Chapter 5

Lists, Arrays and Searching

What is in This Chapter ?

When solving problems, we often deal with data that has been collected together. We often
must sift through collections of information to find answers. This chapter discusses how data
can be collected together into Arrays and also the various ways that we can search through
the data efficiently to find what we want.

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

5.1 Collecting Data Using Lists

As we have seen in the last section, it is easy to define our own data structures. In fact, it is
such common practice to define data structures that there is an entire 2" year course on Data
Structures and Algorithms. We will not discuss the deeper concepts related to data structures
in this course.

Obviously, we can define a particular data structure to suit our own needs. There are,
however, some common well-known kinds of data structures that are fundamental to the
development of more useful algorithms. Such data structures have “similar patterns” of what
they store and how they are used. When we have two or more particular data structures that
fall under the same “pattern” of usage, we group all such data structures into a category and
denote such a category as an abstract data type (ADT).

One such abstract data type is called a Collection which represents a group of objects that
are treated as a single entity. Collections appear in real-life situations such as:

storing products on shelves in a store

maintaining information on customers

keeping track of cars for sale, for rental or for servicing

a personal collection of books, CDs, DVDs, cards, etc...

maintaining a shopping cart of items to be purchased from a website

A more specific kind of collection is called an Ordered Collection or List. The concept of a
list is intuitive to most of us. We know it as a bunch of items that are placed in some kind of
order (e.g., ordered in a first-come-first-served basis, or perhaps sorted alphabetically, etc..).

We may think of a list written on a piece of paper, perhaps of
items that need to be picked up at the grocery store. Even
though the order of the items is unimportant, it nevertheless
has an order (perhaps arbitrary) to the items. Sometimes, a
list may also be sorted, perhaps alphabetically or by price or
date. Such a kind of ordering would make the list a Sorted
List.

For the remainder of this discussion, we will assume that the
word List represents an unordered list of items, unless otherwise stated.

-174 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

When using a list, there are certain standard functions and procedures that are expected to be
available. That is, we should be able to create a new list, add something to the list, remove
something from the list etc... One of the most common operations to perform on a list is to
iterate (or traverse) through its elements one-by-one in order. Let us look at some examples
that build up some lists of items and then do something simple with the list data.

Example:

Consider working as an assistant at a library. Imagine that someone
was handing books to you and you needed to place them side-by-side
on an empty shelf. What represents the collection data structure in
this situation ?

The shelf is the collection, and in fact ... it is an ordered list since the
books will eventually have an order once they are on the shelf (i.e.,
in the list). Assuming that we had to find the empty shelf on our
own, how would we write an algorithm for stocking the shelf,
assuming that there is a shelf with enough space for all the books ?

Algorithm: PlaceBooks

1 shelf — new List

2 while there are more books {
3. book < get the next book
4 add book to shelf

The algorithm is simple and logical, but it does not indicate where to add the books on the

shelf. It may not matter. In this case, step 4 may simply require adding the book to the end
of the shelf, beside the last one added.

However, if the books are to be sorted by their call numbers, then the order will matter. It will
require us to insert the book at a specific position on the shelf. We can be a little more
specific in our code by making use of the call number:

Algorithm: PlaceSortedBooks

shelf < new List
while there are more books {
book < get the next book
callNumber « look at the book’s call number
insert book into shelf at the appropriate callNumber location

a0~

-175 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Of course, step 5 can always be clarified further, but the algorithm as shown is understandable
at a high level.

Example:

Now assume that we want to transfer all the books from an existing shelf to an empty shelf of
the same size. How would we adjust the algorithm to do this, assuming that we are given two
parameters to the algorithm representing the shelves ?

Algorithm: TransferBooks

shelfl: shelf containing some books to be transferred
shelf2: an empty shelf to place the books onto

1. for each book on shelfl {

2. remove book from shelfl

3. add book to shelf2

The algorithm is straight-forward, and again ... a similar version for sorted books can be
written.

Example:

The above example assumes that there is enough space on shelf2 to hold the books that were
on shelfl. How could we adjust the algorithm to account for the situation where shelf2 is
smaller than shelfl ?

Algorithm: TransferLimitedBooks

shelfl: shelf containing some books to be transferred
shelf2: an empty shelf to place the books onto

1. for each book on shelfl {

2. if (there is space on shelf2) then {

3. remove book from shelfl

4. add book to shelf2

As we will see later, there are more details to work out when we begin to program, but for now,
it is important to understand how lists can be used in other important examples.

- 176 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

5.2 List Searching Algorithms

In real life, we are often faced with the problem of sifting through
information (i.e., data) to determine whether or not a particular type of .
value lies within the information. We call this the searching ™ ' ,
problem, since we are searching through data for a (possibly partial) : ‘/‘ '
solution to our problem at hand. A

For example, we may look through a list to:

determine the existence of a piece of data (e.g., check if a person is on a list)

verify that all items satisfy a condition (e.g., is anyone missing from work today)

pick an appropriate candidate for our problem (e.g., find an available seat on the bus)
determine the most efficient solution (e.g., detect the shortest line at Walmart)

etc..

PoN =

Alinear search (or sequential search)is a method of checking every
one of the elements in a list, one at a time and in sequence, until a value is found
that satisfies some particular condition (e.g., until a match is found).

When developing algorithms, the simplest approach is often called a “brute force” approach,
implying that there is a lack of human sensibility in the solution. A “brute force” algorithm is
one that is often easy to come up with, but that does not usually consider efficiency or any
form of ingenuity.

A linear search is the simplest kind of search since it involves naively looking through the
elements in turn for the one that matches the criteria. In all the examples below, we will
assume that the items that we are searching through are stored as an array (explained later).

Example:

Consider determining whether or not a person is on a list,
perhaps to allow them admittance into a special event. How
would you develop an algorithm to do this using a linear search ?

Assume for example that we wanted to find “Patty O. Lantern” on
the list shown here. It may be obvious that all we need to do is
to start at the top of the list and then work our way down towards
the bottom, comparing names along the way.

But how do we explain this procedure with an algorithm ?
Here is one way ...

-177 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011
Algorithm: IsOnList g
names: the list (e.g., array) to search through 50 " ”'”5
searchName: the name to search for am Fu
Mary Me
1. found «— false Jim Class
2. for each name in the names list { Patty O. Lantern
3. if (name = searchName) then Robin B?”ks
4. found < true Shelly Fish
) Barb Wire
5. print found Tim Burr
Dwayne D. Pool
Hugh Jarms
Notice that the for loop checks all the people on the list one-by-one. Notice the ”e“ekDo"er.
use of the Boolean variable found. This is called a boolean flag in computer ;r:'t';] LE;SSte'"

science. Itis analogous to the little flag on mailboxes that the mailperson lifts up
to let people know when their mail has arrived.

Notice how the flag is down (i.e., false) before the loop starts and that it only
gets raised (i.e., set to true) when the name matches the searchName.

The above algorithm always takes linear time ... that is, in the worst case it
may require us to check all of the names on the list (i.e., the last name on the
list matches).

In practice however, it is possible to exit the loop when a match is found. After all, why keep

looking through the rest of the names when we have already found it.
loop where the flag is the loop condition:

Consider using a while

Algorithm: IsOnList2

names: the list (e.g., array) to search through
searchName: the name to search for
1. found « false
2. while ((found = false) AND (there are more names to check)) {
3. name « get the next name in the names list
4. if (name = searchName) then
5. found « true
}
6. print found

Notice now how the false value at the beginning ensures that we enter into the while loop.
Then, once the name is found, the flag is set and the loop will stop right away. This is more
efficient in practice, although in the worst case, it may still require us to check all of the people

on the list. Notice as well that the loop ends when no more names are available.

- 178 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011
Example:
Consider now determining whether or not all items in a list satisfy Name . Age‘/
some condition. For example, how would we write an algorithm that | 80P E- Pins 25 y
determines whether or not everyone on a list is 18 years of age or Sam Pull 24 g
older ? This is a kind of verification algorithm that should return Mary Me 31
false if just one “under age” person is found. Jim Class 54v
Patty O. Lantern 62 v
Likely we'll begin as before checking each person’s age one-by-one. | Rebin B?”ks 18v
But what are we looking for ? We are looking for someone who is Shelly F_'Sh 17 x
under the age of 18. Barb Wire 21
Tim Burr 26
Do we need to check every person, or can we jump out of the loop at | Dwayne D. Pool 47
any time ? Here is the algorithm: Hugh Jarms 36
llene Dover 42
Frank N, Stein 13
Algorithm: AllAdults Ruth Less 71

people: the list (e.g., array) to search through
1. allAdults « true .
2. for each person in the people list { '
3. if (person.age < 18) then
5. allAdults < false
}
6. print allAdults

The structure of this search algorithm is quite similar to our previous example. Notice
however, that we began with an assumption that all in the list are adults and only set the flag to

false when there is someone found who is under age. Do you understand why we had to

switch the flag around like this ?

Example:

Now let us go back to our algorithm that searches for a name on a
list. Perhaps to get into the special event, we need to show our ID at
the door so that our age can be verified.

How would we adjust the algorithm so that it didn’t simply return true
or false whether or not a person is on the list but in fact returned
something about the person, such as their age ?

What is different ? Do we still need a boolean flag ?

Here is a solution:

- 179 -

R \
| AVALON e

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Algorithm: FindAgeOfPerson Name Age
people: the list (e.g., array) to search through Bob E. Pins 25
searchName: the name to search for Sam Pull 24
Mary Me 31
1. for each person in the people list { Jim Class 54

2. if (person.name = searchName) then Patty O. Lantern @
3. age < person.age Robin Banks 18
b Shelly Fish 17
4. print age Barb Wire 21
Tim Burr 26
Dwayne D. Pool 47
Notice now that we did not use a boolean flag but instead we stored Hugh Jarms 36
the age of the person that we found in the list so that we could printit | jlene Dover 42
later. Of course, if all we wanted to do was print the age, we could Frank N. Stein 13
have done it within the loop: Ruth Less 71

Algorithm: FindAgeOfPerson?
people:
searchName:

the name to search for

for each person in the people list {
if (person.name = searchName) then
print (person.age)

wn =

the list (e.g., array) to search through

We can also even adjust the code to use a while loop so as to allow the loop to exit early:

Algorithm: FindAgeOfPerson3
people:
searchName:

the name to search for
found « false

person « get the next person in the people list
if (person.name = searchName) then {

print (person.age)

found < true

S o

the list (e.g., array) to search through

while ((found = false) AND (there are more people to check)) {

Notice now that the algorithm is efficient in that it prints out the age and quits the loop when

the person has been found.

- 180 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

One problem, however, with our above solutions is that they do not handle the situation in
which the person is not found in the list. In the 2" and 3" case, this may not be a problem
since nothing is printed. In the 1% case however, the age is printed on the last line. But this
age is only set when the person is found. What is the age set to when the person is not found
? This depends on the computer language being used. Often, the age will default to zero,
and so 0 will be printed. It might be a good idea to specify the “default” age at the top of the
algorithm ... perhaps age = -1 or something like that to indicate that it is invalid.

Example:

Another very common task when searching through a set of values is to find the maximum or
minimum. Can you write an algorithm to find the age of the oldest person out of a set of
people ?

What do you need to keep track of as you are figuring out who has the maximum age ?

Algorithm: FindOldest

people: the list (e.g., array) to search through
1. oldestSoFar < 0
2. for each person in the people list {
3. if (person.age > oldestSoFar) then
4. oldestSoFar < person.age
) 4 i
5. print oldestSoFar

Notice how the oldestSoFar variable is used as a “record keeper” to remember the age of the
person who is currently the oldest as we search systematically through the list. We only
change that value once we find someone older.

To find the youngest person, the algorithm is nearly identical. Do you know what changes ?

Algorithm: FindYoungest

people: the list (e.g., array) to search through
1. youngestSoFar <— 200
2. for each person in the people list {
3. if (person.age < youngestSoFar) then
4. youngestSoFar « person.age
}
5. print youngestSoFar ‘R‘ w*

- 181 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

As you can see, the code is basically the same, except for the minor change in the condition
as well as the initial starting value for the youngestSoFar. Why did we set this to such a
large number like 200 ? What would have happened if we leftitat 0 ? Do you understand ?

It is important to choose a number that we know to be larger than any other possible age of the
people that we are searching through. In our times, 200 is a reasonable number since all
people will have an age lower than this. However, just a few thousand years ago, people lived
longer than 200 years old. For example, if you recall the historical account of Noah (the man
that built the ark with all the animals on it) ... history records that he lived 950
years old! People actually lived a long time back then .. the oldest recorded
was 969 (Noah’s grandfather whose name was Methuselah).

How would our algorithm perform if used on people who lived that long ?
Well, likely all people will be older than 200 years and therefore the algorithm
would never set the youngestSoFar variable and so the answer would
always be 200 ... which is wrong.

So, it is always “better to be safe than sorry” by choosing a very large value that we know to be
above all possible values in our problem. Recorded history tells us therefore that any number
1000 or more would be sufficient to ensure that at least one of our people are below that age.
Some computer languages have predefined constants representing the maximum integer or
minimum integer. Processing and JAVA, for example, have constants that represent the
largest and smaller integers that can be stored: Integer.MAX_VALUE and Integer.MIN_VALUE.

These would be good value to use if we are trying to find maximum and minimum numerical
values. Whenever we find ourselves in need of determining the largest/maximum or
smallest/minimum value of a list, the templates above will always work.

Sometimes we need to keep track of additional information as we find the maximum and
minimum. For example, what if we wanted to know the name of the oldest person, not just
the age ? What do you need to keep track of as you are figuring out who has the maximum
age ?

Algorithm: FindNameOfOldest
people: the list (e.g., array) to search through

oldestAge < 0
oldestName « “unknown”
for each person in the people list {
if (person.age > oldestAge) then {
oldestAge < person.age
oldestName « person.name

s MMB@MMMH

ook wh -~

- 182 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Notice how both the age and the name of oldest person is maintained throughout the loop.
The oldestAge is used to compare against each person’s age while the oldestName is simply
stored as the name of the person who had the oldestAge so far.

