

Chapter 7

Recursion

What is in This Chapter ?
This chapter explains the notion of recursion as it appears in computer science. We discuss
briefly the idea of using recursion for simple math-based problems and for simple graphical
drawing, such as drawing fractal pictures which are often found in computer science.
Recursion usually involves thinking in a different manner than you may be used to. It is a very
powerful technique, however, that can simplify algorithms and make your life easier ... once
you understand it. A more thorough discussion of recursive techniques is covered in further
courses.

COMP1405/1005 – Recursion Fall 2011

 - 283 -

 7.1 Recursion

Recall in the first chapter, we discussed the notion of "divide-and-conquer" in regards to
breaking a problem down into smaller, more manageable, modular pieces called functions or
procedures.

Sometimes when we break a problem down into smaller pieces of the same type of problem,
we are simply reducing the amount of information that we must process, since the problem is
solved in the same manner ... it is just a smaller version of the same problem.

For example, there are many real-world examples where we often break problems into smaller
ones of the same type in order to solve the bigger problem:

1. Jigsaw puzzles are solved in "steps": border, interesting portion, grass, sky, etc..
2. Math problems are broken down into smaller/simpler problems
3. Even climbing stairs eventually breaks down to climbing one step at a time.

Such problems can be solved recursively.

Recursion is a divide-and-conquer technique in which the problem being
solved is expressed (or defined) in terms of smaller problems of the same type.

The word Recursion actually comes from a Latin word meaning "a running back". This
makes sense because recursion is the process of actually "going off" and breaking down a
problem into small pieces and then bringing the solutions to those smaller pieces back
together to form the complete solution. So ...

• recursion breaks down a complex problem into smaller sub-problems
• the sub-problems are smaller instances of the same type of problem.

So, when using recursion, we need to consider how to:

1. break the problem down into smaller sub-problems
2. deal with each smaller sub-problem
3. merge the results of the smaller sub-problems to answer the original problem

COMP1405/1005 – Recursion Fall 2011

 - 284 -

In fact, it is actually easier than this sounds. Most of the
time, we simply take the original problem and break/bite off
a small piece that we can work with. We simply keep biting
off the small pieces of the problem, solve them, and then
merge the results.

Consider the simple example of computing the factorial of an
integer. You may recall that the function works as follows:

0! = 1
1! = 1
2! = 2x1
3! = 3x2x1
4! = 4x3x2x1
5! = 5x4x3x2x1
etc..

So, the function is defined non-recursively as follows:

1 if N = 0
N! = N x (N-1) x (N-2) x ... x 3 x 2 x 1 if N ≥ 1

If you were asked to write a factorial function, you could do so with a FOR loop as follows:

Function: Factorial
 n: a positive integer for which to find the factorial

1. answer ← 1
2. for each integer i from 2 to n do {
3. answer ← answer * i
 }
4. return answer

This code is simple and straight-forward to write.

The factorial problem, however, can also be defined recursively as follows:

1 if N = 0
N! = N x (N-1)! if N ≥ 1

Notice how N! is expressed as a function of the smaller sub-problem of (N-1)! which is of the
same type of problem (i.e., it is also a factorial problem, but for a smaller number).

So, if we had the solution for (N-1)!, say S, we could use this to compute the solution to N! as
follows: N! = N x S

COMP1405/1005 – Recursion Fall 2011

 - 285 -

However, how do we get the solution for (N-1)! ? We use the same formula, setting N to N-1
as follows:

(N-1)! = (N-1) x ((N-1)-1)! = (N-1) x (N-2)!

