
 

Chapter 7 

Recursion 
 

 

What is in This Chapter ? 
This chapter explains the notion of recursion as it appears in computer science.   We discuss 
briefly the idea of using recursion for simple math-based problems and for simple graphical 
drawing, such as drawing fractal pictures which are often found in computer science.   
Recursion usually involves thinking in a different manner than you may be used to.   It is a very 
powerful technique, however, that can simplify algorithms and make your life easier ... once 
you understand it.  A more thorough discussion of recursive techniques is covered in further 
courses. 
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 7.1 Recursion 
 
Recall in the first chapter, we discussed  the notion of "divide-and-conquer" in regards to 
breaking a problem down into smaller, more manageable, modular pieces called functions or 
procedures. 
 
Sometimes when we break a problem down into smaller pieces of the same type of problem, 
we are simply reducing the amount of information that we must process, since the problem is 
solved in the same manner ... it is just a smaller version of the same problem. 
 
For example, there are many real-world examples where we often break problems into smaller 
ones of the same type in order to solve the bigger problem: 

1. Jigsaw puzzles are solved in "steps": border, interesting portion, grass, sky, etc.. 
2. Math problems are broken down into smaller/simpler problems 
3. Even climbing stairs eventually breaks down to climbing one step at a time. 

 

            
 

Such problems can be solved recursively. 

Recursion is a divide-and-conquer technique in which the problem being 
solved is expressed (or defined) in terms of smaller problems of the same type.    

The word Recursion actually comes from a Latin word meaning "a running back".   This 
makes sense because recursion is the process of actually "going off" and breaking down a 
problem into small pieces and then bringing the solutions to those smaller pieces back 
together to form the complete solution.  So ... 

• recursion breaks down a complex problem into smaller sub-problems 
• the sub-problems are smaller instances of the same type of problem. 

So, when using recursion, we need to consider how to: 
 

1. break the problem down into smaller sub-problems 
2. deal with each smaller sub-problem 
3. merge the results of the smaller sub-problems to answer the original problem 
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In fact, it is actually easier than this sounds.   Most of the 
time, we simply take the original problem and break/bite off 
a small piece that we can work with. We simply keep biting 
off the small pieces of the problem, solve them, and then 
merge the results. 
 
Consider the simple example of computing the factorial of an 
integer.   You may recall that the function works as follows: 
 

0! = 1  
1! = 1  
2! = 2x1  
3! = 3x2x1 
4! = 4x3x2x1 
5! = 5x4x3x2x1 
etc.. 

 
So, the function is defined non-recursively as follows:  
 

1                                           if N = 0 
N! = N x (N-1) x (N-2) x ... x 3 x 2 x 1  if N ≥ 1 
 

If you were asked to write a factorial function, you could do so with a FOR loop as follows: 
 

 
Function: Factorial 
 n:  a positive integer for which to find the factorial 
 
1.  answer  ←  1 
2.  for each integer i from 2 to n do { 
3.  answer  ←  answer  * i 
 } 
4.  return answer 
 

 
This code is simple and straight-forward to write.  
 
The factorial problem, however, can also be defined recursively as follows: 
 

1                    if N = 0 
N! = N x (N-1)!      if N ≥ 1 
 

Notice how N! is expressed as a function of the smaller sub-problem of (N-1)! which is of the 
same type of problem (i.e., it is also a factorial problem, but for a smaller number). 
 
So, if we had the solution for (N-1)!, say S, we could use this to compute the solution to N! as 
follows:   N! = N x S 
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However, how do we get the solution for (N-1)! ?   We use the same formula, setting N to N-1 
as follows: 
 
(N-1)! = (N-1) x ((N-1)-1)!       =   (N-1) x (N-2)! 
 
