
A N I L M A H E S H W A R I

N O T E S O N
A L G O R I T H M D E S I G N

C O M P U T E R P R O G R A M M I N G I S A N A R T, B E C A U S E I T A P P L I E S A C -

C U M U L AT E D K N O W L E D G E T O T H E W O R L D , B E C A U S E I T R E Q U I R E S

S K I L L A N D I N G E N U I T Y , A N D E S P E C I A L LY B E C A U S E I T P R O D U C E S

O B J E C T S O F B E A U T Y . A P R O G R A M M E R W H O S U B C O N S C I O U S LY

V I E W S H I M S E L F A S A N A R T I S T W I L L E N J O Y W H AT H E D O E S A N D

W I L L D O I T B E T T E R .

— D O N A L D E . K N U T H

T O M E T H E V E R Y E S S E N C E O F E D U C AT I O N I S C O N C E N T R AT I O N

O F M I N D , N O T T H E C O L L E C T I O N O F F A C T S .

— S WA M I V I V E K A N A N D A

Copyright © 2024 Anil Maheshwari

published by using the style files from the tufte-latex

developers

This work is licensed under a Creative Commons Attribution-
ShareAlike 4.0 International License.

February 2024

Contents

1 Preliminaries 7

2 Probability for CS 27

3 Introduction to Graphs 61

4 Matrices with Applications to CS 81

5 Minimum Spanning Trees 125

6 Lowest Common Ancestor 149

7 Graph Partitioning 155

8 Locality-Sensitive Hashing 177

4

9 Data Streams 205

10 Online Algorithms 233

11 Multiplicative-Weight Update Method 265

12 Dimensionality Reduction 285

13 Second moment method with applications 301

14 Approximation Algorithms Design Techniques 317

15 Network Flow 373

16 Additional Exercises 385

Bibliography 417

5

Preface

These notes extensively use material from the course notes of Lars
Arge, David Mount, COMP 2805/3803 Notes of myself and Michiel
Smid 1, CLRS book 2, Knuth’s Art of Computer Programming 3, 1 A. Maheshwari and M. Smid. Intro-

duction to Theory of Computation. Free
Online, 2012

2 T. H. Cormen, C. E. Leiserson, R. L.
Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3rd edition,
2009

3 Donald E. Knuth. The art of computer
programming, volume 1-3. Addison
Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1998

Kleinberg and Tardos Algorithms book 4, Leskovec, Rajaram and

4 Jon Kleinberg and Eva Tardos. Algo-
rithm Design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA,
2005

Ullman’s book on Algorithms for Massive Data Sets 5. These notes

5 Anand Rajaraman and Jeffrey David
Ullman. Mining of Massive Datasets.
Cambridge University Press, New York,
NY, USA, 2011

are updated occasionally. A substantial update was done in Fall
2013. Chapters on elementary probability, locality sensitive hashing,
dimensionality reduction, and several exercises have been added.
Moreover, as part of the offering of COMP 5703 in the Fall of 2013,
some of the students contributed significantly. Gregory Bint updated
the chapter on the Minimum Spanning Trees and has added a new
section on spanning-tree verification. Alexis Beingessner has pro-
vided a section on the extension of the planar separator theorem. In
the Fall 2015 term, I started to work on the chapter on the Second
Moment Method. The addition of this chapter was inspired by a com-
ment from one of the referees of our paper 6 in ALGOSENSORS 2015,

6 Ahmad Biniaz, Evangelos Kranakis,
Anil Maheshwari, and Michiel Smid.
Plane and planarity thresholds for
random geometric graphs. In Proc.
ALGOSENSORS 2015 (Patras, Greece),
Lecture Notes in Computer Science,
Berlin, Germany, 2015. Springer

where s/he mentioned that the paper is an excellent introduction to
the Second Moment Method at the graduate level. I have pasted the
whole article, more or less verbatim, in that chapter and added a sec-
tion on Cliques. Over time this chapter may evolve. In Summer 2017,
I used a new style file from the Tufte-LaTeX developers to modernize
these notes. In Fall 2019, I completed the first draft of the chapter on
Data Streams. This is followed by a chapter on Online Algorithms
and Multiplicative-Weight Update Method in Spring/Summer 2020

(thanks to COVID-19 with a forced stay abroad). In Spring 2021 I
was able to complete the first draft of chapter on Dimensionality
Reduction. In Summer 2023, I have added a chapter on design tech-
niques for approximaltion algorithms. This also includes a section of
FPTs, but that will likely become a chapter on its own in future. I am
planning to cover some of the classical results as a series of exercises
in various chapters. This will be an ongoing task. I like this way of
learning and want to reflect those in the notes.

I have used parts of this material for the graduate course COMP
5703 (Algorithms), the undergraduate course COMP 3801 (Algo-
rithms for Modern Data Sets), and the new graduate course COMP
5112 (Algorithms in Data Science) at Carleton. These notes aim to
summarize the discussions in the lectures. They are not designed
as stand-alone chapters or comprehensive coverage of a topic. The
exercises are from numerous sources - I have tried to cite the sources.
But I have likely missed the citation for many, and I will welcome the

6

right pointers.
These notes assume a basic familiarity with Data Structures (Bi-

nary Trees, Heaps), basic algorithms (searching and sorting), their
analysis, a course in discrete mathematics including graph theory
and combinatorics, a first-year calculus, a first-year linear algebra,
and a first-year probability course. Since these chapters have been
written over time and many of the TeX tools weren’t available in
olden times, you will see that the initial chapters don’t have elegant
figures or texts. Hopefully, volunteers in the future will modernize
parts of these notes.

If you spot any errors or have a suggestion that can help me
improve these notes, I will be glad to hear from you. If you wish
to add material to these notes, including exercises, please do get in
touch. Thanks in advance!

Art work is by Arti. Thanks!
Anil Maheshwari (anil@scs.carleton.ca)

1
Preliminaries

We will focus on

1. What is an Algorithm

2. Model of Computation

3. Asymptotic Notation

4. Analyzing Recurrences

5. Matrix Multiplication Algorithms

Keywords: O, Ω, Θ, Recurrences, Recursion Tree, Analyzing
Recurrence Relations, Matrix Multiplication.

1.1 Introduction

• These notes are about designing and analyzing algorithms

– What is an Algorithm?:

* Mis-spelled logarithm!.

* The first most popular algorithm is Euclid’s algorithm for
computing the GCD of two numbers.

* A mathematician from the 9th century, Al Khwarizmi, listed https://en.wikipedia.org/wiki/

Muhammad_ibn_Musa_al-Khwarizmialgorithms for adding, multiplying, dividing, square roots,
etc. of numbers in his book. He is regarded as the inventor of
Algorithms.

* A well-defined procedure that transforms an input to an
output.

* Not a program (but often specified like it): An algorithm can
often be implemented in several ways.

* Knuth’s, Art of Computer Programming, vol.1. 1, is a good 1 Donald E. Knuth. The art of computer
programming, volume 1-3. Addison
Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1998

https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi

8 notes on algorithm design

resource on the history of algorithms!. He says that an algo-
rithm is a finite set of rules that gives a sequence of opera-
tions for solving a specific type of problem. Algorithm has
five important features:

Finiteness: must terminate after finite number of steps.
Definiteness: each step is precisely described.
Input: algorithm has zero or more inputs.
Output: has at least one output!
Effectiveness: Each operation should be sufficiently basic

such that they can be done in finite amount of time using
pencil and paper.

– Design: The focus of these notes is on how to design good algo-
rithms, how to prove their correctness, and how to analyze their
efficiency. We will study methods/ideas/tricks for developing
fast and efficient algorithms. A primary aim is to understand
some key techniques that can be applied to many computational
problems.

– Analysis: Abstract/mathematical comparison of algorithms
(without implementing, prototyping and testing them).

• These notes will require proving the correctness of algorithms
and and their analysis. Therefore, MATH is the main tool and is
required for

– Formal specification of problems

– Correctness proofs

– Analysis of efficiency (time, memory usage,...)

Please review mathematical induction, what is a proof?, loga-
rithms, the sum of series, elementary number theory, permuta-
tions, factorials, binomial coefficients, Harmonic numbers, Fi-
bonacci numbers and generating functions [Knuth vol 1. 2 or the 2 Donald E. Knuth. The art of computer

programming, volume 1-3. Addison
Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1998

book on Concrete Mathematics 3 are excellent resources].

3 Ronald L. Graham, Donald E. Knuth,
and Oren Patashnik. Concrete Mathemat-
ics: A Foundation for Computer Science.
Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition,
1994

• Algorithms matter: See how the algorithms are shaping the 21st
century - internet, smart devices, data mining, e-commerce, online
education, search engine, self-driving cars, influencing public-
opinion, space exploration, drug design, . . .

• When is an algorithm efficient?
The tradition is to design algorithms for problems that have

the worst case running time bounded by a polynomial in the
size of the input. For example, algorithms with the worst case
running times of O(n), O(n2), O(n3) for problems of input size
n are considered efficient. Not all the problems have efficient
algorithms. And there are several problems, for which we don’t

preliminaries 9

know whether they have efficient algorithms. For example, explore http://www.claymath.org/

millennium-problems/

p-vs-np-problem
what are complexity classes P and NP and the Millennium Prize

Problem: Is P ?
=NP?

1.2 Model of Computation

A computation model typically describes how the memory, the
communication, and the computation are organized in a computer.
It helps us design an algorithm, irrespective of worrying about the
nitty-gritty details of a specific computer (e.g. size of RAM, type of
processor), and to evaluate an algorithm’s computational complexity.
There are several models of computation depending on the context.
For example, we study finite automata, context-free grammars, and
Turing machines in a typical Theory of Computation course. We may
learn various parallel computing models (e.g. PRAM, Hypercubes,
BSP) in a parallel algorithms course. For these notes, we will use the
RAM model of computation.

Random-access machine (RAM) model:

• Memory consists of an infinite array of cells.

• Each cell can store at most one data item (bit, byte, a
record, ..).

• Any memory cell can be accessed in unit time.

• Instructions are executed sequentially

• All basic instructions take unit time:

– Load/Store

– Arithmetic’s (e.g. +,−, ∗, /)

– Logic (e.g. >)

The benefits of the RAM model are:

• Helps in predicting the resources used by the algorithm: running
time and the space.

• Running time of an algorithm is the number of RAM instructions it
executes.

• RAM model is not realistic, e.g.

– memory is finite (even though we often imagine it to be infinite
when we program)

http://www.claymath.org/millennium-problems/p-vs-np-problem
http://www.claymath.org/millennium-problems/p-vs-np-problem
http://www.claymath.org/millennium-problems/p-vs-np-problem

10 notes on algorithm design

– not all memory accesses take the same time (cache, main mem-
ory, disk)

– not all arithmetic operations take the same time (e.g. multiplica-
tions are expensive)

– instruction pipelining

– other processes

• But RAM model often is enough to give relatively realistic results
(if we don’t cheat too much).

1.3 Asymptotic Analysis

We do not want to compute a detailed expression of an algorithm’s
run time but instead like to feel what it is like? We will like to see
the trend - i.e. how does it increases when the size of the input
increases- is it linear in the size of the input? or quadratic? or expo-
nential? or who knows? The asymptotics essentially capture the rate
of the growth of the underlying functions describing the run-time.
Asymptotic analysis assumes that the input size is large (since we are
interested in how the running time increases when the problem size
grows) and ignores the constant factors (which are usually dependent
on the hardware, programming smartness or tricks, compile-time-
optimizations).

David Mount suggests the following simple definitions based on https://www.cs.umd.edu/

class/fall2013/cmsc451/Lects/

cmsc451-fall13-lects.pdf
the limits of functions describing the running time of algorithms. We
will describe the formal definitions later.

Let f (n) and g(n) be two positive functions of n. What does it
mean when we say that both f and g grow at roughly the same rate
for large n (ignoring the constant factors), i.e.

lim
n→∞

f (n)
g(n)

= c,

where c is a constant and is neither 0 nor ∞. We say that f (n) ∈
Θ(g(n)), i.e. they are asymptotically equivalent. What about f (n)
does not grow significantly faster than g(n) or grows significantly
faster? Here is the table capturing these relationships:

https://www.cs.umd.edu/class/fall2013/cmsc451/Lects/cmsc451-fall13-lects.pdf
https://www.cs.umd.edu/class/fall2013/cmsc451/Lects/cmsc451-fall13-lects.pdf
https://www.cs.umd.edu/class/fall2013/cmsc451/Lects/cmsc451-fall13-lects.pdf

preliminaries 11

Asymptotic Form Relationship Definition

f (n) ∈ Θ(g(n)) f (n) ≡ g(n) 0 < lim
n→∞

f (n)
g(n) < ∞

f (n) ∈ O(g(n)) f (n) ≤ g(n) 0 ≤ lim
n→∞

f (n)
g(n) < ∞

f (n) ∈ Ω(g(n)) f (n) ≥ g(n) 0 < lim
n→∞

f (n)
g(n)

f (n) ∈ o(g(n)) f (n) < g(n) lim
n→∞

f (n)
g(n) = 0

f (n) ∈ ω(g(n)) f (n) > g(n) lim
n→∞

f (n)
g(n) = ∞

Example: T(n) =
n
∑

x=1
x2 ∈ Θ(n3).

Note that
n
∑

x=1
x2 = 2n3+3n2+n

6 .

Thus,

lim
n→∞

T(n)
n3 = lim

n→∞

(n3 + 3n2 + 2n)/6
n3

= lim
n→∞

(
n3

6n3 +
3n2

6n3 +
2n
6n3

)
= lim

n→∞

(
1
6
+

1
2n

+
1

3n2

)
=

1
6

Since 0 < 1/6 < ∞, we have T(n) =
n
∑

x=1
x2 ∈ Θ(n3).

1.3.1 O-notation

O(g(n)) = { f (n) : ∃ constants c, n0 > 0 such that f (n) ≤
cg(n), ∀n ≥ n0}

• O(·) is used to asymptotically upper bound a function.

• O(·) is used to bound the worst-case running time (see
Figure 1.1).

n0

cg(n)

f(n)

Figure 1.1: Illustration of O() notation.

• Examples:

– 1
3 n2 − 3n ∈ O(n2) because 1

3 n2 − 3n ≤ cn2 if c ≥ 1
3 − 3

n which
holds for c = 1

3 and n > 1.

Using the limits, we have lim
n→∞

1
3 n2−3n

n2 = 1
3 . As 1

3 < ∞, 1
3 n2− 3n ∈

O(n2).

– Let p(n) = ∑d
i=0 aini be a polynomial of degree d and assume

that ad > 0. Then p(n) ∈ O(nk), where k ≥ d is a constant. What
are c and n0 for this?

12 notes on algorithm design

Using the limits we have lim
n→∞

∑d
i=0 aini

nk = ad
nk−d ≤ ad < ∞. Thus,

p(n) ∈ O(nk).

• Note:

– When we say “the running time is O(n2)”, we mean that the
worst-case running time is O(n2) — best case may be better.

– We often abuse the notation:

* We write f (n) = O(g(n)) instead of f (n) ∈ O(g(n)).

* We often use O(n) in equations: e.g. 2n2 + 3n + 1 = 2n2 +

O(n) (meaning that 2n2 + 3n + 1 = 2n2 + f (n) where f (n) is
some function in O(n)).

* We use O(1) to denote a constant.

1.3.2 Ω-notation (big-Omega)

Ω(g(n)) = { f (n) : ∃ constants c, n0 > 0 such that
cg(n) ≤ f (n), ∀n ≥ n0}

• Ω(·) is used to asymptotically lower bound a function
(see Figure 1.2).

f(n)

n0

cg(n)

Figure 1.2: Illustration of Ω() notation.

• Examples:

– 1
3 n2 − 3n = Ω(n2) because 1

3 n2 − 3n ≥ cn2 if c ≤ 1
3 − 3

n which is
true if c = 1

6 and n > 18.

Moreover, lim
n→∞

1
3 n2−3n

n2 = 1
3 . As 0 < 1

3 , 1
3 n2 − 3n ∈ Ω(n2).

– Let p(n) =
d
∑

i=0
aini be a polynomial of degree d and assume that

ad > 0. Then p(n) ∈ Ω(nk), where k ≤ d is a constant. What are
c and n0 for this?

Using the limits we have lim
n→∞

d
∑

i=0
aini

nk = adnd−k ≥ ad > 0. Thus,

p(n) ∈ Ω(nk).

– Prove or disprove: g(n) = Ω(f (n)) if and only if f (n) =

O(g(n)).

• Note:

– When we say “the running time is Ω(n2)”, we mean that the
best case running time is Ω(n2) — the worst case might be
worse.

preliminaries 13

1.3.3 Θ-notation (Big-Theta)

Θ(g(n)) = { f (n) : ∃ c1, c2, n0 > 0 such that c1g(n) ≤
f (n) ≤ c2g(n) ∀n ≥ n0}

• Θ(·) is used to asymptotically tight bound a function.

n0

c g(n)

2

1

f(n)

c g(n)

Figure 1.3: Illustration of Θ() notation.

f (n) = Θ(g(n)) if and only if f (n) = O(g(n)) and f (n) =
Ω(g(n)) (see Figure 1.3)

• Examples:

– 6n log n +
√

n log2 n = Θ(n log n):

* We need to find n0, c1, c2 such that

c1n log n ≤ 6n log n +
√

n log2 n ≤ c2n log n

for n > n0.
Since c1n log n ≤ 6n log n +

√
n log2 n⇒ c1 ≤ 6 + log n√

n .
This holds if we choose c1 = 6 and n0 = 1.
Now for 6n log n +

√
n log2 n ≤ c2n log n⇒ 6 + log n√

n ≤ c2.

This holds for c2 = 7 as log n ≤ √n for n ≥ 2.

* Therefore, c1 = 6, c2 = 7 and n0 = 2 ensures 6n log n +√
n log2 n = Θ(n log n).

Alternatively, lim
n→∞

6n log n+
√

n log2 n
n log n = 6. Since 0 < 6 < ∞, we

have 6n log n +
√

n log2 n = Θ(n log n).

– Let p(n) =
d
∑

i=0
aini be a polynomial of degree d and assume that

ad > 0. Then p(n) ∈ Θ(nd).

From limits we know that lim
n→∞

p(n)
nd = ad and 0 < ad < ∞. Thus,

p(n) ∈ Θ(nd).

1.4 How to Analyze Recurrence Relations

Many divide-and-conquer algorithms running times are expressed
as a recurrence relation. For example, merge-sort and quick-sort
have the recurrence relation T(n) = 2T(n

2) + O(n), where n is the
size of the problem (= number of elements to be sorted) and T(n)
represents the time to sort the set of n elements. To estimate the
running time, we need to unfold the recurrence relation and obtain
a ‘closed form’ expression for the running time. There are many
ways of solving recurrences. We will illustrate two main methods.
Algorithms books refer to them as the recursion-tree method and the
substitution method.

14 notes on algorithm design

1.4.1 Recursion Tree Method

Visualize the unfolding of the recurrence relation as a tree. The nodes
of the tree represent the cost incurred at the various levels of the
recursion. We illustrate this method using the following recurrence
(so-called the recurrence used in the Masters’ method).

Let a ≥ 1, b > 1 and c > 0 be constants and let T(n) be the recurrence

T(n) = aT
(n

b

)
+ cnk,

defined for integer n ≥ 0. Then

Case 1: a > bk then T(n) = Θ(nlogb a).

Case 2: a = bk then T(n) = Θ(nk logb n).

Case 3: a < bk then T(n) = Θ(nk).

Geometric Series - A Summary
Consider the series S = 1 + x + x2 + · · ·+ xn,
where x is a constant independent of n.
If x = 1, S = n + 1.
If x = 0, S = 1.
Assume x 6= {0, 1}.
Note Sx = x + x2 + · · ·+ xn+1.
Therefore, S− Sx = 1− xn+1.
Since x 6= 1, we have S = 1−xn+1

1−x
Observe that
If 0 < x < 1, S = 1−xn+1

1−x ≤ 1
1−x = Θ(1).

If 0 < x < 1 and n→ ∞, S = 1
1−x .

If x > 1, Sn = xn+1−1
x−1 ≥ xn+1−xn

x−1 = xn and

Sn = xn+1−1
x−1 ≤ xn+1

x−1 = x
x−1 xn = O(xn).

Therefore, for x > 1, S = Θ(xn), i.e. S is proportional to the last term of the series.

Before we proceed with the proof, note that in the recurrence
relation T(n) = aT

(n
b
)
+ cnk, the cnk term accounts for the time

for splitting (dividing) the problem of size n into subproblems and
the time for merging the solutions of the subproblem to obtain the
solution for the problem. For the case of sorting recurrence relation
T(n) = 2T(n

2) +O(n), we have a = 2, b = 2, and the time for splitting
and merging a problem of size n is O(n). The proof is fairly simple
and uses the sum of the terms in a geometric series. We need to
visualize the levels of the underlying recursion tree (see Figure 1.4).

n

n
b

n
b

n
b

a

n
b2

n
b2

n
b2

a

n
b2

n
b2

n
b2

a

n
b2

n
b2

n
b2

a

Figure 1.4: Illustration of recurrence
tree.

Level 1: a subproblems are formed, each of size n/b, and the total
cost is cnk.

Level 2: a2 subproblems are formed, each of size n/b2, and the total
cost is a ∗ c(n/b)k.

Level 3: a3 subproblems are formed, each of size n/b3, and the total
cost is a2 ∗ c(n/b2)k.

...

Level logb n: alogb n subproblems are formed, each of constant size
and the total cost is ≈ alogb nc(n

blogb n)
k.

Therefore the total cost is

T(n) = O(nlogb a) +
logb n

∑
i=0

aic
(n

bi

)k
.

preliminaries 15

The expression nlogb a is the number of leaves of this recurrence
tree. Each leaf represents a constant size problem, and all the leaves

in total require O(nlogb a) computation time. The term ∑
logb n
i=0 aic

(
n
bi

)k

is the summation of the costs for the divide and conquer steps at
each level of the recurrence. Note that this is a geometric series,
whose sum is typically governed by the first term of the series, or
the last term of the series, or each term if they are all equal. We can
derive the various cases by evaluating the geometric series. Useful log identities

• 25 = 32

• log2 32 = 5

• log2(a · b) = log2 a + log2 b

• If b 6= 0, log2(a/b) = log2 a− log2 b

• log2(ab) = b log2 a

• alog2 b = blog2 a

• log2 a =
logd a
logd 2

For example log2(1024) = log10(1024)
log10 2 = 3.01

.301 = 10

• 2log2(a) = a

• log2(
k
√

a) = 1
k log2 a

For example, consider Case 2, where a = bk. Now ∑
logb n
i=0 aic

(
n
bi

)k
=

∑
logb n
i=0 cnk = Θ(nk logb n). Thus T(n) = O(nlogb a) + Θ(nk logb n) =

Θ(nk logb n).
Other cases are left as exercises.

1.4.2 Substitution Method

Consider the following recurrence

T(n) = T(n/3) + T(2n/3) + n.

We can assume T(n) = O(1) for small values of n. This recurrence
doesn’t fit the format of the recurrence discussed above. We may try
T(n) = T(n/3) + T(2n/3) + n ≤ 2T(2n/3) + n and apply the above
method to solve the recurrence. As a = 2, b = 3/2, and k = 1, the

Case 1 applies and the recurrence evaluates to T(n) ≤ O
(

n
log 3

2
2
)

.

Note that log 3
2

2 ≈ 1.7. But, using the substitution method, we
will see that this recurrence evaluates to Θ(n log n), and note that

n log n = o
(

n
log 3

2
2
)

.

For these (or any) recurrences, we can try the substitution method.
Here we guess a solution and verify that our guess is correct using
induction. Typically the complexity of an algorithm for a problem of
size n will be one of {O(log n), O(n), O(n log n), O(n2), O(n2 log n), O(n3), ...},
and hence using induction, we can try to see which one of these ex-
pressions work. Next we show that T(n) = T(n/3) + T(2n/3) + n =

O(n log n) by using induction on the problem size n. A detailed
solution can be found in 4. 4 T. H. Cormen, C. E. Leiserson, R. L.

Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3rd edition,
2009

We want to show that T(n) = T(n/3) + T(2n/3) + n = O(n log n)
using induction on n. By assumption, it holds for small values of
n. Assume that by induction hypothesis, the statement holds for all
values k < n, i.e. T(k) ≤ ck log2 k for some appropriately chosen
constant c. Now we want to show that it holds for n, i.e. T(n) ≤
cn log2 n.

16 notes on algorithm design

Need to show that

cn log2 n ≥ T(n/3) + T(2n/3) + n

⇔ cn log2 n ≥ c
n
3

log2
n
3
+ c

2n
3

log2
2n
3

+ n (Using induction hypothesis)

⇔ cn log2 n ≥ c
n
3
(log2 n− log2 3) + c

2n
3
(log2 2 + log2 n− log2 3) + n

⇔ 0 ≥ c
n
3
(− log2 3) + c

2n
3
− c

2n
3

log2 3 + n

⇔ 0 ≥ −c log2 3 + c
2
3
+ 1

⇔ c ≥ 1
log2 3− 2

3
≈ 1.09

Therefore, the statement holds if we choose for example c = 2, i.e.
T(n) = T(n/3) + T(2n/3) + n = O(n log n).

Consider another example, where T(n) = 2T(n
2) + n log n, and

assume that for small values of n, T(n) = O(1). This recurrence
relation also doesn’t fit in the format to apply the recursion tree
method. Using the substitution method, we will show that T(n) =

O(n log2 n) by applying induction on the problem size n.
Since T(n) = O(1) for small values of n, we can assume that the

base case holds. Assume that for all values of k < n, T(k) ≤ ck log2 k
for some appropriately chosen constant c. We assume the base of log
is 2.

Need to show that

cn log2 n ≥ 2T
(n

2

)
+ n log n

⇔ cn log2 n ≥ 2c
n
2

log2 n
2
+ n log n (Using induction hypothesis)

⇔ cn log2 n ≥ cn(log n− 1)2 + n log n

⇔ cn log2 n ≥ cn
(

log2 n + 1− 2 log n
)
+ n log n

⇔ 0 ≥ cn− 2cn log n + n log n

⇔ c(2 log n− 1) ≥ log n

⇔ c ≥ log n
2 log n− 1

Therefore, the statement holds if we choose c = 1. Thus, T(n) =

2T(n
2) + n log n = O(n log2 n).

In summary, if we are able to ‘guess’ the right answer, the substitu-
tion method is a good choice to analyze the recurrence relations.

preliminaries 17

1.5 Algorithms for Matrix Multiplication

1.5.1 Matrix Multiplication

This is a classical example to illustrate the recurrences as well as the
divide and conquer method. Consider Strassen’s matrix multiplica-
tion method 5 as illustrated in the following. Let X, Y and Z be three 5 D. Kozen. The design and analysis

of algorithms. Springer, 1992; and
V. Strassen. Gaussian elimination is
not optimal. Numerische Mathematik,
13:354–356, 1969

n× n matrices, where Z = X · Y. There are n rows, n columns and
n× n entries in each of the matrices.

• X =

x11 · · · x1n

· · · · · · · · ·
· · · · · · · · ·
xn1 · · · xnn

• Y =

y11 · · · y1n

· · · · · · · · ·
· · · · · · · · ·
yn1 · · · ynn

• We want to compute Z = X ·Y, where

zij =
n

∑
k=1

xik · ykj

• How many operations we require?

• In all we generate n2 entries in the matrix Z and each entry re-
quires n multiplications and n− 1 additions. So the total number of
operations can be bounded by O(n3).

• Next we want to discuss a divide and conquer solution by Strassen
that requires only O(nlog2 7) ≈ O(n2.81) operations.

• Let’s first analyze the recurrence

T(n) = 7T(n/2) + cn2,

where c is a constant, n is a positive integer, and T(constant) =

O(1).

• Using the recursion tree method, a = 7, b = 2, c = c, k = 2 and
a > bk. Hence T(n) = O(nlog2 7).

1.5.2 Strassen’s Algorithm

• Divide each of the matrices into four sub-matrices, each of dimen-
sion n/2× n/2. Strassen observed the following:

Z =

[
A B
C D

] [
E F
G H

]
=

[
S1 + S2 − S4 + S6 S4 + S5

S6 + S7 S2 + S3 + S5 − S7

]

18 notes on algorithm design

where

S1 = (B− D) · (G + H)

S2 = (A + D) · (E + H)

S3 = (A− C) · (E + F)

S4 = (A + B) · H
S5 = A · (F− H)

S6 = D · (G− E)

S7 = (C + D) · E

– Lets test that for S4 + S5, which is supposed to be AF + BH.

S4 + S5 = (A + B) · H + A · (F− H)

= AH + BH + AF− AH

= AF + BH

• This leads to a divide-and-conquer algorithm with the recurrence
relation T(n) = 7T(n/2) + Θ(n2), since

– We only need to perform 7 multiplications recursively. Ad-
ditions/Subtractions only take Θ(n2) time, and we need to
perform 18 of them for n/2× n/2 matrices for each step of the
recursion.

– Division/Combination can still be performed in Θ(n2) time.

Matrix multiplication is a fundamental problem, and it arises in
almost all branches of Sciences, Social Sciences and Engineering. For
example, high-energy physicists multiply monstrous matrices. There
have been numerous improvements over Strassen’s method. Note
that any matrix multiplication algorithm needs to perform Ω(n2)

operations since the output matrix Z has many entries.

1.5.3 Matrix Product Verification

Given three n × n matrices A, B and C, is AB = C? It turns out
that there is a nice and simple randomized algorithm that can verify
whether the product is correct in O(n2) time and succeeds with
probability at least 1

2 . It is based on the following result (See Motwani
and Raghavan 6 for details). 6 Rajeev Motwani and Prabhakar

Raghavan. Randomized algorithms.
Cambridge University Press, New York,
NY, USA, 1995

Theorem 1.5.1 Let A, B, and C be n × n matrices over a finite field F
such that AB 6= C. Then for r chosen uniformly at random from {0, 1}n,
probability that Pr(ABr = Cr) ≤ 1/2.

preliminaries 19

Proof. Let D = C− AB. Since C 6= AB, D 6= 0.
Moreover, since ABr = Cr =⇒ (AB− C)r = 0 =⇒ Dr = 0.
Since D 6= 0, there is an entry, say dij 6= 0.

Since Dr = 0, we have that
n
∑

k=1
dikrk = 0.

We can express rj = −

j−1
∑

k=1
dikrk+

n
∑

k=j+1
dikrk

dij

Since only a specific value of rj satisfies this equation, and we can
choose rj to be either 0 or 1 with equal probability, thus Pr(Dr =

0) ≤ 1
2 .

The randomized algorithm is as follows. Choose an n-dimensional
random Boolean vector r. Evaluate the product A(Br) and the prod-
uct Cr and check whether they are the same or not. If ABr 6= C,
report AB 6= C. Otherwise, report AB = C. The above theorem
states that the probability that we make an error, i.e. if AB 6= C and
we report that AB = C is at most 1

2 . Since the product of an n × n
matrix with an n-dimensional vector requires O(n2) time, and there-
fore we can verify whether AB = C in O(n2) time by a randomized
algorithm.

1.6 Exercises

1.1 Let S = 1 + x + x2 + · · ·+ xn. Show the following

1. If x = 1, S = n + 1.

2. If x = 0, S = 1.

3. If x 6= {0, 1}, S = 1−xn+1

1−x .

4. If 0 < x < 1 and n→ ∞, S = 1
1−x .

5. If 0 < x < 1, S = 1−xn+1

1−x ≤ 1
1−x = Θ(1).

