A STUDY AND AN IMPLEMENTATION
OF
SCAPEGOAT TREES

Honour Project Report
Carleton University, School of Computer Science

Submitted by Phuong Dao, 100337321
Supervised by Dr. Anil Maheshwari

August 15, 2006

ABSTRACT

This report describes the study and implementation of Scapegoat trees, weight and
loosely-height-balanced binary search trees, first proposed in the paper:”Scapegoat
Trees” [Igal Galperin and Ronald L. Rivest, 1993]. The trees guarantee the amortized
complexity of Insert and Delete O(logn) time while the worst case complexity of Searching
is O(logn) time where n is the number of nodes in the tree. It is the first kind of balanced
binary search trees that do not store extra information at every node while still maintaining
the complexity as above. The values kept track are the number of nodes in the tree and the
maximum number of nodes since the trees were last rebuilt. The name of the trees comes
from that rebuilding the tree only is taken place only after detection of a special node called
Scapegoat, whose rooted subtree is not weight-balanced. In this report, the correctness and
complexity of operations on Scapegoat trees will be thoroughly and mainly discussed. Also,
the test cases from Demo on the operations will be presented. Finally, an application of
techniques used in Scapegoat trees will be discussed and conclusions will be drawn.

ACKNOWLEDGEMENTS

I would like to thank very much to Dr. Anil Maheshwari for his guidance and en-
thusiasm not only in supervising my project but also in inspiring me to further study in
Computer Science and the most to my parents and my sister who always support me and
be there for me.

i

Contents

1 INTRODUCTIONS
1.1 Binary Search Tree Notations
1.2 Weight Balanced Binary Search Tree
1.3 Height Balanced Binary Search Tree
1.4 Scapegoat Tree Related Definitions

2 OPERATIONS ON SCAPEGOAT TREES
2.1 Howtosearchforakey.
2.2 Howtoinsert anew key
23 Howtodeleteakey
2.4 Rebuild Scapegoat Subtreeo

3 CORRECTNESS
3.1 Main Theorem e
3.2 Imsert
3.3 Delete

4 TIME COMPLEXITY
4.1 Find Scapegoat and Rebuild o000
4.2 Search
4.3 Insert e
4.4 Delete
4.5 Generalized Theorem

5 APPLICATION
5.1 Orthogonal range queries

6 CONCLUSIONS AND FUTURE WORK
6.1 Conclusions
6.2 Future Work

REFERENCES

A HOW TO USE THE DEMO
Al Howtorun e
A.2 How to do Search, Insert, and Delete

25
25
25

27

A.3 How to reset tree with anew o

B LIST OF FIGURES AND TABLES

Chapter 1
INTRODUCTIONS

There are two main balanced binary search tree schemes: height-balanced and weight-
balanced. The height-balanced scheme maintains the height of the whole tree in O(logn)
where n is the number of nodes in the tree. Red-black trees by Bayer [1], Guibas and
Sedgewick [4] and AVL trees are examples of this scheme in which the worst-case cost of
every operation is O(logn) time. The weight-balanced scheme ensures the size of subtrees
rooted at siblings for every node in the tree approximately equal. Nievergelt and Reingold
6] first introduced a tree using such scheme to implement Search and Update operations in
O(logn) time as well. The technique used in Scapegoat trees combines those two schemes.
By maintaining weight-balanced, it also maintains height-balanced for a Search operation
and by detecting a height-unbalanced subtree and rebuilding the subtree, it also ensures
weight-balanced after an update operation. Before going deep into operations in Scapegoat
trees, let’s get ourselves familiar with notations and definitions of balanced binary search
trees.

1.1 Binary Search Tree Notations
If n is a node in a Scapegoat tree T then

e n.key is the value of the key stored at the node n

e n.left refers to the left child of n

n.right refers to the right child of n

n.height refers to the height of the subtree rooted at n or the longest distance in terms
of edges from n to some leaf.

n.depth refers to the depth of node n or the distance in terms of edges from the root
ton

n.parent refers to the parent node of node n

n.stbling refers to the other child, other than n, of parent of n

Figure 1.1: A binary search tree with a = 0.6

e n.size refers to the number of nodes of subtree rooted at n. This notation is used for
proofs of correctness and time complexity

e n.h, is computed as n.h, = [log, , (n.size) |

e n.size() is the procedure to compute the size of the binary search tree rooted at node
n. This notation is used in the descriptions of operations on Scapegoat trees.

What is in bold font, for example n.key, is what is really stored at each node. The others,
except for the procedures, are just values used for discussions in proofs of correctness and
time complexity of operations on Scapegoat trees. Below are notations related to a binary
search tree T"

e T .root refers to the root of the tree T’
e T .size refers to the current number of nodes in the tree T'

e T .maxSize refers to the maximum number of nodes or the maximum number of T'.size
is or was since T was completely rebuilt because whenever the whole tree T is rebuilt,
T.maxSize is set to T.size

e T.h, is computed as following: T'h, = [log, ,, (T size)|

e T.height refers to the height of T" or the longest path in terms of edges from T.root to
some leaf in T’

Similar to notations of a node, what is in bold font is what is stored in tree T. T.height is
just used in concepts and proofs.

1.2 Weight Balanced Binary Search Tree

Definition 1.2.1. A node n in a binary search tree is a-weight-balanced for some o such
that 1/2 < a < 1 if (n.left).size < - n.size and (n.right).size < « - n.size.

