
 

Chapter 6 

Sorting 
 

 

What is in This Chapter ? 
Sorting is a fundamental problem-solving "tool" in computer science which can greatly affect 
an algorithm's efficiency.   Sorting is discussed in this chapter as it pertains to the area of 
computer science.   A few sorting strategies are discussed (i.e., bubble sort, selection sort, 
insertion sort and counting sort) and briefly compared.   Finally, sorting is applied to the 
problem of simulating a fire spreading across a forest. 
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 6.1 Sorting 

 
In addition to searching lists, sorting is one of the most fundamental "tools" that a programmer 
can use to solve problems. 
 

Sorting is the process of arranging items in some sequence and/or in different sets. 
 
In computer science, we are often presented with a list of data that needs to be sorted.   For 
example, we may wish to sort a list of people.    Naturally, we may imagine a list of people's 
names sorted by their last names.   This is very common and is called a lexicographical (or  
alphabetical) sorting.   The "way" in which we compare any two items for sorting is defined by 
the sort order.   There are many other "sort orders" to sort a list of people.  Depending on the 
application, we would choose the most applicable sorting order: 
 

• sort by ID numbers  
• sort by age 
• sort by height 
• sort by weight 
• sort by birth date 
• etc.. 

 
A list of items is just one obvious example of where sorting is often used.   However, there are 
many problems in computer science in which it is less obvious that sorting is required.   
However, sorting can be a necessary first step towards solving some problems efficiently.   
Once a set of items is sorted, problems usually become easier to solve.   For example, 
 

• Phone books are sorted by name so it makes it easier to find 
someone's number.  

 
 

• DVDs are sorted by category at the video store (e.g., comedy, 
drama, new releases) so that we can easily find what we are 
looking for.  

 
 

• A pile of many trading cards can be sorted in order to make it 
easier to find and remove the duplicates.  

 
 

• Incoming emails are sorted by date so that we can read and 
respond to them in order of arrival.  

• Ballots can be sorted so that we can determine easily who had 
the most votes.  
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Sorting is also an important tool in computer graphics.   For example, scenes in a computer-
generated image may draw various objects, but the order that the objects are drawn is 
important.   Consider drawing houses as we did earlier in the course.   Here is an example of 
drawing them in (a) the order in which they were added to the program, and (b) in sorted order 
from back to front: 
 

 
(a) normal order     (b) sorted order 
 
Notice how the houses in (a) are not drawn realistically in terms of proper perspective.   In (b), 
however, the houses are displayed from back to front.   That is, those with a smaller y-value 
(i.e., topmost houses) are displayed first.   Thus, sorting the houses by their y-coordinate and 
then displaying them in that order will result in a proper image.   This idea of drawing (or 
painting) from back to front is called the painter's algorithm in computer science.   Painters 
do the same thing, as they paint background scenery before painting foreground objects: 
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In 3D computer graphics (e.g., in a 3D game) most objects are made up of either triangular 
faces or quad surfaces joined together to represent 3D objects and surfaces.   The triangles 
must be displayed in the correct order with respect to the current viewpoint.   That is, far 
triangles need to be displayed before close ones.   If this is not done correctly, some surfaces 
may be displayed out of order and the image will look wrong: 

 
           (a) wrong display order    (b) correct depth-sorted order 
 

    
       (a) wrong display order          (b) correct depth-sorted order 
 
Thus, sorting all surfaces according to their depth (i.e., distance from the viewpoint) is 
necessary in order to properly render (i.e., display) a scene.   The idea of displaying things in 
the correct order is commonly referred to as hidden surface removal.  
 
So, you can see that sorting is necessary in many applications in computer science. 
 
Not only is sorting sometimes necessary to obtain correct results, but the ability to sort data 
efficiently is an important requirement for optimizing algorithms which may require data to be 
in sorted order to work correctly.  
 
Therefore, if we can sort quickly, this can speed up search times and it can even allow our 3D 
games to run faster and more smoothly.    Because sorting is such a fundamental tool in 
computer science which underlies many algorithms, many different "ways" of sorting have 
been developed ... each with their own advantages and disadvantages.  
 
How many ways are there to sort ?   Many.    
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For example, here is a table of just some types of sorting algorithms: 
 
 

Sorting Style 
 

 

Algorithms 
 

Exchange Sorts Bubble Sort, Cocktail Sort, Odd-even Sort,  
Comb Sort, Gnome Sort, QuickSort 

Selection Sorts Selection Sort, Heap Sort, Smooth Sort,  
Cartesian Tree Sort, Tournament Sort, Cycle Sort 

Insertion Sorts Insertion Sort, Shell Sort, Tree Sort, Library Sort 
Merge Sorts Merge Sort, Polyphase Merge Sort, Strand Sort 
Non-Compairon Sorts 
 

Bead Sort, Bucket Sort, Burst Sort, Counting Sort,  
Pigeonhole Sort, Proxmap Sort, Radix Sort 

 
Why are there so many ways to sort ?   These algorithms vary in their computational 
complexity.   That is, for each algorithm, we can compute the (1) worst, (2) average and (3) 
best case behavior in terms of how many times we need to compare two items from the list 
during the sort.   Given a list of n items, a "good" sorting algorithm would require in the order of 
n·log(n) comparisons, while a "bad" sorting algorithm could require n2 or more comparisons. 
 
It is also possible to compare algorithms in terms of: 

1. how many times a pair of items in the list are swapped (i.e., change positions). 
2. how much memory (or other computer resources) is required to complete the sort. 
3. how simple the algorithm is to implement. 

  
It is not the purpose of this course to make a comparison of a pile of sorting algorithms.  
However, it is good to get an idea as to how to write sorting routines in various ways so that 
you get a feel as to how various algorithms can be used to solve the same problem.   We will 
examine a few of these now. 
 
 

 6.2 Bubble Sort  
 
The bubble sort algorithm is easy to implement (i.e., it is easy to write 
the code for it).   For this reason, many programmers use this strategy 
when they are in a hurry to write a sorting routine  and when they are not 
worried about efficiency.   The bubble sort algorithm has a bad worst-
case complexity of around n2, so it is not an efficient algorithm when n 
becomes large. 
Consider sorting some integers in increasing order.  The idea behind any 
sorting algorithm is to make sure that the small numbers are in the first 
half of the list, while the larger numbers are in the second half of the list: 
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Regarding this "split" of numbers in the final sorted list, we can actually draw conclusions as to 
relative positions of adjacent numbers in the list as we are trying to sort.   For example, 
assume that we examine any two adjacent numbers in the list.   If the number on the left is 
smaller than the one on the right (e.g., 4 and 9 in the picture below), then relatively, these two 
numbers are in the correct order with respects to the final sorted outcome.   However, if the 
number on the left is larger than the one on the right (e.g., 7 and 3 in the picture below), then 
these two numbers are out of order and 
somehow need to "swap" positions to be in 
correct order: 
 

 
 
So, by generalizing this swapping principle to ensure "proper" ordering, we can take pairs of 
adjacent items in the list and swap them repeatedly until there are no more out of order.   
However, we need a systematic way of doing this. 
 
