

Chapter 8

Shared Data

What is in This Chapter ?
This chapter discusses the notion of sharing data in your programs. It explains situations in
which sharing of data can be useful to simplify your program and be memory efficient. The
chapter also explains how sharing of data is sometimes necessary in order for your program to
run and then gives an example showing potentially unpleasant consequences of not being
careful when dealing with shared data. Lastly, a large graph editor example is given that
incorporates shared data and brings together many of the concepts that you have learned
throughout this course.

COMP1405/1005 – Shared Data Fall 2011

 - 308 -

 8.1 Sharing Data Can Be Useful

Recall in our discussion of variables that a variable is bound to (i.e., attached to) a value when
we assign something to it using the = operator.

x = 100;
name = "Bob";

When we create our own data structures (i.e., objects) we need to remember that the data that
makes up the object (i.e., the object's attributes) is stored in the computer's memory. The
object itself is simply just a reference (i.e., a pointer) to the location in memory where the
object's attributes are actually being stored. Each object created is a unique reference (i.e.,
memory location in the computer's memory).

Consider creating two ball objects as
follows:

Ball aBall;
Ball anotherBall;

aBall = new Ball();
anotherBall = new Ball();

Since each ball is stored in a different
memory location, each has its own set of
unique attribute values. That is, each ball
has its own (x,y) location, direction and
speed.

Sometimes, however, we can end up in a
situation in which two balls share the same
memory location. Consider adding another
ball variable as follows:

Ball bBall;

bBall = aBall;

Now, bBall and aBall are actually references to the same object ... that is ... they are pointing
to the same memory location and therefore share the same attributes.

Having two objects share the same memory can be advantageous
since they can share the same information together, using up less
memory space. For example, consider a "family car" in which many
members of the same family drive the exact same vehicle, thereby
reducing the need to buy another car and saving space in the
laneway.

COMP1405/1005 – Shared Data Fall 2011

 - 309 -

Of course, sharing does have some disadvantages. For
example, if someone borrows the car and brings it back with
no gasoline, then it affects the next person who will use the
car. Also, the seat and mirrors may all need to be adjusted
for the next driver. Worse yet, if one person in the family
crashes the car, then the car is ruined for everyone.

When programming, it is important to understand when data
structures are being shared so that efficient programs can be
written, while ensuring that the data from one object does not
interfere with the data from other objects unexpectedly.

Example:

Consider simulating a swarm of insect-like robots that are attracted towards a beacon such as
a light source. We can define a beacon as having a particular (x,y) location on the window
and perhaps a randomly-chosen color:

class Beacon {
 float x, y;
 color col;

 Beacon(float bx, float by) {
 x = bx;
 y = by;
 col = color(55+random(200),55+random(200),55+random(200));
 }
}

Now to simulate the robots, let us define robot's as having an (x, y) location, a direction and a
speed. We will also assign a Beacon to each robot as some particular location to head
towards. The definition is very similar to the Ball data structure that we defined previously:

class Robot {
 float x, y; // location of the robot at any time
 float direction; // direction of the robot at any time
 float speed; // the robot’s speed
 Beacon beacon; // the beacon to head towards

 Robot(float rx, float ry) {
 x = rx;
 y = ry;
 direction = random(TWO_PI); // a random direction
 speed = 3 + random(4); // a random speed from 3 to 6
 beacon = null; // not set yet
 }
}

Notice that each robot now stores their own Beacon object (i.e., their own place to head
towards). We can draw the data structures as follows ... notice how each robot has its own
Beacon object, allowing them all to head in different directions:

COMP1405/1005 – Shared Data Fall 2011

 - 310 -

Here is the additional code required to create and display the robots and their beacons:

Robot[] robots; // a bunch of robots
final int ROBOT_RADIUS = 2; // a robot's radius (in pixels)
final int BEACON_RADIUS = 15; // a beacon's radius (in pixels)

void setup() {
 size(600,600);

 // Make some robots with unique beacons
 robots = new Robot[10];
 for (int i=0; i<robots.length; i++) {
 robots[i] = new Robot(width/2, height/2);
 robots[i].beacon = new Beacon(random(width), random(height));
 }
}

void draw() {
 background(0,0,0);
 for (int i=0; i<robots.length; i++) { // draw all robots and their beacons
 draw(robots[i]);
 draw(robots[i].beacon);
 move(robots[i]); // explained later
 }
}

void draw(Robot r) {
 fill(r.beacon.col); // use beacon's color
 stroke(0,0,0);
 ellipse(r.x, r.y, 2*ROBOT_RADIUS,2*ROBOT_RADIUS);
}

void draw(Beacon b) {
 fill(b.col);
 stroke(0,0,0);
 ellipse(b.x, b.y, 2*BEACON_RADIUS,2*BEACON_RADIUS);
}

COMP1405/1005 – Shared Data Fall 2011

 - 311 -

Notice how each robot is colored to match its beacon location's color. The move() procedure
will be explained later. For now, assume though that it steers the robot towards its beacon
location.

In the code above, each robot has its own unique beacon to head towards. Now we will
adjust the code to allow multiple robots to head towards the same beacon, thereby causing a
swarm-like simulation. We will alter the code so that instead of having a unique beacon for
each robot, we will generate only a few beacons and have the robots share the same exact
Beacon object as their target destination. Here is how the data structure will change:

There will be much less Beacon objects created since multiple robots will share the same one.
Is there any advantage to having less/shared Beacons ?

One important advantage to having shared beacons like this is that memory storage
requirements are reduced. Imagine for example, that it takes 4 bytes each to store the x and
y values of the beacon location and an additional 3 bytes to store the color. That means,
each beacon requires a minimum of 11 bytes of storage. If we simulated N robots each storing
their own unique beacons, this would require ((11+4) x N) bytes of storage in memory just to
store the beacons (the extra 4 bytes storing the pointer to the beacon in the memory).

Now, assume that we create M beacons. This would require (11 x M) bytes of storage. If
each robot now kept only a single pointer (i.e., 4 bytes) to one of the M beacons, the total
storage requirements for the beacon storage would be ((4 x N) + (11 x M)) bytes.

This seems a little abstract. Assume then that we have 5 beacons and 1000 robots. Then
this works out to be 15,000 bytes for the non-shared beacon version and 4,055 bytes for the
shared beacon version. That is a significant difference of less than 1/3 of the storage space
requirements!!