Table 1: Examples of notations for a binary tree node 8 in Figure 1.1

n.key

n.parent

n.sibling

n.left

n.right

n.height

n.depth

n.size

n.hy

n.size()

5

2

6

9

2

1

4

2

Table 2: Examples of notations for a binary search tree in Figure 1.1

T .root

T .size

T .height

T he

5

7

3

3

Figure 1.2: A weight-unbalanced binary search tree with o = 0.6

Figure 1.3: A height-unbalanced binary search tree with a = 0.55

Example 1.2.1. Node 8 in Figure 1.2 is not 0.6-weight-balanced because its right subtree
has 2 nodes which is greater than 0.6 %3 = 1.8 where 3 is the total nodes of the subtree rooted
at 8.

Definition 1.2.2. A binary search tree T' is a-weight-balanced for some « such that 1/2 <
a < 1 if all of its nodes are a-weight-balanced.

Example 1.2.2. The tree in Figure 1.2 is not 0.6-weight-unbalanced binary search tree
because it contains node 8 which is not 0.6-weight-balanced.

1.3 Height Balanced Binary Search Tree

Definition 1.3.1. A binary search tree is a-height-balanced for some a such that 1/2 < o <
1 of T.height < T.h,.

Example 1.3.1. The tree in Figure 1.2 is 0.6-height-balanced binary search tree because it
has 7 nodes and its height is 3 < |log, 06 (7)] = 3.

1.4 Scapegoat Tree Related Definitions

Definition 1.4.1. A node n in a binary search tree T is a deep node for some « such that
1/2 < a <1 ifndepth > T.h,.

Definition 1.4.2. A node s is called Scapegoat node of a newly inserted deep node n if s
s an ancestor of n and s is not a-weight-balanced.

Example 1.4.1. If we have just inserted node 9 into the tree T in Figure 1.3 then node 9
is a deep mode because its height is 3 which is greater than T.h, = [log; 55 (6)] = 2. And
in this case, root 5 would be chosen as Scapegoat node.

Figure 1.4: An incomplete binary search tree

Definition 1.4.3. A binary search tree is loosely a-height-balanced for some « such that
1/2 <a <1 ifT.height < (T.hy +1).

Example 1.4.2. The tree T in Figure 1.3 is a good example of loosely 0.55-height-balanced

Definition 1.4.4. A binary search tree T is complete if inserting any node into T increases
its height.

Example 1.4.3. The tree in Figure 1.4 is incomplete. But after inserting node 8 into the
tree, it becomes complete.

With all the above definitions, we could now envision the notion of a Scapegoat tree. A
Scapegoat tree is just a regular binary search tree in which the height of the tree is always
loosely a-height-balanced. Such balance is maintained after an Insert operation of a deep
node or a Delete operation that leads to T.size < a - T.maxsize. In the case of inserting
a deep node, a Scapegoat node s will be detected. Both cases will result in rebuilding the
subtree rooted at s into a 1/2-weight-balanced binary search one.

Chapter 2

OPERATIONS ON SCAPEGOAT
TREES

This chapter will present how to do Search, Insert, Delete operations on a Scapegoat tree.
An update i.e. Insert or Delete will come with an example which is taken out from the Demo
for this project. So before going deep into the operations, let’s take a look at a Scapegoat
tree from Demo:

Size: T Max size: 8 Hi: 3

h3_s7
i)
h2 54/// h33\|\11 §2
2 8
ho s;/"az\n 52 “"“\.u 51
1 3 9
ha0 ha1\lu e ha0
4
hal

Figure 2.1: A sample Scapegoat tree from the Demo

Figure 2.1 presents a Scapegoat tree T" with a = 0.57 of size 7, h, = 3 and T had
size(maxSize) 8 before node 10 was just deleted. These three indexes are at the top of
the tree. Notice that for each node in 7', there are also three indexes surrounding it. The
index prefixed by s is the size of the subtree rooted at that node while the one prefixed by h
is the height of the node in T'. The index prefixed by ha below each node is the h, of that
node.

2.1 How to search for a key

The Search operation in Scapegoat tree 1" is done like regular Search in a binary search tree.
As we will prove later that the height of a Scapegoat tree T' is always loosely-height-balanced
in term of the number of nodes T.size after Insert or Delete operations or T.height <
[logy/ (T.size)| + 1 then worst-case running time is O(log (T'size)) time. Below is the
simple recursive procedure Search:

Procedure 2.1.1 Search(root, k)
Input: root is the root of some tree T to search for an integer key k
Output: n is a node in 7T such that n.key = k or null if there is no such n

1: if root = null or root.key = k then
2: return root

3: else if k < root.left.key then

4: return Search(root.left, k)

5: else

6: return Search(root.right,k)

7: end if

2.2 How to insert a new key

The Insert in Scapegoat tree T' is also done like the regular Insert operation in a binary
search tree when T is still height-balanced. When 7' is not height-balanced then by Main
Theorem (3.1.1), a Scapegoat node s will be detected and rebuilding will be taken place at
the subtree rooted at s. Proof of the Main Theorem also shows how to find the Scapegoat
given newly inserted node n that makes T" height-unbalanced. The Scapegoat s will be the
first ancestor of n such that s.height > s.h,. The procedure FindScapegoat(n) implemented
in the following will return the Scapegoat s giving the newly inserted deep node n:

After the Scapegoat s is detected if applicable, the procedure RebuildTree(size,root) will
get called. RebuildTree will rebuild a new 1/2-weight-balanced subtree from the subtree
rooted at Scapegoat node returned. Details of procedure RebuildTree will be presented in
the rebuilding section. The Insert procedure also makes use of InsertKey(k) which is a
modified version of regular insertion in a binary search tree that will return the height for
the newly inserted node for comparison with T.h, to detect whether a newly inserted node
is a deep node or not:

Example 2.2.1. Figure 2.2 shows a Scapegoat tree T with o = 0.57 before inserting node
29. If node 29 is inserted, it would be the right child of node 22 and because the height of the
tree is 4 > T.h, = 3 then node 29 is a deep node. Scapegoat node 8 will be detected and the
whole tree T will be rebuilt into 1/2-weight-balanced binary search tree in Figure 2.3.