6. If x > 1, Sn = xn+1−1
x−1 ≥ xn+1−xn

x−1 = xn and

Sn = xn+1−1
x−1 ≤ xn+1

x−1 = x
x−1 xn = O(xn).

7. For x > 1, S = Θ(xn),
i.e. S is proportional to the last term of the series.

1.2 Show that for positive constants α, β and positive number n, α
logβ n =

nlogβ α

1.3 Show that

1. 4
√

n = ω(3
n
3)

2. 2
n
3 = o(3

√
n)

20 notes on algorithm design

3. log(nk) = O(logk n), for any integer constant k ≥ 1

4. nlog2(4) = Θ(22 log2 n)

5. n100 = o(2n)

6. (log n)a = o(nb), for any constants a, b > 0.

7. na = O(nb) if 1 < a ≤ b

1.4 Are the following true or false? Justify.

1. Given integer constants a, b, where a < b. Is abn
= O(ban

)? (For
example, Is 34n

= O(43n
)?) Note that 342 6= 34∗2.

2. Given integer constants a, b, where a < b. Is nlogb n = o(nloga n)? (For
example, Is nlog4 n = o(nlog2 n)?

3. If f ∈ Θ(g) then f (n) ≥ g(n) for all large values of n?

4. Suppose f (1) = 106 and g(1) = 10−6 then g(n) ∈ O(f (n))?

1.5 Let p(n) = adnd + ad−1nd−1 + · · · a1n + a0, where ad > 0, be a
d-degree polynomial in n. Also a0, · · · , ad are positive constants. Let k be a
positive integer. Show that

1. If k ≥ d, then p(n) = O(nk).

2. If k ≤ d, then p(n) = Ω(nk).

3. If k = d, then p(n) = Θ(nk).

1.6 Let T(n) =
n
∑

x=1
x2. Show that T(n) ∈ O(n4) and T(n) = n3/3 +

O(n2).

1.7 Evaluate the following recurrences (You can assume that T(1) = 1 in
each of them).

1. T(n) = 2T(n/2) + O(n).

2. T(n) = 4T(n/4) + O(n).

3. T(n) = T(3n/4) + O(n).

4. T(n) = T(7n/8) + O(n).

5. T(n) = T(n− 1) + O(1).

6. T(n) = T(n− 2) + O(1).

7. T(n) =
√

nT(
√

n) + n.

preliminaries 21

1.8 Solve the recurrence relation

T(n) = T(xn) + T((1− x)n) + cn

in terms of x and n where x is a constant in the range 0 < x < 1. Is
the asymptotic complexity the same when x = 0.5, 0.1 and 0.001? What
happens to the constant hidden in the O() notation.

1.9 For any value of x, 0 < x < 1, show that x− (1+ x) ln(1+ x)+ 1
3 x2 ≤

0.

1.10 Fibonacci numbers are defined recursively as follows:
F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for any integer n > 1.
Using induction show that Fn ≥ 2

n
2 for any n ≥ 6.

1.11 Suppose you need to choose between the following algorithms which
solves the same problem:

1. Algorithm A solves the problem by dividing it into 5 subproblems of half
of the size, recursively solves each of them, and combines the solution in
linear time.

2. Algorithm B solves the problem of size n by recursively solving two
subproblems of size n− 2 and then combining the solutions in constant
time.

3. Algorithm C solves the problem of size n by dividing it into 9 sub-
problems of size n/3 each, recursively solving each of them, and then
combining the solution in O(n2) time.

What are the running times of each of these algorithms? Which one will you
choose and Why?

1.12 V. Pan has discovered a way to multiply two 70 ∗ 70 matrices using only
143640 multiplications. Ignoring the additions, what will the asymptotic
complexity of Pan’s algorithm for multiplying two n ∗ n matrices? Is it better
than Strassen’s? Justify your answer.

1.13 This is from 7 and is based on Divide-and-Conquer Multiplication. (Do 7 T. H. Cormen, C. E. Leiserson, R. L.
Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3rd edition,
2009

not use FFTs as such for this)

1. Show how to multiply two polynomials of degree 1, namely ax + b and
cx + d using only three multiplications. (Note that (a + b).(c + d) is
considered as one multiplication.)

2. Give a divide-and-conquer algorithm for multiplying two polynomials
of degree n that runs in Θ(nlog2 3) time. You may think of dividing the
coefficients into a high half and a low half, or in terms of whether the
index is even or odd.

22 notes on algorithm design

3. Show that two n-bit integers can be multiplied in O(nlog2 3) steps, where
each step operates on at most a constant number of 1-bit values.

1.14 Let x be a number. Let n = 2k for some positive integer k. Present an
algorithm running in O(log n) time to compute: z = xn mod 10.

1.15 Suppose we have n real numbers, where no two are the same. We want
to report the smallest i numbers in the sorted order, where i < n. Which
algorithm you think is the best option (Justify your answer)?

A. Sort the numbers and list the first i.
B. Build a priority queue and then call Extract-Min i times.
C. Use the order statistics to find the i-th smallest number, partition the

set according to this value, and then sort the i smallest numbers.

1.16 Let A and B be two arrays, each consisting of n distinct elements in
sorted order (in an increasing order). Report the median of the set A ∪ B in
O(log n) time.

1.17 Given two binary strings a = a0a1 . . . ap and b = b0b1 . . . bq, where
each ai and bj are either 0 or 1. We say that a ≤ b if either of the following
holds

(1) there exists an integer j, 1 ≤ j ≤ min(p, q), such that ai = bi for all
i = 0, 1, ..., j− 1 and aj < bj.

(2) p < q and ai = bi for all i = 0, 1, 2, , , , p.
Let A ⊆ Σ∗ be a set of distinct binary strings whose lengths sums up to

n. Present an algorithm that can sort the binary strings in O(n) time. (All
the strings are not of the same length!)

1.18 We want to sort n > 0 distinct real numbers in ascending order.
Assume that these numbers are given in an array A of size n. We are also
given a function double-partition(i,j) which takes as input two indices
1 ≤ i < j ≤ n of A, where j − i ≥ 2, and returns two elements x, y ∈
{A[i], A[i + 1], . . . , A[j]} that satisfy the following:

1. x < y

2. The number of elements in {A[i], A[i + 1], . . . , A[j]} that are smaller than
x are at most d j−i

3 e.

3. The number of elements in {A[i], A[i + 1], . . . , A[j]} that are larger than
y are at most d j−i

3 e.

4. The number of elements in {A[i], A[i + 1], . . . , A[j]} that are larger than
x but smaller than y are at most d j−i

3 e.

5. It takes O(j− i) time to compute x and y.

Design an algorithm, running in O(n log n) time, to sort any set of n
distinct real numbers using the function double-partition.

preliminaries 23

1.19 You are given an array A consisting of n positive integers, where each
element is ≤ 10n. Devise an algorithm, running in O(n) time, to sort A in
ascending order. Justify your answer.

1.20 Recall that there is a lower bound for sorting. Answer the following
questions

1. What does it mean to have a lower bound for a problem?

2. State clearly what is the lower bound claim for sorting a set of n (real)-
numbers.

3. Why this claim does not apply to the previous problem?

1.21 You are given an array A consisting of n real numbers. Describe and
analyze an algorithm, running in O(n) time, that rearranges the elements
of A so that A forms a binary heap. Once A is transformed into a Binary
Heap, show how you can report the elements in A in sorted (ascending)
order. How much time it takes to report all the elements of A in the sorted
order? Justify your answer.

1.22 You are given a set of n real numbers which you are asked to insert
incrementally in an initially empty binary search tree. Note that the time to
insert an element in a binary search tree of size x is O(log x). What is the
total running time of inserting all the n elements in the tree. Justify your
answer. Assume that you have formed the binary search tree on n elements,
show how you can report the elements in a sorted order in O(n) time.

1.23 Reflecting on the answers to the previous two questions, is the con-
struction of a binary heap in O(n) time or reporting the elements in sorted
order from a binary search tree in O(n) time is in contradiction to the lower
bound for sorting? Justify your answer.

1.24 Discuss a couple of scenarios where you will be using a binary heap
instead of a binary search tree. Justify your answer.

1.25 Let S be a set of n distinct real numbers. Devise an algorithm, running
in O(n + k log k) time, to report the k smallest elements of S in sorted order,
where k ∈ {1, . . . , n}) .

1.26 Let S be a set of n-distinct real numbers and let k ≤ n be a positive
integer (k may not be a constant). Design an algorithm, running in O(n)
time, that determines the k numbers in S that are closest to the median of S.
For example, for the set {21, 70, 3, 1, 6, 7, 11, 2, 9, 8, 17, 13, 25}, median is 9,
and the k = 4 closest numbers to 9 are 8, 7, 11, and 6.

1.27 Let A and B be two sorted arrays, each array consists of n real num-
bers in ascending order. Give an algorithm, running in O(log n) time, to

24 notes on algorithm design

compute the median of the elements formed by the union of the elements in
both the arrays. (You may assume that the union consists of 2n distinct real
numbers.) Hint: Assume that the median element is from A, and assume
that it is at index i. Then for x = A[i] to be the median element, you can say
something about how many elements in B need to smaller than x and that
can be checked in O(1) time. The problem to solve here is how fast you can
search for x in A

1.28 Let A be an array consisting of n distinct real numbers. You need to

find a real number x (x may not be an element of A) such that
n
∑

i=1
|x− A[i]|

is minimized. Your algorithm should run in O(n) time.

1.29 Assume that you have a set of three parallel and distinct lines in plane.
Assume that Line 1 contains a set R of n red points, Line 2 contains a set B
of n blue points, and Line 3 contains a set G of n green points, where n is a
positive integer.

L1

L2

L3

You need to design an algorithm that determines if there is a triplet of
points (r, b, g) such that they lie on a line segment, where r ∈ R, b ∈ B and
g ∈ G. (Observe that it is straightforward to design an algorithm running
in O(n3) time by considering each choice for points r, b, and g, and in O(1)
time testing whether they all lie on a segment.) To get Bonus points, design
an algorithm running in O(n2) time.

1.30 Suppose you want to have an extra operation called HEAP-DELETE
(A, i), which deletes the item at node i from the heap A. Give an algorithm
that can implement this in O(log n) time for an n-element max-heap. Show
why it runs in the stated complexity.

1.31 Suppose you are given a sequence S of n integers in the range [0, · · · , n3−
1]. Describe a simple method of sorting them in O(n) time.

1.32 Describe an algorithm that given n integers in the range 0, . . . , k,
preprocesses its input and then answers any query about how many of the n
integers fall into a range [a..b] in O(1) time, where 0 ≤ a ≤ b ≤ k. Your
algorithm should use Θ(n + k) preprocessing time.

1.33 Suppose you want to merge two sorted lists A and B each of size n.
Show that if two elements ai and bj are consecutive in the final sorted order,
where ai ∈ A and bj ∈ B, then during the algorithm there is a comparison
made between them.

1.34 The recurrence T(n) = T(n
5) + T(7n

10) + n shows up in the median of
medians algorithm of 8. Assume that for small values of n, T(n) = O(1). 8 Manuel Blum, Robert W. Floyd,

Vaughan Pratt, Ronald L. Rivest, and
Robert E. Tarjan. Time bounds for
selection. Journal of Computer and System
Sciences, 7(4):448–461, 1973

Using the substitution method, show that the recurrence T(n) evaluates to
O(n).

preliminaries 25

1.35 Consider that there is an array P containing n-photographs. It is
possible that all photos are not distinct. We need to find out if there is a
photograph that occurs at least b n

2 c+ 1 times in P (if such an element exists,
then call it the majority element). Note that we can compare two photo’s

and decide in O(1) time whether they are identical (i.e., the test P[i] ?
= P[j]),

but we don’t have any mechanism to decide whether P[i] < P[j] (i.e., the
elements of P cannot be sorted).

a) First devise an O(n log n) time algorithm for this problem using
divide-and-conquer (e.g. split the array into two equal parts, and will
knowing the majority element of both the halves will help in finding the
majority element of the whole array?).

b) Devise an O(n) algorithm for this problem. Think of forming n/2-
pairs, each pair consisting of 2 elements, and then decide which elements to
keep.

3 7 9 2

11 85 12

181 19 16

134610

(1, 1)

(4, 4)

(2, 1)

(3, 1)

(4, 1)

(1, 4)

(2, 4)

(3, 4)

Figure 1.5: 4× 4 grid graph G. Vertex
coordinates are in blue color. Neighbors
of vertex (1, 1) are (1, 2) and (2, 1).
Vertex at coordinate (3, 3) with value 19

is a dominant vertex of G.

1.36 Let G be a n × n integer grid graph, where n is a positive integer.
Each vertex of G is specified by its coordinate (i, j), where 1 ≤ i ≤ n and
1 ≤ j ≤ n. The neighbors of a vertex (i, j) are the vertices (i− 1, j), (i+ 1, j),
(i, j− 1), and (i, j + 1) (if they exist). Each vertex holds a unique number.
We say a vertex (i, j) is dominant, if the number stored at that vertex is
larger than the numbers stored at all of its neighbors. Show that G has a
dominant vertex. Design an algorithm running in O(n) time to report a
dominant vertex in G. Note that G has n2 vertices. For an illustration, see
Figure 1.5.

1.37 Let S be a set of n points on a real line. How fast can you find a
pair of points that have the smallest distance? What if the points are in
2-dimensional real plane?

1.38 Let A be an array of size n, where each A[i] is an integer (positive or

negative) and 1 ≤ i ≤ n. For 1 ≤ i ≤ j ≤ n, define ∆(i, j) =
j

∑
k=i

A[k].

Find a maximum subarray of A, i.e., find a pair of indices α and β, where
1 ≤ α ≤ β ≤ n, such that ∆(α, β) ≥ ∆(i, j), for all possible choices of
1 ≤ i ≤ j ≤ n. Devise first a naive algorithm running in O(n3) time
by considering all possible choices of i and j. Devise an O(n log n) time
divide-and-conquer algorithm. Can you come up with an algorithm running
in O(n) time? See Exercise 4.1-5 of 9. 9 T. H. Cormen, C. E. Leiserson, R. L.

Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3rd edition,
2009

1.39 Let A be an array consisting of n distinct integers. Show that we can
compute the maximum and the minimum element of A by performing at
most 3n/2 comparisons.

1.40 Let A be an array consisting of n distinct integers. Show that we
can compute the maximum and the second maximum element of A by
performing at most n + log n comparisons.

26 notes on algorithm design

1.41 (Problem 9.1-2 of 10) Let A be an array consisting of n distinct inte- 10 T. H. Cormen, C. E. Leiserson, R. L.
Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3rd edition,
2009

gers. Show that we need to perform d 3n
2 e − 2 comparisons in the worst case

to find simultaneously the maximum and the minimum element of A.

1.42 Let A be an array consisting of n distinct real numbers. Assume
that you can find the median of A in O(n) time. How can use the median
finding algorithm to find the k-th largest element for any given value of k,
where 1 ≤ k ≤ n.

1.43 We say two n× n matrices A and B are equal, denoted by A = B, if
Aij = Bij for all 1 ≤ i, j ≤ n. We say a matrix A = 0 if Aij = 0 for all
1 ≤ i, j ≤ n. We say A 6= 0 if there exists some i, j for which Aij 6= 0.

Suppose you are given three n × n matrices X, Y, and Z. You need to

determine Z ?
= XY. Answer the following

1. Can we determine Z ?
= XY in time proportional to multiplying two n× n

matrices?

2. Let A be a matrix of dimensions n× n. Let v = (v1, . . . , vn) be a random
Boolean vector of length n, i.e., each of its coordinate vi is set either to
0 or 1 independently and with equal probability. Consider Av, i.e. the
product of the matrix A with the vector v and it results in a vector of
length n. Show that for A 6= 0, Pr(Av = 0) ≤ 1

2 .

3. Assume XY 6= Z. Show that for any random Boolean vector v of length
n, Pr(XYv = Zv) ≤ 1

2 .

4. Show that the product XYv can be computed in O(n2) time.

5. Show that we can determine XYv ?
= Zv in O(n2) time.

6. Conclude that we can design a randomized test for checking XY ?
= Z that

runs in O(n2) time. (Thus, it is more efficient to verify Z ?
= XY than

multiplying matrices.)

2
Probability for CS

We will focus on

1. Sample space and Events

2. Conditional Probability

3. Independent Events

4. Random Variables

5. Binomial Distribution

6. Cumulative Distribution

7. Expectation, Variance, and of Expectation

8. Law of Large Numbers

9. Normal Distribution, Moment generating functions, and
Central Limit Theorem

10. Chernoff Bounds

Keywords: Probability, Bayes Theorem, Random Variables, Ex-
pectation, Linearity of Expectation. Variance, Indicator Random
Variable, Markov Inequality, Chebyshev’s Inequality, Binomial
and Poisson Distributions, Central-Limit Theorem, Chernoff
Bounds, Balls and Bins.

This material is adapted from the following sources:

1. Meyer’s textbook 1. (BTW, this was my textbook for the first 1 P.L. Meyer. Introductory probability and
statistical applications. Addison-Wesley,
Boston, MA, USA, 1970

undergraduate course in probability - way back in the Winter’83.)

2. Michiel Smid’s online textbook 2 2 Michiel Smid. Carleton University,
Ottawa, Canada, 2014

3. Blitzstein and Hwang’s textbook 3. 3 J.K. Blitzstein and J. Hwang. Introduc-
tion to Probability. Chapman & Hall/CRC
Texts in Statistical Science. CRC Press,
2014

28 notes on algorithm design

4. Video lectures of Joe Blitzstein.

The selection of topics listed here are based on what is required
to understand material presented in these notes. In no way, this is
meant to be a coverage of this ever expanding field.

2.1 Basics

Sample Space and Events: With each probabilistic experiment, the
sample space is the set of all possible outcomes of that experiment.
For example, for rolling a dice the set of all possible outcomes are
{1, 2, 3, 4, 5, 6}. An event is also a set of possible outcomes, and is
a subset of the sample space. For example, for rolling a dice and
getting an even number, the events are {2, 4, 6}. If the sample space
consists of n elements, then the total number of all possible events
are 2n. Since events are sets, we can use associated operations on sets.
For example, if A and B are events for a sample space S, then we can
define A ∪ B, Ā, A ∩ B, with the usual meaning. Two events A and B
are said to be mutually exclusive if they cannot occur simultaneously,
i.e. A ∩ B = ∅.

Probability: Let S be a sample space associated with an experiment.
For each event A ⊆ S, associate a real number 0 ≤ P(A) ≤ 1, called
as the probability of A, and P(A) satisfies following natural conditions

1. P(S) = 1,

2. If events A and B are mutually exclusive, P(A ∪ B) = P(A) + P(B)
and P(A) ∩ P(B) = 0.

3. P(Ā) = 1− P(A), where Ā = S \ A.

4. In general, for two events A and B, P(A ∪ B) = P(A) + P(B) −
P(A ∩ B). This is sometimes referred as the inclusion-exclusion
principle.

5. If A ⊂ B, P(A) ≤ P(B).

Conditional Probability: Let A and B be two events associated with
an experiment. We say P(B|A) to be the conditional probability of
occurrence of event B given that A has occurred. Intuitively, compu-
tation of P(B) is done with respect to a reduced sample space. For
example, let B be the event of getting 2 after rolling a dice. Then
P(B) = 1/6. Let A be the event of getting an even number after
rolling a dice. Then P(A) = 1/2. What about P(B|A)? It is 1/3, since

probability for cs 29

the reduced sample space is {2, 4, 6}, and the probability of drawing
a 2 is 1/3 from this space. Note that P(B|A) = P(A∩B)

P(A)
or equivalently

P(A ∩ B) = P(B|A)P(A). Similarly we can define P(A|B) = P(A∩B)
P(B) ,

or equivalently P(A ∩ B) = P(A|B)P(B). Note that if two events A
and B are mutually-exclusive than P(A|B) = P(B|A) = 0. If A ⊂ B,
than P(B|A) = 1. (For example, if B is the event of obtaining an even
number and A is the event of getting a 2 on rolling a dice, than if
A has occurred, than for sure B has occurred.) Now let us consider
a classical theorem on conditional probabilities, called the Bayes
Theorem.

B1

B2 B3

B4

B5

B6

B7

S

A

Figure 2.1: Partition of Sample Space S.

Let B1, B2, · · · , Bk represent a partition of sample space S, see

Figure 2.1. Let A be an event in S. Then, P(A) =
k
∑

i=1
P(A/Bi)P(Bi)

and

P(Bi|A) =
P(A ∩ Bi)

P(A)
=

P(A|Bi)P(Bi)
k
∑

i=1
P(A|Bi)P(Bi)

.

Here is a classical example from Meyer [108] showing an application
of this theorem.

Example 2.1.1 An item is produced by three factories - F1, F2, and F3. F2
and F3 produce the same number of items. F1 produces twice many items
as F2 and F3. 2% of items produced by F1 and F2 are defective, and 4% of
items produced by F3 are defective. All of these items are indistinguishable
in terms of which factory they come from. First let us understand the
partitioning by the following.
a) What is the probability that an item is defective?

Here A = {item is defective}. B1 = {item came from F1} and likewise
define B2 and B3. Note that P(B1) = 1/2 and P(B2) = P(B3) = 1/4.
P(A|B1) = P(A|B2) = 0.02 and P(A|B3) = 0.04. Then

P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + P(A|B3)P(B3) = 0.025.

Hence there is a 2.5% chance that an item is defective.
b) Suppose that an item is defective. What is the chance that it is made in
F1?

Let us apply Bayes Theorem.

P(B1|A) =
P(A|B1)P(B1)

∑k
i=1 P(A|Bi)P(Bi)

=
0.02 ∗ 1/2

0.02 ∗ 1/2 + 0.02 ∗ 1/4 + 0.04 ∗ 1/4
= 0.40.

Hence, there is a 40% chance.

Independent Events: We say that the two events A and B are inde-
pendent if P(A ∩ B) = P(A)P(B). Intuitively, this implies that the

30 notes on algorithm design

occurrence or nonoccurence of A has no effect on the occurrence or
non-occurrence of B. An example from Meyer [108] - its insightful:

Example 2.1.2 We are rolling two fair die and have three types of events.
A ={The first die shows an even number}
B ={The second die shows an odd number}
C ={Both show an odd or both show an even number}
Observe that P(A) = P(B) = P(C) = 1/2. Note that P(A ∩ B) =

1/4 = P(A)P(B). P(A ∩ C) = 1/4 = P(A)P(C). P(B ∩ C) = 1/4 =

P(B)P(C). But what about P(A ∩ B ∩ C)? Note that P(A ∩ B ∩ C) = 0 6=
P(A)P(B)P(C).

Hence the three events A, B and C are said to be mutually independent
if and only if they are pairwise independent as well as P(A ∩ B ∩
C) = P(A)P(B)P(C). In general n events are said to be mutually
independent if and only if all combinations of them are mutually
independent.

Random Variable: A function X assigning every element of a sample
space of an experiment to a real number is called a random variable
(r.v.), i.e. X : S → <. For example, X may count the number of 1’s
in a random binary bit string of length n. A r.v. is called discrete if
the number of possible values it can take is either finite or countably
infinite. For each of those values, associate a real value between 0
and 1, i.e. its probability P(xi) = P(X = xi). Each P(xi) ≥ 0 and
∑
i

P(xi) = 1. The function P is called the probability mass (or density)

function and the collection of pairs (xi, P(xi)) are called the probability
distribution of X. For example, if X is a r.v. describing the number of
heads in three tosses of a coin, than the range of X is {0, 1, 2, 3} and
P(0) = P(3) = 1/8, P(1) = P(2) = 3/8. Consider the following
example.

Example 2.1.3 Suppose you want to generate several strings, each string
consists of several a’s followed by a single b. The random character generator
spits out an a with probability 2/3 and b with probability 1/3. The string
is generated by repeatedly invoking the ‘sputter’ till it outputs the first b.
Let X be the random variable denoting the number of times the sputter is
invoked. Note that X can take values 1, 2, 3, Observe that P(X = 1) =
1/3, P(X = 2) = 2/3 ∗ 1/3, and P(X = i) = (2/3)i−11/3. Note that
∑∞

i=1 P(X = i) = 1/3[∑∞
i=0(2/3)i] = 1.

A r.v. X is said to be continuous if there exists a function f , called
the probability mass function, satisfying (a) f (x) ≥ 0, for all x. (b)∫ +∞
−∞ f (x)dx = 1 and (c) For all −∞ < a < b < +∞, P(a < x <

b) =
∫ b

a f (x)dx, i.e. the area of the curve under f (x) between x = a

probability for cs 31

and x = b. For example, let X be a continuous r.v. with probability
mass function given by f (x) = 2x, for 0 ≤ x ≤ 1, and is 0 elsewhere.
Observe that f (x) satisfies the three requirements as (a) f (x) ≥ 0 for
all x, (b)

∫ +∞
−∞ f (x)dx =

∫ 1
0 2xdx = 1, and (c) −∞ < a < b < +∞,

P(a < x < b) =
∫ b

a f (x)dx =
∫ b

a 2xdx = b2 − a2. For example, if a = 0
and b = 1/2, then P(0 ≤ x ≤ 1/2) = 1/4.

Binomial Distribution: The Binomial distribution is defined as follows.
Consider an experiment, where A is an event. Let P(A) = p and
P(Ā) = q = 1− p. Let us repeat the experiment n times and define
a random variable X indicating the number of times A occurs. It
is assumed that each experiment is independent of others. What is
the probability that X = k, for some 1 ≤ k ≤ n? It is easy to see
that P(X = k) = (n

k)pkqn−k. X is called a binomial random variable
with parameters p and n. Individual experiments (trials) are called
Bernoulli trials. Also observe that ∑n

k=0 P(X = k) = ∑n
k=0 (

n
k)pkqn−k =

(p + q)n = 1n = 1

CDF - Cumulative Distribution Function: In Statistics we typically
perform random experiments. They can be repeated any number
of times with a known set of outcomes. We associate random vari-
ables and probability distributions to such experiments. For each
random variable, this association is achieved by a function called the
cumulative distribution function.

For example, consider the following simple experiment. We flip
a fair coin three times, and let the r.v. X be the number of ‘Heads’.
Note that the sample space

S = {HHH, THH, HTH, HHT, TTH, THT, HTT, TTT}.

The random variable X maps S → {0, 1, 2, 3}. Note that X(THH) =

2 and X(HTT) = 1. We have already seen the probability mass
distribution function P. Now define the cumulative distribution
function F for X as F(x) = P(X ≤ x), i.e. the probability of X being
less than or equal to x. Observe that F(x) = 0 if x < 0; F(x) =

P(0) = 1/8 if x ≤ 0; F(x) = P(0) + P(1) = 1/2 if x ≤ 1; F(x) =

P(0) + P(1) + P(2) = 7/8 if x ≤ 2; and F(x) = 1 if x ≤ 3.
The CDF of a continuous r.v. X with probability mass function f is

given by F(x) = P(X ≤ x) =
∫ x
−∞ f (s)ds.

Expected Value: The expected value of a discrete r.v. X is defined
as E[X] = ∑

s∈S
X(s)P({s}). Alternatively, we can express this sum

by grouping all the elements of S that have the same value X = xi,

32 notes on algorithm design

and obtain E[X] = ∑
s∈S

X(s)P({s}) = ∑
i

xiP(X = xi). If this series

converges, E[X] is also called the mean value of X.
The expected value of a continuous r.v. X is defined analogously,

i.e., E[X] =
∫ +∞
−∞ x f (x)dx. For example, consider X to be uniformly

distributed over the interval [a, b]. We know that the probability
distribution function

f (x) =

 1
b−a a ≤ x ≤ b

0 otherwise

Hence E[X] =
∫ b

a
x

b−a dx = (a + b)/2
Next we show that for a Binomial distribution X with parameters

n and p, E[X] = np. Note that P(X = k) = (n
k)pk(1− p)n−k. Thus,

E[X] =
n

∑
k=0

k
n!

k!(n− k)!
pk(1− p)n−k

=
n

∑
k=1

n!
(k− 1)!(n− k)!

pk(1− p)n−k,

As, for k = 0, k n!
k!(n−k)! pk(1− p)n−k = 0. We will perform change of

variables and set s = k− 1. Now we have

E[X] =
n−1

∑
s=0

n
(n− 1)!

s!(n− 1− s)!
ps+1(1− p)n−1−s

= np
n−1

∑
s=0

(n− 1)!
s!(n− 1− s)!

ps(1− p)n−1−s

= np(p + (1− p))n−1

= np

Independent Random Variables: Two random variables defined over
the same sample space are said to be independent if the outcome of
one doesn’t depend on the outcome of the other. In case of discrete
r.v., by independence we mean, P(X = xi, Y = yj) = P(X =

xi) · P(Y = yj) for all possible values of i and j. Alternatively, we can
say that P(X = xi|Y = yj) = P(X = xi) and P(Y = yi|X = xj) =

P(Y = yi) for all values of i and j. As an example, let us toss a fair
coin four times. Define r.v. X to be the number of heads obtained
in the first two tosses and r.v. Y to be the number of heads obtained
in the last two tosses. Observe that P(X = 0, Y = 0) = P(X =

0)P(Y = 0) = 1/16, P(X = 0, Y = 1) = P(X = 0)P(Y = 1) = 1/8,
P(X = 1, Y = 1) = P(X = 1)P(Y = 1) = 1/4, P(X = 2, Y = 1) =

P(X = 2)P(Y = 1) = 1/8, etc. In each of the possibilities we observe
that P(X = xi, Y = yj) = P(X = xi)P(Y = yj) and thus X and Y are
independent random variables.

probability for cs 33

Linearity of Expectation: Let X and Y be two random variables
mapping elements of a sample space S to real numbers. Assume
that E[X] and E[Y] are finite. Linearity of Expectation says that
E[aX + bY] = aE[X] + bE[Y] for constants a and b. (Note that X
and Y need not be independent.) The proof is fairly straightforward.
Observe that, by definition,

E[aX + bY] = ∑
ω∈S

(a · X + b ·Y)[ω] · P(ω)

= ∑
ω∈S

(a · X[ω] + b ·Y[ω]) · P(ω)

= ∑
ω∈S

(a · X[ω] · P(ω) + b ·Y[ω] · P(ω))

= a ∑
ω∈S

X[ω] · P(ω) + b ∑
ω∈S

Y[ω] · P(ω)

= aE[X] + bE[Y]

This easily generalizes to the linear combination of n random vari-
ables, i.e. expectation of the linear combination of n variables is same
as the linear combination of the expectation of these variables. Given
this, it is trivial to compute the expectation of a Binomial r.v. X. Note
that X = X1 + X2 + · · ·+ Xn, where each Xi is a Bernoulli indicator
random variable, with success probability p. The expected value of
each of the indicator variable is E[Xi] = 1.p + 0.(1− p) = p. Thus
E[X] = E[X1 + · · ·Xn] = E[X1] + · · ·+ E[Xn] = np.