COMP1405/1005 – Shared Data Fall 2011

 - 312 -

This is often the reason for having shared data and shared objects ... to reduce storage space
requirements for the program. However, in addition to reduced storage space, there is
another important advantage to having shared beacons. If the beacon's location was to
change (e.g., manually moved by the user), we would simply need to alter the (x,y) location of
the single Beacon object, and since all same-swarm robots share this same Beacon object in
memory, they will all be able to access (i.e., when heading towards) the newly changed (x,y)
location immediately. Therefore, by changing a single variable (e.g., a beacon's x location),
we are automatically modifying the behavior of multiple robots. This allows us to simulate the
objects efficiently. Conversely, if we had stored a unique beacon object within each robot
(i.e., non-shared beacons), we would need to find all robot's that share that beacon and update
all of their x coordinates. This would be a slower process since it would require us to loop
through all robots, checking their beacons for a match as to which ones the user is trying to
move.

To verify this, consider altering the setup code to produce a newly-defined array of 5 beacons
and then adjust the robot's to choose one of these 5 beacons as their destination. We also
should adjust the draw() procedure to draw the beacons separately:

...
Beacon[] beacons; // a bunch of beacons

void setup() {
 ...
 beacons = new Beacon[5];
 for (int i=0; i<beacons.length; i++)
 beacons[i] = new Beacon(random(width), random(height));

 // Make some robots with shared beacons
 robots = new Robot[1000]; // lots of robots
 for (int i=0; i<robots.length; i++) {
 robots[i] = new Robot(width/2, height/2);
 robots[i].beacon = beacons[int(random(beacons.length))]; // choose random one
 }
}

void draw() {
 background(0,0,0);

 // draw all robots
 for (int i=0; i<robots.length; i++) {
 draw(robots[i]);
 move(robots[i]); // explained later
 }

 // draw all beacons separately
 for (int i=0; i<beacons.length; i++)
 draw(beacons[i]);
}

Notice how each robot is now assigned a random
beacon from the beacons array. The program
will now allow 5 groups of robots to head towards
one of the 5 beacons in a swarm-like fashion.

COMP1405/1005 – Shared Data Fall 2011

 - 313 -

For added enjoyment, we can add the following to allow beacons to be grabbed and moved
around on the screen:

Beacon grabbed; // the beacon that has been grabbed

void mousePressed() {
 for (int i=0; i<beacons.length; i++) {
 if (dist(beacons[i].x, beacons[i].y, mouseX, mouseY) < BEACON_RADIUS) {
 grabbed = beacons[i];
 return;
 }
 }
}
void mouseDragged() {
 if (grabbed != null) {
 grabbed.x = mouseX;
 grabbed.y = mouseY;
 }
}
void mouseReleased() {
 grabbed = null;
}

As the beacon is moved around, you will see a subset of the robots following it around.
Clearly, by allowing robot's to share Beacon objects we gain the advantages of saving storage
space and also easy of updates when we change a beacon's location.

The only missing component of our code is the move() procedure...which is responsible for
moving the robot towards the beacon. Recall from our ball-moving example that to move a ball
(or robot) forward, we simply apply trigonometry using the robot's location and direction:

void move(Robot r) {
 r.x = r.x + int(r.speed*cos(r.direction));
 r.y = r.y + int(r.speed*sin(r.direction));
}

The code above simply moves the robot forward in its current direction. The harder part is to
determine and update the direction of the robot so that it heads towards the beacon location.
All we need to do is to look at the where the robot is heading and decide whether or not it
needs to turn right or left to get towards the beacon:

Above, (rx, ry) is the robot's current location and (r'x, r'y) would be the robot's next location if it
were to travel in its current direction without turning (for this next location we could simply use
the new value for r.x and r.y that we computed in our code above).

COMP1405/1005 – Shared Data Fall 2011

 - 314 -

The beacon location is represented as (gx,gy). In order to determine whether or not the robot
should take a left or right turn to get to the beacon from its current direction, we can examine
the type of turn from (rx, ry) → (r'x, r'y) → (gx,gy). If this is a left turn, the robot should turn left.
If it is a right turn the robot should turn right. If it is a straight line, the robot will need to either
move straight ahead, or straight backwards (depending on where the beacon location is).

To determine the type of turn, we can make use of the
cross product of the vector from (rx, ry) → (r'x, r'y) and
the vector from (rx, ry) → (gx,gy). You may recall that the
cross product a X b is a vector that is perpendicular to the
plane containing the two vectors a and b. The cross
product will either be positive, negative or zero. You can
visualize the cross product by using the right-hand rule as
shown in the picture here.

If the cross product is positive, this indicates a left turn. If
negative, then a right turn. If the cross product is zero,
then there is no turn (i.e., the two vectors form an angle of 180°).

The cross product can be computed as follows:

crossProduct = (r'x - rx)(gy - ry) - (r'y - ry)(gx - rx)

So, we can just plug this into our program and check for the sign of the result. Once we
determine whether to turn left or right, we simply add some degree amount to the robot's
direction. If we use a large degree amount (e.g., 90°) then the robot will make only right-
angled turns ... not too realistic. If we use a smaller amount (e.g., 45°), then the robot will
make sharp turns and will orient towards the beacon quickly. Smaller amounts (e.g., 30° or
15°) will provide a more smooth motion. Very small amounts (e.g., 1°) will cause the robot to
always makes large arcing motions, taking a while to orient towards the beacon.

COMP1405/1005 – Shared Data Fall 2011

 - 315 -

To make the swarm more realistic, instead of having a fixed turn amount, we could adjust it to
have a ±12.5% error as follows, given a desired turn amount of θ:

amountToTurn = θ + random(θ/4) - (θ/4)/2

As a result, here is the kind of movement pattern that a robot would produce for various values
of θ (note that the beacon location is not displayed, but is in the center if the window):

void move(Robot r) {
 float nextX, nextY, crossProduct;

 nextX = r.x + int(r.speed*cos(r.direction));
 nextY = r.y + int(r.speed*sin(r.direction));

 crossProduct = (nextX - r.x)*(r.beacon.y - r.y)-(nextY - r.y)*(r.beacon.x - r.x);
 r.x = nextX;
 r.y = nextY;
 if (crossProduct < 0) // try changing to: if((crossProduct<0)&&(random(1)<0.6))
 r.direction -= (ANGLE + random(ANGLE/4) - (ANGLE/8))/180*PI;
 else
 r.direction += (ANGLE + random(ANGLE/4) - (ANGLE/8))/180*PI;
}

COMP1405/1005 – Shared Data Fall 2011

 - 316 -

 8.2 When Shared Data is Necessary

In some cases, it is absolutely necessary to share data in order to have a working program.
Consider the area of computer animation. To animate something simple (i.e., 2D) in a
program, programmers often use what are called sprites.