Similarly, we can recursively break down (N-2)! in the same way.   Eventually, as we keep 
reducing N by 1 each time, we end up with N=0 or 1 and for that simple problem we know the 
answer is 1.   So breaking it all down we see the solution of 5! as follows: 
 

 
 
If you were asked to write this recursive factorial function, you could do so as follows: 
 

 
Function: FactorialRecursive 
 n:  a positive integer for which to find the factorial 
 
1.  if (n is 0) then 
2.   answer  ←  1 
3.  otherwise  
4.  answer  ← n * FactorialRecursive(n-1) 
5.  return answer 
 

 
Notice how we no longer have a repeating loop in our code.  Instead, the FactorialRecursive 
function calls itself with a smaller value of n.   That is, the function repeatedly calls itself over 
and over again with smaller values of n until finally n has the smallest value of 0, in which case 
the code stops calling itself recursively.   A recursive function is easily identifiable by the fact 
that a function or procedure calls itself.  The "stopping situation" is called the base case of the 
problem.   In general, a recursive function (or procedure) may have multiple base cases (i.e., 
multiple stopping conditions). 
 
To understand the inner-workings of the function as it calls itself, consider the following 
diagram which shows how the control passes from one function call to the next when 
computing the factorial of 3.   There are 11 main "steps" of the recursion as shown numbered 
in black bold font: 
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If you were to compare the non-recursive solution with the recursive solution ... which do you 
find to be simpler ? 
 

 
Function: Factorial 
 n:  a positive integer 
 
1.  answer  ←  1 
2.  for each integer i from 2 to n do { 
3.  answer  ←  answer  * i 
 } 
4.  return answer 

 

 
Function: Factorial 
 n:  a positive integer  
 
1.  if (n is 0) then 
2.   answer  ←  1 
3.  otherwise  
4.  answer  ← n * Factorial(n-1) 
5.  return answer 

 
 
You may feel that the non-recursive version is simpler.   In this particular example, you are 
probably right.   So the question that arises is ... "Why should we use recursion ?".    
 
Here are 4 reasons: 
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1. Some problems are naturally recursive and are easier to express recursively than non-
recursively.   For example, some math problems are defined recursively. 
 

2. Sometimes, using recursion results in a simpler, more elegant solution. 
 

3. Recursive solutions may actually be easier to understand. 
 

4. In some cases, a recursive solution may be the only way to approach a seemingly 
overwhelming problem. 

 
As we do various examples, the advantages of using recursion should become clear to you.   
 
How do we write our own recursive functions and procedures ?   It 
is important to remember the following two very important facts 
about the sub-problems: 
 

• must be an instance of the same kind of problem 
• must be smaller than the original problem  

 
The trick is to understand how to "bite off" small pieces of the problem and knowing when to 
stop doing so.   When we write the code, we will usually start with the base cases since they 
are the ones that we know how to handle.   For example, if we think of our "real world" 
examples mentioned earlier, here are the base cases: 

 
1. For the jigsaw puzzle, we divide up the pieces until we have just 

a few (maybe 5 to 10) pieces that form an interesting part of our picture.   
We stop dividing at that time and simply solve (by putting together) the 
simple base case problem of this small sub-picture.   So the base case is 
the problem in which there are only a few pieces all part of some 
identifiable portion of the puzzle. 
 

2. For the math problem, we simply keep breaking down the problem until 
either (a) there is a simple expression remaining (e.g., 2 + 3) or (b) we have a 
single number with no operations (e.g., 7).   These are simple base cases in 
which there is either one operation to do or none.  
 
3. For the stair climbing problem, each stair that we climb brings us closer to 

solving the problem of climbing all the stairs.   Each time, we take a step up, the 
problem is smaller, and of the same type.  The base case is our simplest case 
when there is only one stair to climb.   We simply climb that stair and there is no 
recursion to do at that point. 
 
 

So then to write recursive methods, we first need to understand "where" the recursion will fit in.   
That is, we need to understand how to reduce the problem and then merge the results.   It is 
important to fully understand the problem and the kind of parameters that you will need as the 
function/procedure gets called repeatedly.   Make sure you understand how the problem gets 
smaller (i.e., usually the parameters change in some way).   Then, you can implement the 
simple base cases and add in the recursion.   Let us look at a few examples.  
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 7.2 Math Examples 
 
Recursive math examples are easy to program because we are often given the recursive 
definition directly and then it easily transfers into a program.    
 