Procedure 2.2.1 FindScapegoat(n)

Input: n is a node and n # null
Output: A node s which is a parent of n and is a Scapegoat node
1: size =1
2: height =0
3: while (n.parent <> null) do
4: height = height + 1
totalSize = 1 + size + n.sibling.size()
if height > [log; . (totalSize)]| then
return n.parent
end if
n = n.parent
10: size = totalSize
11: end while

Size: T Max size: 7 Hi: 3

h3_s7
8
ho_sy/ ha3 \hz s5
1 13
hab ho s1” ha2 \M 53
10 20
ha0 ho s/hm\m o1
19 22

hal hal

Figure 2.2: A Scapegoat tree before insertion

Size: 8 Max size: 8 Hi: 3
h3 s8

19
h2 S/haj\h-] .3
10 22
h1 s;/“az\.u s1 ho s;/“"“\.u 51
8 13 20 29

ho s ha1 hal hal hal

1
hal

Figure 2.3: A Scapegoat tree after insertion

10

Procedure 2.2.2 Insert(k)
Input: The integer key k
Output: true if the insertion is successful, false if there exists a node n such that n.key = k
. height = InsertKey(k)
if height = —1 then
return false;
else if height > T.h, then
scapegoat = FindScapegoat(Search(T.root, k))
RebuildT'ree(n.size(), scapegoat)
end if
return true

2.3 How to delete a key

Deleting a node in a Scapegoat tree 1" is done by first deleting the node in a regular binary
search tree then compare 7T7s current size(7.size) to T’s maximum size(T.maxSize) that T
obtained since its latest total rebuilding. If T'.size < a * T.maxSize (1) then the whole tree
T will be rebuilt into 1/2-weight-balanced binary search tree and T.maxSize = T.size. The
intuition behind that is when (1) is satisfied, T might not be a-weight-balanced so it might
not be loosely a-height-balanced either. But we need to maintain 7" a-height-balanced or
loosely a-height-balanced then 7" needs to be rebuilt.

Procedure 2.3.1 Delete(k)
Input: The integer key k
Output: There is no node n in T" such that n.key = k
. deleted = DeleteKey(k)
if deleted then
if T.size < (T.av- T.maxSize) then
RebuildTree(T.size, T.root)
end if
end if

Example 2.3.1. Figure 2.4 shows a Scapegoat tree before a series of deletions of node 9,
10, 16 with o = 0.57. As seen, the tree is still 0.57-height-balanced but after the series of
deletion it is loosely 0.57-height-balanced but not 0.57-height-balanced in Figure 2.5. But if
we remove one more node, node 1, the whole tree would be rebuilt into 1/2-weight-balanced
i Figure 2.6.

2.4 Rebuild Scapegoat Subtree

The procedures below are basically the same as the procedures of rebuilding 1/2-weight-
balanced tree in the original paper :”Scapegoat Trees” [Igal Galperin and Ronald L. Rivest,
1993] [3] but with adaptation to my notations and an elimination of a dummy variable.

11

Size: 8 Max size: 8 Hi: 3

h3_s8
5
ho st/ ha3 \M s6
1 13
fiad h1 sz ha3 \M s3
10 19
ho sy hal ho s;/“"“\.u s1
9 16 22
hal hal ha

Figure 2.4: A Scapegoat tree before series of deletion

Sizel b ey size: 8 Hi: 2

h3_s5
5
ho s/ “az\uz 53
1 13
ha0 ha1\l1 2
19
ha1\lu o1
22
hal

Figure 2.5: A Scapegoat tree after series of deletions

Size: 4 hlax size: 4 Huo: 2

h2_s4
19
h s;/ “az\m s1
13 22
ho s ha1 hal
5
hal

Figure 2.6: A Scapegoat tree after series of deletions and rebuilding

12

The procedures are presented here because later I will provide proofs of time complexity of
rebuilding procedures which are not clearly mentioned in the original paper. The idea of
rebuilding 1/2-weight-balanced tree is straight. First flatten tree into the list of nodes in
nondecreasing order of their keys. Then divide the list into three parts, among which the list
of first half number of nodes and the second half number of nodes will be recursively rebuilt
into 1/2-weight-balanced trees and the new root would be the middle node. Its left subtree
is the 1/2-weight-balanced tree returned from recursive call for first half list of nodes. Its
right subtree is the 1/2-weight-balanced tree returned from recursive call for second half list
of nodes. The procedure Flatten Tree(root, head) will return the list of nodes of a binary
search tree rooted at root in nondecreasing order of their keys appending by the list headed
by a node head. The nodes in the list returned are linked by the right fields:

Procedure 2.4.1 Flatten_Tree(root, head)
Input: root is the root of some tree T’
Output: The list of all nodes in 7" in nondecreasing order in terms of their keys headed by
node head. The node that contains the smallest key in the tree T" will be returned.
1: if root = null then
2: return head
3: end if
4
5

. root.right = Flatten_Tree(root.right, head)
. return Flatten_Tree(root.le ft, root)

The procedure Build_Height_Balanced Tree(size, head) will build a 1/2-weight-balanced
tree from the flatten list of all the nodes in a binary search tree T'. The procedure will return
the last node of the flatten list. Now, the procedure Rebuild Tree(size,scapegoat) just
makes use of Flatten Tree(root, head) procedure to flatten the subtree rooted at scapegoat
and Build_Height_Balanced_Tree(size, head) to rebuild the flatten list into 1/2-weight-
balanced binary search tree T. Because the call Build_Height_Balanced Tree(size, head)
will return the last node of the flatten list so in order to retrieve the root of the 1/2-weight-
balanced tree then just traverse the parents of node head until we reach the root and this
could be done in O(log (T'.size)) time because T is 1/2-weight-balanced then T is also 1/2-
height-balanced.