Variance: The variance of a r.v. X is defined to be the expected value
of the r.v. (X−E[X])2. We will write this as V[X] = E[X−E[X]]2. One
of the exercises asks for verifying that V[X] = E[X− E[X]]2 = E[X2]−
(E[X])2. Let us calculate the variance of the r.v. that is uniformly
distributed over the interval [a, b]. We know that E[X] = (a + b)/2.
Note that E[X2] =

∫ b
a

x2

b−a dx = b3−a3

3(b−a) . Since V[X] = E[X2]− [E[X]]2,

we obtain V[X] = b3−a3

3(b−a) − (a+b
2)2 = (b−a)2

12 .
Let X and Y be two independent r.v. defined over the same sample

space. Now we can express the variance of their sum as

V[X + Y] = E[(X + Y)2]− (E[X + Y])2

= E[X2 + Y2 + 2XY]− (E[X] + E[Y])2

= E[X2] + E[Y2] + E[2XY]− (E[X]2 + E[Y]2 + 2E[X]E[Y])

= E[X2]− E[X]2 + E[Y2]− E[Y]2

= V[X] + V[Y]

Note that due to independence E[XY] = E[X]E[Y] (see Exercises).
Next, we compute the varianceV[X] of a binomial r.v. X with parame-

34 notes on algorithm design

ters n and p. Note that r.v. X = X1 + X2 + · · ·+ Xn, where each Xi’s
are identical independent indicator r.v. Thus, V[X] = nV[Xi]. Let us
now evaluate V[Xi]. Note that

V[Xi] = E[X2
i]− E[Xi]

2

= {12.p + 02.(1− p)} − p2

= p− p2

Thus, V[X] = nV[Xi] = n(p− p2) = np(1− p).

2.2 Chebyshev’s Inequality and Law of Large Numbers

Now let us look at a famous inequality due to Chebyshev.

Theorem 2.2.1 Let X be a random variable and let c be a real number. If
E[X− c]2 is finite and ε > 0, then

P(|X− c| ≥ ε) ≤ 1
ε2 E[X− c]2.

Proof. Let X be a continuous r.v. Let R = {x : |x − c| ≥ ε}. Note
that P(|X − c| ≥ ε) =

∫
R f (x)dx. Observe that |x − c| ≥ ε implies

(x−c)2

ε2 ≥ 1. Thus we have

P(|X− c| ≥ ε) =
∫

R
1 · f (x)dx

≤
∫

R

(x− c)2

ε2 f (x)dx

≤
∫ +∞

−∞

(x− c)2

ε2 f (x)dx

=
1
ε2 E[X− c]2

For an application of this inequality consider the following. Sup-
pose we repeat an experiment multiple times. Then the relative
frequency of the occurrence of an event should converge to its actual
probability. For example, a factory is producing items. Suppose we
don’t know what is the failure probability. One way to estimate this
probability is to take a large sample and see what percentage are
faulty. This percentage will be a good estimate of the failure proba-
bility. Of course this should be taken with a grain of salt. This really
depends upon what kind of sample is chosen. Essentially what we
are heading towards is that if the elements in the sample are chosen
randomly, than the percentage of faulty items will be a true indicator
of failure probability.

probability for cs 35

Consider a particular event A in an experiment. This experiment
is repeated n times, and each run is independent of other runs. Let
nA be the number of times A occurs in the runs. Let fA = nA/n. Let
P(A) = p. We show that for any positive constant ε > 0,

P(| fA − p| ≥ ε) ≤ p(1− p)
nε2 ,

or equivalently,

P(| fA − p| < ε) ≥ 1− p(1− p)
nε2 .

Observe that nA is a binomially distributed random variable with
expected value E[nA] = np and variance V[nA] = np(1− p). Since
fA = nA/n, we have

E[fA] = E[nA/n]

=
1
n

E[nA]

= np/n

= p

(2.1)

V[fA] = V[nA/n]

=
1
n2 V[nA]

=
np(1− p)

n2

= p(1− p)/n.

(2.2)

Recall Chebyshev’s inequality (Theorem 2.2.1 and also see Exercise
2.24) which states that

P(|X− E[X]| < ε) = 1− P(|X− E[X]| ≥ ε)

≥ 1− 1
ε2 E[(X− E[X])2]

= 1− V[X]

ε2

(2.3)

Substituting X = fA, E[X] = p, we obtain

P(| fA − p| < ε) ≥ 1− V[fA]

ε2 .

Set V[fA] = p(1− p)/n, and we obtain

P(| fA − p| < ε) ≥ 1− p(1− p)
nε2 .

Note that
lim

n→∞
P(| fA − p| < ε) = 1.

36 notes on algorithm design

This is essentially the meaning of probability of an event A, i.e.
the relative frequency converges to P(A) when an experiment is
repeated for a large number of times. This is what is called as the
Law of Large Numbers. To get some more intuition, think of what
could have happened if this wasn’t true - i.e., no matter how many
times you repeat the experiment, the frequency doesn’t converge to
P(A). What will be the state of various fields such as Physics, Nature,
Evolution, ...?

Here is a different type of question. How many times should we
repeat the experiment, so that the relative frequency fA differs from
P(A) by at most 0.01 with probability at least 0.9?

We need to choose n so that for ε = 0.01, 1− p(1−p)
nε2 = 0.9. This

implies that n = p(1−p)
0.1ε2 . For example if p = 1/2, than n = 25000.

What this means is that if we toss a coin 25000 times, than we are 90%
sure that the relative frequency of getting a head is within 0.01 of the
theoretical probability.

2.3 Normal Distribution, mgf, and the Central Limit Theorem

1 2 3 4 5 6 7 8 9
x

y

Figure 2.2: Illustration of N (5, 1.44) and
N (5, 1) in blue and green, respectively

Next, let us discuss Normal distributions, as we will need them in
later chapters. Random variable X has a normal distribution if its
probability density function is of the form

f (x) =
1√
2πσ

e−
1
2 (

x−µ
σ)

2

,−∞ < x < ∞.

Usually, it is denoted by N (µ, σ2), where −∞ < µ < +∞ is the mean
(expected value) and σ > 0 is the standard deviation, i.e. positive
square-root of the variance. It is also referred to as Gaussian or bell-
shaped distribution. See Figure 2.2 for an illustration. It is a valid
distribution, as f (x) ≥ 0 for all values of x and

∫ +∞
−∞ f (x)dx = 1 (see

Exercises). The function f is symmetric around x = µ. If we trace the
boundary of the function, it changes from being convex to concave,
and these points of inflection are at x = µ ± σ. The distribution
N (0, 1) is referred to as a standardized normal distribution.

Some quick facts about Normal distribution that are helpful
includes

1. If X is N (µ, σ2) and Y = aX + b then Y is N (aµ + b, a2σ2).

2. If X has distribution N (µ, σ2) and if Y = X−µ
σ , then Y has distribu-

tion N (0, 1).

3. If X has distribution N (0, 1), then Pr(a ≤ X ≤ b) = 1
2π

∫ b
a e−x2/2dx.

probability for cs 37

2.3.1 A special case of the central limit theorem

We state a theorem, which is a special case of the Central Limit
Theorem (see Meyer [108]). The following theorem states that, for a
large value of n, the arithmetic mean of n independent observations
from the same random variable has a normal distribution.

Theorem 2.3.1 Let X1, X2, · · · , Xn be n independent r.v. all of which have
the same distribution. Let µ = E[Xi] and σ2 = V[Xi] be their common
expectation and variance, respectively. Define a r.v. S = ∑n

i=1 Xi. Then
E[S] = nµ and V[S] = nσ2. Moreover, for large n, Tn = S−nµ√

nσ
has

essentially the distribution N (0, 1).

Before we discuss a proof sketch of this theorem, let us look at an
example from Meyer’s [108] to gain some intuition.

Example 2.3.2 Consider a box containing three types of balls - 20 balls
labelled with a zero, 30 with a one and 50 with a two. In this experiment, we
draw a random ball, note its label, and then place it back. We will repeatedly
pick the balls, and eventually report the average of their labels. We are
interested in understanding the distribution of the averages when we repeat
this experiment for a large number of rounds. The above theorem claims
that the average behaves like a normal distribution. Let Xi be the label of the
ball drawn in Round i of this experiment. We are interested in the random
variable Mi =

1
i ∑i

k=1 Xk, denoting the averages of the labels drawn up to
and including the Round i. Note that each Xi takes values 0, 1, and 2, with
probabilities 0.2, 0.3 and 0.5, respectively. Observe that M1 = X1 and it
takes values 0, 1 or 2 with probability 0.2, 0.3 and 0.5, respectively. Next let
us look at M2.

m = X1+X2
2 0 1/2 1 3/2 2

P(M2 = m) 0.04 0.12 0.29 0.30 0.25

m = X1+X2+X3
3 0 1/3 2/3 1 4/3 5/3 2

P(M3 = m) 0.008 0.036 0.114 0.207 0.285 0.225 0.125

Hopefully, this example convinces us that for large values of n, Mn con-
verges to a Normal distribution.

We will sketch a proof of Theorem 2.3.1 using the moment generat-
ing functions (mgf) and their interesting properties. Let us first briefly
explore mgf’s.

38 notes on algorithm design

2.3.2 Moment Generating Functions

For a random variable X, its moment generating function MX(t) =

E[etX]. Formally,

Definition 2.3.3 Let X be a discrete r.v. taking values {x1, x2, x3 . . . } with
probabilities {p1, p2, p3 . . . }, respectively. The moment generating function
(mgf) of X is

MX(t) =
∞

∑
i=1

etxi pi.

If X is a continuous r.v. with probability distribution function f , then the
mgf is given by

MX(t) =
∫ +∞

−∞
etx f (x)dx.

Consider following standard examples of mgf’s.

Example 2.3.4 Let r.v. X be uniformly distributed in the interval [a, b] on
real line. The mgf is given by

MX(t) =
∫ b

a

etx

b− a
dx =

1
(b− a)t

(ebt − eat).

Example 2.3.5 Let r.v. X be binomially distributed with parameters n and
p. The mgf of X is

MX(t) =
n

∑
k=0

etk
(

n
k

)
pk(1− p)n−k = [pet + (1− p)]n.

Example 2.3.6 Let r.v. X has the Normal distribution N (µ, σ2). Its mgf is
given by

MX(t) =
1√
2πσ

∫ +∞

−∞
etxe−

1
2 (

x−µ
σ)

2

dx = etµ+σ2t2/2.

By the Maclaurin series expansion, ex = 1 + x + x2

2! +
x3

3! + · · · .
Therefore, etx = 1 + tx + (tx)2

2! + (tx)3

3! + · · · . By definition,

MX(t) = E[etX] = E[1 + tX +
(tX)2

2!
+

(tX)3

3!
+ · · ·].

If we assume that the linearity of expectation will carry over for
infinite sums, then

MX(t) = E[etX] = 1 + tE[X] +
t2E[X2]

2!
+

t3E[X3]

3!
+ · · · .

Next we will take some higher order derivatives, and substitute
the value of t as 0, to observe the following (note that this assumes
that we can take derivatives of infinite series): M′X(0) = E[X],
M′′X(0) = E[X2], and in general M(n)

X (0) = E[Xn]. In fact this is the
reason these functions are called the moment generating functions.

probability for cs 39

Example 2.3.7 Recall that when X has binomial distribution with pa-
rameters n and p, its mgf is MX(t) = [pet + (1 − p)]n. Observe that
M′X(t) = n(pet + (1 − p))n−1 pet and M′X(0) = np = E[X]. Simi-
larly, M′′X [0] = E[X2] = np[(n − 1)p + 1]. We can also observe that
V[X] = M′′X(0)− [M′X(0)]

2 = np(1− p).

Example 2.3.8 Let r.v. X has the Normal distribution N (µ, σ2). Its
mgf is MX(t) = etµ+σ2t2/2. Now M′X(t) = (µ + σ2t)etµ+σ2t2/2 and
M′X(0) = E[X] = µ. Similarly, M′′X(0) = E[X2] = µ2 + σ2. Note that
Var[X] = M′′(0)−M′(0)2 = σ2.

Observation 2.3.9 Let r.v. X has mgf MX. Let r.v. Y = αX + β. where α

and β are constants. Mgf of Y is given by

MY(t) = E[etY] = E[et(αX+β)] = etβ MX(tα).

Observation 2.3.10 Let X and Y be independent r.v. with mgf’s MX and
MY, respectively. Let r.v. Z = X + Y. Then mgf of Z is given by

MZ(t) = E[etZ] = E[et(X+Y)]] = E[etX]E[etY] = MX(t)MY(t).

Generalizing the above observation to n independent random vari-
ables, we obtain

Theorem 2.3.11 Let X1, . . . , Xn be n independent random variables with
mgf’s MX1 , . . . , MXn , respectively. Let r.v. Z = X1 + · · ·+ Xn. Then mgf of
Z is given by MZ(t) = MX1(t) · · ·MXn(t).

Observation 2.3.12 Let X and Y be independent r.v. with Normal distri-
butions N (µ1, σ2

1) and N (µ2, σ2
2), respectively. Let r.v. Z = X + Y. Then

by Theorem 2.3.11 mgf of Z,

MZ(t) = MX(t)MY(t) = etµ1+σ2
1 t2/2etµ2+σ2

2 t2/2 = et(µ1+µ2)+(σ2
1+σ2

2)t
2/2.

But that corresponds to the mgf of the Normal distribution N (µ1 + µ2, σ2
1 +

σ2
2). Thus the sum of two independent Normal distributions is a Normal

distribution.

From the above discussion we can conclude that

Theorem 2.3.13 Let X1, . . . , Xn be n independent random variables with
Normal distributions N (µi, σ2

i), for i = 1, . . . , n. Let r.v. Z = ∑n
i=1 Xi.

Then Z has a Normal distribution N (∑n
i=1 µi, ∑n

i=1 σ2
i). Thus the sum of

independent Normal distributions is a Normal distribution.

2.3.3 Proof of Theorem 2.3.1

Now we are in a position to sketch the proof of the special case of
the Central Limit Theorem 2.3.1. Recall that we want to show the
following:

40 notes on algorithm design

Let X1, X2, · · · , Xn be n independent r.v. all of which have the
same distribution (need not be Normal). Let µ = E[Xi] and σ2 =

V[Xi] be their common expectation and variance, respectively. Let
S = ∑n

i=1 Xi. Note that E[S] = nµ and V[S] = nσ2. For large n, we
need to show that Tn = S−nµ√

nσ
has the distribution N (0, 1). We will

show that the mgf of Tn is same as that of the mgf of N (0, 1).
Proof. The mgf of Xi is MXi (t) = E[etXi]. Since Xi’s are independent
and from Observation 2.3.10, mgf of S is given by MS(t) = (MXi (t))

n.
Note that Tn = S−nµ√

nσ
= ∑n

i=1(
Xi−µ√

nσ
) is a linear function of S, and

hence by Observation 2.3.9 mgf of Tn is given by

MTn(t) =
(
e−(

µ√
nσ

t)MXi (
t

σ
√

n)
)n (2.4)

= e−(
µ
√

n
σ t)[MXi (

t
σ
√

n)
]n (2.5)

ln MTn(t) = − µ
√

n
σ t + n ln

[
MXi (

t
σ
√

n)
]

(2.6)

As we have seen earlier, by the Maclaurin series expansion

MXi (t) = E[etXi] = 1 + tE[Xi] +
t2E[Xi

2]

2!
+

t3E[Xi
3]

3!
+ · · ·

Since E[Xi] = µ and E[Xi
2] = µ2 + σ2, we have

MXi (t) = 1 + µt +
(µ2 + σ2)

2
t2 + R,

where R consists of all other remaining terms. Substituting this in
Equation 2.6, we obtain

ln MTn(t) = − µ
√

n
σ t + n ln

[
1 + µt√

nσ
+ (µ2+σ2)

2nσ2 t2 + R
]
. (2.7)

Note that ln(1 + x) = x− x2

2 + x3

3 − · · · for |x| < 1. For large values of

n, µt√
nσ

+ (µ2+σ2)
2nσ2 t2 + R < 1. Hence,

ln MTn(t) = −
µ
√

n
σ

t+n
[
(

µt√
nσ

+
(µ2 + σ2)

2nσ2 t2 +R)− 1
2
(

µt√
nσ

+
(µ2 + σ2)

2nσ2 t2 +R)2 + · · ·
]
.

Omitting the algebraic manipulation, the above expression for n→ ∞
results in

lim
n→∞

ln MTn(t) = t2/2.

Equivalently,
lim

n→∞
MTn(t) = et2/2.

Since the mgf of N (0, 1) is et2/2, hence the limiting distribution of Tn

is N (0, 1).

probability for cs 41

2.4 More Distributions

We will briefly explore a few more standard discrete and continuous
distributions.
Poisson Distribution: Let X be a discrete r.v. taking values {0, 1, 2, . . . }.
X has Poisson distribution with parameter α > 0 if P(X = k) = e−ααk

k! .
It turns out that ∑∞

k=0 P(X = k) = 1, E[X] = V[X] = α. One of
the key properties of Poission distribution is that it approximates
the Binomial distribution for large values of n and small values of
p. Let X be a r.v. with Binomial distribution, where P(X = k) =

(n
k)pk(1− p)n−k. As n→ ∞ and np = α, we have that

lim
n→∞

P(X = k) =
e−ααk

k!
.

We know that E[X] = np and V[X] = np(1− p). For large values of n,
small values of p, and α = np, observe that E[X] = V[X] = α.
Geometric Distribution: This distribution captures the scenario
where an experiment is repeatedly executed, independent of previous
executions, till a particular event occurs. Let A be the event we want
and let us assume that p is the probability of its occurrence. Hence
it doesn’t occur with probability 1− p. Define the r.v. X that counts
the number of times the experiment is repeated till A occurs. X takes
values {1, 2, 3, . . . }. X is said to have geometric distribution where
P(X = k) = (1 − p)k−1 p. It turns out that ∑∞

k=0 P(X = k) = 1,
E[X] = 1/p and V[X] = (1− p)/p2. In particular, on the average, we
need to execute the experiment d 1

p e times to see the event A.
Gamma Distribution: For any p > 0, the Gamma function is defined
as

Γ(p) =
∫ ∞

0
xp−1e−xdx.

Let X be a continuous r.v. taking positive values. X has a Gamma
distribution with parameters r > 0 and α > 0, if for all x > 0, its
probability density function is given by

f (x) =
α

Γ(r)
(αx)r−1e−αx.

If r = 1, then f (x) = αe−αx and this is pdf of an exponential dis-
tribution. If α = 1/2 and r = n/2, for some positive integer
n, then we obtain the Chi-Square Distribution. Its pdf is given by
f (x) = 1

2n/2Γ(n/2)
xn/2−1e−x/2. Its expected value and variance is given

by n and 2n, respectively.

2.5 Chernoff Bounds

Suppose we toss a fair coin 1000 times. We expect about 500 tails.
What is the probability that we will get over 750 tails? or over 900

42 notes on algorithm design

tails? Chernoff bounds help us in determining probabilities of ex-
treme events in a large collection of independent events. In this
section we will establish these bounds. This section is derived from
Hagerup and Rüb 4. First let us establish Markov’s inequality. 4 Torben Hagerup and Christine Rüb. A

guided tour of Chernoff bounds. Inf.
Process. Lett., 33(6):305–308, 1990Theorem 2.5.1 Let X be a non-negative discrete r.v. and s > 0 be a

constant. Then P(X ≥ s) ≤ E[X]/s.

Proof. Note that

E[X] =
∞

∑
i=0

i.P(X = i)

≥
∞

∑
i=s

i.P(X = i)

≥ s
∞

∑
i=s

P(X = i)

= sP(X ≥ s).

(2.8)

Hence, P(X ≥ s) ≤ E[X]/s.

Let X1, · · ·Xn be identical 0-1 independent r.v’s, such that P(Xi =

1) = pi and P(Xi = 0) = 1 − pi. Define X = ∑n
i=1 Xi and let

m = ∑n
i=1 pi. Note that

E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi] =
n

∑
i=1

pi = m.

Suppose we have a fair coin, which we toss n times. We define 0-1
r.v’s X1, · · · , Xn, where Xi = 1 if the i-th toss was a head otherwise
Xi = 0. P(Xi = 0) = P(Xi = 1) = 1/2. Let X = ∑n

i=1 Xi. Now
E[X] = n/2 = m. We are interested in estimating the probability of
X deviating from (1± ε)m, for 0 < ε < 1. From Markov’s inequality
we obtain P(X > (1 + ε)m) ≤ 1/(1 + ε). We will show the following,
which are collectively known as Chernoff bounds in the algorithms
community.

P(X ≥ (1 + ε)m) ≤ exp(−ε2m/3)

P(X ≤ (1− ε)m) ≤ exp(−ε2m/2).

Let t > 0. Let us first deal with proving P(X ≥ (1 + ε)m) ≤
exp(−ε2m/3).

P(X ≥ (1 + ε)m) = P(etX ≥ et(1+ε)m) (2.9)

= e−t(1+ε)met(1+ε)mP(etX ≥ et(1+ε)m) (2.10)

≤ e−t(1+ε)mE[etX] (2.11)

Equation 2.11 follows from Markov inequality applied to P(etX ≥
et(1+ε)m) ≤ e−t(1+ε)mE[etX]. Observe that E[etX] = E[et ∑n

i=1 Xi] =

probability for cs 43

E[Πn
i=1etXi] = Πn

i=1E[etXi], as Xi’s are independent. E[etXi] = piet +

(1− pi)e0. Hence E[etX] = Πn
i=1(piet + (1− pi)) = Πn

i=1(1 + pi(et −
1)) ≤ Πn

i=1epi(et−1) = e∑n
i=1 pi(et−1) = em(et−1). (Note that for this we

used the fact that ex ≥ 1 + x.) Hence,

P(X ≥ (1 + ε)m) ≤ e−t(1+ε)m+m(et−1).

This expression holds for all values of t ∈ R. It is minimized
for t = ln(1 + ε). To see this, one can write e−t(1+ε)m+m(et−1) =

[e−t(1+ε)+(et−1)]m. To minimize this, one needs to minimize −t(1 +

ε) + (et − 1). Differentiate this with respect to t, and we obtain that
−(1 + ε) + et = 0 or t = ln(1 + ε).

Thus,

P(X ≥ (1 + ε)m) ≤ (1 + ε)−(1+ε)memε =

(
eε

(1 + ε)1+ε

)m
≤ e−ε2m/3.

To show the last inequality, one needs to prove that ε− (1 + ε) ln(1 +
ε) ≤ − 1

3 ε2, which is left as an exercise.
Next, we show that P(X ≤ (1− ε)m) ≤ exp(−ε2m/2). The proof is

along the same lines as the previous one.

P(X ≤ (1− ε)m) = P(m− X ≥ εm) (2.12)

= P(et(m−X) ≥ etεm) (2.13)

≤ e−tεmE[et(m−X)] (2.14)

= etm(1−ε)E[e−tX] (2.15)

Note that

E[e−tX] = Πn
i=1E[e−tXi] (2.16)

= Πn
i=1[pie−t·1 + (1− pi)e−t·0] (2.17)

= Πn
i=1[pie−t + (1− pi)] (2.18)

= Πn
i=1[1− pi(1− e−t)] (2.19)

≤ Πn
i=1[e

−pi(1−e−t)] (2.20)

= e−∑n
i=1 pi(1−e−t) (2.21)

= e−m(1−e−t) (2.22)

Therefore,
P(X ≤ (1− ε)m) ≤ e−m(1−e−t)etm(1−ε).

This is minimized for t = − ln(1− ε). Hence,

P(X ≤ (1− ε)m) ≤ (1− ε)−m(1−ε)e−mε

=

[(
1

1− ε

)1−ε

e−ε

]m

≤ e−ε2 m
2 .

(2.23)

44 notes on algorithm design

2.6 Bibliography

As mentioned earlier, the material for this chapter is derived from
Blitzstein and Hwang [13], Meyer [108], and Smid [125]. Another
excellent resource is the book by Feller [51]. Many of the exercises
have been borrowed from various sources, and some of them have
been asked in exams/tests in various courses. The BSP Sorting exer-
cise is adapted from Valiant 5. Randomized routing in a hypercube 5 Leslie G. Valiant. A bridging model for

parallel computation. Commun. ACM,
33(8):103–111, August 1990

is covered in the book of Motwani and Raghavan 6. I am not certain

6
from which source I have picked the exercise on routing. We will also
encourage the use of the free software environment R for statistical
computing, see https://www.r-project.org/

2.7 Exercises

2.1 Consider the following three events and assume that each of the dice is
fair and outcome of the roll of one die is independent of the outcome of roll of
any other die.

A: Roll six dice and there is at least one 6.
B: Roll twelve dice and there are at least two 6s.
C: Roll eighteen dice and there are at least three 6s.

Which of the above events has the highest chance of occurring?
What will happen if the dice are not fair?

2.2 Let X be a binomially distributed r.v. with parameters n and p. Show
that E[X] = ∑n

k=0 k(n
k)pk(1− p)n−k = np.

2.3 Let the r.v. X be such that X = c where c is a constant. Show that
E[X] = c.

2.4 Let X and Y be two r.v. Show that E[X + Y] = E[X] + E[Y].

2.5 Let X and Y be two independent random variables. Show that E[XY] =
E[X]E[Y]. Will this be true for dependent random variables?

2.6 Let X be a discrete r.v. and let g be a function such that g : R → R.
Show that

1. E[g(X)] = ∑x g(x)P(X = x).

2. Let X be a r.v. that represents the value of the roll of a fair die. Show that
E[X] = 3.5. Consider the function g : R → R such that g(x) = x2.
Show that E[g(x)] = 15.167.

2.7 Show that the variance of a r.v. X, V[X] = E[X2]− [E[X]]2.

2.8 If X and Y are independent r.v. than V[X + Y] = V[X] + V[Y]. Using
a simple example, show that if X and Y are dependent then V[X + Y] 6=
V[X] + V[y].

probability for cs 45

2.9 Let X be a r.v. and c a constant. Show that

1. V[X + c] = V[X].

2. V[cX] = c2V[X].

3. V[X] ≥ 0.

4. V[X] = 0 if and only if the r.v. X is a constant.

2.10 Show that for the Normal distribution f (x) = 1√
2πσ

e−
1
2 d

x−µ
σ e

2
≥ 0 for

all values of x ∈ (−∞,+∞).

2.11 Show that for the Normal distribution f (x) = 1√
2πσ

e−
1
2 d

x−µ
σ e

2
,∫ +∞

−∞ f (x)dx = 1. This is not straightforward. It is best to consider first the
case where you take the product of two standard normal distributions and
show that

∫ +∞
−∞

1√
2π

e−x2/2dx
∫ +∞
−∞

1√
2π

e−y2/2dy = 1.

2.12 Let Z be a r.v. with standard normal distribution. In programming
language C, we have the function rand() that returns a (pseudo-)random
number uniformly distributed, say in the range from 0 to 1. Using Central
Limit Theorem, can you think of a method for generating values for Z with
the help of rand() function? Following is a possibility. Execute rand() k times
and let the values returned be x1, x2, . . . , xk. Assign z = x1 + x2 + · · ·+
xk − k/2. Do the values generated by the above procedure have N (0, 1)
distribution as k→ ∞?

2.13 Show that for a Poisson r.v. X with parameter α > 0 and P(X = k) =
e−ααk

k! , ∑∞
k=0 P(X = k) = 1 and E[X] = V[X] = α.

2.14 Assume that one of the online store gets 10 Million hits where the
potential customers are trying to identify what they want to buy. We can
assume all the hits are independent. What is the probability that 0.001% of
these hits will result in actual orders? (Hint: Think of Poisson.)

2.15 Show that for a geometric random variable with P(X = k) = (1−
p)k−1 p, ∑∞

k=0 P(X = k) = 1, E[X] = 1/p and V[X] = (1− p)/p2.

2.16 Show that for a geometric random variable with P(X = k) =

(1 − p)k−1 p, P(X ≥ s + t|X > s) = P(X > t), where s and t are
positive integers. Alternatively, we can say that the geometric distribution is
memoryless.

2.17 Show that for an integer p > 0, the Gamma function Γ(p) = (p−
1)Γ(p− 1).

2.18 This exercise proves the Cauchy-Schwarz inequality. Let X and Y be
two r.v. with finite mean and variances. Let t be any real number.

46 notes on algorithm design

1. Show that E[(Y− tX)2] = E[Y2]− 2tE[XY] + t2E[X2] ≥ 0.

2. Show that t = E[XY]
E[X2]

minimizes E[Y2]− 2tE[XY] + t2E[X2].

3. Show that
√

E[X2]E[Y2] ≥ |E[XY]|.

2.19 A function g is said to be convex if all lines that are tangent to g lie
below g. Let X be a r.v. and g be a convex function. Show the following:

1. Using the convexity of g, show that for µ = E[X] the tangent line to g at
the point (µ, g(µ)) is below g.

2. Let the equation of the above tangent line be y = mx + b. Show that for
any x ∈ R, g(x) ≥ mx + b.

3. Show that E[mX + b] = g(µ) = g(E[X]).

4. Show that E[g(X)] ≥ g[E[X]].

2.20 Recall Markov’s inequality (see Theorem 2.5.1). Where in the proof we
used the fact that X is a non-negative random variable? What goes wrong
with the proof if X can also take negative values?

2.21 Usually the bound provided by Markov’s inequality is fairly weak. Can
you construct a random variable X where the bound is tight (i.e., inequality
is equality). Try to design a r.v. X that takes two values, e.g. 1 and 5, with
appropriate probabilities.

2.22 Let X be a non-negative discrete r.v. and s > 0. Markov’s inequality
establishes a bound on P(X ≥ s). Can we adapt Markov’s inequality to
estimate what will be P(X ≤ s)?

2.23 This exercise provides an alternate and straightforward proof of
Markov’s inequality (see Theorem 2.5.1). Let X be a non-negative discrete
r.v. and s > 0. Show the following.

1. Show that for an indicator random variable I, E[I] = P[I = 1].

2. Define an Indicator r.v. Is such that Is = 1 if X ≥ s and 0 otherwise.
Show that sIs ≤ X.

3. Show that sE[Is] ≤ E[X].

4. Show that P(X ≥ s) ≤ E[X]
s .

2.24 This exercise provides an alternate proof of Chebyshev’s inequality (see
Theorem 2.2.1) using Markov’s inequality. Let X be a random variable with
mean µ and variance σ2. Let s > 0 be a constant.

1. Show that P(|X− µ| ≥ s) = P((X− µ)2 ≥ s2)

probability for cs 47

2. Show that P((X− µ)2 ≥ s2) ≤ E[(X−µ)2]
s2

3. Show that P(|X− µ| ≥ s) ≤ σ2

s2

2.25 Let X be a r.v. and let s > 0 and t > 0 be constants. Use Markov’s
inequality to show the following:

1. P(X ≥ s) = P(etX ≥ ets)

2. P(X ≥ s) ≤ E[etX]
ets

2.26 A popular coffee store in Amherstburg opens at 9 A.M. Many of its
customers have indicated that they would prefer that the store opens at
7:30 A.M. The store has decided to estimate the fraction p of the town’s
population that will like an early opening by surveying town’s population.
They need to determine the number of people n to whom to send a survey
to get within 10% of the true value of p with a probability of at least 0.95.
Using Chebyshev’s inequality, we will get an estimate on n. Let X =

{X1, . . . , Xn} be the 0− 1 indicator random variables corresponding to the
set of n people picked, uniformly at random, from the town’s population
for the survey. Note that Xi is 1 if the i-th person prefers an early opening,
otherwise it is 0. Let Sn be the number of people in X who will like an early
opening. Define An = 1

n Sn. Answer the following:

1. Show that E[An] = p, i.e., An is an unbiased estimator of p.

2. Show that variance σ of any of Xi is Var[Xi] = σ2 = p(1− p).

3. Show that Var(An) =
1
n σ2.

4. Conclude that if n is large, E[An] will be concentrated around p.

Define the two parameters ε, δ ∈ (0, 1), where ε accounts for the error
in the estimate (ε = 0.1 for our problem), and δ captures the desired
accuracy. We are interested to evaluate Pr(|An − p| ≤ εp) ≥ δ. I.e., for our
problem, we want to understand what value of n will satisfy Pr(|An − p| ≤
0.1 ∗ p) ≥ 0.95? Note that, by Chebyshev’s inequality, Pr(|An − p| ≥
εp) ≤ Var(An)

(εp)2 . Answer the following.