Similarly, we can recursively break down (N-2)! in the same way. Eventually, as we keep
reducing N by 1 each time, we end up with N=0 or 1 and for that simple problem we know the
answer is 1. So breaking it all down we see the solution of 5! as follows:

If you were asked to write this recursive factorial function, you could do so as follows:

Function: FactorialRecursive
 n: a positive integer for which to find the factorial

1. if (n is 0) then
2. answer ← 1
3. otherwise
4. answer ← n * FactorialRecursive(n-1)
5. return answer

Notice how we no longer have a repeating loop in our code. Instead, the FactorialRecursive
function calls itself with a smaller value of n. That is, the function repeatedly calls itself over
and over again with smaller values of n until finally n has the smallest value of 0, in which case
the code stops calling itself recursively. A recursive function is easily identifiable by the fact
that a function or procedure calls itself. The "stopping situation" is called the base case of the
problem. In general, a recursive function (or procedure) may have multiple base cases (i.e.,
multiple stopping conditions).

To understand the inner-workings of the function as it calls itself, consider the following
diagram which shows how the control passes from one function call to the next when
computing the factorial of 3. There are 11 main "steps" of the recursion as shown numbered
in black bold font:

COMP1405/1005 – Recursion Fall 2011

 - 286 -

If you were to compare the non-recursive solution with the recursive solution ... which do you
find to be simpler ?

Function: Factorial
 n: a positive integer

1. answer ← 1
2. for each integer i from 2 to n do {
3. answer ← answer * i
 }
4. return answer

Function: Factorial
 n: a positive integer

1. if (n is 0) then
2. answer ← 1
3. otherwise
4. answer ← n * Factorial(n-1)
5. return answer

You may feel that the non-recursive version is simpler. In this particular example, you are
probably right. So the question that arises is ... "Why should we use recursion ?".

Here are 4 reasons:

COMP1405/1005 – Recursion Fall 2011

 - 287 -

1. Some problems are naturally recursive and are easier to express recursively than non-
recursively. For example, some math problems are defined recursively.

2. Sometimes, using recursion results in a simpler, more elegant solution.

3. Recursive solutions may actually be easier to understand.

4. In some cases, a recursive solution may be the only way to approach a seemingly
overwhelming problem.

As we do various examples, the advantages of using recursion should become clear to you.

How do we write our own recursive functions and procedures ? It
is important to remember the following two very important facts
about the sub-problems:

• must be an instance of the same kind of problem
• must be smaller than the original problem

The trick is to understand how to "bite off" small pieces of the problem and knowing when to
stop doing so. When we write the code, we will usually start with the base cases since they
are the ones that we know how to handle. For example, if we think of our "real world"
examples mentioned earlier, here are the base cases:

1. For the jigsaw puzzle, we divide up the pieces until we have just

a few (maybe 5 to 10) pieces that form an interesting part of our picture.
We stop dividing at that time and simply solve (by putting together) the
simple base case problem of this small sub-picture. So the base case is
the problem in which there are only a few pieces all part of some
identifiable portion of the puzzle.

2. For the math problem, we simply keep breaking down the problem until
either (a) there is a simple expression remaining (e.g., 2 + 3) or (b) we have a
single number with no operations (e.g., 7). These are simple base cases in
which there is either one operation to do or none.

3. For the stair climbing problem, each stair that we climb brings us closer to

solving the problem of climbing all the stairs. Each time, we take a step up, the
problem is smaller, and of the same type. The base case is our simplest case
when there is only one stair to climb. We simply climb that stair and there is no
recursion to do at that point.

So then to write recursive methods, we first need to understand "where" the recursion will fit in.
That is, we need to understand how to reduce the problem and then merge the results. It is
important to fully understand the problem and the kind of parameters that you will need as the
function/procedure gets called repeatedly. Make sure you understand how the problem gets
smaller (i.e., usually the parameters change in some way). Then, you can implement the
simple base cases and add in the recursion. Let us look at a few examples.

COMP1405/1005 – Recursion Fall 2011

 - 288 -

 7.2 Math Examples

Recursive math examples are easy to program because we are often given the recursive
definition directly and then it easily transfers into a program.