Example: 
 
For example, consider computing how much money 
per month a person would have to pay to pay back a 
mortgage on his/her home.   Consider the following 
notation: 
 

• amount = mortgage amount borrowed 
(e.g., $130,000) 

 
• rate = annual interest rate as a percentage 

(e.g., 3.5%) 
 
• months = length of time for the mortgage to be paid off 

(e.g., 300 months for a 25 year mortgage) 
 
• payment(amount, rate, months) = monthly payment to pay off mortgage  

(e.g., $647.57) 
 
We would like to calculate the value for the payment function.  Here is the function and its 
parameters as defined: 

Function: Payment 
 amount:  the principal amount of the mortgage 
 rate:   annual interest rate to be paid 
 months:  mortgage term (in months) 

 
If we borrow money for 0 months, then the whole point of borrowing is silly.   Assume then that 
months > 0.   What if months = 1 ... that is ... we want to pay off the entire mortgage one 
month after we borrowed the money ?   Then we must pay one month interest and so the 
value of the payment function should return: 

 amount + amount*(rate/12)     or     amount * (1 + (rate/12))      

which is one month of interest on the original loan amount.   We divide by 12 since the rate is 
per year and we want only 1 month of interest.   For a 2-month term, the payment would be: 
 
 [amount * (1 + (rate/12))] * (1 + (rate/12))   
 
and for a 3-month term: 
 
 {[amount * (1 + (rate/12))] * (1 + (rate/12)))}  * (1 + (rate/12))     
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So you can see, the interest to be paid each month is compounded monthly...so we pay 
interest on interest owed and this grows larger each month.  
 
There are a few ways to compute mortgage payments, but we will use the following formula so 
that we can practice our recursion.   The formula for computing the payment is actually 
recursive and is defined as follows (showing first letter only for each parameter name): 

 
 
Looking at the formula, do you see that the problem is recursive ?   The result of the payment 
function p(a,r,m) depends on the result of the payment function p(a,r,m-1) for one less month.   
It is easy to see that the problem for one less month is the same problem (i.e., same function) 
and that the problem is smaller. 
 
Now  let us determine the base case (i.e., the simplest case).   Well, the amount and rate do 
not change throughout the computation.   Only the month value changes ... by getting smaller.   
So the base case must be the stopping condition for the months being decreased.   This base 
case is the simplest case which follows from the definition. 

 
Function: Payment 
 amount:  the principal amount of the mortgage 
 rate:   annual interest rate to be paid 
 months:  mortgage term (in months), assumed to be > 0 
 
1.  if (months is 1) then 
2.   return amount * (1 + rate/12) 
 
 
That wasn't so bad.     Now what about the recursive part ?   It also follows from the formula: 
 
 
Function: Payment 
 amount:  the principal amount of the mortgage 
 rate:   annual interest rate to be paid 
 months:  mortgage term (in months), assumed to be > 0 
 
1.  if (months is 1) then 
2.   return amount * (1 + rate/12) 
3.  return amount / ((amount / Payment(amount, rate, months-1)) + (1 + rate/12)months) 
 
 
As you can see, the code is easy to write as long as we have a recursive definition to begin 
with.    
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Example: 
 
Imagine now that we have a teacher who wants to choose 10 students from a class of 25, to 
participate in a special project.   Assuming that each student is unique in his/her own way ... 
how many different groups of students can be chosen ?  

 
 
This is a classic problem using binomial coefficients that is often encountered in combinatorics 
for determining the amount of variety in a solution, giving insight as to the complexity of a 
problem.   In general, if we have n items and we want to choose k items, we are looking for the 
solution of how many groups of k-elements can be chosen from the n elements.   
 
The expression is often written as follows and pronounced "n choose k": 
 
Assuming that n is fixed, we can vary k to obtain a different answer.   The simplest solutions 
for this problem are when k=0 or k=n.   If k=0, we are asking how many groups of zero can be 
chosen from n items.   The answer is 1 ... there is only one way to choose no items.   Similarly, 
if k=n then we want to choose all items ... and there is only one way to do that as well.   Also, if 
k>n, then there is no way to do this and the answer is zero (e.g., cannot choose 10 students 
from a group of 6). 
 
Otherwise, we can express the problem as a recursive solution by examining what happens 
when we select a single item from the n items.   Imagine therefore that we select one particular 
student that we definitely want to participate in the project (e.g., the teacher's "pet").    
 