1. Show that n ≥ p(1−p)
(1−δ)(εp)2

2. For ε = 0.1 and δ = 0.95, show that n ≥ 2000(1−p)
p .

3. Show that for any 0 < p′ ≤ p, 2000(1−p′)
p′ ≥ 2000(1−p)

p

4. If the coffee shop knows that p′ ≥ 0.20 (as gathered from the customers
that come to the store everyday), show that n ≈ 8000 people are enough
to survey to get the desired estimate on p.

48 notes on algorithm design

5. Conclude that if we know of a good lower bound p′ of p, our estimate of n
will be close to the optimal number of people to survey.

2.27 In the last three exercises we have established various upper bounds for
P(X ≥ s). Let the r.v. X obeys the standard normal distribution N (0, 1).
Here we are interested to know what is the cumulative density of X taking
values larger than three times the standard deviation. By definition, this
value is P(X ≥ 3) =

∫ ∞
3

1√
2π

e−
1
2 x2

dx = 0.0015. Estimate the value
of P(X ≥ 3) using the bounds from the last three exercises and compare
them against the value obtained above. (Recall that N (0, 1) is symmetric.

Evaluation of P(X ≥ 3) ≤ E[etX]
e3t will require some work, but this quantity

is minimized when t = 3.)

2.28 For a fair coin, let Y be the indicator r.v. denoting whether the outcome
of toss is a Head (Y = 1) or Tail (Y = 0). Note that E[Y] = 1/2 and
V[Y] = 1/4. Suppose we toss a fair coin n times and record the total
number of heads obtained in a r.v. S ∈ {0, . . . , n}. By the Central Limit
Theorem, for large values of n, we know that Tn = S−nµ√

nσ
has a standard

normal distribution N (0, 1). For n = 100, we have that E[S] = 50 and
V[S] = 25. What is the probability that (a) 45 ≤ S ≤ 55, (b) 40 ≤ S ≤ 60,
and (c) 35 ≤ S ≤ 65? (The answers should correspond to probability
density of one, two, and three standard deviations around the mean for a
Normal Distribution, respectively.)

2.29 As a promotion, the manufacturers of the GoodForMe cereal have
placed a toy car in each of its cereal boxes. You can determine the color
of the toy car, only by buying and then opening the cereal box. Each toy
car is of a monochromatic color among possible n ≥ 1 colors. Once you
collect cars of all possible colors, then you win a real car. The company
officials have ensured that a cereal box is equally likely to contain a car of
any of the possible n-colors. Let X be the random variable that represents
the number of cereal boxes purchased to obtain toy cars of each of the colors.
For j = 0, 1, . . . , n− 1, let the random variable Xj represents the number
of additional cereal boxes that are purchased after the cars of j different
colors have been collected until a car of new color is obtained. Answer the
following questions:

1. Show that X =
n−1
∑

j=0
Xj.

2. Show that after the cars of j distinct colors have been obtained, the prob-
ability that the color of the car in the next cereal box that is purchased is
new (i.e. different from any of the j colors) is n−j

n .

3. Show that Xj has a geometric distribution with parameter n−j
n .

4. Show that E(X) = n
n
∑

j=1

1
j .

probability for cs 49

5. Suppose that n = 100. Use the approximation
n
∑

j=1

1
j ≈ ln n + 0.5772 to

determine the expected number of cereal boxes that need to be bought to
collect cars of all the colors.

2.30 A hockey fan wants to collect a complete set of 100 hockey cards. The
cards are available randomly, one per package of chewing gum, that the fan
buys twice daily. On average, how long will it take the fan to collect the
complete set? Justify.

2.31 Suppose we hash the elements of a set S having 23 members to a
bit array of length 100. The array is initially all-0’s, and we set a bit to
1 whenever a member of S hashes to it. The hash function is random and
uniform in its distribution. What is the expected fraction of 0’s in the array
after hashing? You may assume that 100 is large enough that asymptotic
limits are reached.

2.32 Let G = (V, E) be a simple undirected graph, where n = |V| and
m = |E|. We partition the set of vertices V into two sets A and B such that
V = A ∪ B and A ∩ B = ∅. We decide which vertices of G will be in A
or B by the following random process: For each vertex v ∈ V, independent
of any other vertex, we toss a biased coin. If it shows up heads, we place v
in A, otherwise we place it in B. The biased coin has 2/3rd probability of
heads, and 1/3rd probability of tails. We say an edge e = (uv) of G is a cut
edge if either (a) u ∈ A and v ∈ B, or (b) u ∈ B and v ∈ A. What is the
expected number of cut edges in G?

2.33 Suppose I have two coins in my pocket - a fair coin and a two headed
coin (i.e. both sides are Heads). I pull one of the coins (randomly) from my
pocket and toss it and obtain a Head. What is the probability that the coin
which I tossed is the fair coin? What is the probability that it is the 2-headed
coin? Provide some reasoning for your answer.

2.34 Assume that the Canadian population is 40 million. Everyone in the
population, irrespective of what others are doing, has a 1% chance that
they will attend a Zoom online meeting on any given day. Each Zoom
session can handle 100 people; on average, we have 400,000 Zoom sessions
running each day. The Health Agency is monitoring the entire population
for three years (say 1100 days) to find if there are COVID rule breakers by
analyzing the attendance in each Zoom session (as there is a chance they
may be planning a physical gathering). We say a group of p ≥ 2 people
are potentially spreaders if they together attend the Zoom sessions for d
different days out of 1100. Assume that there are no spreaders. Derive an
expression for an expected number of sets of p people who may be (falsely)
identified as spreaders. Also, show your computations for p = d = 3.
If required, you can make some assumptions, e.g., (1100

d) = 1100d/d!,
independence, . . .

50 notes on algorithm design

2.35 A beer distillery has a tester (hopefully not a person) which can very
quickly test the quality of each bottled beer on its assembly line and accept
or reject them based on whether they pass or fail its test. If a bottle of the
beer doesn’t meet the standards then with 95% certainty the tester will
report that the bottled beer is unacceptable. If a bottled beer is perfect, than
there is still a 5% chance that the tester may say that the beer doesn’t meet
the standards. Suppose on the average this distillery produces 10% of the
bottled beers which do not meet the standards on any given day. Let us
do the following experiment. Choose a bottle of beer uniformly at random
before it reaches the tester, and let us assume that the tester reports that this
particular bottled beer doesn’t meet the standards. What is the probability
that this bottle actually doesn’t meet the standards? Provide some reasoning
for your answer.

2.36 Suppose you have a biased coin C (i.e. Pr(H) 6= Pr(T) 6= 1
2).

Von Neumann suggested the following method to use the biased coin C to
simulate an unbiased coin. Strategy is to toss C twice and note down the
outcomes. If the first toss of C results in Head and the second one to Tail,
then we say that the outcome is Head. If the first toss of C results in Tail
and second one to Head then the outcome is Tail. Otherwise (that is both the
tosses of C are either Heads or Tails) we repeat the above process (i.e., we will
again toss twice ...). Show that the above method simulates an unbiased
coin, i.e. probability that we output Head is same as the probability that we
output Tail.

2.37 You are given a list L of elements and want to choose a random element
in this list. Each element of L should have the same probability of being
chosen. Unfortunately, you do not know the number of elements in L. You
are allowed to make only one pass over the list. Consider the following
algorithm:

Algorithm PickRandomElement(L):
u = first element of L;
i = 1;
while u exists
do with probability 1/i, set x = u;

u = successor of u in L;
i = i + 1

endwhile;
return x

Prove that the output x of this algorithm is indeed a random element
of L. In other words, prove the following: Let v be an arbitrary element
of L. Then, the probability that x = v after PickRandomElement(L) has
terminated is equal to 1/n, where n is the number of elements in L.

2.38 This question extends previous algorithm. We now want to maintain

probability for cs 51

k > 1 elements rather than a single element. Assume the list L consists of
more than k elements. Here is the modified algorithm:

Algorithm PickRandom-k-Elements(L):
Let u1, u2, . . . , uk be the first k-elements of L;
Form a set R = {u1, u2, . . . , uk};
i = k + 1;
Let u be the i-th element of L;
while u exists
do with probability k/i, replace a random number in R with u.

u = successor of u in L;
i = i + 1

endwhile;
return R

For this question it will be helpful to think of elements in the list L are
u1, u2, u3, . . ., where u1 is the first element, u2 is second, . . . Consider the
i-th iteration of the While loop, i.e. the iteration when the i-th element ui in
L is considered for the first time, for any i > k. Let x be any of the elements
among the first i elements of L (i.e., x ∈ {u1, u2, . . . , ui}). Prove that the
probability that x ∈ R at the end of this iteration is k/i.

2.39 Assume that we have 100 bins, numbered 1 to 100. We also have 75
balls. In our experiment, we throw each ball uniformly at random in any of
the 100 Bins. Estimate the following probabilities after we have placed all
the Balls in Bins. Please provide some justification for your answers. (Note:
Yor can leave your answers at the expression stage, e.g. you may say the
probability is (100

75)(
1

100)
75 rather than calculating the actual value. Recall

that 1− x ≤ e−x.)

1. Probability that at least one bin is empty.

2. Probability that the first bin is empty.

3. Probability that at least one of the first two bins is non-empty.

4. Probability that no two balls occupy the same bin.

5. Probability that the first bin receives exactly 10 balls.

2.40 Suppose we have m balls and n bins. The balls are thrown indepen-
dently and uniformly at random in the bins. Note that the probability that
the k-th ball falls into i-th bin is 1/n, where 1 ≤ k ≤ m and 1 ≤ i ≤ n. A
bin is occupied if it consists of one or more balls, otherwise it is said to be
empty. Answer the following questions:

1. For a fixed index i, what is the probability that i-th bin is empty.

2. Give a (non-trivial) upper bound on the probability that at least one of the
bins is empty.

52 notes on algorithm design

3. Give a (non-trivial) lower bound on the probability that all the bins are
non-empty.

4. Assume that m = 2n ln n. Show that probability that all the bins are
non-empty approaches 1, when n approaches +∞.

2.41 Let us flip a fair coin a dozen time. Estimate the following probabilities.

1. What is the probability of getting exactly six heads?

2. What is the probability of getting at most six heads?

3. What is the probability that we get at least seven heads or seven tails in a
row?

4. What is the probability that the sequence the heads and tails forms a
palindromic sequence?

2.42 Assume that you have a set P of n distinct numbers. Form a sequence
S of these numbers by a taking a random permutation of elements of P. We
compute the minimum element, MIN(P), of this set by an incremental
algorithm as follows:

1. MIN(P) := S[1];

2. For i := 2 to n do
if S[i] < MIN(P), MIN[P] := S[i]

What is the expected number of times that MIN(P) will be updated in Step
(b) of the above algorithm?

2.43 Let X be the total number of heads obtained in a sequence of n indepen-
dent flips of a fair coin. We know that the expected value of X is n

2 . Using
Chernoff bounds compute the following probabilities:

1. Pr(|X− n
2 | > 1

2

√
6n ln n)

2. Pr(|X− n
2 | > n

4)

3. and evaluate the above expressions for different values of n and make
some remarks on the values you obtain.

2.44 Recall that a permutation is one-to-one and onto function π : [1, 2, 3 . . . , n]→
[1, 2, 3 . . . , n] such that for every integer i, 1 ≤ i ≤ n, there is exactly one
integer j ∈ {1, . . . , n} such that π(i) = j. For example the permuta-
tion [12345] → [23154] represents that elements are mapped as follows:
π[1] = 2, π[2] = 3, π[3] = 1, π[4] = 5, and Π[5] = 4. We can visualize
a permutation as a set of directed cycles as follows. Assume that we have
a vertex for each number, 1 ≤ i ≤ n. If Π[i] = j, we draw a directed arc
from vertex i to j. (Notice that a cycle may be a self-loop if π(i) = i.) In

probability for cs 53

our example permutation we have 2 directed cycles 1 → 2 → 3 → 1 and
4→ 5→ 4, and their lengths are 3 and 2, respectively. What is the expected
number of cycles in a random permutation?

(Hint: Each vertex is in some directed cycle. Show that the probability
that a vertex i is in cycle of length k (1 ≤ k ≤ n) is 1

n , irrespective of the
length of the cycle. You may also want to define a r.v. Xi for each vertex i,
where Xi =

1
k , if vertex i participates in the cycle of length k. Think of the

quantity X =
n
∑

i=1
Xi.)

2.45 Suppose you want to rent an apartment in Old Ottawa South and you
have hired an agent to show all the possible apartments within your budget
over the next weekend. Suppose the agent wants to show you n apartments
and tells you that as soon as you make on offer to any of them, it will be
accepted. As a computer scientist, you compute a random permutation of
the order in which you will like to see these apartments and let the permuted
order be π1, π2, π3, . . . , πn. You tell the agent that on Saturday you will see
the first n

e of these, i.e. the apartments labelled π1, π2, . . . , π n
e
. (We assume

that the Euler number e divides n.) After viewing each of these apartments,
you make some mental notes, but at the end of the day Saturday you tell
the agent that you will like to see the remaining ones, in the order of the
permutation π n

e +1, . . . , πn, on Sunday. The strategy that you have decided
to employ on Sunday is to make an offer to rent the very first apartment that
you see which you think is better than what you have seen so far (including
what you saw on Saturday) and then terminate your visit to any remaining
unvisited apartments. On your Sunday’s apartment hunting venture with
the agent, you make an offer for apartment πα. (There is a possibility that
we may not find any better apartment on Sunday and hence may not make
any offer - to keep the arguments simple, if you prefer, you may assume that
you make an offer.) Answer the following questions:

1. Suppose if you would have seen all the apartments, then your ranking of
the apartments to rent (from highest to lowest), without loss of generality
be 1, 2, 3, . . . , n (i.e., 1 is best, 2 is second best,, n is the worst). Note
that the order you visit the apartments is a random permutation of
{1, 2, . . . , n}. Suppose the smallest apartment number, i.e. the most
preferred, among π1, π2, . . . , π n

e
be x. Show that πα < x.

2. Show that the probability of making the optimal choice in the above
strategy is given by

n
∑

i= n
e +1

Pr[We see the apartment πi and πi = 1]

=
n
∑

i= n
e +1

Pr[πi = 1 and minimum of {π1, π2, . . . , πi−1} is in {π1, π2, . . . , π n
e
}]

=
n
∑

i= n
e +1

1
n ×

n
e

i−1

54 notes on algorithm design

3. Conclude by showing that the probability that the above strategy selects
the best apartment is approximately 1/e = 37%. (Recall that the n-th

Harmonic number
n
∑

i=1

1
i ≈ ln n.)

2.46 BSP Sorting: Let S be a set of n distinct numbers and let R be a
subset of S. The sorted elements y1 < y2 < . . . < y|R| of R partition the set
S \ R into |R|+ 1 subsets, which we call open intervals:

S0 = {x ∈ S : x < y1},

Si = {x ∈ S : yi < x < yi+1}, i = 1, 2, . . . , |R| − 1,

and
S|R| = {x ∈ S : x > y|R|}.

(If R = ∅, then there is one open interval S0, which is equal to S.) If we
regard R as being a sample that “represents” S, then the “ideal” sample
would have the property that all open intervals have (approximately) the
same number of elements. Given an integer r with 1 < r < n, we can
obtain such an “ideal” sample R of size r, in O(n log n) time: First sort the
elements of S, then add each (n/r)-th element to R. (Rounding is ignored
here.)

In this question, we will see a simple randomized algorithm that com-
putes a “good” sample (to be defined below) with probability at least 1/2,
if r is not too small. For the rest of this question, we fix an integer r with
1 < r < n.

Consider the following algorithm:

Algorithm RandomSample(S, r)
p = r/n;
R = ∅;
for each x ∈ S
do with probability p, add x to R
endfor;
sort the elements of R;
compute the open intervals S0, S1, . . . , S|R|;
return R, S0, S1, . . . , S|R|

We say that the sample R is good if

1. 1 ≤ |R| ≤ 2r, and

2. for each i with 0 ≤ i ≤ |R|, the open interval Si contains at most 2n ln r
r

elements of S.

Otherwise, the sample R is called bad. In words, a good sample R is (i)
non-empty, (ii) at most twice as large as the sample size we are aiming for,
and (iii) the elements of S \ R are approximately evenly distributed over the
open intervals (except for the ln r factor).

Answer the following questions:

probability for cs 55

1. Compute the expected size E(|R|) of the set R.

2. Prove that

Pr(R = ∅) ≤ e−r.

(Hint: Recall that 1− z ≤ e−z for all real numbers z.)

3. Use the Chernoff bound to show that

Pr(|R| > 2r) ≤ e−r/3.

4. Consider the sorted sequence x1 < x2 < . . . < xn of elements of S. Let
k be an integer that divides n (thus, n/k is an integer and no rounding
is needed below). Partition S into n/k subsets B1, B2, . . . , Bn/k, each
containing k elements: B1 contains x1, . . . , xk; B2 contains xk+1, . . . , x2k,
etc. We call each subset Bi a bucket and say that it is empty if Bi ∩ R =

∅.

Argue that the following is true:

• If each bucket is non-empty, then each open interval contains at most
2k elements of S.

5. Prove the following:

Pr(each bucket is non-empty) ≥ 1− n
k
(1− p)k.

6. Argue that

Pr(each open interval contains at most 2k elements of S) ≥ 1− n
k
(1− p)k.

7. Recall that p = r/n. Let k = n ln r
r . (You may assume that k is an integer

that divides n, so that no rounding is needed.) Prove that

Pr
(

at least one open interval contains more than 2n ln r
r elements of S

)
≤ 1

ln r
.

(Hint: Recall that 1− z ≤ e−z for all real numbers z.)

8. Show that

Pr(the sample R is bad) ≤ e−r + e−r/3 +
1

ln r
.

9. Show the following: If r is chosen sufficiently large, then

Pr(the sample R is good) ≥ 1
2

.

56 notes on algorithm design

2.47 A discrete Poisson random variable X with parameter µ is given by the
following probability distribution on j = 0, 1, 2, . . .

Pr(X = j) =
e−µµj

j!

If we throw m balls in n bins uniformly at random, then the probability
that a particular bin receives r balls is given by (m

r)(
1
n)

r(1 − 1
n)

m−r ≈
e−

m
n (m/n)r/r! (for small values of r).
Suppose we throw n0.97 balls into n bins uniformly at random. Provide

the best upper bound on r so that the maximum number of balls in a bin is
at most r with probability at least 1/2. We can assume n is large.

2.48 Permutation routing in a hypercube: A hypercube Hn of dimen-
sion n ≥ 1 is a interconnected network with 2n nodes, each node is labelled
with a bit string of length n, and it is recursively defined as follows. A di-
mension 1 hypercube H1 is a pair of interconnected nodes, one labelled as
0 and other labelled as 1. A dimension 2 hypercube H2 is formed by taking
two H1’s, and interconnecting the corresponding nodes, and adding a pre-
fix of 0 (respectively, 1) to the label of each node in the first (respectively,
second) H1. Similarly, Hn is formed by taking two Hn−1’s, and intercon-
necting the corresponding nodes and adjusting the node labels. See Figure
2.3 for an illustration.

0

1

00 10

01 11

000

001

010

011

100

101

110

111

Figure 2.3: Hypercubes of dimensions 1,
2, and 3.

First, answer the following questions regarding the topology of a n-
dimension hypercube Hn.

1. How many vertices and edges Hn has?

2. Show that the diameter of Hn is n.

3. Show that each node in Hn is connected to exactly n other nodes. (Hint:
Show that a node labelled with the bit sequence (bnbn−1 · · ·2 b1) is
connected to all nodes whose bit sequence differs in exactly one bit (i.e.
the Hamming distance between the two bit-strings is exactly 1.))

4. Are all the cycles in a hypercube of even length? Is H a bipartite graph?

Define the bit-fixing path from a node u with label (bnbn−1 . . . b2b1)

to a node v with label (b′nb′n−1 . . . b′2b′1) as follows. At the current node
in the path, scan the bits in its label from left to right, and go to the node
which differs in the leftmost bit with respect to the label of v. For example,
bit-fixing path between u = 11001 and v = 10010 will be u = 11001 →
10001→ 10011→ 10010 = v.

Consider the following permutation routing problem on Hn. Initially
each node consists of a packet, and each packet has the label of the destina-
tion node. Moreover no two packets have the same destination address. We
will use the bit-fixing path strategy to route the packets to their respective
destinations. Moreover, we do not allow more than one packet to travel on

probability for cs 57

an edge of the hypercube at any given time. Thus, if more than one packet
wants to use the same edge, then they need to wait for their turn. We as-
sume that the packets can traverse an edge on the first-come-first-serve basis.
Answer the following questions:

1. Assume n is even and N = 2n. Express an n-bit number i as the
concatenation of two binary strings ai and bi of length n/2 each. (For
example, for n = 8, we can express i = (01110101)2 as concatenation
of two 4-bit numbers ai = (0111)2 and bi = (0101)2.) Assume that
we have an instance of the permutation routing problem, where each
node of the n-dimensional hypercube initially contains a packet. For each
node i = (aibi), the destination of the packet vi stored initially at node
i is di = (biai). (For the above example, the destination of the packet
vi initially stored at node i = (01110101)2 will be di = (01010111)2).
Show that the bit-fixing routing scheme, where each link can carry at
most one packet in one step, requires atleast Ω(

√
N/n) steps to deliver

all the packets to their final destinations.

2. For any node i, let the bit-fixing routing path of its packet be πi. Let
L be the maximum number of edges on any path πi, 1 ≤ i ≤ N. Let
ce = |{i|path πi contains edge e}|, i.e. the number of paths that contain
e. Let C = max{ce|e is an edge of G}. Show that the worst case time for
accomplishing the routing in this network is Ω(L + C).

3. Assume that we allow any number of packets to travel on an edge in
one time unit. At the start, for each packet vi, we choose a delay xi i.e. a
random integer in {1, 2, . . . , d C

ln(NL) e}. Now each packet vi first waits
for the xi units of time at the source node, then follows the path πi to
its destination without incurring any delays. Show that all the packets
will reach their destinations in at most L + d C

ln(NL) e time units. For a
particular edge e in G, let m = ce be the number of packets that visit e.
Consider one of these packets, and show that the probability that packet
visits e at a specific time t is at most ln(NL)

C .

4. Define a random variable Xe,t that counts the number of packets that
traverse edge e at time t. Note that Xe,t can be expressed as sum of m
identical independent indicator random variables. Show that the expected
value E[Xe,t] = md ln(NL)

C e. Apply Chernoff bounds to Xe,t and show

that the probability that Pr(Xe,t ≥ (1 + ε)md ln(NL)
C e) ≤ e−

ε2m ln(NL)
3C =

(1
NL)

ε2m
3C .

5. Note that m ≤ C and therefore E[Xe,t] ≤ ln(NL). Furthermore, show
that for ε ≥ 4, Pr(Xe,t ≥ 5 ln(NL)) ≤ (1

NL)
5.

6. Using the fact that that there are at most NL edges all together in all the
paths πi, i = 1, . . . , N, and there are at most L + C

ln(NL) time steps, show

58 notes on algorithm design

that the probability that there exists an edge e and there exists a time t
such that more than α ln(NL) packets travel on e at time t is at most

1
(NL)2 , for some constant α.

7. Now consider the restriction that at most one packet can travel on any
given edge in one time step. Show that with probability ≥ 1− 1

(NL)2 ,
the maximum queue size is O(ln(NL)) and all the packets reach their
destinations in O((L + C

ln(NL))×max queue size) = O(C + L ln(NL))
time units.

2.49 Let A be a set of n items. Without loss of generality assume that
a1, a2, . . . , ak are the most frequent k elements in A with frequencies f1 ≥
f2 ≥ · · · ≥ fk, respectively. We sample each element of A uniformly at
random (with replacement) to construct a multi-set A′. We are interested
to know how many times we need to sample A so that the most frequent k
elements have a representative in A′ with high probability. In other words,
what should be the size of A′ so that with probability ≥ 1− ε, for ε > 0, so
that a1, . . . , ak ∈ A′.

Hint: Let us assume that s = |A′|. Estimate first the probability that if
we choose s elements from A, each uniformly at random with replacement,
what is the probability that ak 6∈ A′? What is an upper bound on the
probability that none of a1, a2, . . . , ak are in A′? Show that by choosing
s = O(n

fk
log k

ε), with probability ≥ 1− ε, a1, . . . , ak ∈ A′.

2.50 In this exercise, we will derive a result on two families of sets due
to Bollabos, see 7 for a nice proof. Let U be a universe of n elements. Let 7 G.O.H Katona. Solution of a problem

of A. Ehrenfeucht and J. Mycielski.
Journal of Combinatorial Theory, Series A,
17(2):265–266, 1974

A1, . . . , Am be p element subsets of U and B1, . . . , Bm be q elements subsets
of U with the following property

(P1) For each i ∈ {1, . . . , m}, Ai ∩ Bi = ∅.
(P2) For each 1 ≤ i, j ≤ m, i 6= j, Ai ∩ Bj 6= ∅.
With the help of the following exercises, we will show that m ≤ (p+q

p), i.e.
m doesn’t depend on the size of the universe U. Answer the following:

1. Show that m ≤ (n
p) and m ≤ (n

q).

2. Let U = 1, . . . , p + q. Let A1, . . . , Am be subsets of size p of U. Let
B1 = U − A1, . . . , Bm = U − Am. Show the following:
(a) Size of each Bi is q.
(b) A1, . . . , Am and B1, . . . , Bm satisfy P1 and P2.
(c) m ≤ (p+q

p).

3. Let Π be a uniform at random permutation of elements of U, and let Xi

be the event that all the elements of Ai precede all the elements of Bi in Π.
Answer the following

(a) Show that the probability of Xi to occur is Pr(Xi) =
(n

p+q)p!q!(n−(p+q))!
n! .

(b) Show that the above expression simplifies to Pr(Xi) = 1/(p+q
p).

probability for cs 59

(c) Show that at most one of the events X1, . . . , Xm can occur in any
permutation of elements of U. I.e. these events are disjoint.

(d) Show that Pr
(

m⋃
i=1

Xi

)
≤ 1.

(e) Show that Pr
(

m⋃
i=1

Xi

)
=

m
∑

i=1
Pr(Xi).

(f) Conclude that m ≤ (p+q
p).

3
Introduction to Graphs

We will focus on

1. Undirected and directed graphs.

2. Adjacency matrix and list representation of graphs.

3. Breadth-first search.

4. Depth-first search.

5. Topological sort.

6. Equivalence Relation and Bi-connectivity.

Keywords: Vertices, Edges, undirected and directed graphs,
connectivity, connected and biconnected components, strongly
connected, complete graphs, complete bipartite graphs, K5, K33,
graph traversal, BFS, DFS.

3.1 Introduction and Definitions

Graphs were discovered by Euler (Königsberg bridge problem)1, 1 Leonhard Euler, 1707-1783

Kirchoff (electrical networks)2 and Cayley (enumeration of organic 2 Gustav Kirchoff, 1824-1887: At every
node in an electrical circuit the sum of
all currents should be equal to zero, i.e.,
the charge cannot accumulate at a node
- or what comes in must go out!

chemical isomers)3 in different contexts. Graphs are combinatorial

3 Arthur Cayley, 1821-1895

structures used in computer science. Lists, Trees, Directed Acyclic
Graphs, Flow Charts, Control Flow Graphs, Planar Graphs, web, unit
disk graphs, and communication networks are examples of graphs
that are widely used in computer science. Most often, practical prob-
lems, can be cast into some sort of graph problem. Examples include
the Traveling Salesperson problem (finding a route of the cheapest
cost through many cities), or coloring a map so that no two neigh-
boring countries receive the same color or finding shortest path from
Carleton to National Art Gallery, or navigating hyperlinks in web-
pages. There are excellent books and thousands of papers discussing

62 notes on algorithm design

several aspects of graphs (definitions, connectivity, coloring, indepen-
dent sets, matchings, Kuratowski’s theorem, four color theorem, ...).
Some of the classical books include [18, 19, 71, 99]. We need to get
used to some of the basic definitions.

a

b

c

d

e

Figure 3.1: An example of a undirected
graph. The edge {a, b} is incident to
the vertex labelled a and to the vertex
labelled b. The degree of vertex a is 4,
degree of vertex b is 2. A path from the
vertex b to the vertex e consists of edges
< bd, da, ae >. This graph is connected
and has only one connected component.
This graph is simple.

Graph A graph G = (V, E) consists of a finite set of vertices V and a
finite set of edges E. See Figure 3.1 for an illustration.

• Undirected graph: E is a set of unordered pairs of vertices {u, v}
where u, v ∈ V (see Figure 3.1).

• Directed graph: E is a set of ordered pairs of vertices (u, v) where
u, v ∈ V (see Figure 3.2).

Incidence An edge {u, v} is incident to u and v.

Degree of vertex in undirected graph is the number of edges incident
to it.

In (Out) degree of a vertex in directed graph is the number of edges
entering (or leaving) it.

Path A path from u to v is a sequence of vertices < u = v0, v1, v2, · · · , vk =

v > such that (vi, vi+1) ∈ E (or {vi, vi+1} ∈ E). A path is simple if
all the vertices are distinct. Furthermore,

• We say that v is reachable from u

• The length of the path is k

• It is a cycle if u = v

Connected An undirected graph is connected if every pair of vertices
are joined by a path.

Component The connected components are the equivalence classes of
the vertices under the “reachability” relation.

Strongly Connected A directed graph is strongly connected if every pair
of vertices are reachable from each other. See Figure 3.2 for an
illustration.

a b

cd e

f

Figure 3.2: An example of a directed
graph. This graph is not strongly
connected since there is no way to reach
from the vertex labelled a to the vertex
labelled e. The strongly connected
components are {{a,b,c,d},{e},{f}}.

Strongly connected components The strongly connected components are
the equivalence classes of the vertices under the “mutual reachabil-
ity” relation.

Simple connected undirected graph An undirected connected graph is
called simple, if between every pair of vertices there is at most one
edge, and no vertex contains a self loop (i.e. a vertex connected to
itself by an edge).
Remark: In these notes, a graph specified without any qualifica-
tions is an undirected, connected, and a simple graph.

introduction to graphs 63

Complete Graphs An undirected graph is called a complete graph, if
every pair of (distinct) vertices are joined by an edge. Examples
include K1 (just a single vertex), K2 (a pair of vertices joined by
an edge), K3 (a triangle), K5 (graph on five vertices), ... K5 is the
smallest (in terms of vertices) non-planar graph (i.e. no matter how
one draws it in the plane, there is a crossing). See Figure 3.3.

K
K

33
5

Figure 3.3: K5 and K33.

Bipartite Graphs A graph is called bipartite if the vertex set V can
be partitioned into two subsets S ∪ T = V, such that for any
edge {a, b}, a ∈ S and b ∈ T. A bipartite graph is complete if
every vertex in S is connected to each vertex in T by an edge. For
example, Kmn refers to a complete bipartite graph consisting of
vertices V = S ∪ T, where |S| = m and |T| = n. Interestingly K3,3 is
the smallest graph (in terms of edges) which is non-planar.