Example:

For example, consider computing how much money
per month a person would have to pay to pay back a
mortgage on his/her home. Consider the following
notation:

• amount = mortgage amount borrowed
(e.g., $130,000)

• rate = annual interest rate as a percentage

(e.g., 3.5%)

• months = length of time for the mortgage to be paid off

(e.g., 300 months for a 25 year mortgage)

• payment(amount, rate, months) = monthly payment to pay off mortgage

(e.g., $647.57)

We would like to calculate the value for the payment function. Here is the function and its
parameters as defined:

Function: Payment
 amount: the principal amount of the mortgage
 rate: annual interest rate to be paid
 months: mortgage term (in months)

If we borrow money for 0 months, then the whole point of borrowing is silly. Assume then that
months > 0. What if months = 1 ... that is ... we want to pay off the entire mortgage one
month after we borrowed the money ? Then we must pay one month interest and so the
value of the payment function should return:

 amount + amount*(rate/12) or amount * (1 + (rate/12))

which is one month of interest on the original loan amount. We divide by 12 since the rate is
per year and we want only 1 month of interest. For a 2-month term, the payment would be:

 [amount * (1 + (rate/12))] * (1 + (rate/12))

and for a 3-month term:

 {[amount * (1 + (rate/12))] * (1 + (rate/12)))} * (1 + (rate/12))

COMP1405/1005 – Recursion Fall 2011

 - 289 -

So you can see, the interest to be paid each month is compounded monthly...so we pay
interest on interest owed and this grows larger each month.

There are a few ways to compute mortgage payments, but we will use the following formula so
that we can practice our recursion. The formula for computing the payment is actually
recursive and is defined as follows (showing first letter only for each parameter name):

Looking at the formula, do you see that the problem is recursive ? The result of the payment
function p(a,r,m) depends on the result of the payment function p(a,r,m-1) for one less month.
It is easy to see that the problem for one less month is the same problem (i.e., same function)
and that the problem is smaller.

Now let us determine the base case (i.e., the simplest case). Well, the amount and rate do
not change throughout the computation. Only the month value changes ... by getting smaller.
So the base case must be the stopping condition for the months being decreased. This base
case is the simplest case which follows from the definition.

Function: Payment
 amount: the principal amount of the mortgage
 rate: annual interest rate to be paid
 months: mortgage term (in months), assumed to be > 0

1. if (months is 1) then
2. return amount * (1 + rate/12)

That wasn't so bad. Now what about the recursive part ? It also follows from the formula:

Function: Payment
 amount: the principal amount of the mortgage
 rate: annual interest rate to be paid
 months: mortgage term (in months), assumed to be > 0

1. if (months is 1) then
2. return amount * (1 + rate/12)
3. return amount / ((amount / Payment(amount, rate, months-1)) + (1 + rate/12)months)

As you can see, the code is easy to write as long as we have a recursive definition to begin
with.

COMP1405/1005 – Recursion Fall 2011

 - 290 -

Example:

Imagine now that we have a teacher who wants to choose 10 students from a class of 25, to
participate in a special project. Assuming that each student is unique in his/her own way ...
how many different groups of students can be chosen ?

This is a classic problem using binomial coefficients that is often encountered in combinatorics
for determining the amount of variety in a solution, giving insight as to the complexity of a
problem. In general, if we have n items and we want to choose k items, we are looking for the
solution of how many groups of k-elements can be chosen from the n elements.

The expression is often written as follows and pronounced "n choose k":

Assuming that n is fixed, we can vary k to obtain a different answer. The simplest solutions
for this problem are when k=0 or k=n. If k=0, we are asking how many groups of zero can be
chosen from n items. The answer is 1 ... there is only one way to choose no items. Similarly,
if k=n then we want to choose all items ... and there is only one way to do that as well. Also, if
k>n, then there is no way to do this and the answer is zero (e.g., cannot choose 10 students
from a group of 6).

Otherwise, we can express the problem as a recursive solution by examining what happens
when we select a single item from the n items. Imagine therefore that we select one particular
student that we definitely want to participate in the project (e.g., the teacher's "pet").

