner = p1;
 accountNumber = p2;
 balance = p3;
 }
}

Once we make such definitions, notice the significant simplification in code:

Without the constructor: With the constructor:
BankAccount b;
Address a;
FullName n;

n = new FullName();
n.firstName = "Patty"
n.middleName = "Ohh"
n.lastName = "Lantern"

a = new Address();
a.name = n;
a.streetNumber = 187
a.streetName = "Oak St."
a.city = "Ottawa"
a.province = "ON"
a.postalCode = "K6S8P2"

b = new BankAccount();
b.owner = a;
b.accountNumber = 829302
b.postalCode = 2319.67

BankAccount b;
Address a;
FullName n;

n = new FullName("Patty", "Ohh", "Lantern");
a = new Address(n, 187,"Oak St." ,"Ottawa","ON","K6S8P2");
b = new BankAccount(a, 829302, 2319.67);

So, constructors can be a significant factor in keeping your code simple. We will discuss
constructors in more detail in COMP1406.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 170 -

Example:

Recall our example that allowed us to throw a ball around in the window:

int x, y; // location of the ball at any time
float direction; // direction of the ball at any time
boolean grabbed; // true if the ball is being held
float speed; // the ball’s speed

final int RADIUS = 40; // the ball’s radius
final float ACCELERATION = 0.10; // acceleration/deceleration amount

void setup() {
 size(600,600);
 x = width/2;
 y = height/2;
 direction = random(TWO_PI);
 grabbed = false;
 speed = 10;
}

void draw() {
 background(0,0,0);
 ellipse(x, y, 2*RADIUS,2*RADIUS);

 // move the ball forward if not being held
 if (!grabbed) {
 x = x + int(speed*cos(direction));
 y = y + int(speed*sin(direction));
 }
 else {
 x = mouseX;
 y = mouseY;
 }

 speed = max(0, speed - ACCELERATION);

 if ((x+RADIUS >= width) || (x-RADIUS <= 0))
 direction = PI - direction;
 if ((y+RADIUS >= height) || (y-RADIUS <= 0))
 direction = -direction;
}

void mousePressed() {
 if (dist(x,y,mouseX,mouseY) < RADIUS)
 grabbed = true;
}

void mouseReleased() {
 if (grabbed) {
 direction = atan2(mouseY - pmouseY, mouseX - pmouseX);
 speed = int(dist(mouseX, mouseY, pmouseX, pmouseY));
 }
 grabbed = false;
}

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 171 -

How could we adjust the code to use a Ball data structure ? What information in this
program, will make up the attributes of the ball ?

It is easy to see that 4 of the 5 variables actually represent the ball’s state … that is, its (x, y)
position, direction, and speed. Whether the ball has been grabbed or not is not necessarily
part of the Ball’s attributes. That is, a ball does not need to know whether or not it has been
grabbed. For example, we may have an application in which the balls are moving around
without the ability to be grabbed. So, here is what our Ball data structure would look like
along with its constructor:

class Ball {
int x, y; // location of the ball at any time
float direction; // direction of the ball at any time
float speed; // the ball’s speed

 Ball(int p1, int p2, float p3, float p4) {
 x = p1;

y = p2;
 direction = p3;
 speed = p4;
 }
}

Assuming that we define this class in our program, the remainder of the program can now be
adjusted as follows. Notice the difference between the code before the Ball class is used and
after:

Without Ball Class Definition

With Ball Class Definition

final int RADIUS = 40;
final float ACCELERATION = 0.10;

int x, y;
float direction;
float speed;
boolean grabbed;

void setup() {
 size(600,600);
 x = width/2;
 y = height/2;
 direction = random(TWO_PI);
 speed = 10;
 grabbed = false;
}

void draw() {
 background(0,0,0);
 ellipse(x, y, 2*RADIUS,2*RADIUS);

class Ball { // as defined earlier
 ...
}

final int RADIUS = 40;
final float ACCELERATION = 0.10;

Ball b; // the Ball

boolean grabbed;

void setup() {
 size(600,600);
 b = new Ball(width/2, height/2,
 random(TWO_PI), 10);

 grabbed = false;
}

void draw() {
 background(0,0,0);
 ellipse(b.x, b.y, 2*RADIUS,2*RADIUS);

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 172 -

 if (!grabbed) {
 x = x + int(speed*cos(direction));
 y = y + int(speed*sin(direction));
 }
 else {
 x = mouseX;
 y = mouseY;
 }

 speed = max(0, speed - ACCELERATION);

 if ((x+RADIUS>=width)||(x-RADIUS<=0))
 direction = PI - direction;
 if ((y+RADIUS>=height)||(y-RADIUS<=0))
 direction = -direction;
}

void mousePressed() {
 if (dist(x,y,mouseX,mouseY) < RADIUS)
 grabbed = true;
}

void mouseReleased() {
 if (grabbed) {
 direction = atan2(mouseY - pmouseY,
 mouseX - pmouseX);
 speed = int(dist(mouseX, mouseY,
 pmouseX, pmouseY));
 }
 grabbed = false;
}

 if (!grabbed) {
 b.x=b.x+int(b.speed*cos(b.direction));
 b.y=b.y+int(b.speed*sin(b.direction));
 }
 else {
 b.x = mouseX;
 b.y = mouseY;
 }

 b.speed = max(0, b.speed-ACCELERATION);

 if ((b.x+RADIUS>=width)||(b.x-RADIUS<=0))
 b.direction = PI - b.direction;
 if ((b.y+RADIUS>=height)||(b.y-RADIUS<=0))
 b.direction = -b.direction;
}

void mousePressed() {
 if (dist(b.x, b.y,mouseX,mouseY)<RADIUS)
 grabbed = true;
}

void mouseReleased() {
 if (grabbed) {
 b.direction = atan2(mouseY - pmouseY,
 mouseX - pmouseX);
 b.speed = int(dist(mouseX, mouseY,
 pmouseX, pmouseY));
 }
 grabbed = false;
}

Notice how the ball’s attributes are all now defined inside the Ball object so that less variables
are needed in the main program. Also, the remainder of the code simply requires b. in front of
these attributes in order to go into the object to get their values.

While it seems as though we are writing a little bit more code now, the advantage of creating
this Ball data structure will be more clear later.