Kuratowski’s Theorem A graph is planar if and only if it has no sub-
graph homeomorphic to K5 or K3,3. 4 Two graphs are homeomor- 4 This is one of the fundamental theo-

rems in Graph Theory.phic if both can be obtained from the same graph by a sequence
of subdivisions of edges (insertion of a vertex on an edge). For
example any two cycles are homeomorphic.

3.2 How to represent graphs in a computer?

There are two standard ways of representing graphs in computers:
Adjacency list and Adjacency Matrix. Let G = (V, E) be the graph
under consideration (assume that it is undirected - for directed the
same representation works as well).

In the adjacency matrix representation of a graph G = (V, E), we
form a |V| × |V| matrix A of 0s and 1s, where the A[i, j]-th entry is
1 if and only if there is an edge from the vertex vi to the vertex vj.
Formally,

A[i, j] =

1 vivj ∈ E

0 vivj 6∈ E

It is easy to see that this matrix will be symmetric for undirected
graphs. Also given a pair of vertices vi and vj, it takes constant
time to check whether there is an edge joining them by inspecting
the ij-th entry in the matrix A. Moreover, this representation is
independent of the number of edges in G. The main drawback is
that this representation requires O(|V|2) memory space whereas the
graph G may have very few edges (i.e., its sparse). Just for fun and to
get some insight, try to see what it means by taking products A× A or
A× A× A,..., where the ‘.’ refers to the boolean AND and ‘+’ refers
to the boolean OR? Try it for small graphs. We will come back to that
later.

64 notes on algorithm design

The other most common representation is the adjacency list repre-
sentation. The adjacency list for a vertex v is a list of all vertices w
that are adjacent to v. To represent the graph we have in all |V| lists,
one for each vertex. This representation requires optimal storage,
i.e. O(|V|+ |E|). But to check whether the two vertices v and w are
connected, we need to check in lists of v (or w) whether the vertex
w (resp. v) is present. Searching in a list requires, in the worst case,
time proportional to the size of the list. Hence, we can determine if
vw ∈ E in time O(min{degree(v), degree(w)}). Try to observe advantages and disad-

vantages of both representations.

3.3 Graph Traversal

Once we have a graph, represented inside the computer, what do we
do with it? When we go to a new city, what is the best way to explore
all the bars? What is the best way to search for a particular web page
just following the hyperlinks (assume no search engine and assume
that we can navigate from any web page to any other web page)?
How to solve those maze problems?

• There are two standard and simple ways of traversing all ver-
tices/edges in a graph in a systematic way

– Breadth-first search (bfs)

– Depth-first search (dfs)

• They are used in many fundamental algorithms as a preprocessing
step.

3.3.1 Breadth-first search (BFS)

Figure 3.4: Illustration of BFS. Solid
edges are tree edges and dashed edges
are non-tree edges.

• Main idea of breadth-first search is (see Figure 3.4):

– Start at a source vertex and visit:

* All vertices at distance 1 (i.e. vertices that are neighbors of
source),

* Followed by all vertices at distance 2 (neighbors of neighbors
of source),

* Followed by all vertices at distance 3 (neighbors of neighbors
of neighbors of source),
...

• BFS corresponds to computing shortest path distance (number of
edges) from s to all other vertices in the graph.

See Algorithm 3.1 for details. It is easy to see that Algorithm 3.1
runs in O(|V| + |E|) time since each vertex is inserted (enqueued)

introduction to graphs 65

Algorithm 3.1: Breadth-First Search
Input: Graph G = (V, E) and a source vertex v ∈ V
Output: A breadth-first search tree T rooted at v. Each vertex u

stores its parent p(u) in T.

1 Initialize a Queue Q of vertices, maintained in
First-In-First-Out order.

2 T, Q← ∅;
3 mark[v]← visited;
4 Q← v;
5 while Q 6= ∅ do
6 x ← FRONT(Q);
7 REMOVE(x, Q); // Remove x from Q.
8 foreach y ∈ V adjacent to x do
9 if mark[y] = unvisited then
10 mark[y]← visited;
11 Insert y at the END of Q;
12 Insert the directed edge (x, y) in the tree T, where

p(y)← x;
13 end
14 end
15 end

66 notes on algorithm design

once in the queue Q and each edge {x, y} is explored twice, once
when the vertex x is dequeued from Q and once when the vertex y
is dequeued. Insertion and Deletion of a vertex in Q can be achieved
in constant time since Q is a FIFO Queue, and can be maintained as
a doubly-connected list. Also the adjacency list representation will
suffice and the correctness is left as an assignment problem. We can
summarize this as follows:

Theorem 3.3.1 Let G = (V, E) be a simple graph. A breadth-first search
traversal of G, and its corresponding tree, can be computed in O(|V|+ |E|)
time.

3.4 Topological sort and DFS

3.4.1 Topological Sort

Let G = (V, E) be a directed acyclic graph (DAG) on the vertex set
V with directed edge set E. In a DAG, there are no directed cycles.
But, between a pair of nodes, there may be multiple directed paths.
A topological sort of a DAG is a linear ordering of all its vertices such
that if G contains a directed edge (u, v), then u appears before v in
the ordering. One can think of this process as assigning a number
f : V → {1, · · · , |V|} to each vertex such that for every directed edge
(u, v), f (u) < f (v) (see Figure 3.5).

DAG vertices numbered

in the topological order.

1
2

3

4

5

6

7

8

9

10

Figure 3.5: Illustration of Topological
Sort

We will sketch two algorithms, first a slower one followed by
an optimal one. You need to verify the correctness as well as the
complexities of both of them. Try to decide yourself what should be a
suitable graph representation for these algorithms.

Algorithm 1: Topological sort in O(|V|2) time.

Step 1: Start from any vertex and follow edges backwards until
a vertex v is found, such that v has no incoming edges.

Step 2: Make v the next vertex in the total order.

Step 3: Delete v and all of its outgoing edges.

Step 4: If the graph is non-empty, go to Step 1.

Observe that in Step 1 we will find a vertex v, having no incoming
edges, as DAGs are acyclic and have a finite number of vertices.
Moreover a vertex is assigned a number when it has no incoming
edges. This should be sufficient to prove that the generated linear
ordering of vertices satisfy the requirements of topological sort.

introduction to graphs 67

Algorithm 2: Topological sort in O(|V|+ |E|) time using adjacency
list representation, where for each vertex maintain a separate list
of incoming edges and outgoing edges.

Step 1: Form a queue Q of vertices which have no incoming
edges.

Step 2: Pick a vertex v from Q, and make v the next vertex in the
order.

Step 3: Delete v from Q and delete all of its outgoing edges. Let
(v, w) be an outgoing edge. If the list of incoming edges of w
becomes empty then insert w at the end of the queue Q.

Step 4: If Q is not empty then GOTO Step 2.

Which invariant(s) are maintained by Algorithm 2? Why is it correct?
Why does it run in O(|V|+ |E|) time?

3.4.2 Depth First Search

Depth First Search (DFS) is another way of exploring a graph. Like
BFS, DFS traversal will take linear time, will produce a DFS spanning
tree and this tree will possess very interesting, useful and beautiful
properties.

1

2

3

4

5

6 7

8

9

10

11 12

Figure 3.6: Illustration of dfs and low-
numbers. Solid edges are tree edges
and dashed edges are back edges.
low(6) = 4, low(4) = 3, low(10) = 1,
low(3) = 3., low(2) = 1.

Assume that we have an undirected connected simple graph
G = (V, E). Informally DFS on G performs the following steps:

1. Select a vertex v of G which is initially unvisited.

2. Make v visited.

3. Each unvisited vertex adjacent to v is searched in-turn using DFS
recursively.

DFS partitions the edges in G into two sets, the set of DFS span-
ning tree edges, say T, and the set of back edges, say B, where
E = T ∪ B, and T ∩ B = ∅. Next we formally describe the algo-
rithm of Aho, Hopcroft, Ullman 5 for DFS. Each vertex in G will be 5 A. V. Aho, J. E. Hopcroft, and J. D.

Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley
Publishing Company, 1974

assigned a DFS-number, i.e., the order in which they are first visited
in the DFS (see Figure 3.6).

DFS Algorithm

Input: A (undirected simple connected) graph G = (V, E),
represented by adjacency list L[v] for each vertex v ∈ V.

68 notes on algorithm design

Output: Partition of E = T ∪ B. Tree edges are given as di-
rected edges from a child to its parent. All edges not in T are
considered to be in B. DFS-number, an integer in the range 1..|V|,
assigned to each vertex.

1. T := ∅; COUNT:=1;

2. for all v ∈ V do mark v as unvisited;

3. while there exists an unvisited vertex do SEARCH(v)

procedure SEARCH(v)

1. mark v as visited;

2. DSF-number[v]:=COUNT;

3. COUNT:=COUNT+1;

4. for each vertex w on L[v] do

if w is unvisited then

(a) add (w, v) to T; /*edge (w, v) is a DFS tree edge */

(b) SEARCH(w); /* Recursive call */

Complexity Analysis: Why does the above algorithm runs in O(|V|+
|E|) time?
We call the procedure SEARCH(v), |V| times, once for each vertex.
The total running time of SEARCH(v), exclusive of the recursive
calls, is proportional to the degree of v. Hence the total time
complexity is O(|V|+ ∑v∈V(degree(v))) = O(|V|+ |E|).

Property of Back edges: If {w, v} ∈ B is a back edge, then either w is
an ancestor of v or v is an ancestor of w in the DFS tree T. Why?
Suppose, without loss of generality, v has a lower DFS-number
than w, i.e., the vertex v is visited before the vertex w. Therefore,
when SEARCH(v) is invoked, the vertex w is labeled unvisited. All
the unvisited vertices visited by SEARCH(v) will become descen-
dants of v in the DFS tree. Therefore, w will become descendant
of v, since w ∈ L[v] and each vertex in L[v] is looked at while
executing SEARCH(v).

introduction to graphs 69

3.4.3 Computation of low(v)

We introduce a quantity, called low(v), for each vertex v ∈ V with
respect to the DFS tree T and the back edges B. This quantity will
be used in checking whether a graph is biconnected and finding its
biconnected components. We will deal with biconnectivity in the next
section.

Let us first define low(v). Relabel the vertices of G by their DFS-
numbers. For each vertex v ∈ V, define low(v) as follows:

low(v) = MIN({v} ∪ {w|there exists a back edge (x, w) ∈
B such that x is a descendant of v and w is an ancestor of v in the DFS tree})

Intuitively, low(v) is trying to capture the following. Consider
the subtree Tv of the DFS-tree T, rooted at the vertex v. What is the
vertex closest to the root of T that can be reached by using back
edges emerging in Tv, and going to the ancestors of v? If there are
no back edges going out of Tv, then low(v) = v; otherwise it is the
minimum (i.e. closest to the root) among the set of ancestors of v,
which are joined by back edges from the vertices in Tv.

To compute low(v), we will compute three quantities. These quan-
tities can be computed by simple modification to the DFS algorithm.
The three quantities are

1. w = v; i.e. the case when there are no back edges going out of the
subtree Tv.

2. w = low(c) and c is a child of v; i.e. the case when low(v) is the
same as low value of one of its children.

3. (v, w) is a back edge in B; i.e. the back edges associated to vertex v
itself.

Then, the low(v) value is given by
low(v) = MIN({v} ∪ {low(c)| c is a child of v} ∪ {w|(v, w) ∈ B}).
The modified SEARCH(v) procedure that computes the low values

is as follows:

procedure SEARCH(v)

1. mark v as visited;

2. DSF-number[v]:=COUNT;

3. COUNT:=COUNT+1;

4. low(v):=DFS-number[v]; /* low(v) is at least equal to the DFS-

number of v */

70 notes on algorithm design

5. for each vertex w on L[v] do

if w is unvisited then

(a) add (w, v) to T; /*edge (w, v) is a DFS tree edge */

(b) SEARCH(w); /* Recursive call */

(c) low(v) := min(low(v), low(w)) /*Compare the low value of v
with its child w */

else if w is not the parent of v then

low(v) := min(low(v), DFS-number[w]); /* (v, w) is a back edge */

Given that the DFS algorithm runs in O(|V|+ |E|) time, it is easy to
see that this algorithm runs within the same time complexity.

3.5 Biconnectivity

3.5.1 Equivalence Relation

Before we talk about biconnectivity, we need to recall what is an
equivalence relation.

Relation Let A and B be finite sets. A binary relation R from A to
B is a subset of the cross product of A and B, i.e. R ⊆ A× B. A
relation on a set A is a relation from A to A. Example of an Equivalence Relation:

Let A = {1, 2, 3, 4}. Let R =
{(a, b)|a divides b, where a, b ∈ A},
i.e. R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2),
(1, 3), (1, 4), (2, 4))}.

Another example of an equivalence relation:
Let R be a relation on the set of integers such that (a, b) ∈ R

if and only if a = b or a = −b. The equivalence class of inte-
ger 4 will be [4] = {4,−4}. Similarly, [7] = {−7, 7}. Observe
that since (4,−4) ∈ R, then [4] = [−4] = {4,−4}. Also ob-
serve that the set of integers can be partitioned by R as follows:
{(−1, 1), (0), (−2, 2), (−3, 3), ...}.

Reflexive A relation R on A is reflexive if (a, a) ∈ R for every element
a ∈ A. The relation in the divide example is reflexive.

Symmetric A relation R on A is called symmetric if (b, a) ∈ R when-
ever (a, b) ∈ R, where a, b ∈ A. The relation in the divide example
is not symmetric.

Transitive A relation R on A is called transitive if whenever (a, b) ∈
R and (b, c) ∈ R, then (a, c) ∈ R, for a, b, c ∈ A. The relation in the
divide example is transitive.

Equivalence Relation A relation on a set A is an equivalence relation
if it is reflexive, symmetric, and transitive.

introduction to graphs 71

Equivalence Classes Let R be an equivalence relation on a set A. The
set of all elements that are related to an element a ∈ A is called the
equivalence class of a, denoted by [a].

Property of Equivalence Classes Let R be an equivalence relation on A.
Then if (a, b) ∈ R, then [a] = [b].

Partition of A Let R be an equivalence relation on A. Then the equiv-
alence classes of R form a partition of A.

There are many books in Discrete Mathematics discussing equiva-
lence relations, for example, see Rosen 6. 6 Kenneth H. Rosen. Discrete Mathematics

and Its Applications. McGraw-Hill Higher
Education, 5th edition, 2002

3.5.2 Biconnectivity

Most of the material in this section is from Kozen 7 and Aho, Hopcroft 7 D. Kozen. The design and analysis of
algorithms. Springer, 1992and Ullman 8. Assume that the graph G = (V, E) is undirected and
8 A. V. Aho, J. E. Hopcroft, and J. D.
Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley
Publishing Company, 1974

connected. We start with definitions.

Articulation vertex A vertex v ∈ V is called an articulation vertex, if
its removal disconnects the graph. Equivalently, vertex v is an ar-
ticulation vertex if there exists vertices a and b, so that every path
between a and b goes through v and a, b, and v are all distinct.

Biconnected A connected graph is biconnected if any pair of distinct
vertices lie on a simple cycle (one with no repeated vertices).
Equivalently, for every distinct triple of vertices v, a, and b, there
exists a path between a and b not containing v. Observe that G is
biconnected if and only if it has no articulation vertices. Note that
a graph just consisting of a single edge (two vertices joined by an
edge) is biconnected!

Relation on edges For edges e, e′ ∈ E, define that the two edges are
equivalent, e ≡ e′, if e and e′ lie on a simple cycle.

Lemma 3.5.1 The relation ≡ defined above is an equivalence relation.

Proof. To prove that it is an equivalence relation, we need to show
that it is reflexive, symmetric and transitive.

Reflexive: Obviously e ≡ e, ∀e ∈ E, since an edge by itself lies on a
cycle.

Symmetric: If e ≡ e′, then e′ ≡ e, since they are on the same cycle. e

e′′

u

v

u′′

v′′

X

Y

u′

v′

e′

p

q

Figure 3.7: Illustration of Transitivity.
The cycle c′′ contains e and e′′.

Transitivity: Suppose that e ≡ e′ and e′ ≡ e′′. We want to show that
e ≡ e′′. Say e and e′ are on a simple cycle X and e′ and e′′ are on a
simple cycle Y. If e′′ is also on the cycle X then we are done because e
is on that cycle too. Otherwise, follow the edges of Y from one end of
e′′ until it hits X. Call that intersection vertex p. Do the same for the
other end of e′′, and call that intersection vertex q. Now p and q are

72 notes on algorithm design

distinct and there are two disjoint paths between them using edges
of X. One of these paths contains edge e. Combing this path with
the ones of Y we used to get from e′′ to X gives us a simple cycle
containing both e and e′′. 9 9 Thanks to Danny Sleator for providing

this proof.

Now we have an equivalence relation. What are the equivalence
classes of this relation with respect to the edge set of G.

Biconnected Components The equivalence classes of the relation ≡ are
the biconnected components of G.

Now we discuss critical lemmas that relate articulation vertices, bi-
connected components, DFS number and low values. These lemmas
are ‘if and only if’ type - or ‘necessary and sufficient’ type. Such types
of lemmas are extremely useful, especially in computer science, since
they provide a complete characterization of the object/structure
under consideration, and often lead to an algorithm.

Lemma 3.5.2 A vertex v is an articulation vertex if and only if it is con-
tained in at least two distinct biconnected components.

Proof. Suppose v is an articulation vertex. Then its removal discon-
nects G. That means that there are two vertices a and b neighboring
v so that each path between a and b goes through v. See Figure 3.8.
Then the edges (a, v) and (v, b) cannot lie on a simple cycle, and
hence they belong to two distinct biconnected components. This
implies that v is contained in at least two distinct biconnected compo-
nents.

v

a

b

Figure 3.8: An articulation vertex in two
distinct biconnected components.

Now suppose that v is contained in two distinct biconnected
components, and is adjacent to vertices a and b in these components,
respectively. Then (va) 6≡ (vb). Then all paths between a and b
goes through v, and hence removing v disconnects G. So v is an
articulation vertex.

Lemma 3.5.3 Let (uv) and (vw) be two adjacent tree edges in a DFS tree
T of G. Then (uv) ≡ (vw) if and only if there exists a back edge from some
descendant of w to some ancestor of u.

Proof. Recall that the descendants of w are w and all the vertices in
the subtree rooted at w. Ancestors of u include u and all vertices on
the path from u to the root of the DFS tree.

If there exists a backedge from some descendant w′ of w to some
ancestor u′ of u, then (uv) ≡ (vw), since there is a simple cycle
consisting of the tree path between u′ and w′ and the backedge w′u′.
See Figure 3.9.

�
�
�
�

�
�
�
�

�
�
�
�

Subtree of w.

w

v

u

Root of DFS−tree

Ancestors of u

w’

u’

Backedge from
w’ to u’.

Figure 3.9: Illustration of existence of a
back edge

introduction to graphs 73

Suppose (uv) ≡ (vw). By definition, there is a simple cycle that
contains both of them. The edges (uv) and (vw) must appear in this
order in the cycle, as the vertex v appears exactly once on the cycle.
This implies that there is an edge (actually a backedge) from some
vertex w′ in the subtree rooted at w to some ancestor u′ of u. (This
ancestor could be the vertex u or a vertex on the path from u to the
root of the DFS tree.)

Lemma 3.5.4 Vertex v is an articulation vertex if and only if either
(a) v is the root of the DFS tree and has more than one child.
(b) v is not the root, and for some some child w of v there is no backedge

between any descendant of w (including w) and a proper ancestor of v.

Part (a) is easy to prove and part (b) follows from the previous
lemma. The modifications to the DFS procedure to compute the
biconnected components are as follows:

1

2

3

4

5

6

7

8 9

10

11

12
13

DFS Tree in Bold Edges.
Three Biconnected Components
(Blue, Red and Green)

DFS Number inside the nodes.
Low Number Outside the node

1

1

1

1

1

1

103

3

3
4

3

3

v

w

Observe that
Low(w)=3 >= DFS−number(v)=3
and hence a biconnected component
is found consisting of
{(34),(45),(56),(47),(78),(79), (84)

(93),(63)}

Figure 3.10: Illustration of biconnected
components

See Figure 3.10 for an illustration for the biconnected components
computed by the following search procedure.

procedure SEARCH(v)

1. mark v as visited;

2. DSF-number[v]:= COUNT;

3. COUNT:= COUNT+1;

4. low(v):= DFS-number[v]; /* low(v) is at least equal to the DFS-

number of v */

5. for each vertex w on L[v] do

if w is unvisited then

(a) add (w, v) to T; /*edge (w, v) is a DFS tree edge */

(b) SEARCH(w); /* Recursive call */

(c) If low(w) ≥ DFS-number[v] then a biconnected component has

been found;

(d) low(v) := min(low(v), low(w)) /*Compare the low value of v
with its child w */

else if w is not the parent of v then

low(v) := min(low(v),DFS-number[w]); /* (v, w) is a back edge */

end

Why does the above algorithm compute biconnected components?

74 notes on algorithm design

Actually we will need a STACK to figure out the edges in a bicon-
nected component! How do we do that? When a vertex w is encoun-
tered in the SEARCH procedure places the edge (v, w) on the STACK
if it is not there. After discovering a pair (v, w), such that w is a
child of v and low(w) ≥ DFS-number[v], POP all the edges from the
STACK up to and including (v, w). These edges form a biconnected
component. This extra step can be accomplished in linear time as
well. To prove that the above SEARCH procedure indeed computes
the biconnected components, we need to argue by induction on the
number of biconnected components.

3.6 Exercises

3.1 This problem is related to the representation of graphs. Assume that
the number of edges in the graph G = (V, E) is small, i.e., it is a sparse
graph. In the adjacency matrix representation of G, the normal tendency is
to first initialize the matrix, requiring O(|V|2) time. Is there any way we
can initialize the adjacency matrix in time proportional to O(|E|) and still
have O(1) adjacency test?

3.2 Provide a clear, concise, and complete proof for the correctness of the
BFS algorithm.

3.3 Let G=(V,E) be a directed acyclic graph with two designated vertices, the
start and the destination vertex. Write an algorithm to find a set of paths
from the start vertex to the destination vertex such that (a) no vertex other
than the start or the destination vertex is common to two paths. (b) no ad-
ditional path can be added to the set and still satisfy the condition (a). Note
that there may be many sets of paths satisfying the above conditions. You
are not required to find the set with the most paths but any set satisfying the
above conditions. Your algorithm should run in O(|V|+ |E|) time. State the
algorithm, its correctness and analyze the complexity.

3.4 Let G = (V, E) be a directed acyclic graph. We say that G is semi-
connected if for every pair of distinct vertices u, v ∈ V, we have that there
is a directed path from u to v or there is a directed path from v to u in G.
Given G in the adjacency list representation, design an algorithm running
in O(|V| + |E|) time to determine whether G is semi-connected. (Hint:
First, construct examples of directed-acyclic graphs on four vertices that are
semi-connected and that aren’t. Determine what property (with respect to
their linear order) distinguishes them.)

3.5 Clearly describe the modifications you need to make in the SEARCH
procedure to compute and output the biconnected components. Prove that
your algorithm is correct, i.e. it computes all the biconnected components.

introduction to graphs 75

3.6 How can we find in O(|V| + |E|), whether a graph G = (V, E) is a
bipartite graph (Hint: Use BFS).

3.7 An Euler circuit for an undirected graph is a path that starts and
ends at the same vertex and uses each edge exactly once (vertices might be
repeated). A connected, undirected graph G has an Euler circuit if and only
if every vertex is of even degree. Give an O(|E|) algorithm to find an Euler
circuit in G, if it exists.

3.8 Assume that you are given n positive integers, d1 ≥ d2 ≥ · · · ≥ dn,
each greater than 0. You need to design an algorithm to test whether these
integers form the degrees of an n vertex simple undirected graph G = (V, E)
(Think of a greedy algorithm.)

3.9 Show that in a depth-first search, if we output a left parenthesis ‘(’
when a node is accessed for the first time and output a right parenthesis ‘)’
when a node is accessed for the last time, then resulting parenthesization (or
bracketing sequence) is proper. Each left ‘(’ is properly matched with a right
‘)’.

3.10 Let G = (V, E) be a simple undirected graph. Provide an algorithm
running in O(|V|+ |E|) time, which outputs whether G contains a cycle
or not. If it contains a cycle - then it needs to output at least one cycle.
What graph representation you have used for your algorithm. Justify why
you used that and remember to link this justification with your complexity
analysis.

3.11 Typically departments in universities (like Carleton) offer many
courses, but to register in a course, one needs to have completed all the
required prerequisite courses. We can easily model this relationship as a di-
rected graph, where each course is a vertex, and a directed edge from course
u to v if and only if u is a prerequisite course for taking w. It should be clear
that this graph should not contain any directed cycles (otherwise we won’t
graduate!). (For example, if COMP 1405 and COMP 1805 are required
for taking COMP 2402, and COMP 2402 is required for taking COMP
3804, we will have directed edges from vertices corresponding to COMP
1805 and COMP 1405 to COMP 2402, and a directed edge from COMP
2402 to COMP 3804.) Given a directed graph G = (V, E) in adjacency list
representation, representing the courses and their prerequisites, your task is
to compute minimum number of terms one needs to spend in the department
to complete the degree, where you can assume that you can do any number
of courses in any term, provided that the prerequisite conditions are met.

3.12 Let s and t be two specific vertices of an undirected connected simple
graph G = (V, E) on n = |V| vertices, where any path between s and t in
G consists of at least n/2 + 2 vertices. Show that there is a vertex v ∈ V,

76 notes on algorithm design

v 6= s and v 6= t, such that any path from s to t passes through v. Also,
provide an algorithm, running in O(|V|+ |E|) time, for identifying such a
vertex v for a given pair of vertices s, t ∈ V. (Note that by removing v from
G, we disconnect s and t.)

3.13 Assume that G = (V, E) is biconnected. Our task is to identify those
edges E′ ⊆ E, so that if we remove any edge e ∈ E′ from G, then the
resulting graph is not biconnected. Intuitively, edges in E′ are essential
in maintaining the biconnectivity of G. It is fairly straightforward to
test whether an edge e ∈ E is critical, by just removing e from G and
running the biconnectivity algorithm to test whether the resulting graph
is biconnected. A question worth trying, but is likely to be nontrivial, is to
compute the set E′ ⊆ E in o(|E|(|V|+ |E|)) time.

3.14 Consider the following modified pseudo-code.

Modified DFS Algorithm

Input: A graph G = (V, E), represented by adjacency list L[v] for each
vertex v ∈ V.
Output: A pair of integers (pre[v], post[v]) assigned to each vertex v.

1. Clock := 1;

2. for all v ∈ V do mark v as unvisited;

3. While there exists an unvisited vertex v do SEARCH(v)

procedure SEARCH(v)

1. mark v as visited;

2. pre[v] := Clock;

3. Clock := Clock + 1;

4. for each vertex w on L[v] do

if w is unvisited then SEARCH(w);

5. post[v] := Clock;

6. Clock := Clock + 1;

Answer the following questions:

1. Suppose G = (V, E) is undirected graph. Show that for any pair of nodes
u and v in G, the two intervals [pre[u], post[u]] and [pre[v], post[v]] are
either disjoint or one interval contains the other.

introduction to graphs 77

2. Execute the modified dfs algorithm on the directed graph in Figure 3.2.

3. Suppose G = (V, E) is directed graph. Show that for any pair of nodes
u and v in G, the two intervals [pre[u], post[u]] and [pre[v], post[v]] are
either disjoint or one interval contains the other. Moreover, show that if
for a directed edge (u, v) ∈ E, pre[v] < pre[u] < post[u] < post[v],
then there is a directed cycle in G.

4. Call an edge e = (u, v) of a directed graph a back edge if pre[v] <
pre[u] < post[u] < post[v]. Show that a directed graph has a directed
cycle if and only if the modified dfs algorithm reveals a back edge.

5. Design an algorithm that determines whether a directed graph G =

(V, E) is an acyclic graph (i.e., it doesn’t contain a directed cycle). Your
algorithm must run in O(|V|+ |E|) time.

6. Let G = (V, E) be a directed acyclic graph. Show that for any directed
edge e = (u, v) ∈ E, post[u] > post[v].

7. All vertices with no incoming edges in a directed acyclic graphs are called
the source vertices, and all the vertices that have no outgoing edges are
called the sink vertices. In any directed acyclic graph, can you say what
property the vertex with the largest post number satisfies? the vertex
with the smallest post number? Does the ordering of the vertices with
respect to decreasing post number results in a linear order?

3.15 A directed graph G = (V, E) is said to be strongly connected if
every pair of vertices is joined by a directed path. That is, for any pair of
vertices u, v ∈ V, there is a directed path from u to v and there is a directed
path from v to u. If G is not strongly connected, then its vertices can be
partitioned into strongly connected components. Answer the following:

1. What are the strongly connected components of a directed acyclic graph?

2. Identify strongly connected components of the graph in Figure 3.11.

Figure 3.11: A directed graph.

3. Show that if A and B are two strongly connected components in G and
there is an edge from some vertex in A to some vertex in B, then the
highest post number in A is bigger than the highest post number in B.

4. Is it possible to linearise the strongly connected components of a directed
graph G = (V, E) with respect to the decreasing order of the highest post
number of its components?

5. Is it possible to identify a vertex in source strongly connected com-
ponent? Is it possible to identify a vertex in sink strongly connected
component?

6. Can the sink strongly connected component of a directed graph G =

(V, E) can be identified in O(|V|+ |E|) time?

78 notes on algorithm design

3.16 Given a directed graph G = (V, E), where each vertex has a distinct
integer label. For each vertex v, define R(v) to be the set of all vertices
w ∈ V for which there is a directed path from v to w in G. Furthermore, for
each vertex v ∈ V, define MinLabel(v) to be the vertex with the minimum
label in the set R(v). Provide an algorithm, running in O(|V|+ |E|) time,
that computes MinLabel(v) for all vertices v ∈ V.

3.17 Let G = (V, E) be a directed acyclic graph. Is it possible to find a
(directed) Hamiltonian path in G, i.e. a directed path that touches each
vertex exactly once, in O(|V|+ |E|) time.

3.18 In the summer vacation, you decided to travel to various communities
in Northern Canada by your favourite ATV (All-Terrain Vehicle). Each
of the communities you want to visit is represented as a vertex in your
travel graph (a total of |V| communities). Moreover, you are provided with
distances between all pairs of communities. Think of your input graph as
a complete graph (i.e. every pair of vertices are joined by an edge), and the
weight of an edge, say e = (uv) is the distance between the community u
and v. Since this is in the far North, and the routes between communities
are not used that often, the gas stations are only located in communities
(there are no gas stations outside a community). Furthermore, we can
assume that each community has at least one gas station. Once you fill-up
the tank of your ATV, it has an upper limit, say of ∆ kilometres, which it
can travel, and to travel any further, it needs to fill up (which means at that
point it needs to be in a community!). Answer the following questions:

1. First design a method, running in O(|V|+ |E|) time, which can answer
whether there is some path which your ATV can take so that you can
travel between two particular communities, say s and t. If the distance
between s and t is at most ∆, you can travel directly without refuelling.
Otherwise, you can travel between s and t, provided there are communi-
ties where we can refuel and proceed.

2. Design an algorithm running in O(|E| log |V|) time to determine
the smallest value of ∆, which will enable you to travel from s to t.
(Please present Pseudocode, correctness, analysis) and use the algorithms
discussed in the class/book as black boxes).