13

Procedure 2.4.2 Build_Height_Balanced_Tree(size, head)

Input: The list of size nodes in nondecreasing order in terms of their keys headed by node

head

Output: A 1/2-weight-balanced tree built from the list above. The last node of the list will

1
2
3
4:
5:
6
7
8
9

be returned.

. if size = 1 then

return head

: else if size = 2 then

(head.right).left = head
return head.right

: end if

. root = (Build_Height_Balanced Tree(|(size — 1)/2], head)).right
. last = Build_Height_Balanced Tree(|(size — 1)/2|, root.right)

: root.left = head

10:

return last

Procedure 2.4.3 Rebuild_Tree(size, scapegoat)

Input: A scapegoat node scapegoat that is the root of a subtree of size nodes
Output: A 1/2-weight-balanced subtree built from all the nodes of the subtree rooted at

scapegoat. The root of the rebuilt subtree will be returned
head = Flatten_Tree(scapegoat, null)
Build_Height_Balanced Tree(size, head)
while head.parent!=null do

head = head.parent
end while
return head

14

Chapter 3
CORRECTNESS

3.1 Main Theorem

Theorem 3.1.1. IfT is an a-weight-balanced binary search tree, then T' is a-height-balanced
as well.

Proof. We could prove the other way around: If 7" is not a-height-balanced then 7' is not
a-weight-balanced either. If T is not a-height-balanced then there is node ngy such that
no > T.hs (2). Denote the deepest ancestor of ny which is not a-height-balanced as n; or
let nq,...,n; be ancestors of ng such that n, is the parent of ng and so on, then n; is the first
ancestor of ng that satisfies (2). Such n; always exists because T'.root always satisfies (2).
By the way of choosing such n;, the following inequalities are satisfied:

1 > n.hy
i > |logy, (n.size)]

=
= 1 > logy, (ni.size)

and
1—1 < ni,l.ha
= i—1 < |logy, (ni1.size)]
= i—1 < logy, (ni-1.size)
= 1—i > —logy, (ni-1.size)

(3) + (4) gives
1 > logy, (ni.size) —logy , (ni-1.si2€)

I n;.size
0] —_—
81/a n;_1.51ze

1 _ .
Due to % <a<lor—>1and n;size > n;_q.s12¢
«

Then
N;_1.512€ > Q- N;.S12€

Therefore, the node n; is not a-weight-balanced or 7T is not a-weight-balanced. O]

15

The proof above shows us not only how to find the Scapegoat node s for rebuilding the
subtree rooted at s when a deep node n is detected but also such node s always exists. Let
d be the distance in term of edges from n to s, s is the deepest ancestor of n such that

d > s.hg.

3.2 Insert

Lemma 3.2.1. A 1/2-weight-balanced binary search tree T' has the smaller than or equal
height of any binary search tree T' of the same size.

Proof. First notice that

|logy(T".size) |
= |log,(T.size)]

T’ .height

<
< T'.height

Due to T.size = T".size
And by Main Theorem (3.1.1), T is 1/2-height-balanced:

T.height < |log,(T.size)|

Therefore,
T.height < T'.height

O

Lemma 3.2.2. If T.root is not a-weight-balanced node then its heavy subtree contains at
least 2 more nodes than its light subtree.

Proof. Denote the sizes of the heavy, light subtrees of the root, and the whole tree by h.l,
and t, respectively. We have:

h+l+1=t
and
h > a-t
= h > a-(h+1+1)
= h-(l-a) > al+a
11—«
= h- > [+1
Q

Sincel/2§oz<1or1<§§2and0<1—a§1/2then1?7"‘<1.

Therefore,

]__
N P

> [+1
(8]

and h and [are positive integers then h > [+ 2 O]

Lemma 3.2.3. IfT is not a-weight-balanced and T contains only one node at depth T.height
then rebuilding T decreases its height.

16

Proof. Let n be the only node at depth T.height. Let T}, T} be the light and heavy subtrees
of a subtree T” rooted at Scapegoat node s which is a-weight-unbalanced and is an ancestor
of n, by proof of Main Theorem (3.1.1), s always exists. If n € T} then 7" after removing n
is not complete tree of height 7".height — 1 because T}, contains at least 2 more nodes than
T} by Lemma(3.2.2) but T} .height < T].height. In the other case n ¢ T/ or n € T}, T' is
still not complete subtree of height T].height — 1 after removing n because 7} has at least
2 more nodes than 7] but T} .height > T}].height. So rebuilding tree T results in rebuilding
T’ into 1/2-weight-balanced binary search tree that causes it decrease its height by Lemma
(3.2.1) or T decreases its height. O

Theorem 3.2.4. If a Scapegoat tree T was created from a 1/2-weight-balanced tree by a
sequence of Insert operations then T is a-height-balanced.