A sprite is a 2D image that it integrated into a scene to form an animated character.

Sprites are often displayed and animated by drawing a set of pictures in
sequence. Each of the individual pictures, called frames represent
the different "movements" of the object to be animated. So, by
displaying these frames in sequence, we achieve animation.

For example, consider a stick person walking. We can do this with only
two frames and just swap between them:

Frame 1

Frame 2

The animation, however, would have the undesirable characteristic of being very "jumpy", not
very smooth. The problem is that there is no smooth transition between the frames. We can
make a big improvement just by introducing one more picture and duplicating the 2nd frame
twice to produce a 4 frame sequence:

Frame 1

Frame 2

Frame 3 Frame 4

This animation would appear much smoother, but if we display the frames at the same rate,
the person would appear to walk much slower. Assuming that we display 1 frame every 1/4
second, the 2-frame case would take 1/2 second to complete a cycle while in the 4-frame
case, would take a full second. For the 4-frame case we can just reduce the inter-frame
display delay to 1/8 of a second and the speed will then appear to match the 2-frame case.
The number of frames that can be displayed in a second is known as the frame rate. So, by
using a delay of 1/8 seconds between frames, we have a frame rate for the animation of 8
frames per second (fps).

COMP1405/1005 – Shared Data Fall 2011

 - 317 -

Example:

Consider a program that simulates birds flying across a
beach scene. To make this look somewhat realistic
(from a cartoon perspective), we would need to have
unique pictures (i.e., frames) to display that represent
the various "poses" of the bird as it flies.

We will make use of exactly 8 different poses (i.e.,
frames) for the birds as shown below. Each pose
must be stored as a unique .gif image in a subfolder of
our processing program's folder called data. The
indices below the images represent the frame number:

0 1 2 3 4 5 6 7

We will need to maintain information for each bird in regards to its location on the screen, its
speed and perhaps which frame is being shown at any time. Here is how we can define such
a Bird data structure:

Define a bird object as follows:

class Bird {
 float x, y; // bird's coordinate on the screen
 float speed; // bird's speed in pixel movements per frame
 PImage[] images; // frames/pictures of the bird in various poses
 int currentFrame; // current frame of the bird

 Bird(float bx, float by) {
 x = bx;
 y = by;
 speed = random(10) + 5; // random speed from 5 to 15 pixels/frame
 currentFrame = int(random(8)); // start with a random picture
 images = new PImage[8]; // array to hold 8 pictures
 for (int i=1; i<=8; i++) // load up all 8 pictures for this bird
 images[i-1] = loadImage("Birdx" + i + ".gif");
 }
}

We can then create an array of Bird objects and display them on the screen as shown in the
following code. Note that the beach image is a separate image that is displayed as a
background picture. The code will display 50 birds at random locations on the window at
some random pose. Even though the birds are displayed, they are not moving...they seem
still. The frameRate is the number of times per second that the draw() procedure is called.
It is set to 20 and this will be fast enough to animate the birds, as we will see later. If it is not
set, then the frameRate will be too fast because the default rate is 60 fps.

COMP1405/1005 – Shared Data Fall 2011

 - 318 -

Bird[] birds;
PImage beach;

void setup() {
 size(800,600);
 birds = new Bird[50];
 for (int i=0; i<8; i++)
 birds[i] = new Bird(random(width),random(height/2));
 beach = loadImage("beach.jpg");
 frameRate(20);
}

void draw() { // This is called repeatedly at a fixed frameRate
 image(beach, 0, 0);
 for (int i=0; i<8; i++)
 draw(birds[i]);
}

void draw(Bird b) {
 image(b.images[b.currentFrame], b.x, b.y);
}

To animate the birds, we must now do two things: (1) Have them vary their images, and (2)
have them move horizontally. We can update the draw() procedure by adding a move()
procedure as follows:

void draw() { // This is called repeatedly at a fixed frameRate
 image(beach, 0, 0);
 for (int i=0; i<8; i++) {
 move(birds[i]);
 draw(birds[i]);
 }
}

The move() procedure must move the bird forward and this can be done simply by adding the
bird's speed to the x coordinate, making sure that when it reaches the right side of the window,
we cause a wraparound to the left side again. To do this, we simply set the x value to an
amount which is -width of the bird image so that the bird slowly flies back onto the window
again from the left. To change the bird's image, we simply increment the currentFrame,
making sure that when it reaches 8, we set it back to 0 again ...using the modulus operator:

void move(Bird b) {
 // Move the bird 10 pixels forward
 b.x = b.x + b.speed;

 if (b.x > width)
 b.x = -102; // 102 is the width of the Bird image

 b.currentFrame = (b.currentFrame + 1) % 8;
}

Now the birds will appear to be flying nicely. Try changing the array to make 500 birds.
Depending on your computer's memory ... the code may or may not run. My computer
produced an error indicating that I would need to increase the memory setting in the
Preferences under the File menu.

COMP1405/1005 – Shared Data Fall 2011

 - 319 -

The problem is simple. The current code loads 8 images for each bird. Therefore, 500 birds
would require (500 x 8 = 4000) images to be loaded and stored in the program. However, it is
easily seen that the birds are all using the same 8 image files. Therefore, instead of having
each bird store their own images, it makes more sense to simply load the 8 images and have
the birds "share" the images. We can add this to the program:

PImage[] birdFrames;

and then add this to the setup() procedure:

birdFrames = new PImage[8];
for (int i=1; i<=8; i++)
 birdFrames[i-1] = loadImage("Birdx" + i + ".gif");

Then we can remove the images from the Bird object:

class Bird {
 float x, y;
 float speed;
 int currentFrame;

 Bird(float bx, float by) {
 x = bx;
 y = by;
 speed = random(10) + 5;
 currentFrame = int(random(8));
 }
}

Finally, we make changes to the draw(Bird b) procedure:

void draw(Bird b) {
 image(birdFrames[b.currentFrame], b.x, b.y);
}

Now, you may even be able to add up to 50,000 birds without problems...although the program
would become very slow ;)

So in this example, we see that sharing is sometimes necessary in order to reduce memory
space requirements and have a running program. There are also examples in which sharing
is NOT even desired at all...

COMP1405/1005 – Shared Data Fall 2011

 - 320 -

 8.3 Separating Shared Data Again

Example:

Even though sharing objects may be to our advantage, there are some
situations where we do not want shared objects. For example,
sometimes we need to make copies of objects and we would like the
copy to be a truly unique copy so that we can leave the original intact
and safe at all times. We may think of making photocopies of
important documents so that the original document can be stored away
safely.