As before, we would have to choose some kind of default oldestName for the situation in
which no oldest person is found. However, this would only occur when all people are 0 years
of age or more likely when there is nobody on the list. Provided that we choose a proper
starting oldestAge, then the default oldestName will only be an issue in the case where the
list is empty.

We could actually simplify the code to make use of the entire person data structure (with the
name, age, etc..) as opposed to just the name as follows:

Algorithm: FindNameOfOldest?2

people: the list (e.g., array) to search through
1. oldest « the first person in the people list
2. for each person in the people list {
3. if (person.age > oldest.age) then BOB
4. oldest « person
}
5. print oldest.name ‘ﬁi Mf

Notice now that only one variable is needed because it is an entire data structure that contains
the name & age of the person who is the oldest. (Remember, a data structure is really just a
grouping together of data). In fact, if we wanted, on line 5 we could access or print out any (or
all) of that oldest person’s information because it is readily available within the data structure.

Notice that line 1 set the oldest to initially be the first person in the list. Beginning with the
first value in a list is a typical when finding a maximum or minimum value as opposed to
beginning with a value of null. That is because the very first person in the list would be
compared in line 3 with oldest.age. If oldest is null, then oldest.age would be undefined and
the code would not make sense.

Example:

In our examples above, we did not consider the situation in which people have the same name
and/or the same age. For example, consider what happens when we are searching for a
name in a list that has duplicates.

In the case where we are trying to find out whether a particular person is on the list, the

algorithm need not worry. Also, if we are trying to determine whether or not everyone on the
list is an adult, duplicates do not affect the algorithm either.

- 183 -

COMP1405/1005 — Lists, Arrays and Searching

Fall 2011

Consider people playing a game one or more times and recording
their score on a list. In this case, a person may appear more than
once and their associated score is likely unique each time.

What would be the result of the following algorithm if the

searchName is “Patty O. Lantern”:

Algorithm: FindScoreOfPerson Name Score
people: the list (e.g., array) to search through Hugh Jar_ms 3
searchName: the name to search for E;’s”i' FF:'S': i;

1. for each person in the people list { sam Pull 24

2. if (person.name = searchName) then Mary Me 31

3. score <« person.score 4 Jim Class >4
) Patty O. Lantern 62

4. print score Robin Banks 18

Shelly Fish 17
\-Il Barb Wire 21
Which score gets printed ? The last one does. Careful Patty O. Lantern | 31
examination of the code shows that the score variable is set three | Tim Burr 26
times for the list shown above, the 1% and 2" values are Dwayne D. Pool 47
overwritten by the 3™ value of 16. Hugh Jarms 31
llene Dover 42
We can actually adjust the algorithm to list all the scores for that Frank N. Stein 13
person by moving the print procedure from step 5 to step 4 like Patty O. Lantern 16
this: print (score of person). Ruth Less 71
Example:
How could we alter the algorithm so that it displayed the average Name Score
score for the person ? Hugh Jarms 36
Bob E. Pins 25
. Shelly Fish 17

Algorithm: AverageScoreOfPerson Sam Pull 24
people: the list (e.g., array) to search through Mary Me 31
searchName: the name to search for ~y Jim Class 4

Patty O. Lantern

1. score < 0 Robin Banks 18

2. count«<0 | . Shelly Fish 17

3. for each person in the people list { Barb Wire \

4. if (person.name = searchName) then { \.ﬁpatt 0. Lantern +4+

5. score <« score + person.score Tim\’lli'.ur.r € /

6. count « count + 1

} Dwayne D. Pool 47
} Hugh Jarms 31 /

7 int / nt llene Dover 42
print score / cou)

&Frank N. Stein
Patty O. Lantern
-184 - Ruth Less 71

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Notice how the score is totaled each time we notice the person in the list. Also, do you
understand why we needed to also maintain a count of how many times the person’s name
appeared on the list ? It is necessary in order to compute the average.

Example:

How about finding the highest score where there are multiple people with the same score ?

If you remember, the first step to problem solving is to understand the problem. So what
should the answer be ? Well, three people in our example here have the highest score.
What should the output be ? We have some choices:

1. Print the first person who received the highest score.
2. Print the last person who tied the highest score.
3. Print all three who have the highest score.

What would the algorithm look like in each case ? For the first
case, the format is identical to the one that found the oldest

person:

Name Score
Algorithm: HighestScore Hugh Jarms 36
people: the list (e.g., array) to search through Bob E. Pins 25
Shelly Fish 47
1. highestScore « 0 Sam Pull 24
2. highestName « “unknown” Mary Me @
3. for each person in the people list { Jim Class 54
4. if (person.score > highestScore) then { Patty O. Lantern | 62
5. highestScore « person.score Robin Banks
6. highestName « person.name Shelly Fish 17
} Barb Wire
} Patty O. Lantern @
7. print highestName Tim Burr 26
Dwayne D. Pool 47
Hugh Jarms &5
For the 2™ case, we just need to change the condition in step 5 to llene Dover &
(score >= highestScore). The 3™ case is a little trickier. Can Frank N. Stein 13
you explain why the following code will NOT work ? Patty O. Lantern 16
Ruth Less 71

highestScore < 0
highestName « “unknown”
for each person in the people list {
if (person.score >= highestScore) then {
highestScore < person.score
print (person.name)

- 185 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

This algorithm would print out every person whose score exceeded the current high score as
we went through the list. Here would be the names printed:

Hugh Jarms, Shelly Fish, Mary Me, Patty O. Lantern, llene Dover

Now, while the last three names are correct, the first two do not share the same high score.
What is wrong with the algorithm ? We cannot simply print out the person whenever they
“beat” the currently best high score. We need to know that the currently high score is the
actual highest score before we print. So, we will need to print at the end, but somehow
remember all those who had the highest score.

To do this, we will need to keep a new list of people who share the high score. When do we
add to the list ? Do we ever need to reset the list ? Think about it.

Here is a revised (and correct) solution:

Algorithm: HighestScore
people: the list (e.g., array) to search through

highestScore <« 0
highestList < new List
for each person in the people list {
if (person.score > highestScore) then {
highestScore < person.score
highestList < new List

ook wh -~

}

if (person.score = highestScore) then
add person.name to highestList

© N

}
9. print highestList

Notice that whenever we find a new highest score, the highestList of people who had the
previous highest score is emptied out (step 7). Then in step 9, this person is added to that
newly emptied highestList. Whenever someone else is found who shares that highest score,
he/she is simply added to the highestList.

- 186 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Example:

Here is a tougher one now. What if we were on our way
to an autoshow but before we left our roommate asked us
(for some strange/unknown reason) to determine the
most popular color of car at the autoshow.

Now how do we approach the problem ?

Well think of real life. Assuming that there were hundreds
of cars and that your memory is not perfect, you would
likely bring with you a piece of paper (perhaps on a
clipboard) so that you can keep track of the colors of cars that you find.

When you enter the autoshow and see the first car, you would look at its color and then likely
write down the color on the paper and maybe put the number 1 beside it.

Assume that you went to the next car and that it was a different color. You would write that
new color down too along with a count of 1. If you find a car with the same color again, you
would just increment its count.

Below is a picture showing how your clipboard gets updated as you encounter car colors in the
order of red, white, white, blue, etc..:

' !_v-'_&g_v a. g~ 6’ TS
- u etC..
ED 1 ED 1 ED 1 ED 1

WHITE 1 WHITE 2 WHITE 2
BLUE 1

etc..

If we were to take this approach in our programming solution, then we need to realize that
each color that we write down on our clipboard will have a single number associated with it at
all times (representing the count of the number of times that color appeared).

The clipboard/paper itself represents our list of colors so we would need
a list to store that. In fact, since we need a list of counts along with the
list of colors, we will need two lists... one to store the colors and one
to store the counts.

colorslist colarCountList
- 187 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

At this point, we can do a partial algorithm that will count up the number of times that each
color appears at the show as follows:

Algorithm: CarColorCount
cars: the list (e.g., array) to search through

colorsList < new List
colorCountList « new List
for each car in the cars list {
if (car.color is not in the colorsList) then
add car.color to colorsList
add 1 to colorCountList for the color corresponding to car.color

ook wh =~

}

Once this part of the algorithm has been completed, we have two lists filled in showing the
colors at the autoshow and their corresponding counts.

To find the most popular color, we simply need to find out which of these colors has the largest
value (i.e., the maximum count). We will assume that there are no duplicates (or that only the
first one with the maximum count is the answer).

The solution would then be to first count the colors using the above algorithm and then apply a
max/min algorithm similar to the one that found the name of the oldest person as we did
before:

Algorithm: MostPopularColor
cars: the list (e.g., array) to search through

perform algorithm CarColorCount()
bestCountSoFar « 0
bestColorSoFar « unknown
for each color in the colorsList {
count < count in colorCountList corresponding to color
if (count > bestCountSoFar) then {
bestCountSoFar < count
bestColorSoFar < color

NG~ WN =

}
}
9. print bestColorSoFar

Notice that the structure is similar to the standard min/max template except that we performed
a kind of pre-processing stage in step 1 to count the colors.

- 188 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Alternatively, we could have combined the color counting and max-finding sub-algorithms
together:

Algorithm: CombinedMostPopularColor

cars: the list (e.g., array) to search through
1. colorsList < new List
2. colorCountList < new List
3. bestCountSoFar < 0
4. bestColorSoFar < unknown
5. for each car in the cars list {
6. if (car.color is not in the colorsList) then
7. add car.color to the colorsList
8. add 1 to colorCountList for the color corresponding to car.color
9. count < count in colorCountList corresponding to car.color
10. if (count > bestCountSoFar) then {
11. bestCountSoFar < count
12. bestColorSoFar < car.color

}

}

13. print bestColorSoFar

5.3 Arrays

In most of our list examples, we were not overly concerned about particular positions of items
in the list. That is, we usually iterated through the items in the list one at a time, but were not
concerned about the number of the item within the list. When we used a while loop, we
simply asked to “get the next item in the list”. Therefore, we were essentially treating the list
as if it was unordered (i.e., as if the order did not matter):

for each person in the people list{ ... }

for each car inthe cars list{ ... }
name « get the next name in the names list

- 189 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

However, in our last example, we wanted to
maintain a count for each color in the list. When
we encountered a particular color, we needed to
find that color in the colorsList and add 1 to the
corresponding color in the colorCountList >

colorsList colorCountList

Red
White

L

o DHI\JH

To do this, we need to make sure that we update
the correct counter each time. So, we need to
know the position of the color in the colorsList
and update the counter at the SAME position in
the colorCountList. n

[R R L=
[FEI E L)

A list in which the order of the items is important to know, is called an ordered list. Some
programming languages have pre-defined data types to represent ordered lists with convenient
methods such as add, remove, insertltemAtPosition, getltemAtPosition, etc... However,
not all languages have such a convenient data type readily available.

All the popular programming languages do, however, have a fixed data type called an array.

An array is a collection of data items that can be selected by indices (or locations).

So, arrays are a means of “gluing” a bunch of variables side-by-side in some specified order.

0 1 2 3 4 5 6 7 8 9

Each item (also known as element) in an array is stored at a location which is specified by an
index. The index is an integer that identifies the location within the sequence of items.
Indices start at 0. Arrays are fixed-sized collections in that they can hold a fixed number of
items ... that is ... they don’t grow or shrink ... they have a fixed size. In the above image, the
array holds exactly 10 items, so the indices go from 0 through 9. An index of 10 or higher
would be out of the array’s “bounds”, and would therefore be invalid. We often refer to the
“size” of the array as its length. The size/or length of the array is NOT the number of items
that we have put inside it, rather, it is the capacity of the array (i.e., the maximum number of
items that we can put into it). We will use anArray.length in our pseudocode to indicate the
length of an array which is stored in the anArray variable.

Arrays themselves are data types that store a particular kind of item within them. Each item is

understood to be of the same type (e.g., all integers, all floats, all Strings, all Cars, etc..). Here
are some examples of arrays that hold integers, Strings, Person objects and Car objects:

- 190 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011
an Array e
sickDays names
variable 34 12 65) 43 11 variable) .\
0 1 3 3 4 5 / 0 1\ 3 \
L1 BDb" n JEII “Max“

an Amray

sl ,o » ’ LJIC) - o

1 NN i

variable

Y

/0K
3868y =S

N\

Notice how each item in the array is of the same type. The array data structure is quite
efficient in how it actually stores the items in memory. Once allocated in memory, the array
takes up a contiguous (i.e., connected without a break) sequence of memory locations.

If the data being store is simple primitive-like data, then it is stored
directly in the array one item after another. The sickDays variable
above, for example, represents an array with simple integers that
would be store sequentially in memory as shown here: >

If, however, the array’s data items are a more complex data type,
then it is stored differently in a way that depends on the
programming language.

For example, in JAVA/Processing, pre-existing objects may be
created and then the array would store simply pointers (e.g.,
memory addresses) to those objects. So an array of items of type
Person, would store a sequence of pointers to the individual
Person objects, as shown here in the friends array: >

Alternatively, in languages like C for instance, the array would
simply reserve contiguous space for the entire series of Person
data types by calculating the size of a person data structure and
multiplying by the size of the array.

-191 -

0000000000
Q000000001
QQOOO00002

sickDays

friends

1073741821
1073741822
1073741823

1GB RAM
(memory)

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Because array data is stored and accessible in contiguous memory locations, we can actually
refer to all of the data by using a single variable name! That is nice. We can use just one
variable to refer to all the items, even if there are thousands of them.

Of course, when we want to access a particular item, we need to indicate which one we want.
So, we need to supply its index. Also, each time we want to put something into the array we
also need to supply the index location.