Proof. This proof is done by induction. If there are no Insert operations then by Main
Theorem (3.1.1), the theorem follows. Suppose that it is true that if a Scapegoat tree T
was created from a 1/2-weight-balanced tree by any sequence of n Insert operations then
T is a-height-balanced. We have to prove it also holds for an extra Insert done after those
sequences. If the extra Insert does not cause 7' to rebuild, T is still a-height-balanced because
it was and the height of newly inserted node is not over T.h,. If the extra Insert does cause
T to rebuild or the depth of the newly inserted node n: n.depth > T.h, and n is the only
node at depth T.h, + 1 then by Lemma (3.2.3), the theorem is followed. O

3.3 Delete

Lemma 3.3.1. Let T be a a-weight-balanced binary search tree and let T’ be the tree after
inserting a node n into T then T".height < maz(T".hy, T.height)

Proof. If rebuilding is not triggered after the insertion of n, then the depth of n is at most
T".he or T' . height < T".h, or T".height < maz(T".h, T.height). If the insertion of n causes
T to rebuild or n.depth > T'.h,, there are still two cases to take care. In first case where there
were already some other nodes at n.depth, since rebuilding tree into 1/2-weight-balanced does
not make the tree deeper by Lemma (3.2.1) or T".height < T.height < max(T".h, T.height).
In the other case where n is the only node at n.depth > T".h,,, by Lemma (3.2.3), rebuilding
tree does not make the tree deeper, we're done. O]

Lemma 3.3.2. Let T be a loosely a-height-balanced binary search tree such that T.height =
T.he + 1 and let T' be the tree after insert a node n into T such that T'.h, = T.hy + 1 then
T’ is a-height-balanced.

Proof. We have

T.height = T.hs+1
T .h, = Thye+1

then
T.height = T’ .h,

17

Then Lemma (3.3.1) gives

T".height < max(T'.hy, T.-height)
= T'height < max(T .ha, T ha)
= T'.height < T h,

Therefore, T’ is a-height-balanced by Definition (1.3.1), O

Lemma 3.3.3. A Scapegoat tree T built from a sequence of Insert and Delete operations
from an empty tree is always loosely a-height-balanced.

Proof. Divide the sequence of Insert and Delete operations into subsequences of consecutive
operations o1, ..., 0 such that at the end of each sequence the tree has to be rebuilt and during
the executions of operations, no rebuilding is taken place. So we need to show that during
such sequence of operations, the tree is a-height-balanced or loosely a-height-balanced.

In the case that during any sequence of Insert and Delete operations, if T.h, does not
change then max(T.h,, T.height) is not increased and the tree is still at least loosely a-
height-balanced. This is because Delete operation could not increase maz(T.h,, T-height)
nor the Insert operation:

Let 7" be the tree after inserting a node into 7" which is a tree after an operation o; (1 < i < k)
in the sequence. Now we have to prove that maz(T".h,, T".height) < maz(T.h,, T.height).
By Lemma (3.3.1):

T'.height < max(T' .hy, T.height)
= max(T".hy, T .height) < max(T".hy, T.height)
= max(T".hy, T".height) < mazx(T.hy, T.height)

In the other case, T.h,, is changed during sequence of Insert and Delete operations. Denote
o}, ..., 0; be the sequence of operations that change T.h, and let 7" be the tree after inserting
a node into 7" which is a tree before some operation o} (1 < i <1). For an Insert operation,
if T is a-height-balanced then T is loosely a-height-balanced because T.h,, is increased at
most 1 and the same for T.height. Otherwise if T is loosely a-height-balanced but not a-
height-balanced, by Lemma (3.3.2), T’ is a-height-balanced. For a Delete operation, notice
that there are no two consecutive Delete operations in that sequence. This is due to if a
Delete operation change T'.h,,, it will decrease T'.h, by 1 or the cutting size is a- T-mazSize.
If there is another Delete operation right, and we know the second will again cause T.h,
decrease by 1 then rebuilding should be taken between those two Delete operations. This
violates our assumption. So a Delete operation should be performed on a-height-balanced
tree. As we know a Delete operation does not increase T.height nor T, then the tree after
will be at most loosely a-height-balanced. This completes the proof. O]

18

Chapter 4
TIME COMPLEXITY

4.1 Find Scapegoat and Rebuild

Theorem 4.1.1. The time to find the Scapegoat node s is O(s.size) time.

Proof. The FindScapegoat(n) procedure is triggered when n, a newly inserted node, has
n.depth > T.h,. Let ng,nq,...,n; be the sequence of accessors of n the procedure examined
where n; is s, then all nodes ng, nq, ...n; are examined once. Moreover, all nodes in the other
subtrees of ng,nq,...n; are examined once by size() procedure. Therefore, all nodes in the
tree rooted at s is examined once or the time to find the Scapegoat node s is O(s.size)
time. O

Lemma 4.1.2. The call Flatten_Tree(root, head) takes O(root.size) time.

Proof. Notice that every node of the tree will be visited at most one because Flatten_Tree
is recursively called for two children of root and will not come back to the parent nodes.
Therefore, the worst-case complexity is O(root.size) time.]

Lemma 4.1.3. The call Build_Height_Balanced Tree(size, head) takes O(size) time.

Proof. 1t is similar to the procedure Flatten_Tree(root, head) where every node of the tree
will be visited at most one. Procedure Build_Height_Balanced Tree(size, head) is recur-
sively called for 2 halves of the original list and will not be called to process the visited nodes
in the list. Therefore, the worst-case complexity is O(size) time. O

Theorem 4.1.4. The worst-case complexity of Rebuild Tree(size, scapegoat) is O(size)
time.

Proof. The procedure makes use of two procedures Flatten Tree and
Build_Height_Balanced Tree whose worst-case complexity is O(size) time and at
the end, traversing parents of last node returned by procedure Flatten_Tree to find the root
of newly rebuilt 1/2-weight-balanced tree which could be done in O(log (size)) time because
the tree is also 1/2-height-balanced by Main Theorem (3.1.1). Therefore, the worst-case
complexity of Rebuild Tree(size, scapegoat) is O(size) time. O

19

4.2 Search

Theorem 4.2.1. Worst-case complexity of any Search operation done in Scapegoat tree T
is O(log (T.size)).