Consider the following function which creates and returns a copy of a list:

Function: makeCopy(aList)

1. anotherList ← new array with capacity aList.length
2. for index i from 0 to aList.length - 1
3. anotherList[i] ← aList[i]
4. return anotherList

The code produces a new array containing the objects from the original list. Consider testing
this function with an array of Person objects, which have a firstName, lastName, age, height
and retiredStatus as follows:

Algorithm: CopyTest1

1. original ← new array with capacity 3
2. original[0] ← new Person("Hank", "Urchif", 21, 5.8, false)
3. original[1] ← new Person("Holly", "Day", 32, 5.9, false)
4. original[2] ← new Person("Bobby", "Pins", 87, 6.2, true)
5. copy ← makeCopy(original)

Here is what we accomplish with this code …

COMP1405/1005 – Shared Data Fall 2011

 - 321 -

Notice that when we add the Person objects to the copy, they are actually shared between the
two arrays. This is known as a shallow copy. The advantage is that we do not need to use
up additional memory space to store duplicate information for the copy. That is, we do not
need to store the first and last names twice (i.e., for the original and the copy) since they are
the same names. Normally this is not a problem when writing code as long as we know that
the items are shared.

We need to understand the consequences of having such shared data. Consider what
happens in the following example as we make changes to the copy:

Algorithm: CopyTest2

1. original ← new array with capacity 3
2. original[0] ← new Person("Hank", "Urchif", 21, 5.8, false)
3. original[1] ← new Person("Holly", "Day", 32, 5.9, false)
4. original[2] ← new Person("Bobby", "Pins", 87, 6.2, true)

5. copy ← makeCopy(original)

6. copy[0] .firstName ← "Steve"
7. copy[2] ← new Person("April", "Rain", 15, 4.7, false)
8. copy[2] .firstName ← "Acid"

We are doing three things to the copy: (1) changing a person's name, (2) replacing one person
entirely with a new one, and (3) changing the new one's name. Here is what happened:

COMP1405/1005 – Shared Data Fall 2011

 - 322 -

When changing Hank's name in the copy to "Steve", the original list is modified as well since
the Person object, that both the original and copy lists were sharing, has now been altered.
This can have serious consequences in your program since you may end up with a part of your
code that unknowingly affects other parts of your program by modifying data structures that
were not meant to be changed.

Some modifications, however, can be made to the copy that do not affect the original. For
example, when replacing Bobby with the new person April in the copy, the original remains
unchanged since we are simply moving a "pointer" in the copy to a new memory location.
Then, when we replace April's name with "Acid", the original is not affected since nowhere
does it refer to that newly create Person object.

So you can see, by replacing, adding to or removing from a copied list, the original list remains
intact. However, when we access a shared object from the copy and go into it to make
changes to its attributes, then the original list will be affected.

To make a more thoroughly-separated copy, we could make what is known as a deep copy
of the list so that the Person objects are not shared between them (i.e., each list has their own
copies of the Person objects). To do this, we would need to make copies of the objects in the
lists. That means, we would need to create a new object for each item in the list and then
copy over all of the attributes so that they match the original objects.

COMP1405/1005 – Shared Data Fall 2011

 - 323 -

Here is how we can modify the makeCopy function to accomplish this:

Function: makeCopy(aList)

1. anotherList ← new array with capacity aList.length
2. for index i from 0 to aList.length - 1 {
3. anotherList[i] ← new Person
4. anotherList[i].firstName ← aList[i].firstName
5. anotherList[i].lastName ← aList[i].lastName
6. anotherList[i].age ← aList[i].age
7. anotherList[i].height ← aList[i].height
8. anotherList[i].retiredStatus ← aList[i].retiredStatus
 }
9. return anotherList

Notice that much more work is involved. However, the effect of running our CopyTest1
algorithm would be as follows:

COMP1405/1005 – Shared Data Fall 2011

 - 324 -

Notice that there are unique Person objects now and that changing the name of anyone in the
copy will not affect the original. You may notice though, that the Strings are still shared! That
means, if we altered any characters in one person's name in the copy, this would affect the
original (i.e., remember...replacing shared objects does not cause problems but modifying
shared objects does cause a problem).

Fortunately, in Processing (and JAVA), it is not possible to modify characters in a String, so
this would never be a problem. However, to be safe, a truly deep copy can be made by
copying these strings as well by changing lines 4 and 5 in the makeCopy function to:

4. anotherList[i].firstName ← new String with same characters as aList[i].firstName
5. anotherList[i].lastName ← new String with same characters as aList[i].lastName

Then, we would have a true copy:

In fact, in order to make a truly deep copy, we would need to ensure that we thoroughly copy
each of the attributes of all objects. That is, if an object is made up of other objects ... we
must go into those other objects and make deep copies of them as well.

COMP1405/1005 – Shared Data Fall 2011

 - 325 -

 8.4 Example: Graph Editor

As a final example, we will consider an application in which data is shared within a data
structure called a graph:

A graph is an abstract data structure that represents interconnectivity of a set of
objects (called nodes or Vertices). Two nodes of a graph are connected by an edge
to indicate some kind of relationship between the nodes.

Graphs are used throughout computer science. They can be used to store data that
represents interconnectivity between various "things". For example, graphs can be used to
represent

• connected flights from one city to another
• roads and intersections on a map
• various pathways on a terrain (e.g., water flow)
• interconnectivity in networks (e.g., social networks)
• etc...

Regardless of the application, graphs can be automatically generated or created manually.
We will examine a simple application that allows the user to create, manipulate and edit a
graph on a window in Processing.

This larger programming example with bring together many of the concepts that you have
learned in the course including the use of data structures, graphics, event handling, arrays,
searching and the sharing of data.

To begin, here is what the graph will look like:

COMP1405/1005 – Shared Data Fall 2011

 - 326 -

We will then be able to move nodes and edges around the graph as well as add and delete
nodes and edges. As you will see, the edges of the graph will share nodes so that when
edges are moved, their nodes will also move and when a node is deleted, all edges connected
to that node will be deleted.