So, we will use square brackets (i.e., []) whenever we refer to a particular item in the array.
Thus, we will use the array’s variable name, followed by square brackets and place the index
number within the brackets as follows:

theArray[5]
Example:
Consider for example our previous algorithm for determining whether or not ?‘7 - N
someone’s name (i.e., searchName) is on a list (i.e., names). The left side of N s

the table below shows the code as was used with unordered lists, while the right V"\
side indicates the array version.

Unordered List Version Array Version
found < false found < false
for each name in the names list { for index i from 0 to names.length-1 {
if (name = searchName) then if (names[i] = searchName) then
found < true found < true
} }
print found print found

Notice a couple of things with the above code. We are specifying in the for loop the index
number (stored in variable i) of the items in the array. Then, this index is used in the if
statement condition to access the name at position i in the names array. You may notice that
there is no name variable to store the name. Instead, we simply use the entire array and
indicate the name by means of the square brackets and index i.

So you can see that the code is essentially the same, except that we now need to specify the
location of each item in the list by means of its index.

-192 -

COMP1405/1005 — Lists, Arrays and Searching

Fall 2011

Example:

Recall the example that determined the person with the highest score in the unordered list.
Again, below is a comparison of the unordered list version with the array version. In the
example, people is the parameter containing Person data structures (i.e., objects), which

each have score and name attributes.

Unordered List Version

Array Version

highestScore < 0
highestName « “unknown”
for each person in the people list {
if (person.score > highestScore) then {
highestScore < person.score
highestName « person.name

highestScore < 0
highestName «— “unknown”
for index i from O to people.length-1 {
person « peopleli]
if (person.score > highestScore) then {
highestScore < person.score

} highestName < person.name

} }
print highestName }

print highestName

Notice that the code is almost identical again, except that we require the index. In order to
keep the code simpler, we added a line to set a person variable to the element of the array at
position i. This variable was not necessary. We could have substituted people[i] for person
as follows:

for index i from O to people.length-1 {
if (peopleli].score > highestScore) then {
highestScore « people[i].score
highestName « people[i].name

}

The point is that each time we want to refer to a different person, we need to supply the index.

Example:

Now assuming that high scores can be tied, we wrote an algorithm that returned a new
unordered list of all people who obtained that high score:

-193 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Algorithm: HighestScore
people: the list (e.g., array) to search through

highestScore < 0
highestList < new List
for each person in the people list {
if (person.score > highestScore) then {
highestScore < person.score
highestList < new List

OOk wN >

}

if (person.score = highestScore) then
add person.name to highestList

®© N

}
9. print highestList

How can we adjust this to use arrays ... even creating a new array to represent the solution ?
Let us first convert the code into code that assumes that the people list is an array:

highestScore < 0
highestList < new List
for index i from 0 to people.length-1 {
if (peopleli].score > highestScore) then {
highestScore < people[i].score
highestList < new List
}
if (peopleli].score = highestScore) then
add people[i].name to highestList

}
print highestList

Now, how do we adjust the code so that highestList is an array ? Recall that an array must
have its capacity specified when it is created. How big should this answer be ? Think of the
“‘worst-case-scenario” (i.e., the scenario that causes the array to be its largest size).

It is possible that everyone shares the same high score. In that case, the array would need to
be the same size as the original people list:

highestList < new Array with capacity people.length

How do we add people to the highestList ? Well, recall that this array should just be a
sequence of Person data structures/objects. So, to add a person to the array, we need to
indicate where in the array it should go ... that is ... we need to supply an index in the range
from O to highestList.length — 1.

Logically, the first person added should go at position 0 in the array, the next one in position 1,
the third in position 2, etc... So we will need to keep track of the next available location within
the array. This can be done with a simple nextLocation integer counter which starts at 0.

-194 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Then, we simply insert into the array by simply assigning the person to the location in the array
specified by nextLocation. Here is the code so far:

highestScore < 0
highestList < new Array with capacity people.length
nextLocation < 0
for index i from O to people.length-1 {
if (peopleli].score > highestScore) then {
highestScore « people[i].score
highestList < new Array with capacity people.length
nextLocation «— 0
}
if (peopleli].score = highestScore) then {
highestList[nextLocation] « people[i].name
nextLocation « nextLocation + 1
}
}
print highestList

Notice that we need to increase the nextLocation counter after we add a new person so that
the next person will be added right after it. Do you know what would happen if we did not
increase this counter ?

Assume that we were keeping track of the equal highest scores and suddenly we encounter a
better high score. What do we do ? All of the high scores that we have added to the
highestList are no longer highest scores.

Currently, our code simply replaces the highestList with a brand new highestList. Where
does the previous highestList go ? Well, it depends on the programming language. In
Processing/JAVA, this old/garbage array will be “garbage collected”. That is, the memory
space that this array is using up will automatically be discarded at a later point in time by the
system. However, in a language like C where WE are responsible for allocating and freeing
up the memory, we must make sure to free this memory before re-assigning a new array to the
highestList variable.

Regardless of the programming language, in both cases we would need to reset the
nextLocation back to O so that new items begin to be placed at the start of the array again.

Interestingly, what would happen if we removed this line from the first if statement:
highestList < new Array with capacity people.length

Well, the highestList would contain some high scores that are no longer valid. However,

since we are resetting the nextLocation back to zero, all newly encountered high scores will

be added to the array such that they overwrite the previous high scores. Notice in this
example how the resetting of the nextLocation causes overwrite:

- 195 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

nextLoc. =0 1 2 3 n
Name
Hugh Jarms 0 nextLoc. = 1 2 3 .
Bob E. Pins \
Shelly Fish
Sam Pull \ 0 next_oc. = 1 2 3 . n
Mary Me
Jim Class \] 1 nextLoc. =2 3 n
Patty O. Lantern 12 -)

-

Robin Banks :
Dusty Room 0 1 2 netloc.=3 .. n
o Wire B v | e | ovvoon
Tim Burr
Patty Cakes \ 0 nextLoc. = 1 2 3 n
Dwayne D. Pool 47 Mary Me Dusty Room
Hugh Jarms
llene Dover 0 1 nextLoc. = 2 3 n
Frank N. Stein w e
Cary Meehoam 0 1 2 nedloc=3 .. n

As a result, the final array may have some invalid data for all indices greater than
nextLocation. The nextLocation variable actually indicates (at all times) the number of
highest scores. Hence, even though the array is of size n, if the nextLocation variable has
the value of 3 at the end of the loop iteration, then there are only 3 valid high scores which are
located at the beginning of the array.

Example:

In the previous example, we produced a solution in which the resulting array had a size likely
greater than was necessary. For example, if the people array had 100 people in it and only
two had the highest score, the resulting array would be of size 100, yet only two values in the
array would be valid. This is wasteful. How can we adjust the algorithm so that the array has
a length that is exactly equal to the number of people with the highest score ?

Logically, we cannot know how many people have the highest score until after we have
checked all of the people. So, we must traverse the list at least one time before knowing how
big to make the array.

If we leave our code as it is now, before returning we could create a new array with the proper
size (i.e., size = nextLocation) and then copy the items over from the big array to the other
array. Then we can free the memory from the other array if necessary. We just need to
append this to the end of our algorithm’s code:

- 196 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

finalAnswer «— new Array with capacity nextLocation
for index i from O to nextLocation-1 {

finalAnswer[i] < highestList][i]
}

This code will copy the people from one array to the other. The highestList array will then be
discarded. This is done either through automatic garbage collection (as in Processing/Java),
or by manually freeing up the memory (as in C) ... depending on the programming language
used.

Of course, the above solution may be considered wasteful in that a potentially large array
needs to be allocated and then disposed of. This is not a space-efficient solution.
Alternatively, we could adjust our algorithm to follow these steps:

Find the highest score

Find out how many people have the highest score
Create an array of the correct size

Fill up the array with all those with the highest score.

PoN=

Separately, steps 1, 2 and 4 each require an iteration through the people in the list:

highestScore < 0 /[STEP 1 above
for index i from O to people.length-1 {
if (peopleli].score > highestScore) then
highestScore < people[i].score
}
highestCount < 0 /Il STEP 2 above
for index i from O to people.length-1 {
if (peopleli].score = highestScore) then
highestCount <« highestCount + 1

}
highestList < new Array with capacity highestCount /[STEP 3 above
nextLocation « 0 /Il STEP 4 above

for index i from O to people.length-1 {
if (peopleli].score = highestScore) then {
highestList[nextLocation] < people[i].name
nextLocation < nextLocation + 1
}
Y
print highestList
While this solution is more space-efficient, it is less efficient in terms of running time, as it

requires an additional iteration through the list. However, with some careful thought, we can
combine steps 1 and 2. Do you know how ?

-197 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

highestScore < 0 /[STEP 1 & 2 above
highestScoreCount « 0
for index i from O to people.length-1 {
if (peopleli].score > highestScore) then {
highestScore « people[i].score
highestScoreCount « 0
}
if (peopleli].score = highestScore) then
highestScoreCount < highestScoreCount + 1

}
highestList < new Array with capacity highestScoreCount // STEP 3 above
nextLocation < 0 /Il STEP 4 above

for index i from O to people.length-1 {
if (peopleli].score = highestScore) then {
highestList[nextLocation] < people[i].name
nextLocation «— nextLocation + 1
}

}
print highestList

Notice that we just needed to keep track of the number of people with the current high score ...
the same way as nextLocation was used in the previous example to store the number of
people with the current highest score.

Example:

Recall our example for finding the most popular car color at the autoshow:

Algorithm: MostPopularColor
cars: the list to search through

colorsList « new List
colorCountList < new List
colorsCount « CarColorCount()
bestCountSoFar — 0
bestColorSoFar « unknown
for each color in the colorsList {
count < count in colorCountList corresponding to color
if (count > bestCountSoFar) then {
bestCountSoFar < count
0. bestColorSoFar < color
}
}
11. print bestColorSoFar

SV NoORhWN =

- 198 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

CarColorCount()

1. for each car in the cars list {

2 if (car.color is not in the colorsList) then

3. add car.color to colorsList

4 add 1 to colorCountList for the color corresponding to car.color
}

5. return the size of colorsList

Assume that the colorsList and colorCountList are now arrays:

B o v P e
r

ColorsList | prp WHITE | BLUE
RED 1 array
0 1 2 3 n
WHITE 2
BLUE 1 ColorCountList
1 2 1
array
0 1 2 3 n

The main algorithm remains largely similar, assuming that CarColorCount() returns the
number of unique colors:

Algorithm: MostPopularColor
cars: the list to search through

colorsList « new array with capacity cars.length
colorCountList « new array with capacity cars.length
colorsCount « CarColorCount()
bestCountSoFar « 0
bestColorSoFar < unknown
for index i from 0 to colorsCount {
if (colorCountList[i] > bestCountSoFar) then {
bestCountSoFar < colorCountList][i]
bestColorSoFar < colorsList][i]

CoNooOhwN =

}
}
10. print bestColorSoFar

How though can we adjust the CarColorCount() function to use arrays ? The code for
checking whether a car is in the list or not, is not as simple as this:

if (car.color is not in the colorsList) then ...

- 199 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

We are going to have to go through the whole colorsList to determine if the car’s color is
already in there. This requires an additional loop (see steps 2 though 5 below) with some sort
of boolean flag as follows:

CarColorCount()

1 for each car in the cars list {

2. found « false

3. for each color in the colorsList {
4 if (car.color = color) then

5 found « true

}
if (not found) then

6.

7. add car.color to the colorsList

8. add 1 to colorCountList for the color corresponding to car.color
}

9. return the size of colorsList

This code will add the color to the colorList when found has not be changed to true. The list
will therefore contain the proper colors when completed.

But we should adjust the code so that the colorsList’s colors are accessed properly by integer
indices:

CarColorCount()
1. for each car in the cars list {
2. found — false
4. for index j from O to colorsList.length-1 {
5. if (car.color = colorsList[j]) then
5. found < true
}
6. if (not found) then
7. add car.color to the colorsList
8. add 1 to colorCountList for the color corresponding to car.color
}
9. return the size of colorsList

But there is a problem on line 7. Where in the colorsList do we add the newly found color ?
Logically, we should add it beside the last color that we added. But nowhere do we keep track
of where the last color was added. So, we should maintain a variable that indicates where to
add the next color. This variable will also serve as a counter that indicates how many colors
are currently in the list. That is good, because line 9 requires us to return that value:

- 200 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

CarColorCount()

ook wh -~

© oo N

10.

11.

colorsCount «— 0

for each car in the cars list { ey
found « false ® &
for index j from O to colorsCount { :
if (car.color = colorsList[j]) then -
found « true

}

if (not found) then {
colorsList[colorsCount] « car.color
colorsCount « colorsCount + 1

}

add 1 to colorCountList for the color corresponding to car.color

}

return colorsCount

Notice how the loop in line 4 needs only to go from 0 to the number of colors currently in the
list (i.e., colorsCount), not its capacity.

We are almost done. Line 10 is the last line to fix. In order to increase the count in the
colorsCountList we need to know the position of car.color in the colorsList. So we need
to, not only determine whether or not a color is already in the list, but also where (i.e., its index)
it is in the list.

So the boolean found flag will need to be an integer index instead:

CarColorCount()

OOk whN -~

_ O~
=

12.

13.

colorsCount < 0
for each car in the cars list {
colorPosition « -1
for index j from O to colorsList.length-1 {
if (car.color = colorsList[j]) then
colorPosition « |
Y
if (colorPosition =-1) then {
colorsList[colorsCount] < car.color
colorPosition < colorsCount
colorsCount < colorsCount + 1
colorCountList[colorPosition] <« 0

}

colorCountList[colorPosition] « colorCountList[colorPosition] + 1

}

return colorsCount

-201 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Notice how -1 is used to identify an invalid colorPosition. Also, notice how line 11 places a
0 in the colorCountList for all newly found colors. On line 12, both new and repeated colors
have their count incremented. That'sit. The code is complete.

Example:

Consider a program that continually asks for integers from the user, and adds them to an array
as they come in until -1 is entered, and then does something interesting with the numbers that
were entered. What is the structure of the algorithm ?