We need to then express the solution to the problem, taking into account that we
are going to use that one student. In the remainder of the classroom, we therefore
have n-1 students left and we still need to select k-1 students. Here is what is left →

COMP1405/1005 – Recursion Fall 2011

 - 291 -

The other situation is that we decide that we definitely DO NOT want a particular
student to participate in the project (e.g., he's been a "bad boy" lately). In this case,
if we eliminate that student, we still need to select k students, from the n-1
remaining. Here is what is left →

Now, I'm sure you will agree that if we examine one particular student ... then we will either
select that student for the project or not. These two cases represent all possible solutions to
the problem. Therefore, we can express the entire solution as:

This is a recursive definition. The problem is of the same type and gets smaller each time
(since n gets smaller and k does also in one case). This problem is interesting because there
are two recursive calls to the same problem. That is, the problem branches off twice
recursively.

So then, to write the code, we start with the function:

Function: StudentCombinations
 n: total number of students
 k: number of students to choose

What about the base case(s) ? Well, we discussed the situations where k=n, k=0, k>n, so
these are the simplest cases:

Function: StudentCombinations
 n: total number of students
 k: number of students to choose

1. if (k > n) then
2. return 0
3. if (k is 0) then
4. return 1
5. if (k is n) then
6. return 1

As before, the recursive case is easy, since we have the definition. This time, the code will be
interesting as the function will call itself twice:

COMP1405/1005 – Recursion Fall 2011

 - 292 -

Function: StudentCombinations
 n: total number of students
 k: number of students to choose

1. if (k > n) then
2. return 0
3. if (k is 0) then
4. return 1
5. if (k is n) then
6. return 1

7. return StudentCombinations(n-1,k-1) + StudentCombinations(n-1,k)

Not too bad ... was it ? Do you understand how the recursion will eventually stop ?

 7.3 Graphical Examples

Recursion also appears in many graphical applications. For example, in computer games,
trees are often created and displayed using recursion. Fractals are often used in computer
graphics.

A fractal is a rough or fragmented geometric shape that can be split into parts, each
of which is (at least approximately) a reduced-size copy of the whole. (wikipedia)

So, a fractal is often drawn by repeatedly re-drawing a specific pattern in a way that the
pattern becomes smaller and smaller, but is of the same type.

Example:

Consider how we can draw a snowflake. See if you can detect
the recursion in the following snowflake (called the Koch
Snowflake):

It may not be easy to see. However ... if we were to examine the
process of creating this snowflake recursively, notice how it can be
done by starting with an equilateral triangle:

COMP1405/1005 – Recursion Fall 2011

 - 293 -

 etc..

The recursion happens on each side of the triangle. Consider a single horizontal edge. We
can recursively alter the edge into 4 segments as follows:

COMP1405/1005 – Recursion Fall 2011

 - 294 -

To accomplish this, we need to understand how a single edge is broken down into 4 pieces.
Then we need to understand how this gets done recursively. Notice above how each recursive
edge gets smaller. In fact, during each step of the recursion, the edge gets smaller by a factor
of 3. Eventually, the edge will be very small in length (e.g., 2) and the recursion can stop,
since breaking it down any further will not likely make a difference graphically.

Consider an edge going from a starting location (Sx, Sy) and going in direction angle towards
location (Ex, Ey). Here is how we break the edge down into 4 pieces:

So the code for doing this, is as follows:

Function: drawKochEdge
 Sx: x location to start drawing at
 Sy: y location to start drawing at
 Ex: x location to stop drawing at
 Ey: y location to stop drawing at
 angle: direction to draw towards

1. length ← distance from (Sx, Sy) to (Ex, Ey)/3
2. Px ← Sx + length * cos(angle)
3. Py ← Sy + length * sin(angle+180°)
4. Qx ← Px + length * cos(angle + 60°)
5. Qy ← Py + length * sin(angle + 60°+180°)
6. Rx ← Qx + length * cos(angle - 60°)
7. Ry ← Qy + length * sin(angle - 60°+180°)
8. draw line from (Sx, Sy) to (Px, Py)
9. draw line from (Px, Py) to (Qx, Qy)
10. draw line from (Qx, Qy) to (Rx, Ry)
11. draw line from (Rx, Ry) to (Ex, Ey)

COMP1405/1005 – Recursion Fall 2011

 - 295 -

The above code will work for any start/end locations. The angle is also passed in as a
parameter, but alternatively it can be computed from the start and end points of the edge. It
is important that the angle passed is actually the correct angle from the start to the end
location.