We need to then express the solution to the problem, taking into account  that we 
are going to use that one student.   In the remainder of the classroom, we therefore 
have n-1 students left and we still need to select k-1 students.  Here is what is left → 
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The other situation is that we decide that we definitely DO NOT want a particular 
student to participate in the project (e.g., he's been a "bad boy" lately).   In this case, 
if we eliminate that student, we still need to select k students, from the n-1 
remaining.  Here is what is left → 
 
Now, I'm sure you will agree that if we examine one particular student ... then we will either 
select that student for the project or not.   These two cases represent all possible solutions to 
the problem.   Therefore, we can express the entire solution as: 
 

 
 
This is a recursive definition.   The problem is of the same type and gets smaller each time 
(since n gets smaller and k does also in one case).   This problem is interesting because there 
are two recursive calls to the same problem.   That is, the problem branches off twice 
recursively. 
 
So then, to write the code, we start with the function: 
 
 
Function: StudentCombinations 
 n:  total number of students 
 k:  number of students to choose 
 
 
What about the base case(s) ?   Well, we discussed the situations where k=n, k=0, k>n, so 
these are the simplest cases: 
 
 
Function: StudentCombinations 
 n:  total number of students 
 k:  number of students to choose 
 
1.  if (k > n) then 
2.   return 0 
3.  if (k is 0) then 
4.   return 1 
5.  if (k is n) then 
6.   return 1 
 
 
As before, the recursive case is easy, since we have the definition.   This time, the code will be 
interesting as the function will call itself twice: 
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Function: StudentCombinations 
 n:  total number of students 
 k:  number of students to choose 
 
1.  if (k > n) then 
2.   return 0 
3.  if (k is 0) then 
4.   return 1 
5.  if (k is n) then 
6.   return 1 
 
7.  return StudentCombinations(n-1,k-1) + StudentCombinations(n-1,k) 
 
 
Not too bad ... was it ?   Do you understand how the recursion will eventually stop ? 
 
 
 

 7.3 Graphical Examples 
 
Recursion also appears in many graphical applications.   For example, in computer games, 
trees are often created and displayed using recursion.   Fractals are often used in computer 
graphics. 
 

A fractal is a rough or fragmented geometric shape  that can be split into parts, each 
of which is (at least approximately) a reduced-size copy of the whole.   (wikipedia) 

 
So, a fractal is often drawn by repeatedly re-drawing a specific pattern in a way that the 
pattern becomes smaller and smaller, but is of the same type. 
 

 

Example: 
 
Consider how we can draw a snowflake.   See if you can detect 
the recursion in the following snowflake (called the Koch 
Snowflake): 

 
It may not be easy to see.   However ... if we were to examine the 
process of creating this snowflake recursively, notice how it can be 
done by starting with an equilateral triangle: 
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 etc.. 
 
The recursion happens on each side of the triangle.   Consider a single horizontal edge.  We 
can recursively alter the edge into 4 segments as follows: 
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To accomplish this, we need to understand how a single edge is broken down into 4 pieces.   
Then we need to understand how this gets done recursively.  Notice above how each recursive 
edge gets smaller.   In fact, during each step of the recursion, the edge gets smaller by a factor 
of 3.   Eventually, the edge will be very small in length (e.g., 2) and the recursion can stop, 
since breaking it down any further will not likely make a difference graphically. 
 
Consider an edge going from a starting location (Sx, Sy) and going in direction angle towards 
location (Ex, Ey).   Here is how we break the edge down into 4 pieces: 
 

 
 
So the code for doing this,  is as follows: 
 
 
Function: drawKochEdge 
 Sx:   x location to start drawing at 
 Sy:   y location to start drawing at 
 Ex:   x location to stop drawing at 
 Ey:   y location to stop drawing at 
 angle:  direction to draw towards  
 
1. length ← distance from (Sx, Sy) to (Ex, Ey)/3 
2. Px ← Sx + length * cos(angle) 
3. Py ← Sy + length * sin(angle+180°)  
4. Qx ← Px + length * cos(angle + 60°) 
5. Qy ← Py + length * sin(angle + 60°+180°)  
6. Rx ← Qx + length * cos(angle - 60°) 
7. Ry ← Qy + length * sin(angle - 60°+180°)  
8. draw line from (Sx, Sy) to (Px, Py) 
9. draw line from (Px, Py) to (Qx, Qy) 
10. draw line from (Qx, Qy) to (Rx, Ry) 
11. draw line from (Rx, Ry) to (Ex, Ey) 
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The above code will work for any start/end locations.  The angle is also passed in as a 
parameter, but alternatively  it can be computed from the start and end points of the edge.   It 
is important that the angle passed is actually the correct angle from the start to the end 
location. 
 