Algorithm: GetValidNumbers

numbers < new array with some initial capacity
count <0
entered < get a number from the user
while (entered is not -1) {
numbers[count] <« entered
count <« count + 1
entered < get a number from the user

Noohrwh =

}

do something with numbers

o

The code is straight forward. However, can you foresee a problem that may arise ?

Notice that each number coming in is added to the array according to the count position,
which is incremented each time a valid number arrives. When the loop has completed, count
represents the number of integers that were entered and added to the array.

It is possible that we may attempt to add an item beyond the array’s capacity. In such a case,
the program will usually crash (or stop unexpectedly and non-gracefully).

How do we address this potentially serious problem ? Since arrays are fixed size, we cannot
simply make more room within the existing array. Rather, a new bigger array must be created
and all elements must be copied into the new array. But how much bigger ? It's up to us.

Here is how we could change the code to increase the array size by 5 each time it gets full ...

- 202 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Algorithm: GetValidNumbers
1. numbers < new array with some initial capacity
2. count «— 0
3. entered <« get a number from the user
4. while (entered is not -1) {
5. if (count >= numbers.length) then {
6. tempArray < new array with capacity numbers.length + 5
7. for index i from O to numbers.length-1 {
' 8. tempArray[i] < numbersJi]

}

9. numbers « tempArray
}
10. numbers[count] < entered
11. count < count + 1
12. enteredNumber «— get a number from the user
}

13. do something with numbers

Of course, we can increase by any amount each time, perhaps even doubling the size.

Example:

Assume that we are given an array of Person objects and we need to discard (or remove from
the array) all people below the age of 18.

Algorithm: RemoveYoungsters
people: the list to search through : .
1. for each person in the people list {
2. if (person.age < 18) then
3. remove person from the people list
}

How could we do this using an array ? Well, an array is fixed size, so when we remove data,
the array will not get smaller. The situation is analogous to a program

recorded on a videotape, we cannot actually remove the item but we

can overwrite it (i.e., replace it) with a new value. 7
So, to delete a piece of information from an array, you usually replace it with

0 or null. The array will stay the same size, but the data will be deleted.

- 203 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Algorithm: RemoveYoungstersArrayVersion
people: the array to search through

1. for index i from O to people.length-1 {
2. if (peopleli]l.age < 18) then
3. people[i] « null

}

This will replace all underage people with null, but the result array will be filled with “gaps” or
holes:

people (before)

A e ————
/P EAANNS
5288288 ¢e8B:

people (after)

S

1T 2% I N4 5 By T J88 9

The holes may present two problems. First, we don’t know how many people are left in the

array. Second, when looping through the array we will encounter null objects that we need to
deal with properly.

To handle the issue regarding the amount of valid data remaining in the array, we can always
maintain a variable indicating the number of such valid elements as follows:

- 204 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Algorithm: RemoveYoungstersArrayVersion?2
people: the array to search through

count <0
for index i from O to people.length-1 {
if (peoplelil.age < 18) then
people[i] « null
otherwise
count < count + 1

ook wh -~

}

This count variable will indicate the number of people who are 18 or over. The code above
assumes that the array was filled with people.

The second issue of being able to handle the holes implies that we check for a hole each time:

Algorithm: RemoveYoungstersArrayVersion3
people: the array to search through

count <0
for index i from O to people.length-1 {
if (peopleli] is not null) then {
if (peoplelil.age < 18) then
people[i] « null
otherwise
count « count + 1

Nogobkwh =

}

However, it is often unpleasant to continually check for “holes” in the array like this. In fact, in
a typical application we are likely more often going to need to traverse through elements of an
array for display purposes than to search through the array to remove data. Therefore, it
would be more advantageous to “fill-in” the hole each time so that the valid array elements are
at the front-most part of the array at all times.

Assume that we have such a valid array in which all the elements are at the front-most part of
the array. Assume then, that we always have a count as to how many people are stored in
the array at all times.

Whenever we decide to remove a person, we can grab the person from the end of the array
and place it in that spot, then reduce our counter by one to indicate that we have one less
piece of data. We can even place null in the last location of the array to erase the data that
was there.

- 205 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

people
count=149

B o ozcuceaas
32688288

move this person over to fill gap, then reduce count

However, it is possible that the last person in the array that we try to move over is also
underage. Therefore, we could go ahead and move it over, but make sure to check the age of
the person that we moved over as well before we move on to the next index in the array.

Here is the code:

Algorithm: RemoveYoungstersArrayVersion4
people: the array to search through
count: number of people in the array

for index i from 0 to count — 1 {
if (peopleli].age < 18) then {
people[i] < people[count — 1]
people[count — 1] < null
count « count - 1
l—i-1 /I decrease index so that next time we check this new item

ook wh =~

}

Here is a picture of what is happening (the ages are shown in the array instead of the person
in order to save space):

- 206 -

COMP1405/1005 — Lists, Arrays and Searching

Fall 2011

Notice how the count continually decreases as elements are removed from the array.

i =0 count-1=9
23 110 |42 | 58 |17 |36 | 27 |13 | 11 | 41
0 1 2 3 5 G i 3 g
i=1 count-1=9
23 |10 | 42 | 58 |17 |36 | 27 |13 | 11 | 41
0 1 2 3 4 5 _fa=m=a=="8 9
i=1 L count-1=8
e
23 141 | 42 | 58 |17 | 36 | 27 | 13 | 11 null
0 1 2 3 4 5 G i] g
i=2 count-1=8
23 |41 | 42 | 58 |17 | 36 | 27 | 13 | 11 null
0 1 2 3 5 G i 3 g
i=3 count-1=8
23 |41 |42 | 58 |17 | 36 | 27 | 13 | 11 null
0 1 2 3 4 5 G i] g
i=4 count-1=8
23 |41 |42 | 58 |17 § 36 | 27 | 13 | 11 null
0 1 2 3 4] 5__..-#'."'] g
i=4 e...-""" count-1=7
23 |41 | 42 | 58 | 11 36 | 27 § 13 | null | nun
0 1 2 3 4 5 ,..-""ﬁ" Fi 3 g
=4 er“' count-1=6
23 |41 | 42 | 58 | 13 | 36 | 27 | null | null | nul
0 1 2 3 4 5,2 6 7 g g
i=4 ge’count-1=
23 | 41 42 |58 127 1 36 | null | null | null | null
0 1 2 3 4] G 7 3 g
iZcount-1=5
23 | 41 42 |58 | 27 1 36 | null | null | null | null
0 1 2 3 4 5 G i 2 g

It is not

actually necessary to move the item to the open “holes”. The item may simply be copied
over, leaving “garbage” at the end of the array:

count-1=5

23

41

42

58

11

27 27
4 5 6

- 207 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Example:

Assume that we already had a list of people sorted by their ages. How can we write code that
will insert a new person into the appropriate location in the array so that it remains sorted ?

insert at
index 6

Wi
SRE828

To insert at some index position (e.g., i) we must shift all array items from indices i onwards
one position further in the array:

O 5V ¢
SREE88e

Here is the code to do this:

items have moved over

- 208 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Algorithm: Arraylnsert

people: the array of sorted people

newPerson: the new person to insert into the array

count: number of items currently in the array
1. if (count < people.length) then {
2. index «<— 0
3. while (index < count) {
4. if (people[index].age < newPerson.age) then {
5. for index i from count-1 down to index { // count backwards
6. people[i+1] < peopleli]
7. people[index] « newPerson
8. count < count +1
9. index < count // Need this in order to quit

}

10. index < index + 1 // Need this to check next position

Notice how the search for the insertion position continues until a person in the array has an
age less than that of the person being inserted. Then every person after that “found” position
is moved over to the right and the new person is simply added to that newly found position.

5.4 Efficient Searching Using Arrays

We have discussed linear searching and how it sometimes requires us to iterate through all the
items in a list whereas at other times we can stop the iteration once we have found something
that positively answers our problem at hand. In the worst case, however, it can require a full
search through all the items.

There is another very popular search strategy called a binary search:

Abinary search is an efficient method for finding a particular value in a
sorted list, that consists of continually reducing the search space by half during
each search step.

As stated, in order to perform a binary search it is necessary for
the elements to be in sorted order. If the elements are out of
order, the algorithm will not work.

The idea behind a binary search is easily understood using the
analogy of looking up someone’s name in the white pages of a
phone book. Image that you are looking for the last name

- 209 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

“‘Peterson”. If you opened the book in the middle and looked at the top of the page, chances
are that you would see a name that comes alphabetically before Peterson (e.g., Lanthier”) or
alphabetically after it (e.g., “Ryans”). If you saw “Ryans”, for example, then you know that
“Peterson” comes before it in the book (since the names are sorted), so you don’t bother
checking the 2" half of the book, but instead turn your attention to the first half of the book.
Then, the problem kinda starts all over again with the first half of the book in that you will now
check from book from “A” to “Ryans”, ignoring the portion from “Ryans” to “Z”. The process
continues until the name is found, each time a big chunk of the phone book is eliminated from
the potential pages to search.

The “binary” from “binary search” indicates that the data is repeatedly divided into two halves.
How do we find the half way point ? Well, if the first page is 1 and the last page is 2000, we
just do (2000 — 1) / 2 = 999.5 which can be rounded up to 1000. But what about when we are
searching the top half of the book ... perhaps from page 1000 to 2000 ? Then the same
formula of (2000 — 1000) / 2 = 500 which is not the middle. 500 is actually the number of
pages from page 1000 to the middle of the 1000 to 2000 range. So we need to add the offset
of the start page. The formula is therefore:

midPage = startPage + (endPage — startPage) / 2

or
midPage = (startPage + endPage) / 2

Here is an example of how the algorithm works if we were looking for the name Green:

Abraham
Bryant
Davidson
Flanders
Green
Johnson
Kent
Lemaire
Matthews
Orion
Peters
Robinson
Stevens
Thompson
Vernon
Walsh

Abraham
Bryant
Davidson
Flanders
Green
Johnson
Kent

Green
Johnson
Kent

Green
Johnson

Green

Here is a more formal algorithm:

- 210 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Algorithm: SearchPhoneBook

phonebook: the book to search through

searchName: the name you are looking for
1. startPage < 1
2. endPage < 2000 /I or whatever the last page is
3. found « false
4. while ((not found) and (startPage is not greater than endPage)) {
5. midPage « (startPage + endPage) / 2
6. open the phonebook at midPage
7. currentName < name at the top of midPage
8. if (currentName is the same as searchName) then
9. found « true
10. else {
11. if (currentName comes alphabetically before searchName) then
12. startPage < midPage + 1
13. else
14. endPage — midPage - 1

}
}

Notice how the startPage (or endPage) is adjusted in line 12 (or 14) to be one more (or less)
than the midPage. That is because we have already checked the midPage, so there is no
need to have it remain in the list of items to search.

Of course, this algorithm works for any collection of sorted items. Assume that the items are
stored in an array. We can make the algorithm even more formal and compact as shown
below. This pseudocode assumes that the items in the array can be compared using a <
operator:

Algorithm: BinarySearch
items: the array to search through
searchltem: the item you are looking for

1. s<—0
2. e « items.length - 1
3. location < -1
4. while ((location < 0) and (s <= e)) {
5. m<—(s+e)/2
6. if (items[m] = searchltem) then
7. location «— m
8. else {
9. if (items[m] < searchltem) then
10. S« m+1
11. else
12. e« m-1
}

}

13. print location

-211-

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

The code has been adjusted to return the location of the found item, not just a boolean
showing whether or not it was found. Of course, if the item is not found, it will return -1.

Notice that it loops through the items one at a time and returns the same result. However, this
code is simpler than the binary search. In order to see the advantage of the binary search, let
us look at a real example.

Example:

As an example, assume that we have the following array of numbers and that we want to
determine whether or not the number 24 lies within the array:

2 3 5 7 7 |12 |14 |19 | 21 | 24 | 28 | 32 | 32 | 45 | 48 | 49
3 4]] 7 8 g 10 11 12 13 14 15

Here is the result of applying the algorithm:

2 3 5 7 7 |12 (14 119 21 | 24 | 28 | 32 | 32 | 45 | 48 | 49

3 4 5 G 7 8 9 10 11 12 13 14 15

5 m =

2 3 5 7 T 112 14 [19121 | 24 | 28| 32 | 32 | 45 | 48 | 49

0 1 2 3 4 5 G 7] 9 10 11 12 13 14 15
5 m =

2 3 5 7 7 |12 |14 [19121 | 24 | 2B | 32 | 32 | 45 | 48 | 49

0 1 2 3 4 5 G 7] g9 10 11 12 13 14 15
location=19

2 3 5 7 7 |12 |14 [19 | 21 | 24 | 28 | 32 | 32 | 45 | 48 | 49

0 1 2 3 4 5 G 7 8 g9 10 11 12 13 14 15

... and here is the result if we were searching for the number 18:

-212 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

5 M 2

213 6 | 7T | 7T (12 141921 24 28 | 32 | 32 | 45 48 | 49

0 3 4 5 6 7 8 g 10 11 12 13 14 15
5 I =

213 | 577 |12 141921 | 24 | 28 |32 | 32 | 45 | 48 | 49

0 3 4 5 6 7 e g 10 11 12 13 14 15

5 M

2 | 3 | 5 T 11211411921 | 24 | 28 | 32 | 32 | 45 | 48 | 49

0 2 3 4 5 6 7 8 g 10 11 12 13 14 15
5= 1T =

2 | 3 |5 | 7T | 7 [12]14]19])21 |24 |28 | 32 | 32 | 45 | 48 | 49

0 3 4 5 6 7 8 g 10 11 12 13 14 15

s5=m=e

2 | 3 |5 | 7T | 7 |12 |14]19])21 | 24 | 28 | 32 | 32 | 45 | 48 | 49

0 3 4 5 6 7 8 g 10 11 12 13 14 15
= 5

2 | 3 |5 | 7T | 7 |12 141921 |24 | 28 | 32 | 32 | 45 | 48 | 49

¥ a 9 10 11 12 13 14 15
5 > g, not found

4]]

You may feel that this seems more complicated than simply searching through the elements
one-by-one. Yes, it is more complicated. Here is a comparative linear search:

Algorithm: LinearSearch

Nooabkw=

13.

items: the array to search through
searchltem: the item you are looking for

i<—0
location «— -1
while ((location < 0) and (i <= items.length - 1)) {

i—i+1
if (items]i] = searchltem) then
location « i

}

print location

But think about the advantages. Imagine checking the phone book for a name by always
starting your search from the front of the book and checking page by page. Do you
understand the advantage yet ?