3.19 Consider a connected graph G = (V, E) where each edge has a non-
zero positive weight. Furthermore, assume that all edge weights are distinct.
Show that for each vertex v ∈ V, the edge incident to v with minimum
weight belongs to a Minimum Spanning Tree (MST). Can you use this to
devise an algorithm for MST? Note that the above step identifies at least
|V|/2 edges in MST. Now we can collapse these edges by identifying the
vertices and then recursively applying the same technique - the graph in
the next step has at most half of the vertices that you started with - and so

introduction to graphs 79

on. The recursion terminates when we are left with a single vertex. At that
point, we would have collected |V| − 1 edges that are in an MST.

Note that for an edge e = uv in the graph G = (V, E), identifying
vertex u with v or collapsing e is the following operation: Replace the
vertices u and v by a new vertex, say u′. Remove the edge between u and
v. If there was an edge from u (respectively, v) to any vertex w (w 6= u
and w 6= v), then we add an edge (with the same weight as of edge uw
(respectively, vw)), between the vertices u′ and w. This transforms graph G
to a new graph G′ = (V′, E′), where |V′| < |V| and |E′| < |E|. Note that
G′ may be a multigraph (i.e., between a pair of vertices, there may be more
than one edge). For example, if uv, uw, and vw are edges in G, then G′

will have two edges between u′ and w when we identify u with v. We can
transform G′ to a simple graph by keeping the edge with the lower weight
among uw and vw as the representative for u′w for the computation of
MST.

3.20 Let G = (V, E) be an edge-weighted directed connected graph. As-
sume that each edge weight is positive and distinct. Let s, t ∈ V be two
specific vertices in G and let π(s, t) be a shortest path in G between s and t.
Suppose we modify the weight of each edge of G to be the square root of its
original weight. Will π(s, t) continue to be a shortest path between s and t
in the modified graph? What if we increase the weight of each edge to square
of its value? Will π(s, t) continue to be a shortest path between s and t in
the modified graph?

3.21 Let G = (V, E) be a directed graph given in the adjacent matrix
representation. Define the square of G to be the graph G′ = (V′, E′) where
V′ = V and (u, v) ∈ E′ if and only if there is a directed path consisting at
most two edges between u and v in G. Given G show how you can compute
G′ efficiently.

3.22 1. Show that every simple undirected graph on n ≥ 2 vertices has at
least two vertices of equal degree.

2. Show that a tree with n ≥ 2 vertices have at least two vertices of degree
1.

3.23 Let G = (V, E) be a simple, connected, and undirected graph on n ≥ 3
vertices. Answer the following:

1. Suppose we are also given that G is not a complete graph. Show that
three vertices always exist u, v, and w ∈ V such that uv, vw ∈ E and
uw 6∈ E.

2. Show that any two longest paths in G have a vertex in common.

80 notes on algorithm design

3.24 Let G = (V, E) be a simple undirected bipartite graph. Let A be its
node-edge incidence matrix of dimension |V| × |E|, defined as

Ave =

1, if v is an endpoint of an edge e

0, otherwise

Show that every square submatrix of A has determinant 0 or ±1.
Note that the rows (respectively, columns) of A corresponds to the

vertices (resp., edges) of G. Consider the column corresponding to the edge
e = (uv) ∈ E. That column consists of exactly two 1s, one corresponding to
the row of u and the other to the row of v, and all the remaining entries are
0.

4
Matrices with Applications to CS

We will focus on

1. Solutions to the system of linear equations Ax = b.

2. Row, Column, and Null Spaces.

3. Expressing a square matrix A that has n linearly independent
eigenvectors as A = XΛX−1. Λ is a diagonal matrix of its
eigenvalues and X consists of its eigenvectors as columns.

4. Any real symmetric matrix S can be expressed as S = QΛQT ,
where Q is a collection of orthonormal eigenvectors.

5. A symmetric matrix S is positive definite if all its eigenvalues
are > 0.

6. Singular Value Decomposition for any matrix.
A = UΣVT and Avi = σiui.

7. Approximating A by a sum of tensor products.

Keywords: Rank, Vector Spaces, Eigenvalues & Eigenvectors,
Markov Matrix & Page Rank, Symmetric and Positive Definite
Matrices, SVD, principal component analysis, Least square
approximations.

4.1 Basics

Let A be a matrix consisting of 3 rows and 3 columns on real num-
bers. We view each row or column as a vector in R3. For example,
let

A =

 2 2 0
2 4 8

10 16 24

82 notes on algorithm design

The three rows are r1 = (2, 2, 0), r2 = (2, 4, 8), and r3 = (10, 16, 24).
The three columns are c1 = (2, 2, 10), c2 = (2, 4, 16), and c3 = (0, 8, 24).
All of them are vectors in R3. We further observe that r3 = 2r1 + 3r2.
(Two typical operations on vectors include scalar multiplication and
vector addition. In a scalar multiplication of a vector v = (2, 3, 7)
by a scalar c = 3, we obtain cv = (6, 9, 21). In vector addition of
two vectors u = (1, 3,−5) and v = (−6, 4, 1), we obtain u + v =

(−5, 7,−4)). Let us find the row reduced echelon form (RREF) of A
by finding its pivots. We will denote the entry in the i-th row and the
j-th column of A by aij. Since a11 6= 0, it is the first pivot. Now we
take the suitable multiples of r1 and subtract them from r2 and r3 so
that the only non-zero entry that remains in the first column is in the
first row. This can be achieved by replacing r2 by r2 − r1, and r3 by
r3 − 5r1, and we obtain the following matrix:2 2 0

0 2 8
0 6 24

Next we find the second pivot. The entry in 2nd row and 2nd column
is non-zero, hence that is the pivot. We replace r3 by r3 − 3r2 and
obtain 2 2 0

0 2 8
0 0 0

The last row only contains zero’s. Therefore, A doesn’t have a non-
zero third pivot. To obtain the RREF, we will like the pivots to be
1, and moreover the sub-matrix consisting of the pivot rows and
columns to be the identity matrix. To obtain the RREF form, we
divide the first row by 2, the second row by 2, and obtain1 1 0

0 1 4
0 0 0

We are almost there, except that the sub-matrix formed by the first
two rows and first two columns is not an identity matrix. To obtain
the RREF, we replace r1 by r1 − r2 and obtain

R =

1 0 −4
0 1 4
0 0 0

Next, we will make several observations on A and its RREF R. (For a
deeper understanding on various properties of A and R, refer to the
textbook of Gilbert Strang 1.) Since the number of non-zero pivots 1 Gilbert Strang. Introduction to Linear

Algebra. Wellesley-Cambridge Press,
Wellesley, MA, fifth edition, 2016

matrices with applications to cs 83

is 2, the rank r of A is r = 2. Moreover, the dimension of its row
space is r = 2 (row space is the vector space consisting of all linear
combinations of row vectors). The basis vectors of the row space are

the rows corresponding to the non-zero pivots in R, i.e., v1 =
[1

0
−4

]
and v2 =

[0
1
4

]
. Similarly, the column space, i.e., the vector space

formed by linear combinations of the columns of A has dimension
r = 2. Its basis vectors are the columns of A corresponding to the
non-zero pivots. In our example, it will be the first and the second

column of A, i.e., u1 =
[2

2
10

]
and u2 =

[2
4

16

]
, respectively. Interestingly,

now A can be expressed as the sum of its rank 1 components as
follows:

A = u1vT
1 + u2vT

2 =
[2

2
10

]
[1 0 −4] +

[2
4

16

]
[0 1 4]

Next we discuss briefly the null spaces of A. There is a column
null space (usually referred to as the null space) and there is a left
null space. The null space of A represents all vectors x such that
Ax = 0. In other words, what linear combinations of the vectors cor-
responding to the columns will result in a 0 vector. For our example,

the vector [0, 0, 0] is in the null space as A
[0

0
0

]
=
[0

0
0

]
. Are there any

non-zero vectors x in the null space of A? In other words, is there a

vector x = (x1, x2, x3) ∈ R3, such that x1

[2
2

10

]
+ x2

[2
4

16

]
+ x3

[0
8

24

]
=[0

0
0

]
. We can see that x1 = 1, x2 = −1, and x3 = 1/4, satisfies this

condition. Hence, the vector x = (1,−1, 1/4), or any of its scalar
multiples, is in the null-space of A. In fact the dimension of the null-
space of A is the number of its columns minus its rank. In our case,
the dimension of the null-space will be 3− 2 = 1. Now for the left
null space, we are looking for vectors y ∈ R3 such that ATy = 0
(equivalently, yT A = 0). This represents what linear combinations
of row vectors can result in a 0 vector. In our example, we have

[y1 y2 y3]
[2 2 0

2 4 8
10 16 24

]
=
[0

0
0

]
. Note that the vectors y = [0, 0, 0], and

[2, 3,−1] or any of their linear combinations satisfies the left nullity
conditions. The dimension of the left null space is the number of
rows minus the rank of A, i.e., 3− 2 = 1 in our example.

In general, for an m× n matrix A, we have the following. Assume
that its RREF is R and it consists of r ≤ min{m, n} non-zero pivots.
Then, rank of A is r. The column space is a subspace of Rm of di-
mension r, and its basis vectors are the columns of A corresponding
to the non-zero pivots in R. The row space is a subspace of Rn of
dimension r, and its basis vectors are the rows of R corresponding to
the non-zero pivots.

The null-space of A consists of all the vectors x ∈ Rn satisfying
Ax = 0. They form a subspace of dimension n − r. Lastly, the left

84 notes on algorithm design

null space of A, i.e., all the vectors y ∈ Rm such that ATy = 0
(or equivalently yAT = 0, and thus the name). For the null space,
we looked at which linear combinations of columns yield a zero
vector. For the left null-space, we are interested to know which linear
combinations of rows yield a zero vector. Its dimension is m− r.

The fundamental theorem of linear algebra states that for an
m × n matrix A with its row-reduced echelon form R with rank
r ≤ min{m, n}, we have the following:

1. A and R have the same same row space. Its dimension is r and the
basis is the same (e.g., the row vectors of R corresponding to the
r non-zero pivots). Row operations to obtain R from A changes
rows, but it doesn’t change the row space.

2. The column space of A has dimension r. Note that the basis vec-
tors of the column space of A and R may not be the same, but for
all x ∈ Rn, Ax = 0 exactly when Rx = 0.

3. The number of independent columns of A is the same as the
number of independent rows of A.

4. The null space of A has dimension n− r. A and R have the same
basis. Note that the solutions space of Ax = 0 and Rx = 0 is the
same, as the row operations don’t alter the solution.

5. Dimension of the column space plus the dimension of the null
space of A equals n (= the dimension of Rn).

6. The left null-space of A has dimension m− r.

7. Dimension of the row space plus the dimension of the left null
space of A equals m (= the dimension of Rm).

8. Furthermore, we can choose a basis for these vector spaces in such
a way that the r vectors forming the basis for the column space are
orthonormal, and the n− r vectors forming the basis for the null
space are orthonormal and they are also orthogonal to the column
basis vectors. Together they form an orthonormal basis for Rn.
Analogously, we can choose r orthonormal vectors forming the
basis for the row space, and m− r orthonormal vectors forming the
basis of the left null-space and together they form an orthonormal
basis for Rm.

4.2 Introduction to Eigenvalues

Consider a square matrix A of dimension n × n on real numbers.
Let x be a vector of dimension n. Let A = (aij), where i = 1, . . . , n,

matrices with applications to cs 85

j = 1, . . . , n, aij ∈ R, and let x = (x1, x2, . . . , xn), xi ∈ R. Consider
the product of A and x, and we know that it results in another vector
y = (y1, y2, . . . , yn) of dimension n such that yi = ∑n

j=1 aijxj, for
i = 1, 2, . . . , n. We can view A as a function that transforms a vector
x to another vector y. We are in particular interested in those vectors
x, such that the product Ax results in a vector that is parallel to x.
Clearly, if x = 0, it is true that Ax = x = 0. We are interested to
know if there are non-zero vectors x such that Ax = λx, for constant
λ. Such vectors are called eigenvectors and the corresponding constant
value λ is called the eigenvalue. As it will turn out that there are
several applications of eigenvalue-eigenvectors in many fields of
Sciences and Engineering. Let us first see a couple of examples.

Example 4.2.1

A =

[
2 1
3 4

]
Observe that [

2 1
3 4

] [
1
3

]
= 5

[
1
3

]
and [

2 1
3 4

] [
1
−1

]
= 1

[
1
−1

]
Thus, λ1 = 5 and λ2 = 1 are the eigenvalues of A and the corresponding
eigenvectors are v1 = [1, 3] and v2 = [1,−1], respectively, as Av1 = λ1v1

and Av2 = λ2v2. Note that v1 is stretched five times when multiplied by A,
whereas v2 is left unchanged.

Example 4.2.2 Let us consider the same example as above, but now the
rows are permuted. Let

B =

[
3 4
2 1

]
Observe that [

3 4
2 1

] [
2
1

]
= 5

[
2
1

]
and [

3 4
2 1

] [
1
−1

]
= −1

[
1
−1

]
Thus, λ1 = 5 and λ2 = −1 are the eigenvalues of B and the corresponding
eigenvectors are v1 = [2, 1] and v2 = [1,−1], respectively, as Bv1 = λ1v1

and Bv2 = λ2v2. Here v2 flips its direction when multiplied by B, but its
magnitude remains the same.

86 notes on algorithm design

Let us consider the eigenvalues and eigenvectors of A2. Since,
Avi = λivi. Note that by multiplying by A on both the sides on the
left, we have

A2vi = A(Avi) = A(λivi) = λi(Avi) = λi(λivi) = λ2
i vi.

Thus for A2, the eigenvectors are the same as that of A, but eigen-
values are squared. In fact for an integer k > 0, Ak has the same
eigenvectors as A, but the eigenvalues are λk.

Let us see how to compute the eigenvalues and eigenvectors of
an n× n matrix A. We are interested to find vectors x (especially the
non-zero vectors) such that Ax = λx, or equivalently,

(A− λI)x = 0, (4.1)

where I is an n× n identity matrix. Note that all the eigenvectors x
that satisfy (A− λI)x = 0 constitutes the null space of A− λI. (Recall
from the last section that the null space of a matrix B is the set of all
the vectors v such that Bv = 0. Clearly v = 0 is in this set and this
set is closed under vector addition and scalar multiplication. Hence
the null space forms a vector space.) If (A− λI)x = 0 has a non-zero
solution, then the matrix (A− λI) is singular, i.e., it is not invertible.
This implies that the determinant of (A− λI), det(A− λI) = 0. The
equation det(A− λI) = 0 results in a polynomial of degree n, and this
equation has n (real or complex) roots. The polynomial det(A− λI)
is referred to as the characteristic polynomial. Note that the roots of
the characteristic polynomial may not be distinct (e.g. consider the
eigenvalues of identity matrix).

Example 4.2.3 Consider the matrix A given above. Its characteristic
polynomial is given by

det(A− λI) = det

[
2− λ 1

3 4− λ

]
= (2− λ)(4− λ)− 3 = λ2 − 6λ + 5

Roots of λ2 − 6λ + 5 = (λ− 5)(λ− 1) = 0 are λ1 = 5 and λ2 = 1. These
are the eigenvalues of A and they are distinct.

Next, let us see how to find the eigenvector v corresponding to
an eigenvalue λ. Since v is in the null space of A− λI, we solve the
system of equations for (A − λI)v = 0 to find all the components
of v. For the above example, let us find the eigenvector v1 = [a

b]

corresponding to the eigenvalue λ1 = 5.

(A− λ1 I)v1 =

[
2− 5 1

3 4− 5

] [
a
b

]
=

[
−3 1
3 −1

] [
a
b

]
=

[
0
0

]

matrices with applications to cs 87

Observe that the rows in the matrix A− λ1 I are dependent. Now we
obtain the equation −3a + b = 0 or equivalently 3a = b, and thus
the vector v1 = [1, 3] (or any of its scalar multiple) is an eigenvector
corresponding to λ1 = 5. Similarly we can compute that v2 =

[1
−1
]

is
an eigenvector corresponding to λ2 = 1 by solving the following:

(A− λ2 I)v2 =

[
2− 1 1

3 4− 1

] [
a
b

]
=

[
1 1
3 3

] [
a
b

]
=

[
0
0

]

We conclude this section with the following example of rotation
matrix.

Example 4.2.4

Q =

[
0 −1
1 0

]

Note that this matrix rotates any vector by 90◦ in anticlockwise direc-
tion. Since each vector v is rotated, there cannot be any non-zero real
vector v such that Qv is parallel to v. The characteristic polynomial of Q is
det(Q− λI) = λ2 + 1. Note that this does not have real roots and thus the
eigenvalues of Q are imaginary numbers λ1 = i and λ2 = −i. What about
its eigenvectors? For that we solve

(Q− λ1 I)v1 =

[
−i −1
1 −i

] [
a
b

]
=

[
0
0

]

and obtain that a− bi = 0 or a = bi and thus v1 = [i, 1]. It is a complex
eigenvector and satisfies Qv1 = λ1v1. Similarly, we have v2 = [1, i]
corresponding to λ2 = −i. Therefore, even if all the entries in a matrix are
real, its eigenvalues and eigenvectors may have complex numbers.

4.3 Diagonalizing Square Matrices

Let A be an n× n real matrix with n distinct eigenvalues. For such
matrices, their corresponding eigenvectors are linearly independent
(see exercises). Let λ1, . . . , λn be the distinct eigenvalues and let
x1, . . . , xn be the corresponding eigenvectors, respectively. Let each
xi = [xi1, xi2, . . . , xin]. Define an eigenvector matrix X, where the ith
column of X is the eigenvector xi, 1 ≤ i ≤ n. Formally,

X =

x11 x21 . . . xn1

...
...

...
...

x1n x2n . . . xnn

Since eigenvectors are linearly independent, we know that X−1 exists.
Define a diagonal n× n matrix Λ whose entries are as follows.

88 notes on algorithm design

Λ =

λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

...
...

0 0 . . . 0 λn

Consider the matrix product AX,

AX = A

x1 . . . xn

 =

λ1x1 . . . λnxn

 = XΛ

Since X−1 exists, we multiply by X−1 on both the sides from left and
obtain

X−1 AX = X−1XΛ = Λ (4.2)

and when we multiply on the right we obtain

AXX−1 = A = XΛX−1 (4.3)

For our example from the last section, where

A =

[
2 1
3 4

]

with eigenvalues λ1 = 5 and λ2 = 1 and the eigenvectors [1, 3] and
[1,−1] respectively, we have

AX =

[
2 1
3 4

] [
1 1
3 −1

]
=

[
5 1
15 −1

]
=

[
1 1
3 −1

] [
5 0
0 1

]
= XΛ

and

X−1 AX =

[
1/4 1/4
3/4 −1/4

] [
2 1
3 4

] [
1 1
3 −1

]
=

[
5 0
0 1

]
= Λ

Similarly,

A = XΛX−1 =

[
1 1
3 −1

] [
5 0
0 1

] [
1/4 1/4
3/4 −1/4

]

An alternate way to think about diagonalization, eigenvalues, and
eigenvectors is as follows. We say an n× n matrix A is diagonalizable
if there exists an invertible n × n matrix X such that X−1 AX is a
n × n diagonal matrix Λ. Therefore, X−1 AX = Λ, or equivalently
AX = XΛ. This can be expressed as A [x1 x2 . . . xn] = [x1 x2 . . . xn]Λ.
This can also be expressed as for i = 1, . . . , n, Axi = λixi. Thus, A

matrices with applications to cs 89

is diagonalizable if there exists n scalars λ1, . . . , λn and n linearly
independent vectors x1, . . . , xn, such that Axi = λixi.

Consider the diagonalization given by equation A = XΛX−1.
Consider A2 = (XΛX−1)(XΛX−1) = XΛ(X−1X)ΛX−1 = XΛ2X−1.
Thus, A2 has the same set of eigenvectors as A, but its eigenvalues
are squared. In general, for an integer k > 0, Ak = XΛkX−1, and its
eigenvectors are same as that of A and its eigenvalues are raised to
the power of k.

Let u0, u1, u2, · · · ∈ Rn are vectors and uk+1 = Auk for k ≥ 0.
Any vector in Rn can be expressed as a linear combination of the
eigenvectors x1, x2, . . . xn. Thus, for constants c1, c2, . . . , cn,

u0 = c1x1 + c2x2 + · · ·+ cnxn

u1 = Au0 = A(c1x1 + c2x2 + · · ·+ cnxn)

u1 = c1 Ax1 + c2 Ax2 + · · ·+ cn Axn

u1 = c1λ1x1 + c2λ2x2 + · · ·+ cnλnxn

u2 = Au1 = c1λ1 Ax1 + c2λ2 Ax2 + · · ·+ cnλn Axn

u2 = c1λ2
1x1 + c2λ2

2x2 + · · ·+ cnλ2
nxn

...

uk+1 = Auk = c1λk
1x1 + c2λk

2x2 + · · ·+ cnλk
nxn

Note that for large values of k, if for any λi, |λi| < 1, |λi|k → 0.
Here is an interesting exercise from the text book of Gilbert Strang

to illustrate the above concept. Define G(n) for integers n ≥ 0 as
follows:

G(n) =

0, for n = 0

1, for n = 1
G(n−1)+G(n−2)

2 , otherwise.

Now, define

gk =

[
Gk+1

Gk

]

We obtain

gk+1 =

[
Gk+2

Gk+1

]
=

[
1/2 1/2

1 0

]
gk

Define,

A =

[
1/2 1/2

1 0

]

90 notes on algorithm design

The eigenvalues and eigenvectors of A are λ1 = 1 and λ2 = 1/2 and
x1 = (1, 1) and x2 = (1,−2), respectively. Thus,

gk = c1λk
1x1 + c2λk

2x2 = c1x1 + c2(−1/2)kx2

For large values of k,
lim
k→∞

gk ≈ c1x1

To find the value of c1, we use that gk = c1λk
1x1 + c2λk

2x2 for k = 0, and
obtain

g0 =

[
1
0

]
= c1

[
1
1

]
+ c2

[
1
−2

]

This gives c1 = 2/3 and c2 = 1/3. Thus, for large values of k,

gk = 2/3

[
1
1

]

and Gk approaches 2/3 for large values of k.

4.4 Symmetric and Positive Definite Matrices

Let S be an n × n real symmetric matrix where its ij-th entry is
identical to the ji-th entry for all 1 ≤ i ≤ n and 1 ≤ j ≤ n, i.e.,
S = ST . We will show that S has n real eigenvalues and it consists
of n orthonormal eigenvectors Q = q1, q2, . . . , qn. Moreover, the
diagonalization of S is given by S = QΛQT , where Λ is the diagonal
matrix consisting of real eigenvalues on its principal diagonal and Q
consists of orthonormal eigenvectors as columns. First we present an
example.

Example 4.4.1 Consider the symmetric matrix S =
[

3 1
1 3

]
. Its character-

istic equation is λ2 − 6λ + 8 = 0 and the eigenvalues are λ1 = 4 and
λ2 = 2 and the corresponding eigenvectors are q1 = (1/

√
2, 1/
√

2) and
q2 = (1/

√
2,−1/

√
2), respectively. Note that eigenvalues are real and the

eigenvectors are orthonormal. Furthermore,

S =

[
3 1
1 3

]
=

[
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

] [
4 0
0 2

] [
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]

Lemma 4.4.2 All the eigenvalues of a real symmetric matrix S are real.

Proof. By definition of eigenvalues,

Sq = λq (4.4)

By taking the complex conjugate, we have that S̄q̄ = λ̄q̄. Since we are
given that S is real, S = S̄. (Note that for a complex number a + bi, its

matrices with applications to cs 91

complex conjugate is a− bi.) Using the fact that S = ST , the transpose
of Sq̄ = λ̄q̄ is given by

q̄TS = q̄Tλ̄ (4.5)

We multiply by q̄T on the left in Equation 4.4 and obtain q̄TSq = q̄Tλq.
Similarly, we multiply by q on the right in Equation 4.5 and obtain
q̄TSq = q̄Tλ̄q. Thus, q̄Tλq = q̄Tλ̄q. This implies that λ = λ̄ and this
can only happen if λ’s are real.

Lemma 4.4.3 All components of the eigenvectors of a real symmetric
matrix S are real.

Proof. Each eigenvector q is a solution of the equation (S− λI)q = λq,
where all elements of S are real and all λ’s are real. Thus all entries
in q are real.

Lemma 4.4.4 Any pair of eigenvectors of a real symmetric matrix S corre-
sponding to two different eigenvalues are orthogonal.

Proof. Let q1 and q2 be two eigenvectors corresponding to λ1 6= λ2,
respectively. Thus, Sq1 = λ1q1 and Sq2 = λ2q2. Since S is symmetric,
qT

1 S = λ1qT
1 . Multiply by q2 on the right and we obtain λ1qT

1 q2 =

qT
1 Sq2 = qT

1 λ2q2. Since λ1 6= λ2 and λ1qT
1 q2 = qT

1 λ2q2, this implies that
qT

1 q2 = 0 and thus the eigenvectors q1 and q2 are orthogonal.

First we consider the special types of symmetric matrices S having
n distinct eigenvalues. Then its corresponding eigenvectors are
orthogonal by Lemma 4.4.4. In fact we can assume that they are
orthonormal (as we can always normalize them). Then using the
diagonalization discussed in the previous section, the matrix S can
be expressed as S = QΛQ−1, where Q is the matrix of orthonormal
eigenvectors (see Equation 4.3). Equivalently,

S = QΛQ−1 = λ1q1qT
1 + λ2q2qT

2 + · · ·+ λnqnqT
n .

For our example we will have

S =

[
3 1
1 3

]
= 4

[
1/
√

2
1/
√

2

] [
1/
√

2 1/
√

2
]
+ 2

[
1/
√

2
−1/
√

2

] [
1/
√

2 −1/
√

2
]

Now we handle the general case of the symmetric matrices where
all of its eigenvalues may or may not be distinct. Let us first start
with an example.

Example 4.4.5 Consider the symmetric matrix S =

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

.

92 notes on algorithm design

Its characteristic polynomial is given by the determinant of
1− λ 0 0 0

0 1− λ 1 0
0 1 1− λ 0
0 0 0 1− λ

and it equals λ4 − 4λ3 + 5λ2 − 2λ. The roots of this polynomial are
the eigenvalues. They are λ1 = 2, λ2 = 1, λ3 = 1, λ4 = 0. The
corresponding eigenvectors are q1 = (0, 1/

√
2, 1/
√

2, 0), q2 = (0, 0, 0, 1),
q3 = (1, 0, 0, 0), q4 = (0,−1/

√
2, 1/
√

2, 0), respectively. It is easy to
verify that Sqi = λiqi.

To see the eigenvectors corresponding to λ = 1, consider the nullspace of
the matrix S− λI. Equivalently, what forms the basis for the nullspace of

1− 1 0 0 0
0 1− 1 1 0
0 1 1− 1 0
0 0 0 1− 1

 x =

0
0
0
0

Clearly the basis consists of two unit vectors q2 = (0, 0, 0, 1) and q3 =

(1, 0, 0, 0). Similarly, the eigenvector corresponding to λ = 2 is given by
1− 2 0 0 0

0 1− 2 1 0
0 1 1− 2 0
0 0 0 1− 2

 x =

0
0
0
0

The basis for the nullspace consists of the unit vector q1 = (0, 1/

√
2, 1/
√

2, 0).
Finally, the eigenvector corresponding to λ = 0 is given by

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

 x =

0
0
0
0

The basis for the nullspace consists of q4 = (0,−1/

√
2, 1/
√

2, 0). By our
choice, it is not hard to see that all the eigenvectors are orthonormal. Thus,

Q =

0 0 1 0

1/
√

2 0 0 −1/
√

2
1/
√

2 0 0 1/
√

2
0 1 0 0

and

Λ =

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

matrices with applications to cs 93

Moreover, it is easy to see that

S = QΛQT =

0 0 1 0

1/
√

2 0 0 −1/
√

2
1/
√

2 0 0 1/
√

2
0 1 0 0

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

0 0 1 0
1/
√

2 0 0 −1/
√

2
1/
√

2 0 0 1/
√

2
0 1 0 0

T

Moreover, S can be expressed as the summation S =
4
∑

i=1
λiqiqT

i .

Theorem 4.4.6 All eigenvalues of a real symmetric n × n matrix S are
real. Moreover, S can be expressed as S = QΛQT , where Q consists of
orthonormal basis of Rn formed by n eigenvectors of S, and Λ is a diagonal
matrix consisting of n eigenvalues of S.

Proof. By Lemma 4.4.2, we know that all eigenvalues of S are real.
Now we show the existence of n orthonormal eigenvectors of S
that forms a basis of Rn. We will provide a proof for 3 × 3 real Gram-Schmidth orthogonalization

applied to v1, v2, and v3 will result in
v′1 = v1

v′2 = v2 − 〈v2 ,v1〉
〈v1 ,v1〉 v1

v′3 = v3 − 〈v3 ,v1〉
〈v1 ,v1〉 v1 − 〈v3 ,v2〉

〈v2 ,v2〉 v2

and a corresponding orthonormal
basis will be
(

v′1
||v′1 ||

, v′2
||v′2 ||

, v′3
||v′3 ||

)

symmetric matrices S. Induction can be used to derive the proof for
the general case by extending the ideas. We will assume that given
any three basis vectors v1, v2, and v3, spanning R3, we can find a set
of corresponding orthogonal basis vectors v′1, v′2, and v′3, by executing
the Gram-Schmidth orthogonalization process. Furthermore, we can
obtain an orthonormal basis by dividing each of the vectors by their
norm.

Let λ1 be an eigenvalue of S and let q1 ∈ R3 be a unit eigenvector
corresponding to the null space of S− λ1 I, where I is a 3× 3 identity
matrix. Let B1 = (q1, v2, v3) forms an orthonormal basis of R3 (i.e.,
take any three vectors u1 = q1, u2, and u3 that forms a basis of R3

and then apply Gram-Schmidth orthogonalization resulting in an
orthonormal basis B1 = (q1, v2, v3)). Consider

SB1 = (Sq1 Sv2 Sv3) = (λ1q1 Sv2 Sv3)

Observe that

BT
1 SB1 =

qT
1

vT
2

vT
3

 (λ1q1 Sv2 Sv3) =

λ1qT
1 q1 ? ?

λ1vT
2 q1 ? ?

λ1vT
3 q1 ? ?

where ? indicates that we don’t know what these entries are (but
soon we will get to know them). Using orthogonality of unit vectors
in B1 and the fact that BT

1 SB1 is symmetric since S is, we obtain

BT
1 SB1 =

(
λ1 0 0
0 ? ?
0 ? ?

)
Notice that the 2× 2 unknown matrix in BT

1 SB1 is symmetric. Call it
S′. We can apply the same construction on S′, and it will result in a

94 notes on algorithm design

another basis B′2 of R2 such that

B′2
TS′B′2 =

(
λ2 0
0 λ3

)
Let B′2 =

[
a b
c d

]
. Construct B2 =

[1 0 0
0 a b
0 c d

]
. Observe that B2 is an

orthonormal basis of R3. Also, observe that B1B2 is orthogonal. Note that BT
1 B1 = I and BT

2 B2 = I.
Thus, (B1B2)

TB1B2 = BT
2 BT

1 B1B2 = I.Now consider,

(B1B2)
TSB1B2 = BT

2 BT
1 SB1B2

= BT
2

[
λ1 0 0
0 ? ?
0 ? ?

]
B2

=

[
λ1 0 0
0 λ2 0
0 λ3

]
Define Q = B1B2 and Λ =

[
λ1 0 0
0 λ2 0
0 λ3

]
. Since Q is orthogonal Q−1 =

QT = BT
2 BT

1 , we have

(B1B2)
TSB1B2 = QTSQ = Λ

Thus, S = QΛQT .