We need to begin by understanding how the graph is stored. The graph will be made up of
Node objects which have a particular (x,y) location on the screen as well as a label:

class Node {
 int x, y;
 String label;

 Node(int ix, int iy, String lab) {
 x = ix;
 y = iy;
 label = lab;
 }
}

Creating nodes is therefore quite easy, since we simply call the constructor as follows:

 new Node(350, 250, "Ottawa");

Edges will connect two nodes. It does not make sense for an edge to exist unless it connects
two nodes of the graph. For example, all of an airline's flights have a departure city and an
destination city. It does not make sense for either one of these cities to be missing.
Therefore, an edge will not connect two points on the screen, rather it will connect two nodes
of the graph. Here is the definition of the Edge data structure:

class Edge {
 Node startNode, endNode;

 Edge(Node start, Node end) {
 startNode = start;
 endNode = end;
 }
}

COMP1405/1005 – Shared Data Fall 2011

 - 327 -

Notice how the attributes of the Edge are actually Node objects. Creating an edge therefore
requires us to already have two Node objects:

Node n1 = new Node(350, 250, "Ottawa");
Node n2 = new Node(100, 380, "Toronto");

Edge e = new Edge(n1, n2);

Now, for the Graph itself ... it is really nothing other than a set of nodes and edges. We can
store these using two arrays ... one for the nodes and one for the edges. But how big should
the arrays be ? Ideally, we should allow them to grow (recall from chapter 5 how we were
able to grow an array by making a new one and copying over the contents). However, to keep
our code simple, we will not allow the arrays to grow but instead we will set a maximum
number of nodes and edges that can be added to the graph. Here is our definition for the
Graph data structure:

final int MAX_GRAPH_NODES = 100; // arbitrarily chosen #
final int MAX_GRAPH_EDGES = 1000; // arbitrarily chosen #

class Graph {
 int numNodes, numEdges;
 Node[] nodes;
 Edge[] edges;

 Graph() {
 nodes = new Node[MAX_GRAPH_NODES];
 edges = new Edge[MAX_GRAPH_EDGES];
 numNodes = numEdges = 0;
 }
}

Graphs with no nodes or edges are made by simply calling the constructor: new Graph();

However, in order to make an interesting graph, we will need the ability to add nodes and
edges to it. We can write simple procedures that allow us to add nodes and edges to the
corresponding graph arrays as follows:

// Add the given node to the given graph
void addNode(Graph g, Node n) {
 if (g.numNodes < MAX_GRAPH_NODES) {
 g.nodes[g.numNodes] = n;
 g.numNodes++;
 }
}

// Add an edge to the given graph from node a to node b
void addEdge(Graph g, Node a, Node b) {
 if (g.numEdges < MAX_GRAPH_EDGES) {
 g.edges[g.numEdges] = new Edge(a, b);
 g.numEdges++;
 }
}

COMP1405/1005 – Shared Data Fall 2011

 - 328 -

Notice the error checking to make sure that we do not go past the maximum array sizes.

Here is a simple function that creates and returns the graph shown earlier:

Graph exampleGraph() {
 Graph g = new Graph();
 Node n1 = new Node(350, 250, "Ottawa");
 Node n2 = new Node(100, 380, "Toronto");
 Node n3 = new Node(300, 340, "Kingston");
 Node n4 = new Node(440, 240, "Montreal");
 addNode(g, n1);
 addNode(g, n2);
 addNode(g, n3);
 addNode(g, n4);
 addEdge(g, n1, n2);
 addEdge(g, n1, n3);
 addEdge(g, n1, n4);
 addEdge(g, n2, n3);

 return g;
}

To display the graph, we need to write the setup() procedure that will define the window size,
initialize the graph and prepare the font for the node labels:

Graph graph; // Global variable to store the graph

// Start the program by initializing everything
void setup() {
 size(600,600);
 graph = exampleGraph();

 // Set up the font for the node labels (must be in data directory)
 PFont font = loadFont("Arial-BoldMT-12.vlw");
 textFont(font);
}

The above code makes a 600x600 window and loads a font that will be used to draw the labels
onto the nodes. It also creates the example graph and stores it in a global variable that we
can access from anywhere within our program. (Note that the font string shown here was
automatically produced from the Tools/Create Font... menu option in Processing).

Drawing a node n is as simple as calling the ellipse() procedure where the node's (x,y)
position is its center and the NODE_DIAMETER is the width and height of the node:

final int NODE_RADIUS = 15;
final int NODE_DIAMETER = NODE_RADIUS*2;
ellipse(n.x, n.y, NODE_DIAMETER, NODE_DIAMETER);

Drawing an edge e is also simple using the line() procedure:

line(e.startNode.x, e.startNode.y, e.endNode.x, e.endNode.y);

COMP1405/1005 – Shared Data Fall 2011

 - 329 -

To draw the label of node n, we simply use the text() procedure:

text(n.label, n.x + NODE_RADIUS, n.y - NODE_RADIUS);

Notice how we added the node's radius to the x and subtracted from the y. This allows us to
draw the label up and to the right of the node ... making it more readable:

Drawing at (x+radius, y-radius) Drawing at (x,y)

Here is the draw() procedure that draws the whole graph altogether:

void draw() {
 background(255); // Paint the background white
 stroke(0,0,0); // black border

 // Draw the Edges
 for (int i=0; i<graph.numEdges; i++) {
 Edge e = graph.edges[i];
 line(e.startNode.x, e.startNode.y, e.endNode.x, e.endNode.y);
 }

 // Draw the Nodes
 for (int i=0; i<graph.numNodes; i++) {
 Node n = graph.nodes[i];
 fill(150,150,255); // light blue inside color
 ellipse(n.x, n.y, NODE_DIAMETER, NODE_DIAMETER);
 }

 // Draw the labels on the nodes
 fill(0);
 for (int i=0; i<graph.numNodes; i++) {
 text(graph.nodes[i].label,
 graph.nodes[i].x + NODE_RADIUS,
 graph.nodes[i].y - NODE_RADIUS);
 }
}

Notice that the code first clears the background, then draws the edges, then the nodes and
finally the labels of the nodes. Drawing the edges first prevents the edges from drawing on
top of the center of the nodes:

Edges drawn first Nodes drawn first

Likewise, the labels of the nodes are drawn afterwards so that they will always appear on top
and not get hidden underneath the other nodes:

COMP1405/1005 – Shared Data Fall 2011

 - 330 -

Labels drawn with Nodes Labels drawn after nodes

Now that we have the ability to draw the graph, we can start working on allowing it to be edited
and manipulated.