In our above example, a linear search for the number 24 would require us to examine 10 array
items (i.e.,2,3,5,7,7,12, 14, 19, 21, 24), while the binary search required us to examine only
3 array items (i.e., 19, 32, 24) before the number was found.

-213 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

When searching for a number that is not there (e.g. 20), the linear search would have to be
exhaustive, checking all 16 items. However, the binary search required only 5 to be
examined.

Of course, the binary search code is longer and has more variables, so there is a bit of
“overhead” in getting it to work. Hence, the linear search is often much better to use when a
small number of items need to be searched. The advantage of the binary search comes when
the array size is large. For example, in the worst case scenario an array of around 1,000,000
items would require us to search all 1,000,000 items if the item is not in the array. However, a
binary search would only require a search of around log,(1,000,000) ~= 20 items !!! The
logarithm (base 2) comes into play because we are continually discarding 72 of the array items
during each round through the loop. Can you imagine the time-savings of searching 1GB of
data ? It would check only 30 items at most in place of 1,000,000,000 !!!

As you continue with your degree in computer science, you will learn much more about
efficiency.

5.5 Arrays in Processing

Recall that in Processing & Java, variables are defined by specifying their type (primitive or
object) as well as a label (the variable’s name). Array variables are defined similarly, but with
square [] brackets. Below is a table showing how to declare variables that hold a single value
verses variables that hold arrays (or multiple values):

Single-value variables Array variables
boolean hungry; boolean[] hungry;
int days; int[] days;
char gender; char[] gender;
float amount; float[] amount;
double weight; double[] weight;
Car myCar ; Car[] myCar ;
Ful IName myName ; Ful IName[] myName ;
Address myHomeAddress; Address[] myHomeAddress;
BankAccount myAccount; BankAccount[] myAccount;

So you can see that arrays are declared similarly to regular variables. Note that the square
brackets may appear either with the type (as shown) or with the variable’s name as follows:

int days[];
Car myCar|[];

Now these array variable declarations simply reserve space to store array objects, but it
actually does not create the array object.

-214 -

COMP1405/1005 — Lists, Arrays and Searching

Fall 2011

So, the following code would print out null because the variable is not yet initialized:

int[]

days;

printin(days);

Notice above that we did not use the square brackets [| when you are using the array variable
in your code ... you only use the brackets when we define the variable.

To use this variable (which is just like any other variable), we must give it a value. What kind
of value should it have ? An array of course. But it may surprise you to know that we do not

call a constructor to create arrays.

new ArrayType[ArraySize]

Instead, we use a special (similar) syntax as follows:

This is the template to create an array that can hold up to ArraySize values of type

ArrayType. Remember that arrays are fixed size, so you cannot enlarge them later.

If you

are unsure how many items that you want to put into the array, you should chose an over-
estimate (i.e., a maximum bound) for its size. Here are some examples of how to give a value
to our 6 array variables by creating some fixed-size arrays:

int[] days;

double[] weights;

string[] names;

Car[] rentals;

Person[] friends;

days = new int[30]; // creates array that can hold 30 ints

weights = new double[100];// creates array that can hold 100 doubles

names = new String[3]; // creates array that can hold 3 String objects
rentals = new Car[500]; // creates array that can hold 500 Car objects
friends = new Person[50]; // creates array that can hold 50 Person objects

Once we create arrays using the code above, the arrays themselves simply reserve enough
space to hold the number of objects (or data types) that you specified. However, it does not

create any of those objects!!

The array is NOT initialized with new objects in each location.

Newly created arrays are filled with O for numbered arrays, character O (i.e., the null character)

for char arrays, false for boolean

arrays and null for Object-type days an Array
arrays. o
0 0||oO
Hence, the following code -
. 0 1 P
produces the result shown in the cars
. an Array
picture here: ’7
' ull ull ull ull
int[] days; " " " "
Car[] cars; 0 1 2 3
Person[] friends; friends an Array
days = new int[3]; L »
cars = new Car[4]; all null null null null
friends = new Person[5]; 0 1 2 3 4

- 215 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Notice that the arrays which hold object types are simply filled with null values ... there are no
Car objects nor Person objects created in the above code.

At any time, if we would like to ask an array how big it is (i.e., its size or capacity), we can
access one of its special attributes called length as follows:

printin(days.length); // displays 3
printin(cars.length); // displays 4

Remember that the length of an array is its overall capacity, it is not the number of elements
that you put into the array.

Values are actually assigned to an array using the = operator just as with other variables.
Here is an example of how to fill in our arrays:

days
int[] days; | —
Car[] cars; 2 1 =
Person[] friends; o i z

cars
days = new int[3]; [—
cars = new Car[4]; |7 null || @ || null || @
friends = new Person[5]; o Ji 2 Js
days[0] = 34; a o
days[1] = 12; friends ' : : :
days[2] = 65; |T— .
cars[1] = new Car('Red™); » ’ ’ mull || null
cars[3] = new Car("'Blue'); . O/ J? 2 4
friends[0] = new Person(...);
friends[1] = new Person(...);
friends[2] = new Person(...);

The picture here shows the result from this code —
Notice that we can insert an object at any location in the array, provided that the index is valid.

The following two lines of code would produce an ArraylndexOutOfBoundsException:

days[3] = 87; // Error: index 3 is out of range
cars[10] = new Car(Yellow™); // Error: index 10 is out of range

A very common mistake made when learning to use arrays is to declare the array variable, but
forget to create the array and then try to use it. For example, look at this code:

Person[] friends = new Person[10];

printin(friends[O].-firstName); // Error!
printin(friends[0].age); // Error!
printIn(friends[0].gender); // Error!

Although the above code does create an array that can hold Person objects, it actually never
creates any Person objects. Hence, the array is filled with 10 values of null.

- 216 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

The code will produce a NullPointerException because friends[0] is null here and we are
trying to access the attributes of a null object. We are really doing this: null.firstName
which makes no sense.

Assigning individual values to an array like this can be quite tedious, especially when the array
is large. Sometimes, in fact, we already know the numbers that we want to place in an array
(e.g., we are using some fixed table or matrix of data that is pre-defined). In this case, to save
on coding time JAVA allows us to assign values to an array at the time that we create it. This
is done by using braces { }. In this case, neither the new keyword, the type nor the size of
the array are specified. Instead, we supply the values on the same line as the declaration of
the variable. Here are some examples:

int[] ages = {34, 12, 45};

double[] weights = {4.5, 23.6, 84.124, 78.2, 61.5};
boolean[] retired = {true, false, Talse, true};
String[] names = {"Bill","Jennifer"”,"Joe"};

char[] vowels = {"a", "e", "iI", "0, "u"};
Here, the array’s size is automatically determined by the number of values that you specify

within the braces, each value separated by a comma. So the sizes of the arrays above are 3,
5, 4, 3 and 5, respectively.

Objects may also be created and assigned during this initialization process as follows ...

Person[] people = {new Person(‘'Hank", *"Urchif", 19, *M*, false),
new Person(‘'Don', "‘Beefordusk™, 23, *M*, false),
new Person(“'Holly™, *Day", 67, "F", true),
null,
null};

Here we are actually creating three specific Person objects and inserting them into the first
three positions in the people array. Notice that you can even supply a value of null, for
example if you wish to leave some extra space at the end for future information. Hence the
people array above has a capacity (i.e., length) of 5.

- 217 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Example:

Recall our example in which a ball was thrown around the window. How can we adjust the
code so that multiple balls are able to be thrown around ?

final iInt RADIUS = 40;
final float ACCELERATION = 0.10;

Ball b; // the Ball
boolean grabbed;

O

class Ball { // as defined earlier

}

void setupQ QO {
size(600,600);
aBall = new Ball(width/2, height/2,
random(TWO_P1), 10);
grabbed = false;

}

void draw(Q) { --. }
void mousePressed() { ... }
void mouseReleased() { ... }

To begin, we will need to store an array of balls. We can adjust b to be an array balls. Then
in the setup() method, we need to create the array and fill it up with some balls:

One Ball Version Array of Balls Version
Ball b; // the Ball Ball[] balls; // lotsa balls
boolean grabbed; boolean grabbed;
void setup() { void setup() {

aBall = new Ball(width/2, height/2, balls = new Ball[10];

random(TWO_PI1), 10); for (int 1=0; i<balls.length; i++)

grabbed = false; balls[i] = new Ball(width/2, height/2,

} random(TWO_PI1), 10);
grabbed = false;
by

Notice how we need to use a loop to fill in the array at each location. If we did not do this, the
array would be filled with null. Each ball is made as before, and placed in the array at
consecutive locations.

The draw() procedure will now need to draw ALL the balls. So we will need to loop through
them all in order to ensure that all get displayed. Here is how the code gets adjusted:

- 218 -

COMP1405/1005 — Lists, Arrays and Searching

Fall 2011

One Ball Version

void draw() {
background(0,0,0);
ellipse(b.x, b.y, 2*RADIUS, 2*RADIUS);

if (Igrabbed) {
b.x = b.x + int(b.speed * cos(b.direction));

b.y = b.y + int(b.speed * sin(b.direction));
else {

b.x = mouseX;

b.y = mouseY;

}
b.speed = max(0, b.speed - ACCELERATION);

iT ((b.x + RADIUS >= width)]](b.x - RADIUS <= 0))
b.direction = Pl - b.direction;

iT ((b.y + RADIUS >= height)]](b.y — RADIUS <= 0))
b.direction = - b.direction;

}

Array of Balls Version

void draw() {
background(0,0,0);
for (int i=0; i<balls.length; i++) {
ellipse(balls[i]-x, balls[i].y, 2*RADIUS, 2*RADIUS);

ifT (Igrabbed) {

balls[i].-x = balls[i].x + int(balls[i].speed * cos(balls[i].direction));
balls[i].y = balls[i].y + int(balls[i].speed * sin(balls[i].direction));
}
else {
balls[i]-x = mouseX;
balls[i].y = mouseY;
}

balls[i]-speed = max(0, balls[i]-speed - ACCELERATION);

it ((balls[i].x + RADIUS >= width)||(balls[i].x - RADIUS <= 0))

balls[i].direction = PI - balls[i].direction;

iT ((balls[i].y + RADIUS >= height)]| (balls[i].y - RADIUS <= 0))

balls[i].-direction = - balls[i].direction;

Notice how the for loop wraps around the code. Also, notice how each reference to b is

simply replaced by balls]i] to indicate the particular ball in the array.

However, there is a problem in regards to grabbing the ball. What ball are we grabbing ?

Should we be able to grab any ball ? Probably.

We will need to make a change so that instead of remembering whether or not we grabbed a

ball, we should remember which ball we grabbed, if any at all.
-219 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Therefore, we will change our grabbed boolean to be of type Ball, so that we can keep track of
the particular ball that was grabbed:

boolean grabbed; will become Ball grabbed;

In the setup() procedure, we will set it to null, since we have not grabbed any balls when the
program first starts.

grabbed = false; will become grabbed = null;

How do we change the if (Igrabbed) line in the draw() procedure ? We want to move each
ball except the one that was grabbed. So we move the ball at location i as long as it is not the
grabbed one. So we need to change this line to if (grabbed != balls[i]) in the draw()
procedure.

Likewise, we need to adjust the mousePressed() procedure to search through all the balls
and find out which one was grabbed, then remember it as follows:

One Ball Version

void mousePressed() {
iT (dist(b.x, b.y, mouseX, mouseY) < RADIUS)
grabbed = true;
}

Array of Balls Version

void mousePressed() {
for (int i=0; i<balls.length; i++) {
iT (dist(balls[i]-x, balls[i].y, mouseX, mouseY) < RADIUS)
grabbed = balls[i];

Likewise, we need to adjust the mouseReleased() procedure to “un-remember” the grabbed
ball as follows:

One Ball Version

void mouseReleased() {
it (grabbed) {
b.direction = atan2(mouseY - pmouseY, mouseX - pmouseX);
b.speed = int(dist(mouseX, mouseY, pmouseX, pmouseY));

}
grabbed = false;
}

Array of Balls Version

void mouseReleased() {
it (grabbed !'= null) {
grabbed.direction = atan2(mouseY - pmouseY, mouseX - pmouseX);
grabbed.speed = int(dist(mouseX, mouseY, pmouseX, pmouseY));

grabbed = null;
}

- 220 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Notice how we now use the grabbed variable to set the direction and speed of the grabbed ball
according to where we throw it.

‘5.6 2D Arrays

In all of our search-related examples so far we assumed that we had a list of items that we are
searching through. A list of items is considered 1-dimensional in that we travel one way
through the list (although this could be done forwards or backwards). Sometimes, however,
we need to perform 2-dimensional searches by traveling up, down, left or right through data
that is usually arranged in a grid.

One particular class of problems that apply to 2-dimensional data is called image processing.
That is, there are many algorithms that process and manipulate images. All images can be
stored in pixels arranged in an (x,y) grid:

Sometimes the images are compressed and stored differently (e.g., jpg) but in our examples,
we will assume that the data is in what is known as a “raw” format where each pixel
(representing a dot of the image) is accessible and modifiable by a unique (x,y) location in the
image. Therefore, we can imagine that the image is stored in a 2-dimensional array as rows
and columns of pixels. Therefore, we will access a particular pixel in the image by using this
notation: image[row][column]

Here, each pixel requires two indices...one to represent the row (starting at zero), the other to
represent the column (starting at 0 as well). While there are many ways to represent pixels in
an image, we will assume for our examples that each pixel value is either stored as a:

e grayscale value: Usually a number from 0 to 255 representing the amount of “gray” at
that location in the image.

e RGB value: A set of 3 numbers (each from 0 to 255) representing the amount of “red”,
“green” and “blue” at that location in the image.