Now, how do we draw the entire snowflake ?   We need to draw three edges to represent the 
starting triangle.   Assume that we want the snowflake centered at some location (Cx, Cy) and 
that the snowflake's size is defined by the length of the three triangle edges called size. 
 
We can draw the triangle with simple straight line edges as follows: 
 
 
Function: drawSnowflake 
 Cx, Cy: location of center of snowflake 
 size:  size of snowflake (i.e., length of inner triangle edge)  
 
1. Px ← Cx + size * cos(90°) 
2. Py ← Cy + size * sin(90°+180°)   
3. Qx ← Cx + size * cos(-30°) 
4. Qy ← Cy + size * sin(-30°+180°)   
5. Rx ← Cx + size * cos(210°) 
6. Ry ← Cy + size * sin(210°+180°) 
7. draw line from (Px, Py) to (Qx, Qy) 
8. draw line from (Qx, Qy) to (Rx, Ry) 
9. draw line from (Rx, Ry) to (Px, Py) 
 
 
We can draw the triangle with a single Koch edge as follows: 
 
 
Function: drawSnowflake 
 Cx, Cy: location of center of snowflake 
 size:  size of snowflake (i.e., length of inner triangle edge)  
 
1. Px ← Cx + size * cos(90°) 
2. Py ← Cy + size * sin(90°+180°)   
3. Qx ← Cx + size * cos(-30°) 
4. Qy ← Cy + size * sin(-30°+180°)   
5. Rx ← Cx + size * cos(210°) 
6. Ry ← Cy + size * sin(210°+180°) 
7. drawKochEdge(Px, Py, Qx, Qy, -60°) 
8. drawKochEdge (Qx, Qy, Rx, Ry, 180°) 
9. drawKochEdge (Rx, Ry, Px, Py, 60°) 
 
 
The code above will draw the shape with one level of recursion.  But how do we complete the 
code so that it does many levels of recursion ?  We need to come up with a base case for 
stopping the recursion.   This can be done in the drawKochEdge procedure by noticing when 
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the length of the edge is very small (e.g., 2).   In this case, we draw a regular line as opposed 
to breaking it up into 4 and recursively drawing.    Notice the code: 
 
 
Function: drawKochEdge 
 Sx, Sy:  location to start drawing at 
 Ex, Ey:  location to stop drawing at 
 angle:   direction to draw towards  
 
1. length ← distance from (Sx, Sy) to (Ex, Ey) / 3 
2. if (length < 2) then 
3.  draw line from (Sx, Sy) to (Ex, Ey)  // just draw a straight line 
 otherwise  { 
4.  Px ← Sx + length * cos(angle) 
5.  Py ← Sy + length * sin(angle+180°)  
6.  Qx ← Px + length * cos(angle + 60°) 
7.  Qy ← Py + length * sin(angle + 60°+180°)  
8.  Rx ← Qx + length * cos(angle - 60°) 
9.  Ry ← Qy + length * sin(angle - 60°+180°)  
10.  drawKochEdge(Sx, Sy, Px, Py, angle) 
11.  drawKochEdge(Px, Py, Qx, Qy, angle + 60°) 
12.  drawKochEdge(Qx, Qy, Rx, Ry, angle - 60°) 
13.  drawKochEdge(Rx, Ry, Ex, Ey, angle) 
 } 
 
 
This code will produce the desired snowflake pattern. 
 
 

Example: 
 
Consider drawing a tree.   We can draw the stem of a tree 
as a branch and then repeatedly draw smaller and smaller 
branches of the tree until we reach the end of the tree.    
Here, for example, is a fractal tree → 

 
How can we draw this ?   Well, imagine drawing just one 
portion of this tree starting at the bottom facing upwards.   
We can travel for some number of pixels (e.g., 100) and 
then bend to the right, perhaps 40° as shown here.  Then, 
we can draw for a smaller distance, perhaps 60% of the 
previous branch.   We can do this repeatedly, turning 40° 
and drawing a new smaller branch.   We can stop when the 
branch is small enough (perhaps 2 or 3 pixels in length). 
 