Now, how do we draw the entire snowflake ? We need to draw three edges to represent the
starting triangle. Assume that we want the snowflake centered at some location (Cx, Cy) and
that the snowflake's size is defined by the length of the three triangle edges called size.

We can draw the triangle with simple straight line edges as follows:

Function: drawSnowflake
 Cx, Cy: location of center of snowflake
 size: size of snowflake (i.e., length of inner triangle edge)

1. Px ← Cx + size * cos(90°)
2. Py ← Cy + size * sin(90°+180°)
3. Qx ← Cx + size * cos(-30°)
4. Qy ← Cy + size * sin(-30°+180°)
5. Rx ← Cx + size * cos(210°)
6. Ry ← Cy + size * sin(210°+180°)
7. draw line from (Px, Py) to (Qx, Qy)
8. draw line from (Qx, Qy) to (Rx, Ry)
9. draw line from (Rx, Ry) to (Px, Py)

We can draw the triangle with a single Koch edge as follows:

Function: drawSnowflake
 Cx, Cy: location of center of snowflake
 size: size of snowflake (i.e., length of inner triangle edge)

1. Px ← Cx + size * cos(90°)
2. Py ← Cy + size * sin(90°+180°)
3. Qx ← Cx + size * cos(-30°)
4. Qy ← Cy + size * sin(-30°+180°)
5. Rx ← Cx + size * cos(210°)
6. Ry ← Cy + size * sin(210°+180°)
7. drawKochEdge(Px, Py, Qx, Qy, -60°)
8. drawKochEdge (Qx, Qy, Rx, Ry, 180°)
9. drawKochEdge (Rx, Ry, Px, Py, 60°)

The code above will draw the shape with one level of recursion. But how do we complete the
code so that it does many levels of recursion ? We need to come up with a base case for
stopping the recursion. This can be done in the drawKochEdge procedure by noticing when

COMP1405/1005 – Recursion Fall 2011

 - 296 -

the length of the edge is very small (e.g., 2). In this case, we draw a regular line as opposed
to breaking it up into 4 and recursively drawing. Notice the code:

Function: drawKochEdge
 Sx, Sy: location to start drawing at
 Ex, Ey: location to stop drawing at
 angle: direction to draw towards

1. length ← distance from (Sx, Sy) to (Ex, Ey) / 3
2. if (length < 2) then
3. draw line from (Sx, Sy) to (Ex, Ey) // just draw a straight line
 otherwise {
4. Px ← Sx + length * cos(angle)
5. Py ← Sy + length * sin(angle+180°)
6. Qx ← Px + length * cos(angle + 60°)
7. Qy ← Py + length * sin(angle + 60°+180°)
8. Rx ← Qx + length * cos(angle - 60°)
9. Ry ← Qy + length * sin(angle - 60°+180°)
10. drawKochEdge(Sx, Sy, Px, Py, angle)
11. drawKochEdge(Px, Py, Qx, Qy, angle + 60°)
12. drawKochEdge(Qx, Qy, Rx, Ry, angle - 60°)
13. drawKochEdge(Rx, Ry, Ex, Ey, angle)
 }

This code will produce the desired snowflake pattern.

Example:

Consider drawing a tree. We can draw the stem of a tree
as a branch and then repeatedly draw smaller and smaller
branches of the tree until we reach the end of the tree.
Here, for example, is a fractal tree →

How can we draw this ? Well, imagine drawing just one
portion of this tree starting at the bottom facing upwards.
We can travel for some number of pixels (e.g., 100) and
then bend to the right, perhaps 40° as shown here. Then,
we can draw for a smaller distance, perhaps 60% of the
previous branch. We can do this repeatedly, turning 40°
and drawing a new smaller branch. We can stop when the
branch is small enough (perhaps 2 or 3 pixels in length).