Adding Nodes:

To begin, we will write code that allows the user to add a node to the graph by double-clicking
the left mouse button at some location in the window. The new node should appear centered
where the user clicked. We need to write a mouseClicked() event handler:

void mouseClicked() {
 addNode(graph, new Node(mouseX, mouseY, ""));
}

Notice how simple the code is. We simply
check if the mouse was clicked and add a node
to the graph with the current mouse position as
the node's center. We can now add new
nodes to the graph ... as shown here →

To adjust the code so that the node only gets
added when the mouse is double-clicked, we
need to make use of a variable in Processing called mouseEvent. That variable is an object
that allows us to apply various functions to it. In the next course, we will see that we can
"attach" (or associate) functions and procedures to objects. In this case, we will call the
getClickCount() function which returns the number of successive clicks that the user made so
that we can add the node only when a 2nd successive click was made:

void mouseClicked() {
 if (mouseEvent.getClickCount() == 2)
 addNode(graph, new Node(mouseX, mouseY, ""));
}

Selecting Nodes:

Many drawing programs have the ability to select and move objects around. We will now add
functionality to allow our nodes to be selected. Selected nodes should appear selected
somehow ... in our case ... we will simply color them red instead of blue.

Rather than trying to keep a list of selected nodes, we can alter the Node data structure to
include a boolean so that each node has the ability to be selected or unselected:

COMP1405/1005 – Shared Data Fall 2011

 - 331 -

class Node {
 int x, y;
 String label;
 boolean selected;

 Node(int ix, int iy, String lab) {
 x = ix;
 y = iy;
 label = lab;
 selected = false;
 }
}

So then what do we do to select a node ? Likely we will double-click on the node. What if we
double-click on a node that is already selected ? It should become unselected. So, double-
clicking on a node should cause it to toggle between being selected and unselected.

We need to modify our mouseClicked() event handler. There is a slight problem ... double-
clicking anywhere on the window will cause a new node to be added. We need to adjust the
code therefore so that when we double-click on top of a node ... we select it instead of adding
a new node.

if (there is a node already at the mouse location)
 select the node
otherwise
 add a new node at the mouse location

So, we need to find out whether or not there is a node at the mouse location. We can write a
function to find and return the node at a given location. To do this, we need to look at all the
nodes and determine which one was clicked on (if any). Here is one way to do this:

Node nodeAt(Graph g, int x, int y) {
 for (int i=0; i<g.numNodes; i++) {
 if ((g.nodes[i].x == x) && (g.nodes[i].y == y))
 return g.nodes[i];
 }
 return null;
}

This code will look through all the nodes in the graph and find the one whose center matches
the point specified by the given (x,y) point. If we find such a node, it is returned right away,
otherwise the FOR loop completes ... no matching node was found ... so the function returns
null.

The problem with this code, however, is that we are extremely unlikely to click on the exact
center of the node. It would be very difficult and painfully tedious to force the user to click on
the center of a node to select it. So, we need to adjust our code so that the user may click
anywhere inside the node to select it. How do we determine whether the point (x,y) is inside
the node or outside of it ? We already solved this problem when we simulated the throwing of
a ball back in chapter 3. We just need to check the distance from the click point to the center
of the node and ensure that it is less than the radius of the node:

COMP1405/1005 – Shared Data Fall 2011

 - 332 -

Node nodeAt(Graph g, int x, int y) {
 for (int i=0; i<g.numNodes; i++) {
 Node n = g.nodes[i];
 float d = sqrt(((n.x - x) * (n.x - x)) + ((n.y - y) * (n.y - y)));
 if (d <= NODE_RADIUS)
 return n;
 }
 return null;
}

Note that the code above can be made more efficient by checking the "square" of the distance
against the square of the radius to avoid the computation of a square root ... thereby speeding
up the computation.

Now we can adjust the mouseClicked() event handler to allow nodes to be selected:

void mouseClicked() {
 if (mouseEvent.getClickCount() == 2) {
 Node n = nodeAt(graph, mouseX, mouseY);
 if (n != null)
 n.selected = !n.selected;
 else
 addNode(graph, new Node(mouseX, mouseY, ""));
 }
}

All that remains to be done is to draw nodes as selected. We can replace the
fill(150, 150, 255) line in the draw() procedure by the following:

 if (n.selected)
 fill(255,0,0); // red inside
 else
 fill(150,150,255); // light blue inside

We can now select nodes.

Moving Nodes:

A natural user action to move nodes around on the window would be to select a node and then
grab it and drag it to its new position. To allow this functionality, we will need to incorporate
into our program additional event handlers. Let us consider what happens when the user
drags a node:

COMP1405/1005 – Shared Data Fall 2011

 - 333 -

So, we will need to write mousePressed, mouseDragged and mouseReleased event
handlers. What happens when the mouse is pressed on a selected node ? Well, the node
does not move. Nothing really "happens" visually. What about when the mouse is dragged ?
Well, we need to move the node that we had clicked on to the new mouse location. Within the
mouseDragged event handler, we will need to know which node we had initially pressed the
mouse on. So, in the mousePressed() event handler all we need to do is to find out which
node was at that position and remember it. We can store this into a variable called dragNode
as follows:

Node dragNode; // Add to the top of program

void mousePressed() {
 dragNode = nodeAt(graph, mouseX, mouseY);
}

Then, as the mouse is dragged, we simply access this dragNode and set its (x,y) location to
be the mouse's location as follows:

void mouseDragged() {
 dragNode.x = mouseX;
 dragNode.y = mouseY;
}

However, it is possible that the user may drag the mouse without first having pressed on a
node. In that case, the nodeAt() function will return null (as it is supposed to) and our code
would stop working since dragNode would be null and we cannot access null.x or null.y. So
we should check to ensure that dragNode is not null. Also, we should ensure that the
dragNode is selected, otherwise we may be moving nodes that we did not intend to move.
Here are the changes:

void mouseDragged() {
 if (dragNode != null) {
 if (dragNode.selected) {
 dragNode.x = mouseX;
 dragNode.y = mouseY;
 }
 }
}

COMP1405/1005 – Shared Data Fall 2011

 - 334 -

Adding Edges:

What kind of user-action will our program consider for adding edges ? There are a few
options. For example, we could write code that allows an edge to be added simply by clicking
two nodes one after another. However, a "nicer" interface will allow the user to click on a
node and "drag" a line towards another edge so that when the user lets go on another node,
an edge is added:

The idea is similar to that of "stretching" an elastic band tied from the center of the start node
with the other end on the mouse cursor. This elastic-banding effect is common with many
drawing programs as it provides feedback to the user giving a rough idea as to how the edge is
going to appear in the graph.

To accomplish this, as the mouse is being dragged, we will need to draw a line from the start
node to the mouse's current location. Where do we do the drawing of this line ? It needs to
be done in the draw() procedure. So, in the draw() procedure we will need to know the start
node as well as the current mouse location.