Consider doing this for just one portion of branches in the tree (e.g, the right sequence of 
branches shown here in bold/red).   
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Assume that the bendAngle is set at 40° and that the 
shrinkFactor is 0.6 (i.e., 60%). Consider  the code to draw 
the rightmost set of branches of the tree.  Assume that the 
initial (x,y) location is centered at the bottom of the window 
and that the drawing direction is north (i.e., upwards at 
90°).    
 
Each time we can draw a single branch, then turn 
bendAngle and then recursively draw the remaining 
branches starting with branch length reduced by the 
shrinkFactor. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Here is the code: 
 
 
Function: drawSingleTreePath 
 length:  length of tree branch 
 x, y:   location to start drawing at 
 dir:    direction to draw towards  
 
1. if (length < 2) 
2.  return 
3. endX ← x + length * cos(dir + bendAngle) 
4. endY ← y + length * sin(dir + bendAngle+180°) 
5. draw line from (x, y) to (endX, endY) 
6. drawTree(length * shrinkFactor, endX, 
              endY, dir + bendAngle) 
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Assume that we begin the tree by drawing a 100 pixel length vertical line from the bottom 
center of the screen (windowWidth/2, windowHeight) facing upwards (i.e. North at 90°) to 
(windowWidth /2, windowHeight -100) We would complete the drawing simply by calling 
the function with initial values corresponding to facing North and a 100*shrinkFactor = 60 
pixel length as follows: 
 
 drawSingleTreePath (60, windowWidth /2, windowHeight -100, 90°) 
 
The recursion stops when the tree branch size reaches 2, which is somewhat arbitrary. 
To draw the remainder of the tree, we simply add code to draw left as well: 
 
 
Function: drawTree 
 length:  length of tree branch 
 x, y:   location to start drawing at 
 dir:    direction to draw towards  
 
1. if (length < 2) 
2.  return 
3. endX ← x + length * cos(dir + bendAngle) 
4. endY ← y + length * sin(dir + bendAngle+180°) 
5. draw line from (x, y) to (endX, endY) 
6. drawTree(length * shrinkFactor, endX, endY, dir + bendAngle) 
 
7. endX ← x + length * cos(dir - bendAngle) 
8. endY ← y + length * sin(dir - bendAngle+180°) 
9. draw line from (x, y) to (endX, endY) 
10. drawTree(length * shrinkFactor, endX, endY, dir - bendAngle) 
 
 
Notice how the tree takes shape because each time we draw a single branch, we branch 
out 40° left and 40° right.   Notice how the trees differ as we change the bendAngle to 
other angles other than 40°: 
 

    
       10°                20°                     30° 
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       60°           90°       120° 
 
Also, as we adjust the shrinkFactor to other values, notice how the tree changes (here the 
bendAngle is fixed at 45°: 

             
 0.10        0.25   0.4    0.5  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    0.7               0.75 
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Example: 
 
Now, consider drawing a more realistic tree.   A real tree does not have branches that grow 
at exact angles.   Let us begin by adjusting the bendAngle to be random instead of fixed at 
say 40°.   That way, each branch of the tree can bend randomly.   Of course, we want to 
have some limits as to how random they should bend. 
 
We can change the bendAngle so that it bend at least some amount each time (e.g., π/32 
= 5.6°) plus some random amount (e.g., 0 to π/4 ... or 0° to 45°):  
 

 bendAngle ← 5.6° + (random value from 0° to 45°) 
 
The result is that our trees will look less symmetrical and will bend more naturally: 
 

 
 
Another factor that we can adjust is the length of each branch.  Currently, they shrink by a 
constant factor of shrinkFactor which is 0.6 in the examples above.   However, we can 
shrink them by a random amount (within reason, of course).   So, we can add or subtract a 
random amount from the shrinkFactor.   It is easiest to simply multiply the shrinkFactor 
by some value, perhaps in the range from 1.0 to 1.5.   That will allow some branches to be 
larger than 60% of their "parent" branch.    
 