The bubble sort approach is to imagine the items in a list as having a kind of "weight" in that 
"heavy" items sink to the bottom, while "lighter" items float (or bubble up) to the top of the list.  
The algorithm performs the "bubbling-up" of light items by swapping pairs of adjacent items in 
the list such that the lighter one is ensured to be above the heavier item.   It does this by 
making multiple passes (i.e., multiple iterations or "rounds") through the list, each time moving 
(or sinking)  the heaviest item towards its final position at the end (or bottom) of the list. 
 
Here is an example of how the algorithm works on a list of 5 integers: 

 
 
As can be seen, during the first pass through the data, the heaviest item is moved (i.e., sinks) 
to the end of the list because all numbers are smaller (i.e., lighter) than it, so they "bubble-up" 
higher towards the top of the list.  At the end of pass one, we are ensured that the largest item 
is at the end of the list. 
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During the second pass, comparisons of adjacent items are made the same way and 
eventually the next largest item sinks down toward the bottom.   Notice that there is no need to 
compare the 5 with 8 at the end of the 2nd pass since the 1st pass ensured  that 8 was the 
largest item.   So the 2nd pass takes one less step to complete.   The subsequent passes 
continue in the same manner.   Once 4 passes have been completed, the list is guaranteed to 
be sorted. 
 
Notice that the algorithm requires 10 comparisons of adjacent items.   This is exactly twice the 
list size.   However, as the number of items in the list grows, it is easy to see that the algorithm 
requires this many comparisons: 
 

(n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1      ... which is:   n·(n-1)/2  comparisons. 
 
This is a little slow, but the algorithm is simple.    Can you write the code for this algorithm ?   
Hopefully, you can easily see the need for nested loops, as the outer loop will cover the 
number of passes, while the inner loop will handle the comparisons during a single pass.    
 
Here is a straight forward implementation: 
 

Algorithm: BubbleSort1 
 items:  the array containing the items to sort 
 
1.  repeat items.length-1 times { 
2.   for each location i from 0 to items.length-2 {  
3.   if (items[i] > items[i +1])  { 
4.    temp ←  items[i +1] 
5.    items[i +1] ←  items[i] 
6.    items[i] ←  temp 
   } 
  } 
 } 

 
This implementation, however, always requires (n-1)·(n-2) comparisons.   We forgot to adjust 
the code to eliminate one less comparison in the list each time, since each pass ensures that 
one more item is in its final position.   To do this, we need to adjust the count for the inner loop 
to reflect the pass number that we are making.   Here is the adjusted code: 
 

Algorithm: BubbleSort2 
 items:  the array containing the items to sort 
 
1.  for each pass p from items.length-1 down to 0 { 
2.   for each location i from 0 to p-1 {  
3.   if (items[i] > items[i +1])  { 
4.    temp ←  items[i +1] 
5.    items[i +1] ←  items[i] 
6.    items[i] ←  temp 
   } 
  } 
 } 
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One more thing .... what if the list suddenly becomes sorted during the middle of the algorithm 
(i.e., all numbers fall into place) ?   Even worse ... what if the list is already sorted ?   We can 
add something to the algorithm to cause it to quit when the list is sorted.   How do we know 
when the list is sorted ?   Well ... if we go through an entire pass and did not make any 
swappings, then all integers must be in their correct position ... do you agree ?   So we could 
just check to ensure that a swap was made during a pass ... and if not ... then quit: 
 

 
Algorithm: BubbleSort3 
 items:  the array containing the items to sort 
 
1.  for each pass p from items.length-1 down to 0 { 
2.  madeSwap ←  false 
3.   for each location i from 0 to p-1 {  
4.   if (items[i] > items[i +1])  then { 
5.    temp ←  items[i +1] 
6.    items[i +1] ←  items[i] 
7.    items[i] ←  temp 
8.    madeSwap ←  true 
   } 
  } 
9.  if (madeSwap is false) then  
   quit() 
 } 
 

 
 

 6.3 Selection Sort  
 
The selection sort algorithm is a natural kind of sorting technique.   It 
is also easy to implement but like the Bubble Sort, it also has a bad worst-
case complexity of around n2, so it is not an efficient algorithm when n 
becomes large. 
 
The idea behind the algorithm is simple.  It is similar to the idea of 
stacking a set of blocks in a tower.   Find the largest block, place it at the 
bottom.   Then find the next largest and place it on top of it, then the next 
largest ... and so on ... with the smallest block being placed at the top. 
 
When the data is in a list or an array, the algorithm is slightly more 
complicated because we need to ensure that each item is always stored 
somewhere in the array.   So, when we find the largest item that needs to go at the end of the 
array... we need to swap its position with the last item in the array.   So this idea of swapping 
positions is necessary.   The algorithm itself is usually described as finding the minimum and 
placing it at the front of the array ... which is opposite to the block-stacking example just 
mentioned, but nevertheless produces the same sorted result. 
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The selection sort approach is to always keep track of (i.e., hold on to) the smallest item as 
you go through the list.   As the algorithm iterates through the items in the list it always 
compares against the smallest item being held onto and if a smaller item comes along, it them 
becomes the smallest item.   Once the list has been checked, we then move the smallest item 
to the front of the list and do another round starting with the second item. 
 
Here is an example of how the algorithm works on a list of 5 integers: 
 

 
 
Notice that the algorithm again requires 10 comparisons of adjacent items as well as 3 swaps.   
As with the bubble sort, it is easy to see that the selection sort may require n·(n-1)/2  
comparisons.    However, much less swaps are made with the selection sort.   The selection 
sort may require (n-1) swaps, while the bubble sort can require up to n·(n-1)/2 (e.g., when the 
list is in reverse order).  You can see therefore, that the selection sort is a little more efficient. 
 
The code for this algorithm is quite similar to that of the bubble sort in that it has nested loops 
and compares items.   However, this time, we compare each item against the minimum, not 
against its adjacent neighbor.   Also, the swap occurs outside the inner loop... not within the 
inner loop as with the bubble sort.    
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Here is a straight-forward implementation: 
 

 
Algorithm: SelectionSort 
 items:  the array containing the items to sort 
 
1.  for each pass p from 0 to items.length-1 { 
2.  minIndex ←  p 
3.   for each index i from p+1 to items.length-1 {  
4.   if (items[i] < items[minIndex])  then  
5.    minIndex ←  i 
  } 
6.  temp ←  items[p] 
7.  items[p] ← items[minIndex] 
8.  items[minIndex] ←  temp 
 } 
 

 
 

 6.4 Insertion Sort  
 
The Insertion Sort algorithm is perhaps the most natural sorting algorithm.   It is very much 
like the Selection Sort in that it attempts to sort by selecting one item at a time.   Even though it  
has a bad worst-case complexity of around n2, in general it is faster than the Selection Sort 
because it does not search the whole list to look for the smallest item first. 
 