Consider doing this for just one portion of branches in the tree (e.g, the right sequence of
branches shown here in bold/red).

COMP1405/1005 – Recursion Fall 2011

 - 297 -

Assume that the bendAngle is set at 40° and that the
shrinkFactor is 0.6 (i.e., 60%). Consider the code to draw
the rightmost set of branches of the tree. Assume that the
initial (x,y) location is centered at the bottom of the window
and that the drawing direction is north (i.e., upwards at
90°).

Each time we can draw a single branch, then turn
bendAngle and then recursively draw the remaining
branches starting with branch length reduced by the
shrinkFactor.

Here is the code:

Function: drawSingleTreePath
 length: length of tree branch
 x, y: location to start drawing at
 dir: direction to draw towards

1. if (length < 2)
2. return
3. endX ← x + length * cos(dir + bendAngle)
4. endY ← y + length * sin(dir + bendAngle+180°)
5. draw line from (x, y) to (endX, endY)
6. drawTree(length * shrinkFactor, endX,
 endY, dir + bendAngle)

COMP1405/1005 – Recursion Fall 2011

 - 298 -

Assume that we begin the tree by drawing a 100 pixel length vertical line from the bottom
center of the screen (windowWidth/2, windowHeight) facing upwards (i.e. North at 90°) to
(windowWidth /2, windowHeight -100) We would complete the drawing simply by calling
the function with initial values corresponding to facing North and a 100*shrinkFactor = 60
pixel length as follows:

 drawSingleTreePath (60, windowWidth /2, windowHeight -100, 90°)

The recursion stops when the tree branch size reaches 2, which is somewhat arbitrary.
To draw the remainder of the tree, we simply add code to draw left as well:

Function: drawTree
 length: length of tree branch
 x, y: location to start drawing at
 dir: direction to draw towards

1. if (length < 2)
2. return
3. endX ← x + length * cos(dir + bendAngle)
4. endY ← y + length * sin(dir + bendAngle+180°)
5. draw line from (x, y) to (endX, endY)
6. drawTree(length * shrinkFactor, endX, endY, dir + bendAngle)

7. endX ← x + length * cos(dir - bendAngle)
8. endY ← y + length * sin(dir - bendAngle+180°)
9. draw line from (x, y) to (endX, endY)
10. drawTree(length * shrinkFactor, endX, endY, dir - bendAngle)

Notice how the tree takes shape because each time we draw a single branch, we branch
out 40° left and 40° right. Notice how the trees differ as we change the bendAngle to
other angles other than 40°:

 10° 20° 30°

COMP1405/1005 – Recursion Fall 2011

 - 299 -

 60° 90° 120°

Also, as we adjust the shrinkFactor to other values, notice how the tree changes (here the
bendAngle is fixed at 45°:

 0.10 0.25 0.4 0.5

 0.7 0.75

COMP1405/1005 – Recursion Fall 2011

 - 300 -

Example:

Now, consider drawing a more realistic tree. A real tree does not have branches that grow
at exact angles. Let us begin by adjusting the bendAngle to be random instead of fixed at
say 40°. That way, each branch of the tree can bend randomly. Of course, we want to
have some limits as to how random they should bend.

We can change the bendAngle so that it bend at least some amount each time (e.g., π/32
= 5.6°) plus some random amount (e.g., 0 to π/4 ... or 0° to 45°):

 bendAngle ← 5.6° + (random value from 0° to 45°)

The result is that our trees will look less symmetrical and will bend more naturally:

Another factor that we can adjust is the length of each branch. Currently, they shrink by a
constant factor of shrinkFactor which is 0.6 in the examples above. However, we can
shrink them by a random amount (within reason, of course). So, we can add or subtract a
random amount from the shrinkFactor. It is easiest to simply multiply the shrinkFactor
by some value, perhaps in the range from 1.0 to 1.5. That will allow some branches to be
larger than 60% of their "parent" branch.