-221 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Example:

How would we print out the grayscale values of a gray scale image stored in an array with R
rows and C columns ? What does the loop structure look like ?

Algorithm: PrintGrayValues
image: the 2D array representing the image
R: number of rows in the image
C: number of columns in the image
1. for each row r from 0 to R-1 {
2. for each column ¢ from 0 to C-1 {
3. print image[r][c]
}
}

Nested for loops are usually everybody’s favorite control structure for iterating through the
elements of a 2-dimensional array.

The above code assumes that the value of the array is indeed the grayscale value. How
would the code differ if the image was stored in RGB format ? This depends on how the data
is actually stored. For example, it is possible that, instead of a single grayscale byte value per
pixel, the array may actually hold a data structure with accessible r, g, b values:

define Pixel to be made of {
.red
.green
.blue

}

In this case, we would simply need to access the appropriate values:

Algorithm: PrintRGBValues

image: the 2D array of Pixel objects representing the image
R: number of rows in the image
C: number of columns in the image

for each row r from 0 to R-1 {
for each column ¢ from 0 to C-1 {
print image[r][c].red
print image[r][c].green
print image[r][c].blue

abrwON -~

- 222 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

In some programming languages, however, the pixels may be stored as large 3-byte or 4-byte
integers that encodes the RGB values in some manner (sometimes including gray or black
level as a 4" byte). In this case, the programming language will often provide functions for
extracting the relevant data and thus the code may look something like this:

Algorithm: PrintRGBValues

image: the 2D array containing the image
R: number of rows in the image
C: number of columns in the image

for each row r from 0 to R-1 {
for each column ¢ from 0 to C-1 {
print redAmount(image]r][c])
print greenAmount(imagelr][c])
print blueAmount(image[r][c])

abrwb~

}

Regardless of the exact manner in which the color values are accessed, the processing of the
image data occurs in a similar manner.

Example:

A common operation in image processing is that of “blurring” an image. There are multiple
ways to blur an image. One way is simply to replace a pixel’s value with a new value that
corresponds to the average values of the pixels around it (including itself). A simple “box blur”
would examine the pixels in the rows/cols that are above/below the pixel to be blurred. The
number of rows and columns to use in the operation is determined by a parameter called the
window size. Each pixel in the blurred image has a value that represents the average of the
pixels within the window around it from the original image:

original image partially “blurred” image
a 1 2 3 4 5 0 1 2 3 4 5
0|34 |63 |75023| a4 | 6 |- ol 2 | 2|2 | 2| 2| ?

1145 |16 | 28 | 33 | 32 | 65 |*** average 1 ? ? ? '-) 40 | ?

27589 (46 | 90 f 56 | 55 = 2| ? ? ? ? ? ?

3(57 113) & 0 | 26 | 37 [*** average 3 ? ") 4 | ? ? ?

440 § 58 |65 | 76 | 56 | 21 (== 4l ? ? ? ? ? ?

5/63 |8 | O |42 | B6 | 88 |- 5| ? ? ? ? ? ?

- 223 -

COMP1405/1005 — Lists, Arrays and Searching

Fall 2011

Imagine taking the following grayscale image and computing a blur for it.

Here is the original

image containing pixels that are either white (i.e., 255) or black (i.e., 0):

255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 .
255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 255 H I
255 255 255
255 255 255
255 255 255
255 255 255
255 255 255
255 255 255
255 255 255
255 255 255
255 255 255
2535 255 255
255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 255
255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255
Here is the image after blurring:
255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255
255 | 227 | 198 | 198 | 227 | 227 | 198 | 198 | 227 | 255 | 227 | 198 | 198 | 227 | 255 I
255 | 198 | 142 | 142 | 198 | 193 | 142 | 142 | 198 | 255 | 198 | 142 | 142 | 198 | 255
255 | 170 255 | 198 | 142 | 142 | 198 | 255
255 | 170 255 | 227 | 198 | 198 | 227 | 255
255 | 170 255 | 227 | 198 | 198 | 227 | 255
255 | 170 255 | 198 | 142 | 142 | 198 | 255
255 | 170 255 | 170 170 | 255
255 | 170 255 | 170 170 | 255
255 | 170 255 | 170 170 | 255
255 | 170 255 | 170 170 | 255
255 | 198 255 | 198 198 | 255
255 | 227 | 198 | 198 | 227 | 227 | 198 | 198 | 227 | 255 | 227 | 198 | 198 | 227 | 255
255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255

- 224 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

You can see that the black pixels becomes lighter due to the fact that they have incorporated
the white pixels around it in its new average value. Similarly, some of the white pixels became
gray due to the averaging of nearby black pixels.

How could we write the code to do this assuming that the image is grayscale and is stored in
an array ? We need to go through each pixel one-by-one...so a nested for loop is necessary.
As we move through the pixels, we need to find the average of all pixels in the window around
it and then set the new image’s pixel to that averaged value. Here is the basic idea, although
some details still need to be worked out:

Algorithm: BasicBlurGrayscalelmage

OOk whN -~

™~

image: the 2D array representing the image
R: number of rows in the image
C: number of columns in the image

windowSize: width & height of the averaging window

blurredimage < new Array with capacity image.length
for each row r from 0 to R-1 {
for each column ¢ from 0 to C-1 {
sum «— 0
for each pixel p in the window around and including image[r][c] {
sum < sum +p
}

blurredimagelr][c] = sum / windowSize?
}
}

image « blurredimage

The loop on line 5 is not clear. How do we find each p pixel ?

One way is to consider the window pixels as being

“offsets” in the array with respect to the pixel’s 0 o-wf2 w2
location. So, for example, to get the new value for - . =
the pixel at row 3, column 3 (see below) with a 1 45 | 16 | 28 | 33 | 32 |,
window size w of 5, we can consider offsets of
—w/2 to +w/2 in both the rows and columns (which 2 75 | 89 | 46 | 90 | 56 | |-w/2
corresponds to -2 to +2 when w=5) as shown here -
3 57 |13 | & 0 | 26 T

Thus, we can use a for loop to iterate through the w? w/2
pixels in the window: 4 40 | 58 | 65 | 76 | 36

for each rowOffset from —w/2 to +w/2 { > 63 |86 | 0 |42 |86 |"

for each colOffset from —w/2 to +w/2 {
... image[r+rowOffset][c+colOffset] ©
}

- 225 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011
Of course, there will be some w2

issues along the borders of the —

image because adding the offsets w/2

will cause image coordinates that 0 1 2 3 4 5 &

are less than zero or greater than w/2
the image’s width or height > of 2 | 34|63 H w/
So we will have to check for these o 33|32 | 63
‘boundary” cases. We can either 2l 32 | 75 | 89 90 | 56 | 55

ignore them (i.e., don’t average any

pixels that are along such a ; o | 26 | 37
border), or we can adjust the

computation so that it also counts 4 76 | 56 | 21

how many pixels are within the

boundary and averages just those 5 a2 | g6 | 88
instead. We'll take the 2™

approach. So we will need to 5

count how many valid pixels are

within the window and use that to get the average. Here is the completed solution, making

sure that the nested window loops are snuggled nicely within our outer nested loops:

Algorithm: BlurGrayscalelmage

image: the 2D array representing the image
R: number of rows in the image
C: number of columns in the image

windowSize: width/height of the averaging window

}
}

15. image < blurredimage

1. blurredimage < new Array with capacity image.length

2. for each row r from 0 to R-1 {

3. for each column ¢ from 0 to C-1 {

4. sum «— 0

5. count 0

6. for each rowOffset from —w/2 to +w/2 {

7. for each colOffset from —w/2 to +w/2 {

8. if (((r+rowOffset) >= 0) AND (r+rowOffset) < R) AND
((c+colOffset) >= 0) AND ((c+colOffset) < C)) then {

9. sum « sum + image[r+rowOffset][c+colOffset]

10. count « count + 1

11. }

12. }

13. }

14. blurredimagelr][c] = sum / count

- 226 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Example:

Imagine some machine parts moving along a conveyor belt. Assume that a robot must pick
up a particular type part to assemble some product. Before the parts reach the robot, a
mera takes im fth . : :
moving parte, Tha mage 1 capture image identify border
processed to a black and white
silhouette showing the shape of
a part. We would like to
process the image to find the
edges of the part so that we
can compare it to a database of
‘known” parts and identify the
shape for pickup by the robot
arm.

—

Let us consider the portion of
this problem that determines

the border (i.e., edge) of the

object in the silhouette image.

There are many strategies for c C IHI _ <
doing edge detection in an @

image. However, we will use

an approach that computes a

chain of pixels along an object’s find match in database |
boundary. This will allow us to convertto polygon

easily convert the pixel chain into
a polygon and then compare with the polygons stored in the database.

For now, assume that the image is given to us so that the
entire part is within the boundaries of the image and that
only one part is in the image ... and the image is black

and white (i.e., binary). How do we find the border pixels
?

One approach may be to simply process the image by
looking at each black pixel and specifying that it is a
border pixel if it is not completely surrounded by 8 black
pixels all around it as shown here >

not border border

Below, on the left, is the result. On the right is the “thinner” result that would be obtained if we
“relaxed” our conditions a little and assume that a pixel is on the border only if the 4 pixels
above or below are white (ignoring diagonals):

The result is that we could identify pixels that are clearly
inside the part and those that are along the border.

- 227 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Here is the code that takes the black and white image and colors the border pixels red:

Algorithm: BordersGrayscalelmage

image: 2D array representing the image
R: # rows in image
C: # columns in image
1. blurredimage < new Array with capacity image.length
2. for each row r from 0 to R-1 {
3. for each column ¢ from O to C-1 {
6. if (image][r][c] is black) then {
6. if ((image[r+1][c] is white) OR (image[r-1][c] is white) OR
8. (image[r][c+1] is white) OR (image[r][c-1] is white)) then
9. image[r+1][c] « red
13. }

The code above properly determines the border pixels.
However, there is a problem. It does not give us the order
of the pixels...so we cannot easily form a polygon (which
has vertices and edges).

A better approach would be to start at some “beginning”
edge pixel and then somehow trace around the border of
the shape until we get back at the beginning pixel. >

What pixel do we start the tracing at ? It does not matter,
but for simplicity, we can choose the top-most/left-most
pixel with some code like this:

- 228 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Algorithm: FindStart

image: 2D array representing image
R: # rows in image
C: # columns in image

1. for each row r from 0 to R-1 {

2. for each column c from 0 to C-1{
3. if (imagef[r][c] is black) then {
4. startR—r

5. startC«c

quit with startR, startC as starting pixel

Now that we have the starting pixel, how do we start tracing ? Well, let us assume that we will
trace the border counter-clockwise around the shape. Where should the next border point be
? Here are the possibilities:

X

below/left below below/right right none found impossible

The next pixel along the border depends on the shape itself. Above, we see that there are 5
possibilities ... the 5th one being a very special case where the black pixel that we found was
in fact a “stand-alone” black pixel ... perhaps noise from the incoming data. The last image
shows impossible situations ... given that we started at the top left black pixel to begin with.

You may notice that all possibilities are below or to the right. You may also notice that we can
simply check these 4 possibilities in sequence. Does the order matter ? Yes. We need to
start by checking below/left first. Why ? Look at the last image above. What if we checked
the below/right pixel first ? It is clearly not on the border of the shape.

Assume then that we ended up finding a black pixel in the below/left position. We have our
next point along the border. But then what ? We need to do a similar process again:

>< >< >< > >< > "]

=~ |"% |S&7 |SEa-|Esun|aans

- 229 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Notice now that there are more possibilities (7, in fact). So how do we know how to choose
the next pixel ? We need to look around the last added pixel, again in a counter-clockwise
order ... this time starting with the upper-left pixel....until we find a black pixel. Notice that the
pixel above (shown as X) is not a possible “next-pixel” because it would have been chosen
beforehand in the border tracing.

So, the first time, we started looking in the bottom left first, the next time we started in the
upper left ... it is not consistent. In fact, the pixel that we start looking at first (in our trace
around the last added border pixel) depends on the direction that we came from.

It is not as straight-forward and intuitive as it seems. Lets draw some possibilities:

RO

|H
P
[zm
S|

EF

Xpars

<[>
4
Fs
B e
<[>
=3
<[

Xk
]

= >

x| !l'.'ll 3}!

ek,
=
|

X
X
X
X

%
;
b
e

Sy | Sl

L3 |
N

RS-

B B

It looks like a lot of possibilities, but every second set of pictures is just a 90° rotated version of
a previous set. When solving problems in computer science, it is often necessary to write out
these “test cases” and to try and make sure that you cover every possible solution. In this

case, there are a small number of possibilities for each situation, so this is feasible. However,
in some problems, it is not possible to figure out all possible situations. In time, you will get to

- 230 -

COMP1405/1005 — Lists, Arrays and Searching

Fall 2011

know which kinds of problems will have a small fixed number of possibilities and which

problems are too difficult (or too time consuming) to determine all possible solutions.