Here is the code as we now have it using a variable bendAngle and a new variable called  
stretch to allow randomly longer branches: 
 
 
Function: drawNaturalTree 
 length:  length of tree branch 
 x, y    location to start drawing at 
 dir:    direction to draw towards  
 
 ... continued on next page ... 
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1. if (length < 2) 
2.  return 
 
3. bendAngle ← 5.6° + (random value from 0° to 45°) 
4. endX ← x + length * cos(dir + bendAngle) 
5. endY ← y + length * sin(dir + bendAngle+180°) 
6. draw line from (x, y) to (endX, endY) 
7. stretch ← 1 + (random value from 0 to 0.5) 
8. drawNaturalTree (length * shrinkFactor * stretch, endX, endY, dir + bendAngle) 
 
9. bendAngle ← 5.6° + (random value from 0° to 45°) 
10. endX ← x + length * cos(dir - bendAngle) 
11. endY ← y + length * sin(dir - bendAngle+180°) 
12. draw line from (x, y) to (endX, endY) 
13. stretch ← 1 + (random value from 0 to 0.5) 
14. drawNaturalTree(length * shrinkFactor * stretch, endX, endY, dir - bendAngle) 
 
 
Here are two examples of results due to this change: 

 
 
Notice how tree is more "bushy".  That is because the recursion goes further before it stops 
(i.e., it draws more branches).   This is because the base case of the recursion stops only 
when the branch reaches a specific small size.   Due to the randomness of the parameters, 
we may end up with some lopsided trees: 
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Of course, we can make everything even bushier if we increase the shrinkFactor to 65%: 

 
 
All that remains now is to make the branches thicker and color them brown.   For very small 
branches, we color them green: 
 
 
Function: drawColorTree 
 length:  length of tree branch 
 x:     x location to start drawing at 
 y:     y location to start drawing at 
 dir:    direction to draw towards  
 
1. if (length < 2) 
2.  return 
2. for b from -1 to 1 by 2 do { 
3.  set line drawing width to length / 7 
4.  if (length > 10) then 
5.        set line drawing color to brown 
6.  otherwise  { 
7.        set line drawing color to a random amount of green (e.g., 80 to 130)  
8.        set line drawing width to 2 + (length / 7) 
      } 
9.  bendAngle ← 5.6° + (random value from 0° to 45°) 
10.  endX ← x + length * cos(dir + b*bendAngle) 
11.  endY ← y + length * sin(dir + b*bendAngle+180°) 
12.  draw line from (x, y) to (endX, endY) 
13.  stretch ← 1 + (random value from 0 to 0.5) 
14.  drawColorTree (length * shrinkFactor * stretch, endX, endY, dir + b*bendAngle) 
     } 
 
 
Notice the FOR loop now which repeats exactly 2 times.   This reduces our code since the 
code for drawing the left branch is the same as that for drawing the right branch, except 
that the angle offset is negative (represented by the value of b). 
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Here is the result (with shrinkFactor at 67% and bendAngle of  (π/32 + random 0- π/6)): 
 

  
 
 

 7.4 Search Examples 
 
Sometimes, we use recursion to search for an answer to a problem.    Searching for an answer 
recursively can often lead to a simpler, more elegant solution than writing search code that 
uses many loops and IF statements. 
 

Example: 
 
Consider writing code to solve a rubik's cube.   The task may seem daunting at first ... but 
there are many systematic ways of solving the cube in steps or phases.   Any non-recursive 
code that you would write could be quite complex, tedious and/or cumbersome.   However, a 
recursive solution is quite simple.    
 
Assume that the cube can be solved by making at most 100 
quarter turns of one of the cube's sides (a reasonable 
assumption).   Here is the idea behind the recursive solution: 
 

Try turning 1 of the 6 sides 1/4 of a turn, then try to solve the 
cube in 99 more turns, recursively.   If the recursion comes 
back with a solution from the 99 additional moves, then the 
1/4 turn that we made was a good one, hence part of the 
solution.   If however, the recursion came back after 99 
moves with an unsolved cube, then the 1/4 turn that we 
made was a bad choice ... undo it and then try turning one of 
the other 5 sides. 