The idea behind the algorithm is simple and relates to a real-life kind 
of sort that we would naturally perform.   Imagine on the table a "pile" 
of unsorted items.  The idea is to repeatedly select items from the 
unsorted pile and place them in a newly sorted pile.  So, the 
algorithm maintains a portion of items that are sorted (i.e., the ones 
at the front of the list) and a portion of items that still remain to be 
sorted (i.e., the ones at the back of the list).   Each time an item is 
selected, the "sorted portion" grows by one, while the "unsorted pile" 
shrinks by one.  After doing this n times, the whole list is sorted.   It is 
similar to the idea of a librarian placing books on a shelf with 
"already-sorted" books. 
 
Here is an example of how the algorithm works on a list of 6 integers: 
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Notice how the left side of the list always contains items in sorted order, although additional 
items still need to be inserted in there, so that sorted list is not complete until the last pass.    
Notice in all except the 3rd pass that there was a need to search backwards through the sorted 
portion in order to find the correct place to insert the key item. 
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Here is a straight-forward implementation.   Notice the use of a while loop in order to allow the 
loop to exit quickly as soon as the key item is larger than the ones remaining in the sorted 
portion of the list: 
 

 
Algorithm: InsertionSort 
 items:  the array containing the items to sort 
 
1.  for each pass p from 1 to items.length-1 { 
2.  key ←  items[p] 
3.  i ←  p - 1 
4.   while (i >= 0) AND (items[i] > key) {  
5.   items[i +1] ←  items[i] 
6.   i ← i - 1 
  } 
7.  items[i +1] ← key 
 } 
 

 
With a careful look at the code, you can see that the algorithm may need to make n·(n-1)/2  
comparisons as with the Selection Sort.   Also, there may be a need to make this many swaps 
as well.   However, in a typical scenario with an initial random arrangement of numbers, the 
Insertion Sort takes about half the speed of a Selection Sort ... due to the ability of the while 
loop to exit earlier.   So, in general, the Insertion Sort is a little more efficient. 
 
 

 6.5 Bucket Sort & Counting Sort 

 
The Bucket Sort algorithm is an excellent sorting algorithm for 
the special case in which there are many duplicate items and the 
items are bounded by some small maximum size.   It is a simple 
algorithm and can run in worst-case complexity of 2·n time (under 
certain situations) !    
 
The idea of the algorithm is similar to that of what you may find at 
the post office.   Incoming mail is quickly placed into "roughly 
sorted" bins (or buckets).   Each item in a particular bin is "equal"  in 
some sense of the word (e.g., same destination city, same postal 
code, same street, etc..).   So each bin represents a partially-sorted list.   Each bin can then be 
sorted separately, in any manner.   A special case arises when multiple items are considered 
equal.   That is, consider 1,000 student exam papers with integer grades ranging from 0% to 
100% that need to be sorted by grade.   You can sort them by making 101 bins representing 
the grades and then placing each exam in the corresponding bin according to the grade.   
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In the case where we 
actually have a set of fixed-
range integers that we 
need to store, the 
algorithm becomes what is 
known as a Counting 
Sort and is quite simple.   
Consider an array with 14 
numbers as show below.   
The array is assumed to 
contain integers from 1 to 
4.   We can make 4 
buckets in the form of 
integer counters and then 
simply fill up the 
corresponding bucket 
counter as we iterate 
through the numbers.  
Then, to get the sorted list, 
we just empty the buckets 
in order → 
 
This is very simple and it 
only takes 2n steps.   Here 
is a straight-forward 
implementation: 
 

 
Algorithm: 
BucketSort1 
 items:  the array containing the items to sort 
 b:   the number of bins to use 
 
1. bins ←  new array of size b each element set to 0 
 
2.  for each pass i from 0 to items.length-1 { 
3.  bins[items[i]-1] ← bins[items[i]-1] + 1 
 } 
 
4.  i ← 0 
5.  for each bin x from 0 to b-1 { 
6.   for each count c from 0 to bins[x] { 
7.    items[i] ← x + 1 
8.    i ← i + 1 
  } 
 } 
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Notice in steps 2 and 3 how the bins array simply stores a count of how many items had that 
bin's value.   Then in steps 4 through 8 we simply go through each bin and fill in the items 
array with the correct number of items from the bins. 
 
A slightly more complex situation arises when we actually need to store the items themselves 
in the bucket (i.e., not just counters).   In our example with the exam papers, we need to store 
the exam papers themselves, not just the grades.    
 
To accomplish this, we need to store more than a counter in each bin.   In fact, we need to 
reserve space for the items themselves.   How many items may fit into a bin ?   Well, if all the 
items are equal, they will end up in the same bin!!   Therefore, even though it is likely that a 
typical random set of items will be distributed evenly among the bins, it is possible that some 
bins may get very full.   So, to be safe, we would need to make each bin large enough to hold 
all the items.    
 
Therefore, our bins array in the above code would need to be a two-dimensional array of size 
b·n so that each of the b buckets can store up to n items.  Here is what the algorithm will do: 
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Now, in reality, only n items are being stored in the buckets.   Therefore (b-1)·n spaces in the 
2D array will remain empty.   This is a little bit wasteful. 
 
In our exam paper example, the 2D array would need to have space to store 101·1000 = 
101,000 exam papers, although only 1,000 exam papers would actually be stored!!!   That is 
about 99% of wasted space!    Of course, there are ways to fix this, as you will learn in your 2nd 
year here in computer science.   We can, for example, make initially small buckets based on 
"estimates" as to how many items we expect to fall into any given bucket ... and then grow the 
buckets as they become full.    We will not discuss this further here.   However, be aware that 
there is often a trade-off between runtime complexity and storage space.    
 
Here is the adjusted code to handle the storage of items instead of counters: 
 

 
Algorithm: BucketSort2 
 items:  the array containing the items to sort 
 b:   the number of bins to use 
 
1. bins ←  new array of b empty arrays each of size items.length 
2. binCount ←  new array of b counters initially set to 0 
 
3.  for each pass i from 0 to items.length-1 { 
4.  binID ← getBinFor(items[i]) 
5.  bins[binID][binCount[binID]] ← items[i] 
6.  binCount[binID]← binCount[binID] + 1 
 } 
7.  i ← 0 
8.  for each bin binID from 0 to b-1 { 
9.   for each item c from 0 to binCount[binID]  { 
10.    items[i] ← bins[binID][c] 
11.    i ← i + 1 
  } 
 } 
 

 
The above code assumes that the order of any two exam papers with the same grade is 
arbitrary/unimportant and thus do not need to be re-arranged in any way. 
 
However, the algorithm can be generalized by allowing less bins.   For example, considering 
our exam paper example, if we use only 10 bins instead of 101, this would significantly reduce 
the storage requirements.    
 
We could, for example, put all grades in the 70%-79% range into one bin, all grades in the 
80%-89% range into another bin, etc..    
 