Given each of the 8 possible incoming directions, the leftmost pictures above show the
direction to the next border pixel. Here is the series of images showing (red arrow) the

incoming direction (from previous border pixel) and the corresponding start direction (to
next potential border pixel) in which to start looking for the next border pixel:

So, to get the next pixel in the border, we could just use 8 if statements to figure it out:

if (incomingDirection is right) then
startDirection < lowerRight

if (incomingDirection is up) then
startDirection < upperRight

if (incomingDirection is left) then
startDirection < upperLeft

if (incomingDirection is down) then
startDirection < lowerLeft

if (incomingDirection is lowerRight) then
startDirection < lowerLeft

if (incomingDirection is upperRight) then
startDirection < lowerRight

if (incomingDirection is uperLeft) then
startDirection < upperRight

if (incomingDirection is lowerLeft) then
startDirection < upperLeft

However, there is an easier way. Consider numbering the pixels
around the a pixel as shown here to the right >

In this case, the leftmost 4 pictures above will assign the start direction
to be: (incomingDirection + 7) modulo 8 and the rightmost pictures
above will assign the start direction to be: (incomingDirection + 6)
modulo 8. In both cases, the modulo 8 ensures that the maximum
value is 7. It accounts for the “wrap around” effect.

3
4
5

2

6

1
0
7

Interestingly, the 4 left pictures above all have even numbered incoming directions, while the
others are odd numbered. So, we can use this code instead of the 8 if statements above:

if (incomingDirection is even) then

startDirection < (incomingDirection + 7) modulo 8
otherwise

startDirection < (incomingDirection + 6) modulo 8

-231-

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

How do we check if a number is even or odd ? We can divide by 2 and check if the remainder
is0or1. So,incomingDirection modulo 2 = 0 means that the incomingDirection is even.

OK, so we know the direction in which to start searching for the next border pixel. How do we
actually do this search ? Well, we need to search counter clockwise until we find a black
pixel, or until we checked all the 6 or 7 valid positions around the previous border pixel. In
fact, we can check all 8 positions...it does not really matter, but 7 is sufficient to cover both
cases.

But wait. How do we even check the pixel in the
startDirection ? Where is that pixel in the array with
respect to the last border pixel ? We need a way to convert (r-1,c-1)| (r-1,c) [(r-1,c+1)
the startDirection into an actual row and column in the
array. Assume that the last border pixel is a row r, column
c. Notice here, how the offsets are set up according to

position (r, c) 2> (r, c-1) (r, c+1)

Again, we could set up a set of 8 if statements

if (startDirection is 0) then { (r+1, c-1)| (r+1,c) [(r+1, c+1)
startR «r
startC «—c + 1

}

if (startDirection is 1) then {
... etc...

However, there is a shorter way. We can set up 2 arrays of constant offsets and then access
them using the startDirection as an index. This is called a lookup table.

Here are the tables:

rowOffsets = new array with numbers: [0, -1, -1,-1,0, 1, 1, 1]
colOffsets = new array with numbers: [1,1, 0, -1, -1, -1, 0, 1]

Then we simply compute the next potential border pixel as:
image[r + rowOffsets[startDirection]][c + colOffsets[startDirection]]

Now all we need to do is to loop counter-clockwise around the last border pixel, looking for a
black pixel, starting with the incomingDirection. Here is a function that takes the last-added
pixel (r, c) in the image along the border that is being traced and a starting incomingDirection
and then determines the next pixel in the image.

The code returns a new point which represents the location of the next pixel along the border

during the tracing procedure. It also updates the incomingDirection to be the last
startingDirection in order to get ready for the next pixel along the border trace.

-232 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Algorithm: FindNextPixel

13.
14.
15.

16.

image: 2D array representing the image
incomingDirection: direction coming in to this pixel
r: row# of pixel in image

C: column# of pixel in image

rOff = new array with numbers: [0, -1, -1,-1,0, 1, 1, 1]
cOff = new array with numbers: [1,1,0, -1, -1, -1, 0, 1]
if (incomingDirection modulo 2 is 0) then

startDirection < (incomingDirection + 7) modulo 8
otherwise

startDirection < (incomingDirection + 6) modulo 8

count <0
found < false
while (count <8 AND found is false) {
if (image[r + rOff[startDirection]][c + cOff[startDirection]] is black) then
found < true
otherwise {
count <« count + 1
startDirection « (startDirection + 1) modulo 8
}
oo .
incomingDirection « startDirection
if (found is false) then
return null
otherwise
return new point(r+rOff[startDirection], c+cOff[startDirection])

Now we have everything that we need for our algorithm. We know how to find the starting
pixel and then to determine the direction to get the next pixel. We can do this until the start
pixel is found again. We would need to set the incomingDirection to 7 as a start, since we
started looking for the first black pixel from the top/left in the image. Here is the completed
code:

- 233 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Algorithm: TraceBorder

image: 2D array representing the image

R: # rows in image

C: # columns in image
1. polygon < new polygon with no points
2. startPixel « null
3. for each row r from 0 to R-1 {
4. for each column ¢ from 0 to C-1 {
5. if ((startPixel is null) AND (image[r][c] is black)) then {
6. startPixel < (r, c)
7. add startPixel to polygon

}
}

}
8. if (startPixel is not null)) then { // handles case where image is all white
9. direction « 7
10. done false
11. while (done is false) {
12. nextPixel — findNextPixel(image, direction, r, c)
13. if (nextPixel is null) OR (nextPixel is same as startPixel)) then
14. done « true

otherwise
15. add nextPixel to polygon
}

}

16. return polygon

Notice that lines 2 through 7 simply find the starting pixel (if there is one), while lines 9 through
15 do the tracing along the border. Each time, a new border pixel (i.e., nextPixel) is added to
the polygon until the original startPixel is reached again. The code will also handle the case
where the startPixel is the only black pixel...in this case nextPixel will be null.

Example:

The examples that we have seen so far are related
to image processing. However, 2D arrays can be
used for any situation in which data is arranged in
a grid. For example, consider representing the
following maze by using arrays -

In Processing, we could represent this maze by
using a 2D array of ints indicating whether or not
there is a wall at each location in the array (i.e., 1
for wall, O for open space).

~N o o A W DN PP O

- 234 -
01234567879

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Notice how we can do this by using the quick array declaration with the braces { } as we did
with one-dimensional (i.e., 1D) arrays:

int[][] maze = {{1,1,1,1,1,1,1,1,1,1},
{1,0,0,1,0,0,0,0,0,1},
{1,0,1,1,1,0,1,1,0,1},
{1,0,1,0,0,0,1,0,0,1},
{1,0,1,0,1,1,1,0,1,1},
{1,0,0,0,1,0,1,1,1,1},
{1,0,1,0,0,0,0,0,0,1},
{1,1,1,1,1,1,1,1,1,1}};

This array represents a grid with 8 rows and 10 columns. Notice that there are more brace
characters than with 1D arrays. Each row is specified by its own unique braces and each row
is separated by a comma. In fact, each row is itself a 1D array.

We could display this array quite simply by iterating through the rows and columns:

1111111111
for (int row=0; row<8; row++) { 1821282281
for (!nt col=0; col<10; col++) 1010001001
print(maze[row][col]); 1010111011
printinQ); 1000101111
3 1010000001
1111111111

Of course, we may want to display the maze with nicer-looking characters:
for (int row=0; row<8; row++) { e e
for (int col=0; col<10; col++) { * * *
it (item == 1) ekl
* X Kkk kX
else N - - . * * KXk Xx
print(™); * * *
} E e e

printin(Q);

}

How though, would we draw the maze (as shown in the picture above) on the window in
processing ? We would need to decide upon how big each square would be and then loop
through drawing the squares in the appropriate color.

Here is a more complete program (assuming that the maze variable is set as shown earlier):
int GRID_SIZE = 20;

void setup() {
size(GRID_SIZE*10,GRID_SIZE*8);
stroke(0); // use a black border

}

void draw() {
drawMaze();

}
- 235 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

void drawMaze() {
for (int row=0; row<8; row++) {
for (int col=0; col<10; col++) {
it (maze[row][col] == 1)
fi11(150,200,255); // light blue
else
fill (255, 255, 255); // white
rect(col*GRID_SIZE, row*GRID_SIZE, GRID_SIZE, GRID_SIZE);
}
}
}

Notice how the GRID_SIZE is an adjustable parameter which is used as a scalar to make the
maze appear larger or smaller.

Example:

Some mazes contain “dead-ends”. A “dead-end” is any location in the maze that has only one
way to get into it (i.e., it is surrounded by 3 walls). Using the previous maze example, how
can we adjust the code so that dead-ends are colored red ?

We need to identify a dead-end by checking the
grid locations around it. There are exactly 4 cases
that we should check as shown here =

Given a particular grid location maze[r][c] that is an open space (i.e., maze[r][c] = 0) we can
determine if it is a dead-end like this:

if (((maze[r—1][c] is a wall) AND (maze[r][c-1] is a wall) AND (maze[r][c+1] is a wall)) OR
((maze[r-1][c] is a wall) AND (maze[r+1][c] is a wall) AND (maze[r][c+1] is a wall)) OR
((maze[r+1][c] is a wall) AND (maze[r][c-1] is a wall) AND (maze[r][c+1] is a wall)) OR
((maze[r-1][c] is a wall) AND (maze[r+1][c] is a wall) AND (maze[r][c-1] is a WaII))) then
maze[r][c] is a dead end, so paint it red

This code checks each of the 4 cases by checking the grid locations above, below, to the right
and to the left of location (r,c). Can we do this in a simpler way, given that all maze locations
are represented as numbers either 0 or 1 ?

Yes. We can add up the maze locations of the 4 directions around (r,c). If their sumis 3,
then this is a dead-end.

count «— maze[r-1][c] + maze[r+1][c] + maze[r][c-1] + maze[r][c+1]

if (countis 3) then
maze(r][c] is a dead end, so paint it red

- 236 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Of course, this assumes that (r,c) is not along the border, - -
otherwise we may be trying to examine locations that are Maze (o] o]
outside of the maze boundaries (e.g., r-1<0, c-1<0, r+1>7,

Of course, in our maze example, there are no open (i.e.,
white) locations along the border, so we would not need to
worry about going beyond the boundaries. If however, the
maze had openings along the border, we would have to check

for such boundary issues like this: :H

if ((r>0) AND (r<7) AND (c>0) AND (c<9)) then {
count «— maze[r-1][c] + maze[r+1][c] +
maze[r][c-1] + maze[r][c+1]
if (count is 3) then
maze|r][c] is a dead end, so paint it red

Example:

Assume that we had an underlying maze as in our previous example and that we wanted to
move an object (e.g., a small rat) around in the maze by clicking on successive adjacent maze
locations to move the rat.

3 — —
3 ‘ 10
To begin, here is what our rat will look like - 4= T
20
As we learned earlier in the course, the code for drawing this rat at a e
particular location is as easy as drawing a combination of circles, a T
triangle and some lines. i
——
However, we would like to keep track of the rat’s location in terms of 10 10

the row and column that it lies in within the maze. Therefore, we will assume that the rat’s
position is recorded as a (row,col) in the maze and that we need to calculate the (x,y) position
based on this row and column.

The x and y position of the rat’s center (shown as the black dot above) can be computed as:

X — col * GRID_SIZE + (GRID_SIZE /2)
y < row * GRID_SIZE + (GRID_SIZE /2)

The GRID_SIZE is the width and height (in pixels) of each square grid location. So, multiplying
the row and column by the GRID_SIZE gives us the (x,y) location of the top left corner of the
grid location. However, we likely want to draw the rat in the center of the grid location, so we
need to add half of the GRID _SIZE:

- 237 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

columns
0 1 2

(rc)=(1,2)
0 GRID_SIZE = 50

A

1%L

, / (r¥50+425, c*50+25) = (75, 125)

S0l
=

_
|| (r*50/c*50) = (50, 100)

Here is the code, then, for drawing the rat:

int ratRow, ratCol;

void drawRat() {
int X = ratCol * GRID_SIZE + GRID_SIZE/2;
int y = ratRow * GRID_SIZE + GRID_SIZE/2;
fill(150, 150, 150); // gray

triangle(x, y-20, x+10, y, x-10, y); // head
line(x, y+10, x, y+20); // tail
line(x, y-17, x-10, y-17); // whiskerl
line(x, y-17, x-10, y-20); // whisker2
line(x, y-17, x+10, y-17); // whisker3
line(x, y-17, x+10, y-20); // whisker4
ellipse(x, y, 20, 20); // body
fill(255, 0, 0); // red

ellipse(x-3, y-14, 3, 3); // eyel
ellipse(x+3, y-14, 3, 3); // eye2

}

How can we write the program that draws the rat at the location clicked on ?

Well, we know how to draw the maze and the rat... we just need to handle mouse-press
events. At any time, the draw() method should always draw the rat at its current location in the
grid. We only need to update that location when the user clicks on a new location.

int GRID _SIZE = 50;
int ratRow = 1, ratCol = 1;

void setup(Q { --- }
void drawMaze() { --- }
void drawRat() { ... }

void draw(Q) {
drawMaze();
drawRat();

}

void mousePressed() {
. write code here ...
b

- 238 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

So, what do we do when the mouse is pressed ? We simply determine the ratRow and
ratCol that the user clicked on. Once we change these variables to the new location, the
draw() procedure should automatically draw the rat at the new location.

Determining the (row, column) from the (mouseX, mouseY) is not difficult. Recall that we
found the (x,y) to draw the rat by multiplying the columns and rows by the GRID_SIZE. To do
the reverse, we simply divide by the GRID_SIZE:

void mousePressed() {
ratRow = mouseY / GRID_SIZE;
ratCol = mouseX / GRID_SIZE;

}

Of course, we need to make sure that we move the rat to an “open” grid location. The rat
should be allowed to move to any grid location that is not a wall:

void mousePressed() {
int newRow = mouseY/GRID SIZE;
int newCol = mouseX/GRID SIZE;
ifT (maze[newRow][newCol] == 0) {
ratRow = newRow;
ratCol newCol ;

}
}

If we are not simply selecting a location for the rat, but in fact steering it around the maze, we
will want to ensure that we only move the rat to an adjacent grid location (i.e., up, down, left or
right). Given that the rat is at location (r,c), the valid new locations are (r-1, c¢), (r+1, c¢), (r, c-1)
and (r, c+1). Of course (r,c) is also a valid location, but the rat does not need to change
locations in that case. Here is the code:

void mousePressed() {
int newRow = mouseY/GRID_ SIZE;
int newCol = mouseX/GRID SIZE;
it (maze[newRow][newCol] == 0) {
it (((nhewRow == ratRow+1l) && (newCol == ratCol)) ||
((newRow == ratRow-1) && (newCol == ratCol)) ||
((newRow == ratRow) && (newCol == ratCol+1)) ||
((newRow == ratRow) && (newCol == ratCol-1))) {
ratRow newRow;
ratCol newCol ;

}
}
}

Can this code be reduced ? Yes. We can make use of the abs function by examining the
difference between the old row and the new row (same for columns). If the difference
between the old and new row values is 1 and the column difference is 0, then this is a valid
new position. Likewise, if the difference in columns is 1 and the rows is zero, then this too is a
good position. So, we can add up the differences in rows and columns and make sure that
the value is 1.