 
Here is the pseudocode for a function to solve the cube recursively in n steps, returning true if 
it has been solved, or false otherwise: 
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Function: SolveRubiksCube 
 cube: the cube data structure 
 n:  maximum number of steps remaining to solve the cube 
 
1.  if (cube is solved) then 
2.   return true 
3.  if (n is 0) then 
4.   return false 
5.  for each side of the cube s from 1 to 6 do { 
6.   turn side s 1/4 turn clockwise 
7.   recursiveAnswer  ←  SolveRubiksCube(cube, n-1) 
8.   if (recursiveAnswer is true) then 
9.    return true 
10.   turn side s 1/4 turn counter-clockwise  // i.e., undo the turn 
11.  } 
12.  return false 
 

That is the solution!   It is quite simple.   Do you see the power of recursion now ?   Of course, 
this particular solution can be quite slow, as it blindly tries all possible turns without any 
particular strategy.   Nevertheless, the solution is simple to understand.   It would be difficult to 
produce such a simple function to solve this problem without using recursion. 
 
 

Example: 
 
Another problem that is naturally solved recursively is that the Towers of Hanoi puzzle. 
In this puzzle game, there are three pegs and a set of n  
disks of various sizes that can be moved from one peg  
to another.   To begin, all n pegs are stacked on the first  
peg in order of increasing sizes such that the largest  
disk is at the bottom and the smallest is at the top.   The  
objective of the game is to move the entire tower of disks  
to a different peg by moving one disk at a time and doing so with a minimum number of steps.    

 
 
There are just two rules: 
 

1. disks must be moved from one peg to another, not placed aside on the table 
2. a disk can never be placed onto a smaller-sized disk. 
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To approach this problem recursively, we must understand  
how to break the problem down into a smaller problem of the  
same type.   Since all we are doing is moving disks, then a  
"smaller" sub-problem would logically just be moving less  
disks.   For example, if 1 disk is moved, then only n-1 disks  
remain to be moved ... which a smaller problem. 
 
So what then would be the base case ?   Well ... what is the  
simplest number of disks to move ?   Zero.   A simple problem  
is also the case where n = 1.   In that case, we simply pick  
up the disk and move it.   For values of n greater than 1, we  
now have to worry about moving some disks out of the  
way.   Here is the solution when n = 2 → 
 
Notice that after the small red disk is moved to peg B, then  
we have the smaller/simpler problem of moving the one  
larger disk from peg A to peg C.   Finally, we have the  
simpler/smaller problem of moving the red disk from peg B  
to peg C and we are done. 
 
It may be hard to see the recursion, at this point, so let us look at the solution for n = 3:  
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You may notice that steps 1 to 3 are basically the same as the problem where n = 2, except 
that we are moving the disks from peg A to peg B instead of to peg C.   Then step 4 simply 
moves the 1 disk from peg A to peg C.   Finally, we are left with the recursive sub-problem 
again of moving 2 disks from peg B to peg C. 
 
So, the recursive solution of moving n disks is based on 
this idea: 
 

1. Move the n-1 smaller disks out of the way to the 
spare peg B 
 

2. Move the large disk to peg C 
 

3. Move the n-1 smaller disks to peg C 
 
As you can see above, there are two recursive sub-
problems corresponding to moving n-1 disks out of the 
way first, and then solving the n-1 problem once the 
largest bottom disk is in place. 
 
So, we can now write the code by defining a procedure 
that indicates the peg to move from, the peg to move 
to, the extra peg and the number of disks to move. 
 
 
 
 

 
Procedure: TowersOfHanoi 
 pegA: the peg to move from 
 pegC: the peg to move to 
 pegB: the extra peg 
 n:  number of disks to move 
 
1.  if (n is 1) then 
2.   Move 1 disk from pegA to pegC 
 otherwise { 
3.   TowersOfHanoi(pegA, pegB, pegC, n-1) 
4.   Move 1 disk from pegA to pegC 
5.   TowersOfHanoi(pegB, pegC, pegA, n-1) 
 } 
 
 

As you can see, the problem is expressed in a simple manner with only about 5 lines.   Notice 
that there was no need to check if n = 0 since that would represent a problem that is already 
solved. 
 