The result is that the array would be partially sorted, but not complete.   Here is our example 
again but with 2 buckets instead of 4:  
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Notice that 
there is much 
less wasted 
space, but the 
end-result is 
that the array 
is not sorted.   
A solution 
would be to 
sort each 
bucket before 
filling up the 
array again.   
Depending on 
the size, we 
could use any 
sorting 
technique to 
sort the 
buckets.    
 

We could, for example, use a bucket sort again on the two buckets: 
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The actual merging of the sorted buckets is easy again, as we simply use the same code as 
before.   The speed of the algorithm will depend on the kind of sorting technique that we use. 
 
Here is the code for the general Bucket Sort where the buckets need to be sorted: 
 

 
Algorithm: BucketSort3 
 items:  the array containing the items to sort 
 b:   the number of bins to use 
 
1. bins ←  new array of b empty arrays each of size items.length 
2. binCount ←  new array of b counters initially set to 0 
 
3.  for each pass i from 0 to items.length-1 { 
4.  binID ← getBinFor(items[i]) 
5.  bins[binID][binCount[binID]] ← items[i] 
6.  binCount[binID]← binCount[binID] + 1 
 } 
7.  for each bin binID from 0 to b-1 { 
8.   sort(bins[binID])  // use any algorithm...will affect runtime though 
 } 
9.  i ← 0 
10.  for each bin binID from 0 to b-1 { 
11.   for each item c from 0 to binCount[binID]  { 
12.    items[i] ← bins[binID][c] 
13.    i ← i + 1 
  } 
 } 
 

 
In summary, with a large number of items and enough bin space (i.e., storage space), then a 
Counting Sort is the best that we can hope for since it minimizes the number of steps needed 
to be made in order to sort.   However, remember that it only works well if there are a lot of 
items that are equal.   The more general Bucket Sort is used when the bin size is greater than 
one and this can also be very efficient when there are many equal items. 
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 6.6 An Example - Fire Spreading Simulation 

 
Consider another example of where sorting is necessary.   Assume that we want to simulate 
the spread of a fire across a terrain.  Here is an example that shows three separate fires 
spreading across a forested area, leaving charred remains behind: 
 

     
 

     
 
 
To make all of this happen, we first need to understand how the forest & lakes are 
represented, stored and displayed in our simulation.   The following processing code displays 
an image of forest and lakes from a file called "smallLakes.png":   
 

PImage     terrain;   // image representing the forests and lakes 
 
void setup() { 
  terrain = loadImage("smallLakes.png"); 
  size(terrain.width, terrain.height); 
  image(terrain, 0, 0); 
  loadPixels(); 
} 
 
void draw() { 
  updatePixels(); 
} 

 
In the code above, the terrain variable is of type PImage which is the data type for storing 
images in Processing.   You must call the loadImage() function before you can use the image, 
supplying the name of the image file that you want to load (which must be of type .gif, .jpg, 
.tga, or .png).  
 
Once loaded, you can access the PImage object which contains fields for the width and 
height of the image, as well as an array called pixels[] which contains the values for every 
pixel in the image.   You can use the width and height values to decide how big to make your 
window. 
 
The image(anImage, x, y) procedure will draw anImage onto the window with the top/left of 
the image starting at the given x and y coordinate on the window (although in Processing there 
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is a minimum window width & height so if the image is very small, it may be centered in the 
window). 
 
Once the image has been displayed, you can call the loadPixels() procedure to load the pixel 
data from the display window into a pre-defined Processing array called pixels. The 
loadPixels() procedure must always be called before reading from or writing to pixels.   We 
can use the pixels array to examine and modify any pixel in the image (i.e., to determine 
whether or not it is grass (green) or water (blue) and to set it to show a fire (orange) or a burnt 
area (black). 
 
Finally, the updatePixels() procedure will take the (possibly modified) data from the pixels 
array and draw the image again on the window.    During our simulation, we will do this 
repeatedly in the draw procedure to show visually that the fires are spreading.   
 
So, how then do we represent the fires ?   Well, a fire can be shown by simply changing a pixel 
to orange.   Say, for example that we wanted the pixel at location (85,70) in the image to be on 
fire.   We simply need to change the correct pixel in the pixels array to orange.   Since the 
pixels array is one-dimensional, we need to determine the index in the array that represents 
(85,70) in the image. 
 
The pixels array stores each row of the image one after another.   So the first row has 
terrain.width pixels in it and these are the first pixels in the array representing the pixels in 
which y = 0.   Hence, if we want the 71st row (i.e., y = 70, since y starts at 0), then we need to 
multiply the width of the image by the row (i.e., 70) to bypass the first 70 rows.    
 
Therefore, to calculate the index of (85,70) we need to use this formula: 
 

pixels[85 + (70*terrain.width)]  
 
In general, the pixel at position (x, y) in the image can be set to orange as follows: 
 

pixels[x + (y*terrain.width)]  = color(255, 100, 0);   // lotsa red & a bit of green = orange 
 
So, we can simulate the fires by changing the appropriate pixels to orange for a while and then 
black afterwards to indicate a burned area. 
 
But to simulate the fire spreading process properly, we need to make the fires grow outwards 
from their starting locations.   But how can we do this ? 
 
Intuitively, green pixels close to the starting location need to "catch fire" before ones that are 
further away.    Here, for example is a single fire spreading outwards: 
 

 
        (a)     (b)           (c)       (d)             (e) 
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Notice that as the fire spreads ... there is a "wall" of fire that expands outwards, while the 
interior burned portions remain black.   Intuition again tells us that we only need to consider 
this "wall" (also known as the active border) of the fire in order to determine the spread-
pattern of the fire.   That is, each orange pixel is a miniature fire that needs to be spread 
outwards. 
 
Therefore, we will need to maintain this active border of all locations that are currently on fire 
so that we can propagate the fire outwards from each of these locations.   These border 
locations can be simply represented as (x,y) points and to begin ... we can add the first fire 
pixel location as the only border point upon startup.    Here is how we can add code to do this: 
 

PImage     terrain;      // The image with forest and lakes 
Point      start;        // start location of fire 
Point[]    border;       // points along active border of fire 
int        borderSize;   // # points along active border of fire 

 
// Data structure to represent a point 
class Point { 
  int x, y; 
  Point(int ix, int iy) {  
 x = ix;  
 y = iy;  
  } 
} 
 
void setup() { 
  terrain = loadImage("smallLakes.png"); 
  size(terrain.width, terrain.height); 
  image(terrain, 0, 0); 
  loadPixels(); 
   
  border = new Point[1000]; 
  border[0] = new Point(85,70);  
  borderSize = 1; 
} 

 
Notice that the border array begins with one point, but that it is able to hold a lot more as the 
border grows.   The number 1000 is somewhat arbitrary, but it is big enough to hold a lot of 
border points.    If the entire 107x102 pixel image was on fire ... that would require 17,340 
border pixels potentially.   However, we must remember that as the border grows it does not 
get very large since the previous border points will change to black as the fire consumes the 
forest.   So, 1000 points is reasonable in our example, although with larger images a larger 
border would be necessary. 
 