- 239 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

void mousePressed() {
int newRow = mouseY/GRID_ SIZE;
int newCol = mouseX/GRID_ SIZE;
it (maze[newRow][newCol] == 0) {
it (abs(nhewRow-ratRow) + abs(newCol-ratCol) == 1) {
ratRow newRow;
ratCol newCol ;

}

}
}

Example:

How can we adjust this program so that the rat turns to face

the direction that it just travelled ? 6 _@ Q #O_

Since the rat travels in just 4 directions, we need to display it
in one of 4 possible positions as shown here.

The only difference in the above code will be with respect to the drawRat() procedure. Recall
that this code draws the rat centered around the x and y location of the center of a grid square,
which is computed from the ratRow and ratCol variables:

Here is the code for drawing the rat facing upwards:

void drawRat() {
int x = ratCol * GRID_SIZE + GRID_SIZE/2;
int y = ratRow * GRID_SIZE + GRID_SIZE/2;
fill(150, 150, 150); // gray

triangle(x, y-20, x+10, y, x-10, y); // head
line(x, y+10, x, y+20); // tail
line(x, y-17, x-10, y-17); // whiskerl
line(x, y-17, x-10, y-20); // whisker2
line(x, y-17, x+10, y-17); // whisker3
line(x, y-17, x+10, y-20); // whisker4
ellipse(x, y, 20, 20); // body
fill(255, 0, 0); // red

ellipse(x-3, y-14, 3, 3); // eyel
ellipse(x+3, y-14, 3, 3); // eye2

}

What changes when we want the rat to face downwards ? In reality, it is only the y offset
values that need to be negated (i.e., mirrored with respect to the (x,y) origin). However, when
we want to face the mouse right or left, the X and Y values of the various points will need to be
swapped:

- 240 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Y-values
mirrored

Y-values _“:::#g..—*
swap with e
X-values

So, for example, looking at the code for drawing the triangle, here is how it changes depending
on the direction that we want to draw the rat:

triangle(x+20, y, X, y-10, x, y+10); // facing right
triangle(x, y-20, x+10, y, x-10, y); // facing upwards
triangle(x-20, vy, x, y+10, x, y-10); // facing left
triangle(x, y+20, x-10, y, x+10, y); // facing downwards

Since there are many coordinates that need to change like this (i.e., the line endpoints and
ellipse centers), we will need to change the constants throughout the drawRat() procedure
depending on the direction of the rat.

The simplest way to write the code is to duplicate the code 4
times (i.e., once for each direction). This, however, is a lot of —(:-_):{ é KD— Q
duplication. We can do better. We can number the

directions as shown here - 0 1 2 3

We would thus need to create the following variable to store the rat’s current direction:
int direction; // 0 = right, 1 = up, 2 = left, 3 = down

Then, a better way to write the code would be to take advantage of the fact that directions 0
and 2 have negated offsets as well as directions 1 and 3. So, we can combine two of these
by creating a multiplication factor f with a value of either 1 or -1 as follows:

void drawRat() {
int f=1;
int x = ratCol*GRID_SIZE + (GRID_SIZE /2);
int y = ratRow*GRID_SIZE + (GRID_SIZE /2);
fill (150, 150, 150); // gray

iT ((direction == 1) || (direction == 2))
f=-1;

iT ((direction == 1) || (direction == 3)) {
triangle(x, y+f*20, x+10, y, x-10, y);
line(x, y-f*10, x, y-*20); // tail
line(x, y+f*17, x-10, y+f*17); // whiskerl

- 241 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

line(x, y+f*17, x-10, y+f*20); // whisker2
line(x, y+f*17, x+10, y+f*17); // whisker3
line(x, y+f*17, x+10, y+f*20); // whisker4
ellipse(x, y, 20, 20);

fill(255, 0, 0); // red

ellipse(x-3, y+f*14, 3, 3);

ellipse(x+3, y+f*14, 3, 3);

}

else {
triangle(x+f*20, y, x, y+10, X, y-10);
line(x-f*10, y, x-*20, y); // tail
line(x+f*17, y, x+f*17, y-10); // whiskerl
line(x+f*17, y, x+f*20, y-10); // whisker2
line(x+f*17, y, x+f*17, y+10); // whisker3
line(x+f*17, y, x+f*20, y+10); // whisker4
ellipse(x, y, 20, 20);
fill(255, 0, 0); // red
ellipse(x+f*14, y-3, 3, 3);
ellipse(x+f*14, y+3, 3, 3);

}

}

This is not too bad as it requires half the code than if we were to duplicate the drawing code 4
times. Perhaps, an even better way may be to create a 2D array of these constant offsets
where each row of constants refers to a rat direction. Here are two such arrays representing
the x and y offsets, respectively:

{{20, 0, 0, -10, -20, 17, 17, 17, 20, 17, 17, 17, 20, 14, 143},
{o, 10, -10, 0, 0, 0, -10, O, -10, O, 10, O, 10, -3, 3},
{-20, 0, 0, 10, 20, -17, -17, -17, -20, -17, -17, -17, -20, -14, -14},
{o, -10, 10, 0, 0, 0, 10, O, 10, O, -10, O, -10, 3, -3}}:

int[1[] xOff

{{o, 10, -10, 0, 0, 0, -10, 0, -10, O, 10, O, 10, -3, 3},

{-20, 0, 0, 10, 20, -17, -17, -17, -20, -17, -17, -17, -20, -14, -14},
{0, -10, 10, 0, O, O, 10, O, 10, O, -10, O, -10, 3, -3},

{20, 0, 0, -10, -20, 17, 17, 17, 20, 17, 17, 17, 20, 14, 14}};

int[][] yoff

Now we can easily make use of these offsets within a simpler procedure as follows:

void drawRat() {
int x = ratCol * GRID_SIZE + GRID_SIZE/2;
int y = ratRow * GRID_SIZE + GRID_SIZE/2;
fill (150, 150, 150); // gray
int[]J xs = xOff[direction];
int[] ys = yOff[direction];
triangle(x+xs[0], y+ys[0], x+xs[1], y+ys[1]., x+xs[2]., y+ys[2]);

line(x+xs[3], ytys[3], xtxs[4], y+ys[4]); // tail
line(x+xs[5], ytys[5], xtxs[6], y+ys[6]); // whiskerl
line(x+xs[7], ytys[7]1, xtxs[8], y+ys[8]); // whisker?2

line(x+xs[9], y+ys[9]., x+xs[10], y+ys[10]); // whisker3
line(x+xs[11], y+ys[11], x+xs[12], y+ys[12]); // whisker4
ellipse(x, y, 20, 20);

fill(255, 0, 0); // red

ellipse(x+xs[13], y+ys[13], 3, 3);

ellipse(x+xs[14], y+ys[14], 3, 3);

- 242 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

As you can see, now no code is duplicated, but it does require some extra offset numbers.

Interestingly, if we have a fixed number of directions, we can simply determine the x and y
offsets for each additional direction and then increase the number of rows in the xOff and yOff
arrays. Alternatively, we can calculate the x and y offsets for an arbitrary direction by using
trigonometry. Then, we would not need the offset arrays. However, our code would become
more complex and slower, requiring trigonometric calculations for each point of the rat.

All that remains to do is to adjust the direction as the user clicks on the rat’s new location.
Recall the code for handling mouse presses. When we find the new location to move to, we
can simply compare the row and column that we are arriving at with the row and column we
are leaving and this will determine the direction:

void mousePressed() {
int newRow = mouseY/GRID SIZE;
int newCol = mouseX/GRID_ SIZE;
iT (maze[newRow][newCol] == 0) {
it (abs(newRow-ratRow) + abs(newCol-ratCol) == 1) {
it (newRow > ratRow) direction = 3;

else 1T (newRow < ratRow) direction = 1;
else 1T (newCol > ratCol) direction = 0;
else 1T (newCol < ratCol) direction = 2;
ratRow = newRow;
ratCol = newCol;
+
}
}
Example:

As a final example, how can we get the rat to
travel through the maze on its own ? Assume
that we simply want the rat to continuously
travel around the maze without stopping.

How can we do this ?

One well-known method of traveling through a
magze is that of using the “right-hand rule”. ;
The right hand rule says that as long as we : 5
keep our right hand touching a wall as we ' ;
walk, we will find a solution through the maze.]

Does this work for all mazes ? | guess it
depends on what we call a “maze”.

- 243 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

Mazes with inner loops cannot necessarily be solved using this strategy ... it would depend on

where the rat began following the walls.

Let us consider how the rat will move around

in the maze to follow the “right-hand rule”. ==
Assume that the rat has its “right hand” on a
wall. If it is able to move forward, it should _®={ _®={

simply do so as shown here —

If however, the rat encounters a wall in front of
it, then it should simply turn left — - $|:jj

? iy >
Then the rat will continue moving forwards as 5 °"" _Q#

it now has its right hand on the wall again. It i
is possible that while traveling along it may
lose contact with the wall —

In this case, notice that the rat needs to regain contact again with the wall on its right. First, it
must turn right. However, the wall will still not be on the right of the rat after turning.
Therefore it also needs to move forward. Then, it will be back-on-track again. These three
cases actually encompass all situations. For example, if the rat ends up in a “dead-end”,
these three cases will get it out again.

oth & o1 o

So, how can we write an algorithm for traveling through this maze ? We simply follow the
wall-following model that we developed and produce a state machine diagram:

- 244 -

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

wallin front

wallin front

The code follows directly from the state diagram:

Algorithm: TravelMaze
1. repeat {
2. if (there is a wall on the right) then {
3. if (there is a wall in front) then
4. turnLeft()
5. otherwise
6. moveForward()

}
7. otherwise {
8. turnRight()
9. moveForward()
10. }

}

The code is straight forward. However, some details have been left out. For example, how
do we know if there is a wall on the right or not ? It depends on the rat’s current location in the
maze as well as its current direction.

Assume that the rat has the direction and location defined in variables as before:

int ratRow, ratCol, direction;

Also, assume that the maze has either 1 or 0 at each (row, column) location representing walls
or open spaces, respectively.

How do we determine whether or not there is a “wall on the right” of

therat ? We would need to look at the position to its right in the {r-1,c)
maze. Assuming that the rat is at position (r, c), then the relative
positions around it are shown here > -t

[r,::-:l] [r,::] [r,n+1]

So, we could write code like this:

- 245 - (r+l,c)

COMP1405/1005 — Lists, Arrays and Searching Fall 2011

if (((direction is 0) AND (maze[ratRow+1][ratCol] is 1))
((direction is 1) AND (maze[ratRow][ratCol+1] is 1))
((direction is 2) AND (maze[ratRow-1][ratCol] is 1)) OR

((direction is 3) AND (maze[ratRow][ratCol-1] is 1))) then {

OR
OR

To check whether or not there is a wall to the right of the rat’s location. A similar check can be
made for walls in front of the rat.

How do we make a turn ? We simply increase or decrease the direction. We can do this as
follows:

direction < (direction + 1) modulo 4; /I to turn left
direction < (direction + 3) modulo 4; // to turn right

As with checking maze locations right or ahead, moving forward will depend on the direction of
the rat as well:

if (direction is 0) ratCol < ratCol + 1

else if (direction is 1) ratRow < ratRow - 1
else if (direction is 2) ratCol < ratCol - 1
else if (direction is 3) ratRow < ratRow + 1

So, we can merge all of this code together to come up with a complete solution. The solution

here has duplicated code. It is possible to reduce this code quite easily by making use of
procedures. See if you can shrink the code.

- 246 -

COMP1405/1005 — Lists, Arrays and Searching

Fall 2011

Algorithm: TravelMaze

12.

13.
14.
15.
16.
17.
18.
19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.

maze: the maze to travel through

ratRow, ratCol < any valid starting location in the maze with wall on right

direction < any valid starting direction in the maze with wall on right

repeat {
if (((direction is 0) AND (maze[ratRow+1][ratCol] is 1)) OR
((direction is 1) AND (maze[ratRow][ratCol+1]is 1)) OR
((direction is 2) AND (maze[ratRow-1][ratCol] is 1)) OR
((direction is 3) AND (maze[ratRow][ratCol-1] is 1))) then {

AND
AND
AND

AND

direction is O
direction is 1
direction is 2
direction is 3

if (

—_— T~ o~

(
(
(
(

AN~ N~

—~

direction < (direction + 1) modulo 4; /I turn left

otherwise {
if (direction is 0) then
ratCol < ratCol + 1
otherwise if (direction is 1) then
ratRow < ratRow — 1
otherwise if (direction is 2) then
ratCol < ratCol —1
otherwise if (direction is 3) then
ratRow < ratRow + 1
}
}
otherwise {
direction < (direction + 3) modulo 4; // turn right
if (direction is 0) then
ratCol < ratCol + 1
otherwise if (direction is 1) then
ratRow < ratRow — 1
otherwise if (direction is 2) then
ratCol < ratCol —1
otherwise if (direction is 3) then
ratRow < ratRow + 1

maze[ratRow][ratCol+1] is 1)) OR
maze[ratRow-1][ratCol] is 1)) OR
maze[ratRow][ratCol-1] is 1)) OR

maze[ratRow+1][ratCol] is 1))) then

- 247 -