The above theorem is a special case of Schur’s lemma that states
that given any n× n complex matrix A, there exists an n× n unary
matrix U (consisting of n orthonormal vectors forming the columns
of U) such that UH AU is an upper triangular matrix. The matrix UH

is the (conjugate) transpose matrix of U, where each entry uij in U
becomes uji in UH . Note that if U is a real matrix, then UH is simply
the transpose of U. A matrix M is said to upper triangular if all the
entries mij = 0 for i > j. If A is Hermitian (i.e., ∀i, j : aij = aji),
then UH AU will be a diagonal matrix. The above statement, when
translated for real symmetric matrices S will imply that QT AQ is a
diagonal matrix Λ.

From Theorem 4.4.6 we know that a real symmetric n× n matrix

S = QTΛQ =
n
∑

i=1
qT

i λiqi. The above representation enables us to

express any symmetric matrix as the sum of rank one matrices λiqiqT
i .

In the Section 4.5, we will have a similar way of expressing any
rectangular matrix.

A symmetric matrix S is said to be positive definite if all its eigenval-
ues > 0. It is called positive semi-definite if all the eigenvalues are ≥ 0.
An alternative way to define a positive definite matrix is as follows.
A symmetric matrix S ∈ Rn ×Rn is positive definite (respectively,
positive semi-definite) if for for all non-zero vectors x ∈ Rn, xTSx > 0
(respectively, xTSx ≥ 0).

Lemma 4.4.7 Let S ∈ Rn ×Rn be a symmetric matrix. For all non-zero
vectors x ∈ Rn, if xTSx > 0 holds, then all the eigenvalues of S are > 0.

matrices with applications to cs 95

Proof. Let λi be an eigenvalue of S and its corresponding unit eigen-
vector is qi. Note that qT

i qi = 1. Since S is symmetric, we know that
λi is real. Now we have, λi = λiqT

i qi = qT
i λiqi = qT

i Sqi. But qT
i Sqi > 0,

hence λi > 0.

4.5 Singular Value Decomposition

In previous sections we learnt about diagonalization of square ma-
trices. We have seen that a square matrix A can be expressed as
A = XΛX−1, where X consists of n linearly independent eigenvec-
tors as columns. There we needed A to be square, (usually) all its
eigenvalues to be distinct so that the eigenvectors are independent.
Here we will not make any such assumptions on A - not even that it
is a square matrix - but we will be able to diagonalize it! The singular
value decomposition (SVD) enables us to diagonalize any type of
matrices.

Let A be a m× n matrix of rank r. Recall that the rank is the num-
ber of linearly independent rows (or columns) of A. We will show
that we can find orthonormal vectors v1, . . . , vr ∈ Rn, orthonormal
vectors u1, . . . , ur ∈ Rm, and σ1, . . . , σr ∈ R, such that Avi = σiui,
for i = 1, . . . , r. Note that since A may not be a square matrix, the
vectors as a result of the product Avi are not of the same dimension
as vi. But the beauty of SVD is that we can still find orthonormal
vectors in Rn such that their product with A results in a scaled copy
of orthonormal vectors in Rm. So this mimics the eigenvalue/vector
properties of Av = λv when A is a square matrix. The key is to work
with the square symmetric matrices AAT and AT A, instead of the
matrix A. Of course, the resulting diagonalization is slightly more
complex, and will use the four orthonormal bases associated with
column and row subspaces of A to understand the process.2 These 2 To get some insight in these subspaces,

consider Ax = b, where A is an
m× n matrix and assume all elements
in A, b, x are real. This system has
solution when b is equal to some
linear combination of the columns of
A (specified by x). In that case we say
that b is in the column space of A. The
column space of A consists of all linear
combinations of the columns of A and
Ax = b is solvable if and only if b is
in the column space of A. Note that A
has n columns, but each column only
consists of m entries. Each column
is in Rm and the column space is a
subspace of Rm. The rank of a matrix
is the number of independent columns
(or rows) of A. Equivalently, when we
do a row reduction (e.g. in Gaussian
elimination) the rank is the number of
non-zero rows in A. Furthermore, we
define the null space of A to consist of
all solutions x to the equation Ax = 0.
Note that these are the vectors in Rn.

are:

1. The vectors u1, . . . , ur will form orthonormal bases of the columns
of A.

2. The vectors ur+1, . . . , um will form an orthonormal basis for the
nullspace of AT .

3. The vectors v1, . . . , vr will form an orthonormal bases of the rows
of A.

4. The vectors vr+1, . . . , vn will form an orthonormal basis for the
nullspace of A.

Moreover, these vectors will satisfy the following Av1 = σ1u1, . . . , Avr =

σ1ur, where σi > 0 for i = 1, . . . , r. This can equivalently be expressed

96 notes on algorithm design

in matrix notation as

A
[
v1 v2 . . . vr

]
=
[
u1 u2 . . . ur

]

σ1

σ2

.
.

σr

We further expand this to include the whole set of orthonormal
vectors U = [u1, . . . , ur, ur+1, . . . , um] and V = [v1, . . . , vr, vr+1, . . . , vn]

as follows

A
[
v1 . . . vrvr+1 . . . vn

]
=
[
u1 . . . urur+1 . . . um

]

σ1

.
σr

0
0

0

and more compactly we can write this as AV = UΣ or equivalently
A = UΣV−1 = UΣVT , where Σ is the diagonal matrix consisting
σ1 ≥ σ2 ≥ · · · ≥ σr, 0, 0, . . . and VT = V−1 (as V is a matrix of
orthonormal vectors). Let us try to see what are these σi’s are.

First we assume that m ≥ n and rank(A) = n, and later on
we will consider the case that rank(A) < n. Consider the matrix
product AT A. This is an n× n matrix. Moreover it is symmetric as
(AT A)T = AT(AT)T = AT A.

Lemma 4.5.1 The matrix AT A is positive definite.

Proof. Take any non-zero vector x ∈ Rn. Consider xT AT Ax =

(Ax)T(Ax) = ||Ax||2 ≥ 0. We have assumed that rank(A) = n.
This implies that the rank of the null-space of A is n− rank(A) = 0.
Hence, the only vector x for which Ax = 0 is x = 0. This implies that
xT AT Ax = ||Ax||2 > 0 and hence AT A is positive definite.

From the positive definiteness of AT A, we know that its eigenval-
ues are positive and the corresponding eigenvectors are orthonormal.
Let its eigenvalues be λ1 ≥ λ2 ≥ · · · ≥ λn > 0 and let the cor-
responding orthonormal eigenvectors be v1, v2, . . . , vn, respectively.
We know that AT Avi = λivi, or equivalently vT

i AT Avi = λi. 3 3 vT
i vi = 1 as vi is orthonormal.

Define σi = ||Avi||. Then σ2
i = ||Avi||2 = vT

i AT Avi = λi. Thus,
σi = ||Avi|| =

√
λi. Note that σ1 ≥ σ2 ≥ · · · ≥ σn > 0. We define the

vectors u1, . . . , un ∈ Rm as follows. Each ui = Avi/σi. Note that ui’s
are well defined as σi 6= 0.

Lemma 4.5.2 The set of vectors ui = Avi/σi, for i = 1, . . . , n, are
orthonormal.

matrices with applications to cs 97

Proof. First, let us consider

||ui|| = ||Avi||/σi = σi/σi = 1.

Now we show that the dot product of any two vectors ui and uj for
1 ≤ i 6= j ≤ n is zero.

uT
i uj = (Avi/σi)

T(Avj/σj) =
1

σiσj
vT

i AT Avj =
1

σiσj
vT

i λjvj =
λj

σiσj
vT

i vj = 0.

4 4 As AT Avj = λjvj and vi and vj are
orthonormal.

Now we have that v1, . . . , vn are orthonormal and u1, . . . , un are
orthonormal and for i = 1, . . . , n, Avi = σiui. In the matrix notation
we can write this as AV′ = U′Σ′, where A is the given (rank(A) = n)
m × n matrix, V′ is n × n matrix consisting of orthonormal vec-
tors v1, . . . , vn, U is m× n matrix consisting of orthonormal vectors
u1, . . . , un, and Σ′ is n× n diagonal matrix where each (i, i)− th entry
is σi for i = 1, . . . , n and σ1 ≥ σ2 ≥ . . . σn > 0. Since V′ is square and
orthonormal, V′−1 = V′T . Multiply by V′T on both the sides on the
right of AV′ = U′Σ′ and we obtain A = U′Σ′V′T .

The matrix U′ is not a square matrix. It consists of orthonormal
vectors u1, . . . , un but it has more rows than columns (as m ≥ n).
Hence the null space of U′ is non-empty. Let un+1, . . . , um be or-
thonormal vectors to u1, . . . , un (i.e., in the null space of AT). There-
fore, together with u1, . . . , un we form the matrix U of dimension
m×m consisting of m orthonormal vectors u1, . . . , um. Thus UTU = I
and U−1 = UT .

Lastly, we transform Σ′ to Σ. It is m× n matrix, where each of its
entry is 0 except the (i, i)-th entry equals σi for i = 1, . . . , n.

Observe that under the assumption that rank(A) = n and m ≥ n,
now we have that A = UΣV′T , where UTU = I and VTV = I. Note
that we can also express A = Σn

i=1σiuivT
i . This will be the rank one

decomposition of A. Since σ1 ≥ σ2 ≥ · · · ≥ σn, we can see that
the sum of σiuivT

i corresponding to the large values of σi essentially
approximate A.

Example 4.5.3 Let A =
[1 0

0 1
2 1

]
. A is 3× 2 matrix, where m = 3 and

n = 2. Rank of A is n = 2. AT A =
[

1 0 2
0 1 1

] [1 0
0 1
2 1

]
=
[

5 2
2 2
]
. Eigenvalues

of AT A are given by det
[

5−λ 2
2 2−λ

]
= 0. This results in λ2 − 7λ + 6 =

(λ− 6)(λ− 1) = 0, or λ1 = 6 and λ2 = 1. Note that λ1 ≥ λ2 > 0. The
corresponding eigenvectors are

AT Av1 = λ1v1 is v1 =
[

2/
√

5
1/
√

5

]
, and

AT Av2 = λ2v2 is v2 =
[
−1/
√

5
2/
√

5

]
.

98 notes on algorithm design

Note that v1 and v2 are orthonormal vectors as vT
1 v2 = 0 and ||v1|| = 1

and ||v2|| = 1. Next we compute the vectors u1 and u2. First σ1 =
√

λ1 =√
6 and σ2 =

√
λ2 =

√
1 = 1. Then,

u1 = 1
σ1

Av1 = 1√
6

[1 0
0 1
2 1

] [
2/
√

5
1/
√

5

]
=

[
2/
√

30
1/
√

30
5/
√

30

]
.

Similarly,

u2 = 1
σ2

Av2 = 1√
1

[1 0
0 1
2 1

] [
−1/
√

5
2/
√

5

]
=

[
−1/
√

5
2/
√

5
0

]
.

Note that u1 and u2 are orthonormal vectors.

Set U′ =

[
2/
√

30 −1/
√

5
1/
√

30 2/
√

5
5/
√

30 0

]
, Σ′ =

[√
6 0

0 1

]
, and V′ =

[
2/
√

5 −1/
√

5
1/
√

5 2/
√

5

]
.

Observe that A = U′Σ′V′T , i.e.

A =
[1 0

0 1
2 1

]
=

[
2/
√

30 −1/
√

5
1/
√

30 2/
√

5
5/
√

30 0

] [√
6 0

0 1

] [
2/
√

5 1/
√

5
−1/
√

5 2/
√

5

]
.

Next, we extend U′ to U by taking a unit vector in the null space of
U′ that is orthonormal to u1 and u2. Let u3 = (a, b, c). Then we set
uT

1 u3 = 0 and uT
2 u3 = 0 and ||u3|| =

√
a2 + b2 + c2 = 1 and obtain

that u3 = (2/
√

6, 1/
√

6,−1/
√

6). We derive Σ from Σ′ by setting

Σ =

[√
6 0

0 1
0 0

]
.

Now we have that A = UΣV′T , i.e.

A =
[1 0

0 1
2 1

]
=

[
2/
√

30 −1/
√

5 2/
√

6
1/
√

30 2/
√

5 1/
√

6
5/
√

30 0 −1/
√

6

] [√
6 0

0 1
0 0

] [
2/
√

5 1/
√

5
−1/
√

5 2/
√

5

]
.

Lastly, in terms of rank one decomposition of A, observe that

A =
√

6

[
2/
√

30
1/
√

30
5/
√

30

] [
2/
√

5
1/
√

5

]T
+

[
−1/
√

5
2/
√

5
0

] [
−1/
√

5
2/
√

5

]T
.

Now we handle the case when m ≥ n and rank(A) < n. Let
rank(A) = r < n. Thus the rank of the null space of A is n − r.
We claim the following.

Lemma 4.5.4 The n− r eigenvalues of AT A equals 0.

Proof. Consider a basis of the null space of A. Let x1, . . . , xn−r be
a basis of the null space of A. This implies that Axj = 0 for j =

1, . . . , n− r. Now, AT Axj = 0 = 0xj. Thus, 0 is an eigenvalue of AT A
corresponding to each xi’s. Thus n− r eigenvalues of AT A equals 0.

As in the case of rank(A) = n, we first compute the eigenvalues
and eigenvectors of AT A. Let λ1 ≥ λ2 ≥ λn ≥ 0 be the eigenvalues of
AT A. Since n− r of them are 0, we know that λ1 ≥ λ2 ≥ · · · ≥ λr > 0
and λr+1 = · · · = λn = 0. Let v1, . . . , vn be the corresponding
orthonormal vectors, where vr+1, . . . , vn are in the null space of AT A,
i.e. AT Av = 0 for each v ∈ {vr+1, . . . , vn}. The vectors v1, . . . , vn

define the orthonormal matrix V. Next we define σi = ||Avi|| =
√

λi.
Note that σ1 ≥ . . . σr > 0 and σr+1 = · · · = σn = 0. We have to

matrices with applications to cs 99

take some care in defining the vectors u1, . . . , un as some of the σi’s
are 0. For i = 1, . . . , r, we define ui =

1
σi

Avi. As before u1, . . . , ur are
orthonormal and Avi = σiui. For i = r + 1, . . . , n we construct ui’s
that are orthonormal to all the vectors u1, . . . , ui−1. Note that each
of these ui’s satisfy σiui = Avi = 0 as σi = 0, for i = r + 1, . . . , n.
This will result in a matrix of orthonormal vectors u1, . . . , un of
dimension m × n. We will further extend it to form a matrix U of
orthonormal vectors u1, . . . , um. We also construct the matrix Σ of
dimension m× n, where all its entries are 0 except the (i, i)-th entry
equals σi, for i = 1, . . . , r. Given that Avi = σiui for i = 1, . . . , n, we
have that A = UΣVT . Furthermore, the rank one decomposition of
A = Σr

i=1σiuivT
i .

If m < n, then we can work with AT in place of A, and the details
are similar and hence we skip them. Given that A = UΣVT , consider
AT A = (UΣVT)T(UΣVT) = (VΣUT)(UΣVT) = VUTΣ2UVT =

VΣ2UUTVT = VΣ2VT . Note that AT A is a symmetric matrix, and
since it is expressed in the diagonalized form AT A = VΣ2VT , σ2

i ’s are
its eigenvalues and V is its eigenvectors matrix. Similarly, consider
AAT and we obtain that AAT = (UΣVT)(UΣVT)T = UΣVTVΣUT =

UΣ2UT . Thus U is the eigenvector matrix for the symmetric matrix
AAT with the same eigenvalues as AT A. Overall, the singular value
decomposition of a m× n matrix A can be captured in the following
theorem.

A U Σ V T

=

m× n m×m m× n

n× n

u1 um

σ1

σr
0

00

0 vT1

vTn

=

Figure 4.1: Illustration of SVD of a m× n
matrix A expressed as UΣVT .

Theorem 4.5.5 Let A be a m × n matrix of real numbers of rank r ≤
min(m, n). Then A = UΣVT , where

U is a orthonormal m×m matrix and UTU = I,
V is a orthonormal n× n matrix and VTV = I, and
Σ is an m × n matrix where each of its entries is 0, except the (i, i)-th

entry is σi for i = 1, . . . , r. Note that σ1 ≥ σ2 ≥ . . . σr > 0 and σi =√
λi where λi are the eigenvalues of AT A. The set of orthonormal vectors

v1, . . . , vr and u1, . . . , ur are eigenvectors of AT A and AAT , respectively.
Furthermore, the orthonormal basis vr+1, . . . , vn for the null space of A
together with v1, . . . , vr forms the set V. Analogously, the orthonormal basis
ur+1, . . . , um for the null space of AT together with u1, . . . , ur forms the set
U. The vectors v’s and u’s satisfy the equation Avi = σiui, for i = 1, . . . , r.
Alternatively, we can express A = Σr

i=1σiuivT
i in terms of its rank one

components.

Note: Note that if rank of A is r, we can restrict U and V to the first r
columns, and Σ to r× r diagonal matrix, and still A = Um×rΣr×rVT

r×n.
This is because of the nature of the Σ matrix, as it consists of a di-
agonal square r × r submatrix and all of its remaining entries are 0.

Note: Suppose A represents a very large matrix where the rows cor-

100 notes on algorithm design

respond to individual shoppers in an online store and the columns
correspond to items sold by the store. This matrix possibly contains
millions of rows and possibly thousands of columns, and the total
space required will easily be in range of billions of entries. Assume,
m = 108 and n = 105. The matrix A has 1013 cells. Let the SVD of
A = UΣVT by Theorem 4.5.5. Let there be r σ′i s that are > 0, and let
σ1 ≥ σ2 ≥ . . . σr > 0. We know that A = Σr

i=1σiuivT
i .

Define E =
r
∑

i=1
σ2

i . This is termed as the energy of A. Define

E ′ = 0.99E , and let j ≤ r be the maximum index such that
j

∑
1=1

σ2
i ≤ E ′.

We approximate A by Σj
i=1σiuivT

i . Let us see how many cells we need
to store in this representation. We need to store the first j columns of
U, j diagonal entries of Σ, and j rows of VT . In all that amounts to
jm + j2 + jn cells. For our example, if j = 20, then we need to store
20× 108 + 202 + 20× 105 = 5, 005, 000 cells. This number is only .02%
of 1013. A huge saving in the space (and thus processing)!

4.6 Low Rank Approximation Using SVDs

In the previous section, using the singular value decomposition, we
have seen that a rank r real matrix A of dimension m × n can be
expressed as A = UΣVT , where U is a orthonormal m× r matrix, V
is a orthonormal n× r matrix, and Σ is an r × r matrix where each
of its entries is 0, except the (i, i)-th entry is σi for i = 1, . . . , r. Note
that σ1 ≥ σ2 ≥ . . . σr > 0 and σi =

√
λi where λi are the eigenvalues

of AT A. An alternate way to express A is A =
r
∑

i=1
σiuivT

i , where

u1, . . . , ur and v1, . . . , vr are orthonormal eigenvectors of AAT and
AT A forming the matrices U and V, respectively.

Suppose we want to approximate A by a rank k matrix, where
k ≤ r. First, we need to understand what does an approximation of a
matrix mean? We define three norms for a matrix A:

Example 4.6.1 For an n × n identity
matrix I, ||I||F =

√
n, ||I||2 = 1, and

||I||N = n.

Frobenius Norm: ||A||F =
√

∑
i

∑
j

A2
ij.

Spectral Norm: ||A||2 = max
x∈<n

||Ax||
||x|| = σ1

Nuclear Norm: ||A||N = σ1 + . . . + σr

For k = 1, . . . , r, define Ak =
k
∑

i=1
σiuivT

i . The theorem of Eckart-

Young states that among all possible rank k matrices B of the same
dimensions as A, the matrix Ak minimizes the above three norms, i.e.
||A− Ak||{F,2,N} ≤ ||A− B||{F,2,N}.

First let us prove the theorem for the spectral norm.

matrices with applications to cs 101

Theorem 4.6.2 Let A be a m × n real matrix of rank r with SVD A =

UΣVT . Let Ak =
k
∑

i=1
σiuivT

i . Let B be a m× n matrix of rank k ≤ r. Then,

||A− Ak||2 ≤ ||A− B||2.

Proof. From Exercise 4.49, we know that ||A−Ak||2 = ||
n
∑

i=k+1
σiuivT

i ||2 =

σk+1.
If rank of A is k, then ||A− Ak||2 = 0 ≤ ||A− B||2, and hence the

statement holds. Now assume that rank(A) > k. We want to show
that ||A − Ak||2 = σk+1 ≤ ||A − B||2. Consider the k + 1 vectors
v1, . . . , vk+1 corresponding to the first k + 1 columns of V. Take a
non-zero unit vector w ∈ <n such that it can be expressed as a linear
combination w = c1v1 + . . . + ck+1vk+1 and Bw = 0. This is always
possible as the dimension of the null space of B is n− k > 0. Now

||A− B||22 ≥ ||(A− B)w||22
= ||Aw− Bw||22
= ||Aw||22 as Bw = 0

= wT AT Aw

= (c1v1 + . . . + ck+1vk+1)
T AT A(c1v1 + . . . + ck+1vk+1)

= (c1v1 + . . . + ck+1vk+1)
T(c1 AT Av1 + . . . + ck+1 AT Avk+1)

= (c1v1 + . . . + ck+1vk+1)
T(c1σ2

1 v1 + . . . + ck+1σ2
k+1vk+1) as AT Avi = σ2

i vi

= c2
1σ2

1 + . . . + c2
k+1σ2

k+1 vi ⊥ vj and ||vi|| = 1

≥ (c2
1 + . . . + c2

k+1)σ
2
k+1 since σ2

1 ≥ . . . ≥ σ2
k+1

= σ2
k+1 since w is a unit vector

Thus, ||A− B||2 ≥ σk+1 = ||A− Ak||2.

Next we turn our attention to Frobenius norm.

Claim 4.6.3 Let A be m× n real matrix of rank r. Let A = UΣVT be its
singular-value decomposition. The following statements hold:

1. ||A||2F = ∑
i

∑
j

A2
ij.

2. ||A||2F = Trace(AT A) =
n
∑

i=1
(AT A)ii.

3. ||A||2F = σ2
1 + . . . + σ2

r .

Proof. The first part follows from the definition of Frobenius Norm
||A||F =

√
∑
i

∑
j

A2
ij.

For the second part, consider the term (AT A)11. It is the dot
product of the first column of A with itself, i.e., (AT A)11 = a2

11 + a2
21 +

102 notes on algorithm design

a2
31 + . . . + a2

m1. Similarly, (AT A)ii is the dot product of the i-th column

of A with itself. Thus, ||A||2F =
n
∑

i=1
(AT A)ii.

For the last part use the fact that the SVD of A = UΣVT , AT A =

VΣTUTUΣVt = VΣTΣVT = VΣ2VT . The trace of AT A is same as
the trace of VΣ2VT and it equals σ2

1 + . . . + σ2
r . Note that U and V are

orthonormal matrices.

Claim 4.6.4 Let A be a m× n real matrix of rank r with SVD A = UΣVT .

Let Ak =
k
∑

i=1
σiuivT

i . Then, ||A− Ak||2F = σ2
k+1 + . . . + σ2

r .

Proof. Follows from the definition of Ak, and the previous claim, as
SVD of A− Ak = U(Σ− Σk)VT , and only non-zero diagonal entries of
Σ− Σk are σk+1, . . . , σr.

Now we prove the Eckart-Young Theorem for the Frobenius

Norm. We want to show that Ak =
k
∑

i=1
σiuivT

i is the best rank k

approximation of A under Frobenius norm. For the proof, we assume
that rank of A is n, though we can work with any rank r, where
n ≥ r ≥ k.

Theorem 4.6.5 If rank(B) = k, then ||A− Ak||F ≤ ||A− B||F.

Proof. Let the singular-value decomposition of A = UΣVT . We know

that ||A− Ak||2F =
n
∑

i=k+1
σ2

i by Claim 4.6.4.

We need to show that ||A− B||2F ≥ ||A− Ak||2F =
n
∑

i=k+1
σ2

i .

Let us denote the i-th singular value of A (respectively, A− B) by
σi(A) (respectively, σi(A− B)).

Note that ||A− B||2F =
n
∑

i=1
σ2

i (A− B).

We will show that σi(A− B) ≥ σk+i(A) for all i ≥ 1. This will imply

that ||A− B||2F =
n
∑

i=1
σ2

i (A− B) ≥
n
∑

i=k+1
σ2

i (A) = ||A− Ak||2F.

Let us try to show that σi(A− B) ≥ σk+i(A) for any i ≥ 1.
Consider the (k + i)-th singular value σk+i(A) of A. Using the spec-

tral norm || · ||2, we can express σk+i(A) = ||A− Ak+i−1||2 as σk+i(A)

is the largest eigenvalue of the matrix A− Ak+i−1 (see Exercise 4.49).
Moreover, Ak+i−1 is the best rank k + i− 1 approximation of A with
respect to the spectral norm.

Let us define Y = A − B, i.e., A = B + Y. Now σk+i(A) =

||A− Ak+i−1||2 = ||B + Y− Ak+i−1||2.
By similar reasoning, σi(Y) = ||Y − Yi−1||2, where Yi−1 is the best

rank i− 1 approximation of Y with respect to the spectral norm.

matrices with applications to cs 103

We know that B is of rank k, hence σk+1(B) = 0. Furthermore, we
can express σk+1(B) = ||B− Bk||2 = 0, where Bk is the best rank k
approximation of B.

Consider the sum Yi−1 and Bk and let this be the matrix Z, i.e.
Z = Bk + Yi−1. Now rank(Z) ≤ rank(Bk) + rank(Yi−1) = k + i− 1.

Now we are almost ready to show that σi(A − B) = σi(Y) ≥
σk+i(A).

σi(Y) = ||Y−Yi−1||2 + ||B− Bk||2
≥ ||Y−Yi−1 + B− Bk||2 using triangle inequality for norms

= ||A−Yi−1 − Bk||2
= ||A− Z||2
≥ ||A− Ai+k−1||2
= σi+k(A)

Note that for any rank ≤ k+ i− 1 matrix (such as Z), ||A−Ai+k−1||2 ≤
||A− Z||2 as Ak+i−1 is the best rank k + i− 1 approximation of A with
respect to the spectral norm.

4.7 Markov Matrices

Let X0, X1, . . . be a sequence of random variables that are evolving
over time. At time 0, we have the r.v. X0, followed by r.v. X1 at time
1 and so on. Assume that each Xi takes value from the set {1, . . . , n}
that represents the set of states. This sequence is a Markov chain if
the probability that Xm+1 equals a particular state αm+1 ∈ {1, . . . , n}
only depends on what is the state of Xm and is completely inde-
pendent of the states of X0, . . . , Xm−1, i.e.,P[Xm+1 = αm+1|Xm =

αm, Xm−1 = αm−1, . . . , X0 = α0] = P[Xm+1 = αm+1|Xm = αm], where
α0, . . . , αm+1, · · · ∈ {1, . . . , n}. This is called the memoryless property
of Markov chains as the most recent r.v. Xm determines the value
of Xm+1, and it doesn’t matter how Xm acquired its state value. To
understand the transition of Markov chain from one state to another,
we define state transition probabilities, i.e., what is the probability to go
from state i to state j for all 1 ≤ i, j,≤ n. See Figure 4.2 for an exam-
ple of a Markov chain with three states. This is usually represented in
a transition matrix defined as follows.

1/3

2/3

P Q

R

1/2

1/2

1/3 2/3

Figure 4.2: Markov chain with three
states and transition probabilities.

A =

P Q R 0 1/3 1/3 P
1/2 0 2/3 Q
1/2 2/3 0 R

Figure 4.3: Markov matrix A corre-
sponding to Figure 4.2.

A square matrix A of dimension n× n is a Markov matrix if all its
entries are non-negative and the entries within each column sums
to 1. This matrix represents a system with n states where the (ij)-th
entry is the transition probability from state j to state i. Suppose that
A[i, j] = 0.3. This means that if Xm = j, then there is a 30% chance

104 notes on algorithm design

that Xm+1 = i. If A[k, j] = 0 then a direct transition from the state j
to the state i is impossible. If A[j, j] = 0.4 then there is a 40% chance
that the next state transition doesn’t change the state.

It is common to represent a Markov chain as a directed graph
G = (V, E). Its node set V consists of all the states {1, . . . , n}. There
is a directed edge from a node j to node i, if there is a non-zero
probability to make a transition from state j to state i in one step, i.e.,
A[i, j] > 0. We typically start with an initial state in Markov chain
given by the value of r.v. X0 (representing a node in G), and in each
successive step we make a state transition from the current state
given by Xm = j to the next state given by Xm+1 = i (i.e., follow a
directed edge from node j to node i) that respects the probability of
the state transition from the node j to i in G. One of the questions
that is commonly asked is what is the probability of reaching the
state i after taking n steps starting from the state j? In general, given
an initial probability vector representing the probabilities of starting
in various states, we are interested to know what is the steady state,
i.e., after traversing the chain for a large number of steps, what
is the probability of landing in various states. This concept will
become clear in the next section after we establish some more (graph-
theoretic) properties of Markov chains.

We say that a state i is recurrent if starting from the state i, with
probability 1, we can return to the state i after making finitely many
transitions. Otherwise, it is transient, i.e., there is a non-zero probabil-
ity of not returning to the state i. See Figure 4.4 for an example.

1 2

3

4 5

6

Figure 4.4: Recurrent States={1,2,3}.
Transient States={4,5,6}

We say a Markov chain is irreducible if it is possible to go between
any pair of states in a finite number of steps. Otherwise it is called
reducible. Note that the chain in Figure 4.4 is reducible as state 4
cannot be reached from state 1. In terms of graph theory, if G is
strongly connected then it is irreducible. Exercise 4.26 asks you to
show that if a Markov chain is irreducible, then all its states are
recurrent. Observe that if all states of a Markov chain are recurrent,
then it doesn’t mean that it is irreducible. For example, consider a
Markov chain with two states, and the only transition that is allowed
is to stay in the same state with probability 1. Clearly both the states
are recurrent, but there is no way to reach one state from the other.
Period of a state i is the greatest common divisor (GCD) of all possible
number of steps it takes the chain to return to the state i starting
from i. Formally, the period of the state i equals GCD{m > 0 :
P[Xm = i|X0 = i] > 0}. If there is no way to return to i starting from
i, then its period is undefined. We say a Markov chain is aperiodic if
the periods of each of its states is 1.

matrices with applications to cs 105

4.7.1 Eigenvalues of a Markov matrix

Recall that a Markov matrix (or a stochastic matrix or a transition
matrix or a probability matrix) A is a square matrix that captures
the probability of transition from one state to another in a Markov
process. Each A[i, j], 1 ≤ i ≤ n and 1 ≤ j ≤ n, is non-negative and its
value is equal to the probability of transition from the state j to state
i. Observe that the sum of the values within any column is 1 (as that
equals the probability of leaving from a state to any of the possible
states). Assume that A is a n × n Markov matrix. Its eigenvalues
are the roots of the equation given by the determinant of the matrix
A− λI, i.e., det(A− λI) = 0, where I denotes the identity matrix. We
are interested in establishing some properties of the eigenvalues of A.
First an example.

1/3

2/3

P Q

R

1/2

1/2

1/3 2/3

Figure 4.5: Markov chain with three
states and transition probabilities.