So now that we know the active border pixels, how do we "grow" the fires ?   
Well, for each pixel on the active border, we just need to look at the 
neighboring pixels surrounding it (i.e., see picture (b) on the previous page).    
Assume that the pixels are stored in a 2-dimensional image called image and 
that each location image[x][y] is either colored green, blue, orange or black.    
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Given that a image[x][y] is on the active border of the fire, here is the idea for spreading the 
fire from point (x,y): 
 

image[x][y] ← BLACK   // make burnt now 
 
image[x-1][y] ← ORANGE  // burn left now 
  
image[x+1][y] ← ORANGE // burn right now 
  
image[x][y-1] ← ORANGE  // burn up now 
  
image[x][y+1] ← ORANGE // burn down now 

  
We will need to make sure that all of these "new" fires are added to the active border for the 
next round of spreading.   So, we need to repeat the process of extracting a fire location from 
the active border, processing it (i.e., spread outwards from here) and then repeat.    
 
Here is the algorithm that we have so far now: 
 

Algorithm: FireSpread 
 image: the image containing forests and lakes 
 start:  point representing the starting location of the fire 
 
1. borders = new array of points, initially empty 
2. borderSize = 0 
3. borders[0] = start 
4. while (borderSize > 0) { 
5.  x ← borders[borderSize-1].x 
6.  y ← borders[borderSize-1].y  
7.  image[x][y] ← BLACK    // burnt 
8.  borderSize ← borderSize - 1 
 
9.  borders[borderSize] ← new Point (x-1, y) 
10.  borderSize ← borderSize + 1 
11.  image[x-1][y] ← ORANGE 
 
12.  borders[borderSize] ← new Point (x+1, y)  
13.  borderSize ← borderSize + 1 
14.  image[x+1][y] ← ORANGE 
 
15.  borders[borderSize] ← new Point (x, y-1)  
16.  borderSize ← borderSize + 1 
17.  image[x][y-1] ← ORANGE 
 
18.  borders[borderSize] ← new Point (x, y+1)  
19.  borderSize ← borderSize + 1 
20.  image[x][y+1] ← ORANGE 
 } 
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We need to make sure however, that we do not process any pixels outside the valid range.   
For example, if the border point is the top left pixel in the image, then we cannot try to 
propagate the fire upwards nor leftwards because the point (-1,-1) would be out of range.  
Therefore, we need to add some "bounds-checking" to ensure that this does not happen.   
 
We need to place conditional statements around lines 9-11, 12-14, 15-17 and 18-20 as follows: 
 

9.  if (x > 0) then {   // make sure not gone beyond left border 
10.   borders[borderSize] ← new Point (x-1, y) 
11.   borderSize ← borderSize + 1 
12.   image[x-1][y] ← ORANGE 
  } 
 
13.  if (x < image.width-1) then { // make sure not gone beyond right border 
14.   borders[borderSize] ← new Point (x+1, y)  
15.   borderSize ← borderSize + 1 
16.   image[x+1][y] ← ORANGE 
  } 
17.  if (y > 0) then {   // make sure not gone beyond top border 
18.   borders[borderSize] ← new Point (x, y-1)  
19.   borderSize ← borderSize + 1 
20.   image[x][y-1] ← ORANGE 
  } 
21.  if (y < image.height-1) then { // make sure not gone beyond bottom border 
22.   borders[borderSize] ← new Point (x, y+1)  
23.   borderSize ← borderSize + 1 
24.   image[x][y+1] ← ORANGE 
  } 
 } 

 
At this point, we still have a slight problem.   When we extract a border point, we need to 
ensure that we don't re-propagate through the same points over and over again (i.e., through 
points that are ORANGE or BLACK), otherwise we will never have an end to our fires and fires 
can restart.   Below, for example, shows how we spread out from the 4 fires around the center, 
showing the number of times a location is added as a fire to the active border: 
 

 
 
It may come as a surprise to you that 5 separate fires end up starting at the center location ... 
even after that location has been burned.   We need to ensure that we do not add points to the 
border if there is already a fire there (i.e., ORANGE) or if there is a burned area there (i.e., 
BLACK) or if there is water there (i.e., BLUE). 
 
To do this, we need to again modify lines 9, 13, 17 and 21 as follows: 
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9.  if ((x > 0) AND (image[x-1][y] is GREEN)) then { 
 
13.  if ((x < image.width-1) AND (image[x+1][y] is GREEN)) then { 
 
17.  if ((y > 0) AND (image[x][y-1] is GREEN)) then { 
 
21.  if ((y < image.height-1) AND (image[x][y+1] is GREEN)) then { 
 

As a result, we do not repeatedly add fires to the same location: 
 

 
 
At this point, the active border will begin by growing from 1 point to having 4 new points in it, 
representing 4 new fires (as shown above).   However, you may notice in the image above that 
the fire will spread in a diamond-like pattern.   Here is what it would look like as we continued 
this process: 
 

   
 
This pattern is called an artifact of the simulation.    
 

An artifact is something that appears in a scientific result that is not a true feature of 
thing being studied, but instead a result of the experimental or analysis method, or 
observational error. 

 
Clearly, this is not a realistic fire-spread model as fires do not spread in diamond-shape 
formation.   In order to make the spreading more realistic, we need to cause the fire to spread 
outwards by processing the pixels outwards in a circular pattern from the starting fire location: 
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To do this, we need to ensure that active border points that are closest to the center are 
processed first.   So, we need to sort the border points by their distance to the starting location 
of the fire.    
 
One way of doing this is to compute the distance from the center of the fire (i.e., the initial 
starting location) to each point on the active border.   Then, we can sort the points on the 
active border according to their distance to the fire center and make sure that the next point to 
be processed is the one that is closest to the center. 
 
To do this, we would need to keep track of the 
distance to each point on the active border which 
would be set to the distance from the starting fire 
location.    To represent these distances, we can 
have each point on the active border maintain its 
distance from the fire's center.   In processing, we 
could re-define the Point data structure as shown 
here.  Here are the changes to the algorithm: 

class Point { 
  int x, y, distance; 
  Point(int ix, int iy, float d) {  
 x = ix;  
 y = iy;  
 distaince = d; 
  } 
} 
 

 
Algorithm: FireSpread(image, start) 
 
1. borders = new array of points, initially empty 
2. borderSize = 0 
3. borders[0] = start 
4. while (borderSize > 0) { 
5.  x ← borders[borderSize-1].x 
6.  y ← borders[borderSize-1].y  
7.  image[x][y] ← BLACK  
8.  borderSize ← borderSize - 1 
9.  if ((x > 0) AND (image[x-1][y] is GREEN)) then { 
10.   borders[borderSize] ← new Point (x-1, y, distance from start to (x-1, y)) 
11.   borderSize ← borderSize + 1  
12.   image[x-1][y] ← ORANGE 
  } 
13.  if ((x < image.width-1) AND (image[x+1][y] is GREEN)) then { 
14.   borders[borderSize] ← new Point (x+1, y, distance from start to (x+1, y))  
15.   borderSize ← borderSize + 1 
16.   image[x-1][y] ← ORANGE 
  } 
17.  if ((y > 0) AND (image[x][y-1] is GREEN)) then {  
18.   borders[borderSize] ← new Point (x, y-1, distance from start to (x, y-1))  
19.   borderSize ← borderSize + 1 
20.   image[x][y-1] ← ORANGE 
  } 
21.  if ((y < image.height-1) AND (image[x][y+1] is GREEN)) then { 
22.   borders[borderSize] ← new Point (x, y+1, distance from start to (x, y+1))  
23.   borderSize ← borderSize + 1 
24.   image[x][y+1] ← ORANGE 
  } 
25.  sort borders by distances from largest to smallest 
 } 
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Any sort algorithm will suffice, as long as the sorting is done with respect to the distances 
stored in each border point.    
 