Proof. By Theorem (3.3.3), the Scapegoat tree T is loosely a-height-balanced i.e. T .height <
T.he + 1 or T.height = O(log (T'.size)) therefore, the worst-case complexity of Search oper-
ation is O(log (T.size)) time. O

4.3 Insert

Theorem 4.3.1. If a Scapegoat tree T is built from a sequence of n Insert operations and
m Search or Delete operations starting with an empty tree, then the amortized cost of Insert
is O(logn) time.

Proof. The proof is done using accounting method in the amortized analysis chapter in [2]
starting with accounting function defined for each node in a Scapegoat tree:

_)o if |(n.left).size — (n.right).size| <1
") |(n.left).size — (n.right).size| otherwise

By that way, we have ®, = 0 when n is 1/2-weight-balanced node. When n is not
a-weight-balanced node or a Scapegoat node and suppose that (n.left).size > « - n.size,
we have:

o, = |(n.left).size — (n.right).size|
= &, = |(nleft).size — (n.size — (n.left).size — 1)]
= &, = |2-(nleft).size —n.size + 1|
= &, = 2-(n.left).size —n.size + 1
= ¢, > 2-a—1) -nsize+1
and
®, = |(n.left).size — (n.right).size|
= &, = |(n.size — (n.right).size — 1) — (n.right).size|
= ¢, |(n.size — 2 - (n.right).size + 1|

= &, < n.size
Therefore, ®, = O(log(n.size)). Now, in the first case that Insert operation i*" of node n
did not trigger rebuilding:
Ai = CZ + q)z — (I)i—l
= c-log(T.size) + Z o, + Z P,

m is an ancestor of n p is not an ancestor of n

+0, - > ¢, - > o

m is an ancestor of n p is not an ancestor of n

By Theorem 3.3.3, the Scapegoat tree after operation i** is loosely a-weight-balanced.
Therefore, C; = O(log(T.size)). The difference between ®,, and ®, is at most 1 after the

20

insertion and there are at most O(log(7.size)) ancestors like that. Therefore:

Z o, — Z ®, = O(log(T.size))

m is an ancestor of n m is an ancestor of n
/
Moreover, we have E o, = E ®,. That concludes:
p is not an ancestor of n p is not an ancestor of n
A; = c-log(T.size) + d -log(T.size)
= O(log(T.size))

Now, in other case that Insert operation i*" of node n trigger rebuilding a subtree rooted at
Scapegoat node s:

A = Ci+® — P
¢ (log(T.size) + s.size) + g ¢, + E P,
mé the rebuilt subtree rooted at s pé the rebuilt subtree rooted at s
/ /
+d, - S i S @
mg the rebuilt subtree rooted at s p¢ the rebuilt subtree rooted at s

The real cost here is involved searching for a place to insert in O(log(T.size)) time and
finding and rebuilding the subtree rooted at Scapegoat node s in O(s.size) time. The
difference between ®,, and @ is O(m.size) nodes because ®,, = 0 and & = O(m.size)
due to m was not a-weight-balanced node. For any node p that is not in rebuilt subtree and
p is not an ancestor of newly inserted node n, we have ®, — CID;, = 0. If p is not in the rebuilt
subtree and p is an ancestor of newly inserted node n (there are at most O(log(7.size))
nodes like that because T is always loosely a-weight-balanced), therefore:

> D, — > ®, = O(log(T.size))

pé the rebuilt subtree rooted at s pé¢ the rebuilt subtree rooted at s

That concludes the proof:

A; = c-log(T.size) + ¢ s.size+d - log(T.size) — ¢ - s.size
= O(log(T.size))

4.4 Delete

Theorem 4.4.1. If a Scapegoat tree T is created from a sequence of n Insert operations and
m Search or Delete operations starting with an empty tree, then the amortized cost of Delete
is O(logn) time.

Proof. The total cost of after a Delete operation with rebuilding is Q(7.size + log (T'.size))
or Q(n + logn) due to T.size < n. Notice that the rebuilding the whole tree 7' is taken
after a Delete operation if T.size < o - T-mazSize (5). And (5) is satisfied if there were at
least maxSize - (1 — «) operations taken place since latest rebuilding or starting empty tree.
Moreover, maxSize < n or there are €)(n) operations to pay up for the cost of rebuilding
tree. Therefore, the amortized cost of a Delete operation is Q(logn). n

21

4.5 Generalized Theorem

The theorem presented in this section is the generalized version of these theorems 4.2, 4.3.1
and 4.4.1 of complexity of Search, Insert, and Delete operations. As we know whenever a
Scapegoat tree or a subtree of a Scapegoat tree is rebuilt, it is going to be rebuilt into a
1/2-weight-balanced binary search tree or subtree. Now 1/2 will be replaced by any constant
Qpatancea Such that 1/2 < apgrancea < 1. Similarly, whenever the height of a newly inserted
node n satisfies n.height > |log, /amgger(n.size)J where pgignced < Qrigger < 1, then some
parent p of n will be detected as Scapegoat node by Main Theorem 3.1.1 and the subtree
rooted at p will be rebuilt into apiances-weight-balanced subtree. And we assume that we
already have two algorithms: rebuilding a tree of n nodes into a qpuancea-weight-balanced
binary search tree in O(n-F(n)) time and finding the node that is not a,;gge--weight-balanced
in O(n - F(n)) time where F(n) = (1) and F(c-n) = O(F(n)) for any constant ¢. Then
the following theorem holds and is restated without proof from the main paper [3]:

Theorem 4.5.1. A relaxed Scapegoat tree can handle a sequence of n Insert and m Search or
Delete operations, beginning with an empty tree, with an amortized cost O(F(n)log, o, . . n)
per Insert or Delete and O(logl/atrigger k) worst-case time per Search, where k is the size of
the tree the Search is performed on.