The code in the mousePressed event handler already stored the start node as dragNode.
All we would then need to do is to ensure that as the user drags the mouse (i.e., in the
mouseDragged event handler) we store the mouse location. We could use variables called
elasticEndX and elasticEndY as follows:

int elasticEndX, elasticEndY; // Add to the top of program

void mouseDragged() {
 if (dragNode != null) {
 if (dragNode.selected) {
 dragNode.x = mouseX;
 dragNode.y = mouseY;
 }
 else { // store end point for edge to be added
 elasticEndX = mouseX;
 elasticEndY = mouseY;
 }
 }
}

Then, in the draw() procedure we add code to ensure that the line is drawn. However, we
want to make sure that the user first clicked on a node to begin the edge adding process.

COMP1405/1005 – Shared Data Fall 2011

 - 335 -

If the user clicked off of a node, then we can detect this by checking if dragNode is null as
follows:

 // Draw the elastic band
 stroke(0,0,0); //black
 if (dragNode != null)
 line(dragNode.x, dragNode.y, elasticEndX, elasticEndY);

This code should appear after background(255) but before the nodes of the graph are drawn
so that the line will appear behind the nodes and not cut across them.

If the user decides to start drawing an edge but then lets go of the mouse button somewhere
other than on another node, then the edge should not be added and the line should disappear.
However, our code does not do this. We need to have a way of informing the draw()
procedure NOT to draw the line once the user releases the mouse button. The simplest way
to do this is to set the elasticEndX to have a value of -1... or something similar ... in the
mouseReleased event handler. Then we can check for this in the draw() procedure:

void mouseReleased() {
 elasticEndX = -1;
 elasticEndY = -1;
}

void draw() {
 ...
 if ((dragNode != null) && (elasticEndX != -1))
 line(dragNode.x, dragNode.y, elasticEndX, elasticEndY);
 ...
}

Of course, we must handle the case where the user successfully releases the mouse on a
node. Then we need to add a new edge. We should add the edge as long as the user
released the mouse on a "different" node...not the same one as the dragNode:

void mouseReleased() {
 elasticEndX = -1;
 elasticEndY = -1;
 if (dragNode != null) {
 Node n = nodeAt(graph, mouseX, mouseY);
 if ((n != null) && (n != dragNode))
 addEdge(graph, dragNode, n);
 }
 }
}

We now have the ability to add nodes to the graph. You may notice that dragging a "selected"
node does not add an edge but still allows the user to move the node around.

COMP1405/1005 – Shared Data Fall 2011

 - 336 -

Deleting Nodes:

Of course, sooner or later we are going to create some nodes by mistake and want to delete
them. With many drawing programs, a common action for deleting objects is to first select
them and then press delete.

How do we allow them to be deleted ? We allow the user to press the DELETE key. This
should cause them to be deleted. We simply write a keyPressed() event handler and
determine if the key variable has been set to DELETE. Then we delete any nodes that have
been selected:

void keyPressed() {
 if (key == DELETE) {
 for (int i=0; i<graph.numNodes; i++) {
 if (graph.nodes[i].selected) {
 deleteNode(graph, graph.nodes[i]);
 i--; // required so that we check the same index next time
 }
 }
 }
}

Notice that that the code loops through all nodes, determines if they are selected and then
calls a deleteNode() procedure (we need to write this yet). The i-- will make sense after we
write the deleteNode() procedure.

Deleting a node is actually a complicated process since there may be edges connected to a
node. We cannot allow any edges to remain in the graph if the edge's startNode or endNode
has been deleted. So we first need to delete all the edges connected to the node being
deleted, then we can delete the node itself. We can write a procedure that loops through the
edges and deletes the ones that have the given node as its start or end node as follows:

void deleteNode(Graph g, Node n) {
 // Find & delete the edges connected to this node
 for (int j=0; j<g.numEdges; j++) {
 if ((g.edges[j].startNode == n) || (g.edges[j].endNode == n)) {
 // Put the last edge in the place of this deleted edge
 g.edges[j] = g.edges[g.numEdges-1];
 g.numEdges--;
 j--; // required so that we check the same index next time
 }
 }
 // Now find and delete the Node
 for (int i=0; i<g.numNodes; i++) {
 if (g.nodes[i] == n) {
 // Put the last node in the place of this deleted node
 g.nodes[i] = g.nodes[g.numNodes-1];
 g.numNodes--;
 return;
 }
 }
}

COMP1405/1005 – Shared Data Fall 2011

 - 337 -

Notice that to delete something from an array we need to replace it with a different value.
Rather than leave gaps, the above code takes the last edge (or node ... depending on the
array) and places it in the array at the position of the one deleted. Then the number of
elements in the array is actually smaller, so we decrease numEdges (or numNodes ...
depending on the array). The j-- is required to ensure that the next time through the loop ...
we check this same location that we removed the edge (or node) from ... since we placed the
last edge (or node) there and it too needs to be checked.

The code should now work, allowing all selected nodes to be deleted.

Selecting Edges:

We will also want to select, move and delete edges. We can add a boolean to the edge data
structure to allow this:

class Edge {
 Node startNode, endNode;
 boolean selected;

 Edge(Node start, Node end) {
 startNode = start;
 endNode = end;
 selected = false;
 }
}

How does the user select an edge ? Likely, by clicking on or near it. We can accomplish this
by determining the distance between the point clicked at and the edge itself. If the distance is
smaller than some pre-decided value (e.g., 5 pixels) then we can assume that this edge was
just clicked on... otherwise we can assume that the edge was not clicked on. The equation to
find the distance from a point to an edge is indicated below:

However, the above equation actually computes the distance from (x,y) to the line that passes
through the two edge nodes. So, if we click anywhere close to that line, we will be a small
distance value and we will think that the edge was selected:

COMP1405/1005 – Shared Data Fall 2011

 - 338 -

Certainly, we do not want such an (x,y) point to be considered as "close to" the edge. We can
avoid this problem situation by examining the x-coordinate of the point that the user clicked on.
The x-coordinate must be greater that the left node's x-coordinate and smaller than the right
node's x-coordinate.

IF (distance < 3) THEN {
 IF ((x > n1.x) AND (x < n2.x)) OR ((x > n2.x) AND (x < n1.x)) THEN
 this edge has been selected
}

Can you foresee any further problems with the algorithm ? What if the edge is vertical ? The
above checking will never select the edge ! Instead, if the edge is vertical, we should
compare the y-coordinates. In fact, if the line is "more horizontal" we should check the x-
coordinates and if it is "more vertical" we should check the y-coordinates. To determine if a
line segment is more vertical or horizontal, we can compare the difference in x and the
difference in y. Here is the code:

IF (distance < 3) THEN {
 xDiff ← abs(n2.x - n1.x)
 yDiff ← abs(n2.y - n1.y)
 IF (xDiff > yDiff) THEN
 IF ((x > n1.x) AND (x < n2.x)) OR ((x > n2.x) AND (x < n1.x)) THEN
 this edge has been selected
 OTHERWISE
 IF ((y > n1.y) AND (y < n2.y)) OR ((y > n2.y) AND (y < n1.y)) THEN
 this edge has been selected
}

Now that we have the algorithm that we need, it would make sense to create an edgeAt()
function to find the edge that was selected, since we did something similar for nodeAt().