The above code will produce a nice "round" fire spread ... however ... the fire is still not 
spreading realistically.   Can you see what is wrong in the following images: 
 

 
 
Notice particularly the 2nd image.   See how the fire quickly spreads around the lake on the left 
side of the fire border circle ?   This is not realistic as the fire must spread from the bottom left 
side of the lake upwards....and this takes time.   So, the point is... we cannot assume that the 
fire should be processed with respect to the distance from the center of the fire's starting point.   
Instead, we must adjust the code so that the fire "bends" properly around obstacles. 
 
To do this, we need to adjust our computation so that each new fire spreads time-wise relative 
to the fire that spawned it.   That is, the cost of a fire should be with respect to the distance 
from the border point that it started from.   Therefore, we need to adjust lines 10, 14, 18 and 22 
as follows: 
 

10.   borders[borderSize] ← new Point (x-1, y, distance from (x, y) + 1) 
 
14.   borders[borderSize] ← new Point (x+1, y, distance from (x, y) +1)  
 
18.   borders[borderSize] ← new Point (x, y-1, distance from (x, y) + 1)  
 
22.   borders[borderSize] ← new Point (x, y+1, distance from (x, y) + 1)  

 
The above code allows each new fire point to have a distance value that is 1 more than the 
previous distance value.    
 
However, oddly enough, the code will still produce a result that has a diamond-shaped pattern 
in it !!!    This diamond-shaped artifact is a result of the strategy of only updating the 4 pixel 
neighborhood around each pixel.   This is called the von Neuman neighborhood.   The 
diamond-shape can be adjusted to an octagonal shape if a Moore neighborhood is used.   A 
Moore neighborhood includes the diagonal pixels around a pixel.   To use this 8-pixel update 
model, we would need to add additional code to add border points to the 8 surrounding points: 
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To accomplish this, we simply need to add the following code to the end of our existing code: 
 

 
25.  if ((x > 0) AND (image[x-1][y-1] is GREEN)) then { 
26.   borders[borderSize] ← new Point (x-1, y-1, distance from (x, y) + 1.417)) 
27.   borderSize ← borderSize + 1  
28.   image[x-1][y-1] ← ORANGE 
  } 
29.  if ((x < image.width-1) AND (image[x+1][y-1] is GREEN)) then { 
30.   borders[borderSize] ← new Point (x+1, y-1, distance from (x, y) + 1.417))  
31.   borderSize ← borderSize + 1 
32.   image[x+1][y-1] ← ORANGE 
  } 
33.  if ((y > 0) AND (image[x-1][y+1] is GREEN)) then {  
34.   borders[borderSize] ← new Point (x-1, y+1, distance from (x, y) + 1.417)) 
35.   borderSize ← borderSize + 1 
36.   image[x-1][y+1] ← ORANGE 
  } 
37.  if ((y < image.height-1) AND (image[x+1][y+1] is GREEN)) then { 
38.   borders[borderSize] ← new Point (x+1, y+1, distance from (x, y) + 1.417)) 
39.   borderSize ← borderSize + 1 
40.   image[x+1][y+1] ← ORANGE 
  } 
 
41.  sort borders by distances from largest to smallest 
 } 
 

 
Notice that the cost to the diagonals is actually 1.417 ... which is the square root of 2.   This is 
the diagonal distance from the middle of the center pixel to the middle of the diagonal pixel. 
 
As you can see, the result is now octagonal ... a more realistic approximation, although the 
octagonal shape is still somewhat "artificial-looking": 
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However, we can make this even more realistic by adding a degree of randomness.   Instead 
of having fixed distances as the fire spreads, we can add some random cost as well.   For 
example, we can adjust the code as follows: 
 

10.   borders[borderSize] ← new Point (x-1, y, distance(x, y) + 1 + rand(3)) 
 
14.   borders[borderSize] ← new Point (x+1, y, distance(x, y) + 1 + rand(3)) 
 
18.   borders[borderSize] ← new Point (x, y-1, distance(x, y) + 1 + rand(3)) 
 
22.   borders[borderSize] ← new Point (x, y+1, distance(x, y) + 1 + rand(3)) 

 
26.   borders[borderSize] ← new Point (x-1, y-1, distance(x, y) +1.414+ rand(3)) 
 
30.   borders[borderSize] ← new Point (x+1, y-1, distance(x, y) +1.414 + rand(3)) 
 
34.   borders[borderSize] ← new Point (x-1, y+1, distance(x, y) +1.414 + rand(3)) 
 
38.   borders[borderSize] ← new Point (x+1, y+1, distance(x, y) +1.414 + rand(3)) 

 
The rand(3) indicates a random number from 0 to 3.  Here is the result: 
 

   
 
The higher the random value, the less circular the shape will be as the fires spread.  For 
example, if we increase the randomness to 50, then here is what we will get: 
 

   
 
Lastly, we can even simulate wind.   For example, we can have a low cost for spreading to the 
right and high cost for spreading left ... this would cause the fire to spread quickly rightwards: 
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Ultimately, it would be best to produce a more realistic fire-spread model that takes into 
account the type of trees being burned, wind, elevation, etc... 
 