22

Chapter 5
APPLICATION

5.1 Orthogonal range queries

An orthogonal query of d dimensions given a range of each dimension is a query for the
number of d-dimensional vectors such that each component of a dimension falls in the range
of that dimension. Figure 5.1 illustrates an othorgonal query in two dimensions. The query
asks for the number of points whose x coordinate ranges from 3 to 11 and y coordinate
ranges from 2 to 6. And the expected output is 3 as only three points (4,4), (8,3) and (9,5)
fall into the specified ranges. In the general case of d dimensions, Leuker in [5] proposed

o \

7 +

(2,5) (9,5)

(4.4)

(8:3)

(12,2)

—t—t)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 X

Figure 5.1: An orthogonal query in two dimensions

that orthogonal queries could be done in O(log?n) worst-case time where n is the number
of nodes in the tree and an update operation is done with an amortized cost of O(nlog®n).
Moreover, also in the paper, it was proved that 1/3-balanced tree of n keys could be built
in O(nlog™™ 4=V p) time. Now we will use that fact to improve the time complexity of
operations of orthogonal range querries. It is cleary that if T' is a 1/3-balanced tree then T

23

is 2/3-weight-balanced. So in order to apply Generalized Theorem 4.5.1, we will need to find
out what are function F', paianced, Qtrigger- Due to the fact that 1/3-balanced tree of n keys
could be built in O(nlog™™ =Y n) time, we could determine that F(n) = log™™14=b
Qpatanced = 1/2 and upigger = 2/3. Then the following theorem follows from Generalized
Theorem 4.5.1:

Theorem 5.1.1. A relazed Scapegoat tree can handle a sequence of n Insert and m Search or
Delete operations, beginning with an empty tree, with an amortized cost O(F(n)log, Jatrigger n)
per Insert or Delete and O(log, ,, . . k) worst-case time per Search, where k is the size of
the tree the Search is performed on.

24

Chapter 6

CONCLUSIONS AND FUTURE
WORK

6.1 Conclusions

As shown in this report, a Scapegoat tree T' is always loosely a-height-balanced after any
update operation. Such loosely a-height balance is due to rebuilding operation taken place
after detecting some Scapegoat node, which is a sign of a-height unbalance and a-weight
unbalance. But the rebuilding operation is shown to happen after enough update operations
to pay for cost of rebuilding subtree rooted at the Scapegoat node which is linear in the
size. Therefore, a Scapegoat tree T could handle any Search operation in worse-case com-
plexity O(log(T.size)) and the amortized cost of any update operation is O(log(7.size)) time.

The Demo for this project is implemented successfully. Even though any update op-
eration in the implementation is done in linear time in term of the size and that’s because
all the nodes shown in Ul needs to be redrawn after the operation. So the coordinates of all
the nodes need to be recomputed and all of them need to be redrawn. Aside from the UlI,
the Search, Insert, Delete operations that are implemented in the Scapegoat tree class truly
follow the complexity of theoretical part. Through the implementation of and experiments
with the Demo, I have found out some helpful cases, for example, some Scapegoat tree
after some number of Insert and Delete operations is loosely a-height-balanced but not
a-height-balanced. The case helps me to understand thoroughly the idea of Scapegoat trees
to prove theorems and explain it in this report.

6.2 Future Work

There could be many improvements to the current project. First, I could investigate how
Scapegoat tree techniques could apply for quad trees in the original paper [3] or even in other
applications not mentioned in the paper as well. Another improvement could come from the
performance of the Demo. Another method of drawing nodes could be explored so that when
rebuilding the subtree rooted at Scapegoat is taken place, the whole tree does not need to be

25

redrawn or just the rebuilt subtree needs to be redrawn. Finally, an alternative way to find
the Scapegoat node might be investigated. Finding Scapegoat node in the implementation
of this project is done in the time of linear in the size of the subtree rooted at Scapegoat.
The alternative way might reduce that kind of complexity into the logarithmic time in the
size of the whole tree because the search for a place to insert might give us some information
to detect the Scapegoat node.

26

REFERENCES

1]

R. Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms. Acta
Informatica, 1:290-306, 1972.

Thomas H. Cormen. Introduction to Algorithms. The MIT Press, second edition edition,
2001.

Igal Galperin and Ronald L. Rivest. Scapegoat trees. In Proceedings of the fourth annual
ACM-SIAM Symposium on Discrete algorithms, pages 165 — 174. Society for Industrial
and Applied Mathematics Philadelphia, PA, USA, 1993.

Leo J. Guibas and Robert Sedgewick. A diochromatic framework for balanced trees. In

Proceedings of the 19th Annual Symposium on Foundations of Computer Sciences, pages
28-34. IEEE Computer Soceity, 1978.

George S. Leuker. A data structure for orthogonal range queries. In In Proceedings of
the 19th Annual Symposium on Foundations of Computer Science, pages 28— 34. IEEE
Computer Society, 1978.

I. Nievergelt and E. M. Reinfold. Binary search trees of bounded balance. SIAM Journal
on Computing, 2:33-43, 1973.

27

Appendix A
HOW TO USE THE DEMO

A.1 How to run

The Demo is already compiled and put in the folder Demo in the enclosed CD. It was written
and compiled in Java version 1.5.0_06. To run the Demo, do the following steps if you don’t
have any IDE to open those java files:

e Enter Command Prompt mode in Windows or Terminal mode in Linux
e Change the current folder to Demo on the CD

e Simply enter command java ScapegoatTreeDemo

A.2 How to do Search, Insert, and Delete

Important notice: For the purpose of demo, all input keys should be positive
integers.