Here is the code as we now have it using a variable bendAngle and a new variable called
stretch to allow randomly longer branches:

Function: drawNaturalTree
 length: length of tree branch
 x, y location to start drawing at
 dir: direction to draw towards

 ... continued on next page ...

COMP1405/1005 – Recursion Fall 2011

 - 301 -

1. if (length < 2)
2. return

3. bendAngle ← 5.6° + (random value from 0° to 45°)
4. endX ← x + length * cos(dir + bendAngle)
5. endY ← y + length * sin(dir + bendAngle+180°)
6. draw line from (x, y) to (endX, endY)
7. stretch ← 1 + (random value from 0 to 0.5)
8. drawNaturalTree (length * shrinkFactor * stretch, endX, endY, dir + bendAngle)

9. bendAngle ← 5.6° + (random value from 0° to 45°)
10. endX ← x + length * cos(dir - bendAngle)
11. endY ← y + length * sin(dir - bendAngle+180°)
12. draw line from (x, y) to (endX, endY)
13. stretch ← 1 + (random value from 0 to 0.5)
14. drawNaturalTree(length * shrinkFactor * stretch, endX, endY, dir - bendAngle)

Here are two examples of results due to this change:

Notice how tree is more "bushy". That is because the recursion goes further before it stops
(i.e., it draws more branches). This is because the base case of the recursion stops only
when the branch reaches a specific small size. Due to the randomness of the parameters,
we may end up with some lopsided trees:

COMP1405/1005 – Recursion Fall 2011

 - 302 -

Of course, we can make everything even bushier if we increase the shrinkFactor to 65%:

All that remains now is to make the branches thicker and color them brown. For very small
branches, we color them green:

Function: drawColorTree
 length: length of tree branch
 x: x location to start drawing at
 y: y location to start drawing at
 dir: direction to draw towards

1. if (length < 2)
2. return
2. for b from -1 to 1 by 2 do {
3. set line drawing width to length / 7
4. if (length > 10) then
5. set line drawing color to brown
6. otherwise {
7. set line drawing color to a random amount of green (e.g., 80 to 130)
8. set line drawing width to 2 + (length / 7)
 }
9. bendAngle ← 5.6° + (random value from 0° to 45°)
10. endX ← x + length * cos(dir + b*bendAngle)
11. endY ← y + length * sin(dir + b*bendAngle+180°)
12. draw line from (x, y) to (endX, endY)
13. stretch ← 1 + (random value from 0 to 0.5)
14. drawColorTree (length * shrinkFactor * stretch, endX, endY, dir + b*bendAngle)
 }

Notice the FOR loop now which repeats exactly 2 times. This reduces our code since the
code for drawing the left branch is the same as that for drawing the right branch, except
that the angle offset is negative (represented by the value of b).

COMP1405/1005 – Recursion Fall 2011

 - 303 -

Here is the result (with shrinkFactor at 67% and bendAngle of (π/32 + random 0- π/6)):

 7.4 Search Examples

Sometimes, we use recursion to search for an answer to a problem. Searching for an answer
recursively can often lead to a simpler, more elegant solution than writing search code that
uses many loops and IF statements.

Example:

Consider writing code to solve a rubik's cube. The task may seem daunting at first ... but
there are many systematic ways of solving the cube in steps or phases. Any non-recursive
code that you would write could be quite complex, tedious and/or cumbersome. However, a
recursive solution is quite simple.

Assume that the cube can be solved by making at most 100
quarter turns of one of the cube's sides (a reasonable
assumption). Here is the idea behind the recursive solution:

Try turning 1 of the 6 sides 1/4 of a turn, then try to solve the
cube in 99 more turns, recursively. If the recursion comes
back with a solution from the 99 additional moves, then the
1/4 turn that we made was a good one, hence part of the
solution. If however, the recursion came back after 99
moves with an unsolved cube, then the 1/4 turn that we
made was a bad choice ... undo it and then try turning one of
the other 5 sides.