Here is the final code in Processing: 
 
PImage     terrain;      // The image with the grass and lakes 
Point[]    border;       // points along the border of the fire 
int        borderSize;   // # points along the border of the fire 
 
color      orange = color(255, 100, 0); 
color      black = color(0, 0, 0); 
 
// Data structure to represent a point 
class Point { 
  int     x, y; 
  float   cost; 
  Point(int ix, int iy, float c) { 
    x = ix;  
    y = iy; 
    cost = c; 
  } 
} 
 
void setup() { 
  terrain = loadImage("smallLakes.png"); 
  size(terrain.width, terrain.height); 
  image(terrain, 0, 0); 
  loadPixels(); 
  border = new Point[1000];  
  border[0] = new Point(85, 70, 0); 
  border[1] = new Point(120, 30, 0);  
  border[2] = new Point(20, 20, 0); 
  borderSize = 3; 
} 
 
void draw() { 
  if (!spreadFire()) { 
    exit();  // Quit the program 
  } 
  updatePixels(); 
  println(borderSize); 
} 
 
boolean isUnburnedForest(int x, int y) { 
  return (blue(get(x,y)) < 128) && (green(get(x,y)) > 80) && (red(get(x,y)) < 150); 
} 
 
boolean spreadFire() { 
  if (borderSize > 0) { 
    Point p = border[borderSize-1]; 
    pixels[p.x + (p.y*terrain.width)] = black; 
    borderSize--; 
     
    // Check left 
    if ((p.x > 0) && isUnburnedForest(p.x-1,p.y)) { 
      pixels[p.x-1 + (p.y*terrain.width)] = orange; 
      border[borderSize++] = new Point(p.x-1, p.y, p.cost + 1 + random(3)); 
    } 
     
    // Check right 
    if ((p.x < terrain.width-1) && isUnburnedForest(p.x+1,p.y)) { 
      pixels[p.x+1 + (p.y*terrain.width)] = orange; 
      border[borderSize++] = new Point(p.x+1, p.y, p.cost + 1 + random(3)); 
    } 
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    // Check up 
    if ((p.y > 0) && isUnburnedForest(p.x,p.y-1)) { 
      pixels[p.x + (p.y-1)*terrain.width] = orange; 
      border[borderSize++] = new Point(p.x, p.y-1, p.cost + 1 + random(3)); 
    } 
     
    // Check down 
    if ((p.y < terrain.height-1) && isUnburnedForest(p.x,p.y+1)) { 
      pixels[p.x + (p.y+1)*terrain.width] = orange; 
      border[borderSize++] = new Point(p.x, p.y+1, p.cost + 1 + random(3)); 
    } 
     
    // Check left/up diagonal 
    if ((p.x > 0) && (p.y > 0) && isUnburnedForest(p.x-1,p.y-1)) { 
      pixels[p.x-1 + (p.y-1)*terrain.width] = orange; 
      border[borderSize++] = new Point(p.x-1, p.y-1, p.cost + 1.414 + random(3)); 
    } 
     
    // Check right/up diagonal 
    if ((p.x < terrain.width-1) && (p.y > 0) && isUnburnedForest(p.x+1,p.y-1)) { 
      pixels[p.x+1 + (p.y-1)*terrain.width] = orange; 
      border[borderSize++] = new Point(p.x+1, p.y-1, p.cost + 1.414 + random(3)); 
    } 
     
    // Check left/down diagonal 
    if ((p.x > 0) && (p.y < terrain.height-1) && isUnburnedForest(p.x-1,p.y+1)) { 
      pixels[p.x-1 + (p.y+1)*terrain.width] = orange; 
      border[borderSize++] = new Point(p.x-1, p.y+1, p.cost + 1.414 + random(3)); 
    } 
     
    // Check right/down diagonal 
    if ((p.x < terrain.width-1) && (p.y<terrain.height-1) && isUnburnedForest(p.x+1,p.y+1)) { 
      pixels[p.x+1 + (p.y+1)*terrain.width] = orange; 
      border[borderSize++] = new Point(p.x+1, p.y+1, p.cost + 1.414 + random(3)); 
    } 
     
    BubbleSort(border, borderSize); 
    return true; 
  } 
  return false; 
} 
 
// BubbleSort 
void BubbleSort(Point[] fire, int fireSize) { 
  for (int p=fireSize-1; p>=0; p--) { 
    boolean madeSwap = false; 
    for (int i=0; i<=p-1; i++) {  
      if (fire[i].cost < fire[i+1].cost) { 
        Point temp = fire[i+1]; 
        fire[i+1] = fire[i]; 
        fire[i] = temp; 
        madeSwap = true; 
      } 
    } 
    if (!madeSwap) return; 
  } 
} 
 

For added enjoyment, we can create a 3D version of the landscape and then watch as the fire 
spreads, burning the trees (rest assured that no animals were harmed in this simulation).  The 
code to do this is quite similar.  Instead of displaying an image, we just need to create a big 
pile of square surfaces that corresponds to the terrain. 
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The idea is to simply take the image and assign a height value to each pixel.  Water could have height 
0 while the trees could have a height which is some constant value with a degree of randomness to 
provide variety.   We could then form a 3D rectangular polyhedra for each pixel and display them ... 
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As the fire spreads, we can color the rectangular polyhedra orange and then one burned, we can 
decrease their height to a small value to represent burnt "stubble": 
 

 
 
Here is the code.  We will not be discussing the 3D aspects of this code: 
 
float     xmag, ymag = 0;         // Used for mouse interaction 
float     newXmag, newYmag = 0;   // Used for mouse interaction 
 
PImage     terrain;        // The image with the grass and lakes 
int[][]    imgPixels;      // Holds the image color data 
float[][]  heights;        // Holds the image "pixel" heights 
int        halfWidth;      // Half the computerd width 
int        halfHeight;     // Half the computerd height 
int        scale;          // Zoom factor 
Point[]    border;         // points along the border of the fire 
int        borderSize;     // # points along the border of the fire 
 
color      orange = color(255, 100, 0); 
 
// Data structure to represent a point 
class Point { 
  int     x, y; 
  float   cost; 
  Point(int ix, int iy, float c) { 
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    x = ix;  
    y = iy; 
    cost = c; 
  } 
} 
 
void setup() {  
  size(1000, 1000, P3D);  
  noStroke();  
  colorMode(RGB, 1);  
   
  terrain = loadImage("smallLakes.png"); 
  imgPixels = new int[terrain.width][terrain.height]; 
  heights = new float[terrain.width][terrain.height]; 
  halfWidth = terrain.width/2; 
  halfHeight = terrain.height/2; 
  scale = 5; 
 
  for (int i = 0; i < terrain.height; i++) { 
    for (int j = 0; j < terrain.width; j++) { 
      imgPixels[j][i] = terrain.get(j, i); 
      float h = 5*random(2); 
      if ((blue(imgPixels[j][i]) > 0.4))   
        h = 1; 
      heights[j][i] = h; 
    } 
  } 
 
  border = new Point[1000]; 
  border[0] = new Point(85, 70, 0); 
  border[1] = new Point(120, 30, 0); 
  border[2] = new Point(20, 20, 0);   
  borderSize = 3; 
 
}  
  
void draw() {  
  if (!spreadFire()) { 
    println("Total Time: " + millis()/1000.0 + " seconds"); 
    exit(); 
  } 
   
  pushMatrix();  
   
  // Code for allowing user interaction to rotate the terrain 
  if (mousePressed) { 
    if (mouseButton == LEFT) { 
      newXmag = mouseX/float(width) * TWO_PI; 
      newYmag = mouseY/float(height) * TWO_PI; 
    } 
    else 
      scale = width/2 - mouseX; 
  } 
 
  translate(width/2, height/2, -30);  
  float diff = xmag-newXmag; 
  if (abs(diff) >  0.01) { xmag -= diff/4.0; } 
  diff = ymag-newYmag; 
  if (abs(diff) >  0.01) { ymag -= diff/4.0; } 
  rotateX(-ymag);  
  rotateZ(-xmag);  
  scale(scale); 
   