Here is the code:

COMP1405/1005 – Shared Data Fall 2011

 - 339 -

Edge edgeAt(Graph g, int x, int y) {
 for (int i=0; i<g.numEdges; i++) {
 Edge e = g.edges[i];
 Node n1 = e.startNode;
 Node n2 = e.endNode;
 int xDiff = n2.x - n1.x;
 int yDiff = n2.y - n1.y;
 float distance = abs(xDiff*(n1.y-y)-(n1.x-x)*yDiff) /
 sqrt(xDiff*xDiff + yDiff*yDiff);
 if (distance <= 5) {
 if (abs(xDiff) > abs(yDiff)) {
 if (((x < n1.x) && (x > n2.x)) || ((x > n1.x) && (x < n2.x)))
 return e;
 }
 else
 if (((y < n1.y) && (y > n2.y)) || ((y > n1.y) && (y < n2.y)))
 return e;
 }
 }
 return null;
}

Now that we have such a function, we can modify the mouseClicked event handler to allow
edges to be selected:

void mouseClicked() {
 if (mouseEvent.getClickCount() == 2) {
 Node n = nodeAt(graph, mouseX, mouseY);
 if (n != null)
 n.selected = !n.selected;
 else {
 Edge e = edgeAt(graph, mouseX, mouseY);
 if (e != null)
 e.selected = !e.selected;
 else
 addNode(graph, new Node(mouseX, mouseY, ""));
 }
 }
}

Notice now that we first check to see if a node was selected and only if a node was not
selected will we then check to see if an edge was selected. Of course, we will want to show
selected edges as red, so we need to modify the draw() procedure:

 if (e.selected) {
 stroke(255,0,0); // red edge
 strokeWeight(5); // thicker line
 }
 else {
 stroke(0,0,0); // black edge
 strokeWeight(1); // thin line
 }

COMP1405/1005 – Shared Data Fall 2011

 - 340 -

Our program now allows edges to be selected.

Deleting Edges:

We will want to allow edges to be deleted as well. To do this, we should allow the user to
select any edges and press delete. To delete an edge, we simply need to remove it from the
array. We can write a deleteEdge() procedure to do this as follows:

void deleteEdge(Graph g, Edge e) {
 for (int i=0; i<g.numEdges; i++) {
 if (g.edges[i] == e) {
 // Put the last edge in the place of this deleted edge
 g.edges[i] = g.edges[g.numEdges-1];
 g.numEdges--;
 return;
 }
 }
}

Then, in the keyPressed event handler we simply remove any selected edges by adding the
following code:

 for (int i=0; i<graph.numEdges; i++) {
 if (graph.edges[i].selected) {
 deleteEdge(graph, graph.edges[i]);
 i--;
 }
 }

Moving Edges:

It would be nice to allow an edge to be grabbed and dragged just like a node is grabbed and
dragged. To do this, we will need to determine whether or not the user has pressed the
mouse on an edge and then "remember" that edge so that it can be dragged later. For nodes,
we used a dragNode variable. For edges we can create a similar dragEdge variable:

Edge dragEdge;

We can set this to null in the setup() procedure and then in the mousePressed event handler
we can set it as follows:

dragEdge = edgeAt(graph, mouseX, mouseY);

At this point, we will know which edge has been selected for dragging. All that is left to do is
to actually move the edge when the user drags the mouse. However, how do we actually
move the edge ? It should move by the amount that the mouse moved. We can calculate the
amount that the mouse moved by remembering the "start" point that was initially clicked on
and then finding the change in x and y to the current mouse location:

COMP1405/1005 – Shared Data Fall 2011

 - 341 -

So, in addition to the edge that has been selected, we will need to remember the point that
was clicked at so that we can determine the change from that point to the new mouse location
in order to adjust the edge's node locations. We can create two new variables at the top of
the program to store the mouse location at which the user initially pressed:

int dragX, dragY;

We can then add this to the mousePressed handler set the values:

dragX = mouseX;
dragY = mouseY;

Then in the mouseDragged event handler we can now move the edge, provided that one was
selected by the user by appending this code:

if (dragEdge != null)
 if (dragEdge.selected) {
 int x = mouseX - dragX;
 int y = mouseY - dragY;
 dragEdge.startNode.x = dragEdge.startNode.x + x;
 dragEdge.startNode.y = dragEdge.startNode.y + y;
 dragEdge.endNode.x = dragEdge.endNode.x + x;
 dragEdge.endNode.y = dragEdge.endNode.y + y;
 dragX = mouseX;
 dragY = mouseY;
 }

Moving Multiple Nodes:

When we moved the edge in the above code, we actually did this by moving two nodes. In
fact, we can adjust our node-dragging code so that it allows multiple selected nodes to be
moved around at the same time. We just need to offset the nodes by an amount equal to the
difference between the current mouse location (mouseX, mouseY) and the (dragX, dragY)
location ... as when we moved the edge.

So, instead of doing this in the mouseDragged event handler:

 dragNode.x = mouseX; dragNode.y = mouseY;

we can do the following to move ALL the selected nodes:

COMP1405/1005 – Shared Data Fall 2011

 - 342 -

for(int i=0; i<graph.numNodes; i++) {
 if (graph.nodes[i].selected) {
 graph.nodes[i].x = graph.nodes[i].x + x;
 graph.nodes[i].y = graph.nodes[i].y + y;
 }
}

Now, for example, if we selected all the nodes in the graph, we could translate the whole graph
with one drag operation !

Other Fun Features:

If you want to have more fun, try implementing these features on your own:

• Allow all selected edges and nodes to be moved by dragging a selected edge.

• Press <CNTRL><A> to select all nodes and edges and <CNTRL><U> to unselect them.

• Right-click the mouse on a Node and prompt the user for a label to put on that node.

• Scale the entire graph up or down by holding the <SHIFT> key while pressing the
mouse on an empty spot on the window and then dragging the mouse up or down to
enlarge or shrink the graph.

• Press <CNTRL><D> to duplicate all selected nodes and edges and have the new
portion of the graph appear a little below and to the right of the original nodes/edges.