Here is the pseudocode for a function to solve the cube recursively in n steps, returning true if
it has been solved, or false otherwise:

COMP1405/1005 – Recursion Fall 2011

 - 304 -

Function: SolveRubiksCube
 cube: the cube data structure
 n: maximum number of steps remaining to solve the cube

1. if (cube is solved) then
2. return true
3. if (n is 0) then
4. return false
5. for each side of the cube s from 1 to 6 do {
6. turn side s 1/4 turn clockwise
7. recursiveAnswer ← SolveRubiksCube(cube, n-1)
8. if (recursiveAnswer is true) then
9. return true
10. turn side s 1/4 turn counter-clockwise // i.e., undo the turn
11. }
12. return false

That is the solution! It is quite simple. Do you see the power of recursion now ? Of course,
this particular solution can be quite slow, as it blindly tries all possible turns without any
particular strategy. Nevertheless, the solution is simple to understand. It would be difficult to
produce such a simple function to solve this problem without using recursion.

Example:

Another problem that is naturally solved recursively is that the Towers of Hanoi puzzle.
In this puzzle game, there are three pegs and a set of n
disks of various sizes that can be moved from one peg
to another. To begin, all n pegs are stacked on the first
peg in order of increasing sizes such that the largest
disk is at the bottom and the smallest is at the top. The
objective of the game is to move the entire tower of disks
to a different peg by moving one disk at a time and doing so with a minimum number of steps.

There are just two rules:

1. disks must be moved from one peg to another, not placed aside on the table
2. a disk can never be placed onto a smaller-sized disk.

COMP1405/1005 – Recursion Fall 2011

 - 305 -

To approach this problem recursively, we must understand
how to break the problem down into a smaller problem of the
same type. Since all we are doing is moving disks, then a
"smaller" sub-problem would logically just be moving less
disks. For example, if 1 disk is moved, then only n-1 disks
remain to be moved ... which a smaller problem.

So what then would be the base case ? Well ... what is the
simplest number of disks to move ? Zero. A simple problem
is also the case where n = 1. In that case, we simply pick
up the disk and move it. For values of n greater than 1, we
now have to worry about moving some disks out of the
way. Here is the solution when n = 2 →

Notice that after the small red disk is moved to peg B, then
we have the smaller/simpler problem of moving the one
larger disk from peg A to peg C. Finally, we have the
simpler/smaller problem of moving the red disk from peg B
to peg C and we are done.

It may be hard to see the recursion, at this point, so let us look at the solution for n = 3:

COMP1405/1005 – Recursion Fall 2011

 - 306 -

You may notice that steps 1 to 3 are basically the same as the problem where n = 2, except
that we are moving the disks from peg A to peg B instead of to peg C. Then step 4 simply
moves the 1 disk from peg A to peg C. Finally, we are left with the recursive sub-problem
again of moving 2 disks from peg B to peg C.

So, the recursive solution of moving n disks is based on
this idea:

1. Move the n-1 smaller disks out of the way to the
spare peg B

2. Move the large disk to peg C

3. Move the n-1 smaller disks to peg C

As you can see above, there are two recursive sub-
problems corresponding to moving n-1 disks out of the
way first, and then solving the n-1 problem once the
largest bottom disk is in place.

So, we can now write the code by defining a procedure
that indicates the peg to move from, the peg to move
to, the extra peg and the number of disks to move.

Procedure: TowersOfHanoi
 pegA: the peg to move from
 pegC: the peg to move to
 pegB: the extra peg
 n: number of disks to move

1. if (n is 1) then
2. Move 1 disk from pegA to pegC
 otherwise {
3. TowersOfHanoi(pegA, pegB, pegC, n-1)
4. Move 1 disk from pegA to pegC
5. TowersOfHanoi(pegB, pegC, pegA, n-1)
 }

As you can see, the problem is expressed in a simple manner with only about 5 lines. Notice
that there was no need to check if n = 0 since that would represent a problem that is already
solved.