  // Draw the terrain 
  background(0.5); 
  beginShape(QUADS); 
  for (int i = 0; i < terrain.width-1; i++) { 
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    for (int j = 0; j < terrain.height-1; j++) { 
      // Set the surface color for this "pixel" 
      fill(red(imgPixels[i][j]), green(imgPixels[i][j]), blue(imgPixels[i][j])); 
  
      // Add the surface face 
      vertex(i-halfWidth, j-halfHeight, heights[i][j]); 
      vertex(i+1-halfWidth, j-halfHeight, heights[i][j]); 
      vertex(i+1-halfWidth, j+1-halfHeight, heights[i][j]); 
      vertex(i-halfWidth, j+1-halfHeight, heights[i][j]); 
       
      // Add the remaining 4 side faces 
      if (imgPixels[i][j] == orange) 
        fill(1.0,0.4,0.0); 
      else if (heights[i][j] < 10 ) 
        fill(0.2,0.1,0.0); 
      else 
        fill(0.2,0.6,0.0); 
      vertex(i+1-halfWidth, j-halfHeight, heights[i][j]); 
      vertex(i+1-halfWidth, j-halfHeight, heights[i+1][j]); 
      vertex(i+1-halfWidth, j+1-halfHeight, heights[i+1][j]); 
      vertex(i+1-halfWidth, j+1-halfHeight, heights[i][j]); 
      
      if (i > 0) { 
        vertex(i-halfWidth, j-halfHeight, heights[i][j]); 
        vertex(i-halfWidth, j+1-halfHeight, heights[i][j]); 
        vertex(i-halfWidth, j+1-halfHeight, heights[i-1][j]); 
        vertex(i-halfWidth, j-halfHeight, heights[i-1][j]); 
      } 
 
      if (imgPixels[i][j] == orange) 
        fill(1.0,0.5,0.0); 
      else if (heights[i][j] < 10 ) 
        fill(0.3,0.2,0.0); 
      else 
        fill(0.3,0.7,0.0); 
      vertex(i-halfWidth, j+1-halfHeight, heights[i][j]); 
      vertex(i+1-halfWidth, j+1-halfHeight, heights[i][j]); 
      vertex(i+1-halfWidth, j+1-halfHeight, heights[i][j+1]); 
      vertex(i-halfWidth, j+1-halfHeight, heights[i][j+1]); 
       
      if (j > 0) { 
        vertex(i-halfWidth, j-halfHeight, heights[i][j]); 
        vertex(i+1-halfWidth, j-halfHeight, heights[i][j]); 
        vertex(i+1-halfWidth, j-halfHeight, heights[i][j-1]); 
        vertex(i-halfWidth, j-halfHeight, heights[i][j-1]); 
      } 
    } 
  } 
   
  // Draw the bottom face 
  fill(0.2,0.1,0); // Dark brown 
  vertex(-halfWidth,  -halfHeight,  -1);  vertex(-halfWidth,  halfHeight,  -1); 
  vertex(halfWidth,  halfHeight,  -1);    vertex(halfWidth,  -halfHeight,  -1); 
 
  endShape(); 
  popMatrix();  
}  
 
boolean isUnburnedForest(int x, int y) { 
  return (blue(imgPixels[x][y]) < 0.5) && (green(imgPixels[x][y]) > 0.31) && 
(red(imgPixels[x][y]) < 0.59); 
} 
 
boolean spreadFire() { 
  if (borderSize > 0) { 
    Point p = border[borderSize-1]; 
    imgPixels[p.x][p.y] = color(0.2*random(1), 0.1*random(1), 0);  // random dark brown color 



COMP1405/1005 – Sorting  Fall 2011 
 

  - 281 -

    heights[p.x][p.y] = random(2);      // random height for burned twigs 
     
    borderSize--; 
     
    // Check left 
    if ((p.x > 0) && isUnburnedForest(p.x-1,p.y)) { 
      imgPixels[p.x-1][p.y] = orange; 
      border[borderSize++] = new Point(p.x-1, p.y, p.cost + 1 + random(3)); 
    } 
    // Check right 
    if ((p.x < terrain.width-1) && isUnburnedForest(p.x+1,p.y)) { 
      imgPixels[p.x+1][p.y] = orange; 
      border[borderSize++] = new Point(p.x+1, p.y, p.cost + 1 + random(3)); 
    } 
    // Check up 
    if ((p.y > 0) && isUnburnedForest(p.x,p.y-1)) { 
      imgPixels[p.x][p.y-1] = orange; 
      border[borderSize++] = new Point(p.x, p.y-1, p.cost + 1 + random(3)); 
    } 
    // Check down 
    if ((p.y < terrain.height-1) && isUnburnedForest(p.x,p.y+1)) { 
      imgPixels[p.x][p.y+1] = orange; 
      border[borderSize++] = new Point(p.x, p.y+1, p.cost + 1 + random(3)); 
    } 
    // Check left/up diagonal 
    if ((p.x > 0) && (p.y > 0) && isUnburnedForest(p.x-1,p.y-1)) { 
      imgPixels[p.x-1][p.y-1] = orange; 
      border[borderSize++] = new Point(p.x-1, p.y-1, p.cost + 1.414 + random(3)); 
    } 
    // Check right/up diagonal 
    if ((p.x < terrain.width-1) && (p.y > 0) && isUnburnedForest(p.x+1,p.y-1)) { 
      imgPixels[p.x+1][p.y-1] = orange; 
      border[borderSize++] = new Point(p.x+1, p.y-1, p.cost + 1.414 + random(3)); 
    } 
    // Check left/down diagonal 
    if ((p.x > 0) && (p.y < terrain.height-1) && isUnburnedForest(p.x-1,p.y+1)) { 
      imgPixels[p.x-1][p.y+1] = orange; 
      border[borderSize++] = new Point(p.x-1, p.y+1, p.cost + 1.414 + random(3)); 
    } 
    // Check right/down diagonal 
    if ((p.x < terrain.width-1)&&(p.y < terrain.height-1) && isUnburnedForest(p.x+1,p.y+1)) { 
      imgPixels[p.x+1][p.y+1] = orange; 
      border[borderSize++] = new Point(p.x+1, p.y+1, p.cost + 1.414 + random(3)); 
    } 
     
    BubbleSort(border, borderSize); 
    return true; 
  } 
  return false; 
} 
 
 
// BubbleSort 
void BubbleSort(Point[] fire, int fireSize) { 
  for (int p=fireSize-1; p>=0; p--) { 
    boolean madeSwap = false; 
    for (int i=0; i<=p-1; i++) {  
      if (fire[i].cost < fire[i+1].cost) { 
        Point temp = fire[i+1]; 
        fire[i+1] = fire[i]; 
        fire[i] = temp; 
        madeSwap = true; 
      } 
    } 
    if (!madeSwap) return; 
  } 
} 