Now when you would like to search, insert, or delete a node, just enter the key of a
node in the text box below the text box of o then press the corresponding buttons. If you
search for or delete a node , for example, node 9 that is not in the tree, you will get the
error message “Node 9 does not exist” in the output text box like in Figure A.1.

While inserting a node already in the tree for example node 5, you will get the error message
“Node 5 already exists” like in Figure A.2.

If inserting a node results in rebuilding a subtree rooted at Scapegoat node , for example,
node 8, you will get the prompting messages: “Scapegoat Node 8 is detected” and “The tree
rooted at Scapegoat is going to be rebuilt.” like in Figure A.3 and A .4.

A.3 How to reset tree with a new «

Sometimes, if you would like to experience a new value of «, just simply enter a new value
in the input text box of alpha and press Reset button. The current tree is deleted and you

28

< Scapegoat Tree Demo

Size: 5 Wiax size: 4 Hu: 2

h2_s5
5
ho_s "az\m s3
1 7
ha0 ho sj/thl] s1
6 9

ha0 hal

0= 0.57 | Reset |
| |
| Insert | | Search | Remowve |
Output:

Yiz greaterthan &
9is greaterthan 7
Insered node: 9

6 iz greaterthan &
Gis lessthan ¥
Inseread naode: 6

2 is greaterthan &
&is greaterthan 7
gis lessthan 9

Mode 8 does not exist.

4] Ii

[Ie]

['»

[4]

Figure A.1: Removing a node that does not exist in a Scapegoat tree

< Scapegoat Tree Demo

Size: § hlax size: 5 Hu: 2
h2_s&

5

ho sq- ha2 \M 53

1

hai hai

7
ha0 ho s;/“?"\.u o1
6 9

= 0.57 | Reset |
| |
| Insert | | Search | Remove |
Qutput:

Gis greaterthan &
fislessthan ¥
Inserted node: 6

8 is greaterthan &
2is greaterthan 7
Biglessthan 8

Mode 8 does not exist.
6 iz greaterthan &
fislessthan ¥

Mode § already exists.

|»

4] i

[Ie]

[4]

Figure A.2: Inserting a node that already exists in a Scapegoat tree

29

< Scapegoat Tree Demo

Size: 6 Maxsizer6 Ho 3
h3_s6
5
ho s ha3 \hZ 54

1

7
ha0 ho s/ haz\n o
6 9
ha0 ha1\lu <1
10

hao

0= 0.57 | | Reset |
| |
| Insert | | Search | | Remowve |
Output:

Az greaterthan 7
Bizlessthan 8

Mode 8 does not exist.
6 iz greaterthan &
Gis lessthan ¥

Maode § already exists.
10is greaterthan
10is greaterthan 7
10is greaterthan 8
Inserted node: 10

4] i [1»]

['»

[4]

Figure A.3: A Scapegoat tree before inserting a node that leads to rebuilding

= Scapegoat Tree Demo

Size: 7 Wiay size: 7 Ho: 3
h3 s7
5
ho s1- had \h2 s5
1 7
ha ho s ha2 \M 53
6 10
ha0 ho S/ha1\lu <1
9 12
hai hal

0= 0.57 | | Reset |
| |
[msert || search | | Remove |
Output:

s greaterthan 7

5 greaterthan 9

Erted node: 10

= greaterthan &

s greaterthan 7

5 greaterthan 9

5 greaterthan 10

Erted node: 12

pegoat 9 is detectad.

tree rlcnjted atthe scapegoatis going to be rebrilt.
1| Iil b

| »

Figure A.4: A Scapegoat tree after inserting a node with rebuidling subtree rooted at Scape-

goat

30

will need to build the new tree from scratch like in Figure A.5

< Scapegoat Tree Demo

Size: 0

iz size: 0

Hio:-2147433648

0= 0.75 | Reset |
| |
| Insert | | Search | Remowve |
Output:

10 is greaterthan 9
Ingered node: 10
12is greaterthan &
12 is greaterthan 7
12 is greaterthan 8
12 is greaterthan 10
Ingered node: 12

o now is 0.75

Scapegoat 9 is detected.
The tree rooted atthe scapegoatis going to be re] |

(]

[v]

['»

Figure A.5: After resetting the new value of «

31

Appendix B
LIST OF FIGURES AND TABLES

32

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
2.5
2.6

0.1

Al
A2
A3
A4

A5

A binary search tree with a =06 4
A weight-unbalanced binary search tree with « =0.6)
A height-unbalanced binary search tree with « =055 6
An incomplete binary search tree oo 7

A sample Scapegoat tree from the Demo 8
A Scapegoat tree before insertion Lo 10
A Scapegoat tree after insertiono L 10
A Scapegoat tree before series of deletiono 12
A Scapegoat tree after series of deletions 12
A Scapegoat tree after series of deletions and rebuilding 12
An orthogonal query in two dimensions 23
Removing a node that does not exist in a Scapegoat tree 29
Inserting a node that already exists in a Scapegoat tree 29
A Scapegoat tree before inserting a node that leads to rebuilding 30
A Scapegoat tree after inserting a node with rebuidling subtree rooted at

Scapegoat e 30
After resetting the new valueof oo 31

33

List of Tables

1 Examples of notations for a binary tree node 8 in Figure 1.1
2 Examples of notations for a binary search tree in Figure 1.1

34