The Markov matrix A corresponding to the Markov chain from
Figure 4.5 is given in Figure 4.6.

A =

P Q R 0 1/3 1/3 P
1/2 0 2/3 Q
1/2 2/3 0 R

Figure 4.6: Markov matrix A corre-
sponding to Figure 4.5.

Let us compute the eigenvalues of A by determining the determi-
nant of the following matrix and equating it to zero:

A− λI =

 0− λ 1/3 1/3
1/2 0− λ 2/3
1/2 2/3 0− λ

Now det(A− λI) = 0 gives us the equation 9λ3 − 7λ− 2 = 0. The
roots of this equation are λ1 = 1, λ2 = −2/3, and λ3 = −1/3 and the
corresponding eigenvectors are v1 = (2/3, 1, 1), v2 = (0,−1, 1), and
v3 = (−2, 1, 1), respectively. We observe that the largest (principal)
eigenvalue is 1 and the corresponding (principal) eigenvector is
(2/3, 1, 1). Note that Avi = λivi, for i = 1, . . . , 3. If required, we
can convert any eigenvector to a unit vector (vi

||vi ||) or take its scalar
multiple, without altering its corresponding eigenvalue. Moreover, it
is straightforward to see that A will have an eigenvalue of 1, as in AT

all the elements in each row add to 1 and the determinant (and the
eigenvalues) of a matrix is same as that of its transpose (see Exercise
4.13). The next theorem states that the largest eigenvalue of a Markov
matrix is 1.

Theorem 4.7.1 The largest eigenvalue of any Markov matrix is 1.

Proof. Let A be a Markov matrix of dimension n and let B = AT .
Let 1 = (1, 1, . . . , 1) be a vector of dimension n. All the elements
within each row of B sums to 1, thus ∑n

j=1(bij · 1) = 1 and B1 = 1 · 1.
Hence 1 is an eigenvalue of B (and therefore for A as A = BT).
Now we show that the largest eigenvalue of B is 1. We prove this
by contradiction. Suppose there exists an eigenvalue λ > 1 and a

106 notes on algorithm design

non-zero vector x such that Bx = λx. Let xi be among the largest
coordinate(s) of x. We can assume that xi > 0, otherwise we multiply
by a scalar and that also satisfies this equation. Entries in B are non-
negative (they are probabilities), and the sum of all the elements
in any row of B is 1. We can interpret each entry in λx as a convex
combination of the elements of x. For example, the i-th row yields
bi1x1 + bi2x2 + · · · + binxn = λxi. But bi1x1 + bi2x2 + · · · + binxn ≤
bi1xi + bi2xi + · · · + binxi = (bi1 + bi2 + · · · + bin)xi = xi. Because
of the convex combination, no entry in λx can be larger than xi. But
since λ > 1, and in particular λxi > xi, the ith row sum ∑n

j=1(bijxj) =

λxi > xi leads to a contradiction. Therefore, the largest eigenvalue of
B, and hence of A, is 1.

Consider the Markov matrix A corresponding to Figure 4.5.

A =

 0 1/3 1/3
1/2 0 2/3
1/2 2/3 0

Note that all the entries in A2 are > 0 and all the entries within a
column still adds to 1.

A2 =

 1/3 2/9 2/9
1/3 11/17 1/6
1/3 1/6 11/17

In fact, we can observe that if the entries within each column of A
adds to 1, then entries within each column of Ak, for any integer
k > 0, will add to 1.

Next consider multiplying A by a vector u0, where each coordinate
of u0 ≥ 0 and the sum of the coordinates of u0 is 1. Think of u0 as a
initial probability distribution of a random surfer, i.e., the probability
of the surfer in any given state. Consider u1 = Au0. Observe that
each of the coordinates of u1 ≥ 0 and they also add to 1. The vector
u1 is the probability of various states in which the surfer is after
making a state transition conditioned on that the starting probability
distribution is u0. For example, for u0 = (1/3, 1/3, 1/3),

u1 = Au0 =

 0 1/3 1/3 1/3 = 4/18
1/2 0 2/3 1/3 = 7/18
1/2 2/3 0 1/3 = 7/18

matrices with applications to cs 107

Similarly, define u2 = Au1 = A2u0, and for our example it is

u2 = Au1 =

 0 1/3 1/3 4/18 = 7/27
1/2 0 2/3 7/18 = 10/27
1/2 2/3 0 7/18 = 10/27

Likewise, we compute u3 = Au2 = [20/81, 61/162, 61/162], u4 =

Au3 = [61/243, 91/243, 91/243], u5 = Au4 = [182/729, 547/1458, 547/1458],
. . . , u∞ = [0.25, 0.375, 0.375] = [2/8, 3/8, 3/8]. Note that by taking
the repeated powers, limk→∞ Aku0 = [2/8, 3/8, 3/8] and that corre-
sponds to the steady state. In fact the steady state corresponds to the
principal eigenvector. We formalize this notion next.

We can express the vector u0 as a linear combination of eigenvec-
tors. For our example, let u0 = c1v1 + c2v2 + c3v3, where c1, c2, c3 are
constants. In particular, 1/3

1/3
1/3

 = c1

 2/3
1
1

+ c2

 0
−1
1

+ c3

 −2
1
1

Now u1 can be expressed as

u1 = Au0

= A(c1v1 + c2v2 + c3v3)

= c1 Av1 + c2 Av2 + c3 Av3

= c1λ1v1 + c2λ2v2 + c3λ3v3 asAvi = λivi.

Thus,

u1 = A

 1/3
1/3
1/3

 = c1λ1

 2/3
1
1

+ c2λ2

 0
−1
1

+ c3λ3

 −2
1
1

In general, for any integer k > 0, uk = Aku0 = c1λk

1v1 + c2λk
2v2 +

c3λk
3v3, i.e.,

uk = Ak

 1/3
1/3
1/3

 = c1λk
1

 2/3
1
1

+ c2λk
2

 0
−1
1

+ c3λk
3

 −2
1
1

and that equals

uk = c11k

 2/3
1
1

+ c2(−
2
3
)k

 0
−1
1

+ c3(−
1
3
)k

 −2
1
1

108 notes on algorithm design

For large values of k, (2
3)

k → 0 and (1
3)

k → 0. The above expres-
sion reduces to

uk ≈ c1

 2/3
1
1

 =
3
8

 2/3
1
1

 =

 2/8
3/8
3/8

Note that the value of c1 is derived by solving the equation for u0 =

c1v1 + c2v2 + c3v3 for u0 = [1/3, 1/3, 1/3].
Let us see what happens if the initial vector u0 = [1/4, 1/4, 1/2].

Then u1 = Au0 = [1/4, 11/24, 7/24], u2 = Au1 = [1/4, 23/72, 31/72],
u3 = Au2 = [1/4, 89/216, 73/216], . . . , u∞ = [2/8, 3/8, 3/8].
Hence a different initial value u0 = [1/4, 1/4, 1/2] still leads to
the same steady state corresponding to the principal eigenvector.
The reasoning is same as before. Express u0 = d1v1 + d2v2 + d3v3

for constants d1, d2 and d3. Now, for any k > 0, uk = Aku0 =

d1λk
1v1 + d2λk

2v2 + d3λk
3v3 = d1v1 + d2(− 2

3)
kv2 + d3(− 1

3)
kv3. Now take

limk→∞ uk = d1v1. We solve for d1 using the initial condition 1/4
1/4
1/2

 = d1

 2/3
1
1

and obtain that d1 = 3/8. Thus u∞ = [2/8, 3/8, 3/8].

Consider the following example that illustrates the number of
fans of the Senators and the Leafs NHL Teams at the end of the
season. Assume that there are 3,000,000 hockey fans all over Canada
for these two teams and at the end of the season, depending on the
performance of the two teams, certain fraction of the fans switch
loyalties. Assume that the following transition matrix captures the
change in loyalties:

A =

Sens Lea f s[]
0.9 0.3 Sens
0.1 0.7 Lea f s

Note that only 10% of Sens fans switch loyalties as opposed to
30% of the Leafs fans. We assume that this trend stays forever. Let
us assume that there are 50, 000 Sens fans and 2, 500, 000 leafs fans
at the start (say 20 years ago) and we want to know what will be
the steady state of the fans distribution. Let us first find the eigen-
values and eigenvectors of A. It is easy to see that λ1 = 1 and
λ2 = 0.6 and the corresponding eigenvectors are v1 = (3, 1) and
v2 = (1,−1), respectively. We know that u0 = (50000, 2500000)
and we want to find uk for large values of k, where uk = Auk−1.
From the theory developed above we know that for constants c1 and

matrices with applications to cs 109

c2, uk = c1(λ1)
kv1 + c2(λ2)

kv2 = c11kv1 + c2(0.6)kv2. The initial
condition u0 = [500000, 2500000] = c1[3, 1] + c2[1,−1] results in
c1 = 750, 000 and c2 = −1, 750, 000. As k → ∞, 0.6k → 0. Thus,
limk→∞ uk = 750, 000[3, 1] or there are 2, 250, 000 Sens fans and
750, 000 Leafs fans in the steady state.

The above examples leads to the following abstraction. Assume
that all the entries of a Markov matrix A, or of some finite power
of A, i.e., Ak for some fixed integer k > 0, are strictly > 0. These
conditions imply that A corresponds to an irreducible aperiodic
Markov chain M. (Recall that in an irreducible chain M, for any pair
of states i and j, it is always possible to go from state i to state j in
finite number of steps with positive probability. Informally, period
of a state i is the greatest common divisor of all possible number of
steps it takes the chain to return to the state i starting from i. M is
aperiodic if the GCD is 1 for period of each of the states in M.) As
a consequence of the Perron-Frobenius theorem from linear algebra
it will turn out that almost always (a) the largest eigenvalue 1 of
A will be unique, (b) all other eigenvalues of A have magnitude
strictly smaller than 1, (c) all the coordinates of the eigenvector v1

corresponding to the eigenvalue 1 are > 0, and (d) the steady state
corresponds to the eigenvector v1.

4.7.2 PageRank

Now a days we cannot imagine a life without the www. Google,
Safari, Yahoo, . . . are among the various search engines that search
the internet to answer our web queries on a wide range of topics. In
this section, we sketch how the ranking of the web-pages is done
by the page rank algorithm from the founders of Google 5 (see also 5 Sergey Brin and Lawrence Page.

Reprint of: The anatomy of a large-
scale hypertextual web search engine.
Computer Networks, 56(18):3825–3833,
2012

6). Ranking assigns a real number to each web-page. The higher the

6 Sergey Brin, Rajeev Motwani,
Lawrence Page, and Terry Winograd.
What can you do with a web in your
pocket? IEEE Data Eng. Bull., 21(2):37–47,
1998

number, the more important the page is. Since the web is extremely
large, the ranking cannot be done manually. First we will provide a
very simple model of the web and see how the Markov matrices can
help us to rank the web pages.

Consider the web as a directed graph G = (V, E) defined as
follows. Each web-page is a vertex of G. If a web-page u points (links)
to the web-page v, there is a directed edge from u to v. The weight of
an edge uv is 1

out-degree(u) . Assume V = {v1, . . . , vn}. Define an n× n
adjacency matrix M as follows.

For 1 ≤ i, j ≤ n, M(i, j) =

{
1

out-degree(vj)
, if vjvi ∈ E

0 otherwise.
For example consider the following simple web-graph (Figure 4.7)

and its associated matrix (Figure 4.8).

v1 v2

v3v4

v5

Figure 4.7: Web graph with 5 nodes.

M =

v1 v2 v3 v4 v5

0 0 1/2 1/3 0
1/2 0 0 0 0
1/2 1/2 0 0 0

0 1/2 1/2 1/3 0
0 0 0 1/3 0

Figure 4.8: Matrix M corresponding to
Figure 4.7.

In the above example the node v4 has out-degree 3 and hence

110 notes on algorithm design

the weight on each of its outgoing edges {v4v1, v4v4, v4v5} is 1/3.
Assume that a web-surfer starts the surfing at the web-page v1. It has
two outgoing edges and with equal probability (= 1/2) the surfer
decides to follow one of them, say v3. Now at v3, he/she decides
between two possible outgoing edges and picks one of them with
equal probability, say v4. At v4 there are three possibilities and with
equal probability (to return to v1, to stay at v4, or to advance to v5)
the surfer chooses to go to v5. Node v5 has no outgoing edges (its
column is zero) and hence the web surfer is stuck. To overcome this,
we say that the web-surfer jumps to a random page and restarts the
whole process. This can be reflected by modifying the above matrix
to the following:

Q =

v1 v2 v3 v4 v5

0 0 1/2 1/3 1/5

1/2 0 0 0 1/5
1/2 1/2 0 0 1/5

0 1/2 1/2 1/3 1/5
0 0 0 1/3 1/5

Note that M corresponding to Figure 4.8 is updated to reflect that
from node v5, with equal probability, the surfer will go to any of the
five web-pages.

The creators of Google, in addition to the above modifications,
suggested the following. During the surfing, the web-surfer at each
of the node (i.e., a web-page) flips a coin. If the outcome is Heads, it
follows the outlined approach using the matrix Q. But if the outcome
is tails, it ‘teleports’ to a page, chosen uniformly at random among
all the webpages, and continues the surfing from there. Let the
probability of heads be α, then we can express the transition matrix
as K = αQ + 1−α

n E, where E is an n× n matrix and all of its entries are
1. We make a few remarks about K. Each of its entries > 0, and the
entries within each column sums to 1.

Theorem 4.7.2 (Perron-Frobenius
theorem [129]) Let A be a square real
matrix such that all of its entries are > 0.
Then, all the coordinates of the eigenvector
corresponding to the largest eigenvalue are
strictly positive.

Hence K is Markov matrix corresponding to a aperiodic irre-
ducible Markov chain. Its largest eignenvalue is 1 and its corre-

Observe that the underlying directed
graph is biconnected, and GCD of the
periods is 1 for each node as there is a
self-loop at each node.

sponding eigenvector has positive entries, they add to 1, and corre-
sponds to the steady state of K. Thus, the values in this eigenvector
corresponds to the page rank of the web-pages.

Note that for the purpose of the computation of the page ranks,
since K is an extremely large matrix, it is not advisable to compute its
eigenvector corresponding to its principal eigenvalue directly. This
requires executing Gaussian elimination and it has relatively large
computational complexity. The computational issues are addressed
by exploiting the fact that Q is extremely sparse and E is a special

matrices with applications to cs 111

matrix. For a vector v = (1/n, . . . , 1/n) corresponding to the uniform
probability distribution of a random web surfer initially, the compu-
tation of Kv = αQv + 1−α

n Ev can exploit the sparsity of Q and the
properties of E. Similarly K2v = K(Kv) = Kv′ has a similar compu-
tational flavour as we are again multiplying K by a vector v′. Thus,
we can repeatedly compute this product and stop when we think the
successive vectors are very close to each other and the computation
has converged. Hopefully, the resulting vector represents the steady
state and we can deduce the page rank of each of the web page.

4.8 Bibliography

Acknowledgements to wonderful textbooks and/or video lectures
of Gilbert Strang 7, Alan Tucker 8, R. Vittal Rao 9, and Jim Carrel 10. 7 Gilbert Strang. Introduction to Linear

Algebra. Wellesley-Cambridge Press,
Wellesley, MA, fifth edition, 2016

8 A. Tucker. Linear algebra: an introduction
to the theory and use of vectors and matri-
ces. Macmillan Publishing Company,
1993

9 Vittal Rao. Advanced Matrix Theory
and Linear Algebra for Engineers.
https://nptel.ac.in/syllabus/

111108066/, 2019. [Online; accessed
2-May-2019]
10 James Carrel. Fundamentals of
Linear Algebra. https://www.math.ubc.
ca/~carrell/NB.pdf, 2005. [Online;
accessed 2-May-2019]

Exercises on approximating the product of two matrices are based on
Gilbert Strang 11 and Drineas and Mahoney 12.

11 G. Strang. Linear Algebra and Learning
from Data. Wellesley-Cambridge Press,
2019

12 Petros Drineas and Michael W.
Mahoney. Lectures on randomized
numerical linear algebra. CoRR,
abs/1712.08880, 2017

4.9 Exercises

4.1 Let A be a n× n real symmetric matrix of rank r < n. What can we say
about the four fundamental subspaces of A.

4.2 Find the basis and dimensions for all the four fundamental spaces
associated with the following matrices:

[
1 2 3
2 4 6

]
and

[
1 2 3
2 3 6

]
.

4.3 Show that every rank one m× n matrix A can be expressed as a product
two vectors x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn), i.e., A =[x1

x2.
.

xm

]
[y1 y2 . . . yn]

4.4 Let q1, . . . , qn be a set of n independent orthonormal vectors in Rm. Let
Q be a m× n matrix, where its i-th column is the vector qi, for i = 1, . . . , n.
Show that QTQ = I, where I is n× n identity matrix. Show that if m = n,
then Q−1 = QT . That is, the inverse of a square matrix of orthonormal
vectors is its transpose.

4.5 Let A be a m× n matrix where all its columns are linearly independent.
Show that AT A is invertible. (Hint: One way to show that a matrix B is
invertible is to show that Bx = 0 only for x = 0.)

4.6 Let A be a square matrix, where each of its diagonal entry is strictly
larger than the sum of all other entries within that row. Show that A is
invertible.

4.7 Show that n × n matrix A is invertible if and only if Ax = 0 has a
unique solution.

https://nptel.ac.in/syllabus/111108066/
https://nptel.ac.in/syllabus/111108066/
https://www.math.ubc.ca/~carrell/NB.pdf
https://www.math.ubc.ca/~carrell/NB.pdf

112 notes on algorithm design

4.8 Show that n× n matrix A is invertible if and only if 0 is not an eigen-
value of A.

4.9 Let A be an invertible matrix and λ be an eigenvalue of A and let v be
the corresponding eigenvector. Show that 1/λ is an eigenvalue for A−1 and
its corresponding eigenvector is v.

4.10 Show that an n× n real matrix S is symmetric if and only if uT Av =

vT Au for all u, v ∈ Rn.

4.11 Consider the matrix A =

[
0.8 0.3
0.2 0.7

]
.

Answer the following:

1. Find the Eigenvalues and Eigenvectors of A. Show your work.

2. What are (approximately) the Eigenvalues and Eigenvectors of A2 and
A100?

4.12 Let A be a square matrix of dimension n× n, where each entry of A
is a real number. Show that the products AAT and AT A are symmetric
matrices? Is AAT = AT A for all (real) square matrices? Justify your
answer.

4.13 For a square matrix A show that

1. The product of its eigenvalues equals the determinant of A. (Hint: Con-
sider the characteristic polynomial and set λ = 0.)

2. The sum of its eigenvalues equals the sum of the diagonal entries of A
(called the trace of A).

3. The eigenvalues of A are same as that of AT . Do they have the same
eigenvectors?

4.14 Answer the following:

1. Compute Eigenvalues of matrix B =

1 2 1
2 2 3
1 3 1

.

Notice that B is symmetric, i.e., B = BT (B is same as its transpose BT).
Do you notice something about the Eigenvalues of B? Try a couple more
symmetric matrices to test your hypothesis.

2. Compute Eigenvalues of matrix C =

1 2 1
2 2 3
3 4 4

.

Notice that this is not a full rank matrix, and one of its Eigenvalues is
zero. Is it true in general if the matrix C is not of full rank then some of
its Eigenvalues are zeros? How many of them will be zeros, if any?

matrices with applications to cs 113

4.15 What are eigenvalues and eigenvectors of an identity matrix.

4.16 Show that for a real symmetric matrix S =
[

a b
c d

]
, its eigenvectors

are x1 =
[

b
λ1−a

]
and x2 =

[
λ2−d

c
]

where λ1 and λ2 are the eigenvalues,
respectively.

4.17 For a square matrix A , show that if all its eigenvalues are distinct,
then its corresponding eigenvectors are linearly independent. First show that
for a pair of distinct eigenvalues λ1 6= λ2, their corresponding eigenvec-
tors v1 and v2 are linearly independent. (Note that v1 and v2 are linearly
independent if c1v1 + c2v2 = 0 then c1 = c2 = 0.)

4.18 Assume that a square matrix A can be expressed as A = XΛX−1,
where Λ is a diagonal matrix consisting of eigenvalues of A, and the
columns of X are the corresponding (linearly independent) eigenvectors.
What are are eigenvalues and eigenvectors of A−1? Can any of the eigenval-
ues of A equals to 0?

4.19 Let A be a square matrix and let p(λ) = det(A − λI) = 0 be its
characteristic polynomial. We are interested to find out whether all the roots
(eigenvalues) of p(λ) are distinct or not without actually computing its
roots. Show that this can be achieved by finding the GCD of p(x) and its
derivative p′(x).

4.20 Let A =

[
a b
c d

]
. What are the conditions on a, b, c, and d, so that A

is positive definite. What about positive semi definite?

4.21 Recall that a symmetric matrix A is positive definite if for all non-zero
vectors x, xT Ax > 0. For a symmetric positive definite matrix A show that

1. All its eigenvalues > 0.

2. All its pivots, in the row reduced echelon process, are > 0 in the

3. Determinants of all the upper left submatrices are positive.

4. All diagonal elements of A are > 0.

4.22 Let A be a m× n real matrix. Show that AT A is a symmetric positive
semi definite matrix.

4.23 Assume all the matrices involved are n × n matrices. Answer the
following:

1. If A is symmetric positive definite. Is A−1 symmetric positive definite?

2. If A and B are symmetric positive definite matrices. What about A + B?

114 notes on algorithm design

4.24 Let A be a real symmetric n × n matrix. Show that the following
statements are squivalent.

1. A is positive semi-definite.

2. For any vector x ∈ <n, xT Ax ≥ 0.

3. For some n× n matrix U, A = UTU.
(Hint: Consider SVD of A.)

4.25 Show that for a Markov matrix A, and an identity matrix I, A− I is
singular, i.e., the determinant of A− I is 0. Show that the rows of A− I
are not independent and hence det(A− I) = 0. This implies that 1 is an
eigenvalue of a Markov matrix.

4.26 Show that in an irreducible Markov chain all the states are recurrent.

4.27 In a Markov chain we say that a pair of states (i, j) communicates
with each other if it is possible to reach from the state i to the state j with
non-zero probability after a finite number of steps, and similarly it is pos-
sible to reach from the state j to the state i in a finite number of steps with
non-zero probability. Show that ‘communicates’ is an equivalence relation.
Show that an irreducible Markov chain has a unique equivalence class.

4.28 Suppose that the underlying graph of a Markov chain is a bipartite
graph. Can this chain be aperiodic?

4.29 Let A be a square Markov matrix of dimension n× n. Recall that in A,
all entries are non-negative and the entries within a column sum to 1. Show
that λ = 1 is an Eigenvalue of A. (Hint: Show that for a Markov matrix A,
and an identity matrix I, A− I is singular, i.e., the determinant of A− I is 0.
Show that the rows of A− I are not independent and hence det(A− I) = 0.
This implies that 1 is an eigenvalue of a Markov matrix. Note that there are
many more ways to answer this question.)

4.30 Assume that the total population of the Province of Ontario is 14
million. Each resident of Ontario is either a fan of the Ottawa Senators
or Maple Leafs Hockey Club. Each year, 5% fans of Senators switch their
aligns to Leafs, and the 10% of Leafs fans switch their aligns to Senators.
Suppose that this trend continues year after year, and the population of
Ontario doesn’t change, what will be the steady state of the number of fans
of each of the Hockey Clubs? Is that affected by the initial number of fans
each team has?

4.31 Let the Singular-Value Decomposition of a rank r matrix [A]m×n

be A = UΣVT . Show that the vectors u1, . . . , ur, corresponding to the
first r columns of U, form an orthonormal basis for the column space of A.
(For any vector x of dimension n, consider Ax = UΣVTx. Observe that
ΣVTx is a vector whose only non-zero components are among its first r
components.)

matrices with applications to cs 115

The following exercises will lead us to the principal component anal-
ysis (PCA). We will use the following notation. Let p1, p2, . . . , pn ∈ Rn

denote a set of linearly independent orthonormal vectors that form
a basis of Rn. We arrange these vectors in a n× n matrix P, whose
i-th column is the vector pi. Let X be a m× n real matrix, where rows
represents n− dimensional vectors x1, x2, . . . , xm. Furthermore, we
are given that each column of X is centred with mean 0, i.e., the sum
of the entries in a column is 0.

In simple terms PCA is used for the following: Think of rows of X
as objects and the columns as different (numeric) attributes of these
objects. It is possible that there may be lot of redundant information
in X. For example, a column of X may be a scalar multiple of some
other column (e.g., one column represents prices in US$ and other
in Canadian $ of the same item), or all the columns of X can be
expressed as a linear combination of a very few columns, or it may
be possible to project row vectors on to a different basis so that the
properties of the objects are easy to deduce. In other words, PCA will
help us to identify an orthonormal basis (dimensions) in Rn such that
after projecting X onto the new basis, the covariance between the new
columns is 0. Within each new dimension, the variance is maximized.
Answer the following:

4.32 We know that any vector x ∈ Rn can be expressed as a linear combina-
tion of orthonormal basis vectors p1, p2, . . . , pn ∈ Rn, i.e., there are unique

α1, α2, . . . , αn ∈ R, such that x =
n
∑

i=1
αi pi. Show that for all i = 1, . . . , n,

αi = 〈x · pi〉, i.e., αi is given by the dot product of vectors x and pi.

4.33 Show that the matrix product XP results in mapping each row vector
xi to the coordinate system defined by the orthonormal basis p1, p2, . . . , pn.

4.34 Show that the matrix product X̂ = XP has the property that sum of all
the elements in each column is 0.

4.35 Covariance of two random variables A and B is defined as σAB =

E[(A− E[A])(B− E[B])]. Show that σAB = E[AB]− E[A]E[B].

4.36 Consider the product C = 1
m−1 XTX. Show the following: Dividing by m− 1 instead of m has to

do with degrees of freedom. Don’t ask
why!1. C is a n× n symmetric matrix.

2. For i = 1, . . . , n, the diagonal entry Cii of C is the variance of the ele-
ments in the i-th column of X, i.e., the variance of {x1i, x2i, x3,, . . . , xmi}.

3. ij-th entry Cij is the covariance of the i-th and the j-th columns of X.

4.37 Consider the covariance matrix of X̂(= XP), i.e., the matrix 1
m−1 X̂TX̂.

1. Show that 1
m−1 X̂TX̂ is a square symmetric matrix.

116 notes on algorithm design

2. Suppose we construct P by choosing the orthonormal eigenvectors
p1, p2, . . . , pn of C as its columns. Show that 1

m−1 X̂TX̂ = PTCP.

3. From Equation 4.2, conclude that PTCP is a diagonal matrix.

4. Consider the projection of the vectors of X on to P, i.e., XP. Show that
the covariance of any two distinct columns of XP = 0.

The eigenvectors of C = 1
m−1 XTX determine the principal direc-

tions/axes. For example, the largest variance among all possible
directions after projecting all row vectors in X is given by the direc-
tion of the eigenvector corresponding to the largest eigenvalue of C.
Among all the directions that are orthogonal to the first, the direc-
tion given by the eigenvector corresponding to the second largest
eigenvalue has the largest variance, and so on.

4.38 Solve the following exercises.

1. Find the principal directions/axes of the row vectors of the matrix

X =

−2 −6
−1 −3
0 0
1 3
2 6

Determine the projections of the row vectors onto the principal axes.
Let p1 be the unit vector corresponding to the largest eigenvalue of
C = 1

m−1 XTX and let p2 be the unit vector corresponding to second
largest eigenvalue. Any row vector of X can be expressed as linear
combinations of p1 and p2. For example, the second row vector can be
expressed as [

−1
−3

]
= α1 p1 + α2 p2

Find α1 and α2. Observe that α2 = 0. Thus, by knowing α1 and p1,
we can create the row vector. Do this for all the rows of X. What is the
saving in the space if we store α’s and p1 instead of X? Also, let p1 and
λ1 be the principal eigenvalue and eigenvector of C. What can you say
about λ1 p1 pT

1 ? How well it approximates C?

2. Repeat the exercise for

X =

1/
√

2 0
2/
√

2 3/
√

2
3/
√

2 2/
√

2
4/
√

2 5/
√

2
5/
√

2 4/
√

2

What can you say about λ1 p1 pT

1 in relation to XTX?

matrices with applications to cs 117

3. Repeat the exercise for

X =

1 0 1
−1 0 1
0 2 −1
0 −2 −1

What is the most dominant direction?

Next we consider relationship between PCA and SVD’s for a
m × n matrix X. We assume that X is centred, i.e., the sum of el-
ements within any column is 0. We will establish that PCA is a
special case of SVD. Recall that the covariance matrix of X is given by
C = 1

m−1 XTX.

4.39 Answer the following.

1. Given that C is a square symmetric matrix, using Theorem 4.4.6 show
that C = PDPT , where D is a diagonal matrix made of eigenvalues of C
and P consists of eigenvectors of C.

2. Let the SVD decomposition of X = UΣVT (see Theorem 4.5.5). Show
that C = 1

m−1 XTX = V Σ2

m−1 VT .

3. Show that given SVD, we can obtain the PCA of X by observing that
the eigenvectors (principal directions) are given by P = V and the
eigenvalues of the covariance matrix C are given by 1

m−1 Σ2
ii. Moreover,

show that XV = UΣ results in the projection of X on to the orthonormal
basis given by the vectors in V. Therefore, given SVD we can easily
obtain the PCA of X.

4. Compute SVD’s of matrices in the previous question and verify the
claims.

The following exercises will help us understand least squares
approximations. The problem can be described as follows. Given a set
of m points in plane, find a line that passes through these points. In
case there is no such line, find the line that is‘close’ to these points.
This is a typical scenario when the system of equations Ax = b has
no solution and we are trying to find a ‘best’ possible solution x̂ such
that Ax̂ ≈ b. This happens when, for example, we have many more
equations than variables (i.e., m > n for a m× n matrix A defining the
system Ax = b). We will formalize these notions through a series of
exercises.

4.40 Let p = (px, py) and q = (qx, qy) be two distinct points in plane.
Show that there is a unique line passing through them. Let the equation of

118 notes on algorithm design

the line by y = C + Dx, where C and D are constants. Note that we can
express this configuration in a system of equation Ax = b as follows.[

1 px

1 qx

] [
C
D

]
=

[
py

qy

]

Using the matrix notation, find the line passing through the points (2, 5)
and (3, 6).

4.41 In each of the cases determine whether there is a line passing through
the points.

1. (2, 5), (3, 6), (4, 7).

2. (2, 5), (3, 6), (4, 8).

Write the corresponding system of equations in the matrix format Ax = b.
Notice that A is 3× 2 matrix. Answer the following:

1. Compute column spaces for A, i.e., space determined by the span of
column vectors of A.

2. Determine if b belongs to the column space of A.

3. Can the membership of b in the column space of A help in determining if
Ax = b has a solution?

4.42 Consider a system of equations Ax = b that has no solution. Then b is
not in the column space of A. Answer the following. (It is easy to visualize
this in three dimensions (m = 3) and then think of higher dimensions.)

1. Show that the closest point to b in the column space of A is the point p
obtained by projecting b onto the column space of A.

2. Since p is in the column space of A, show that there is a vector x̂ such
that Ax̂ = p, i.e., p can be expressed as linear combinations of columns of
A.

Column space of A

b
e

p

a1a2

an
a3

an−1

Figure 4.9: Projection of b onto the
column space of A.

3. Define e = b− p. This is the error vector. Show that the least square error
is given by eTe. Show that if b is in the column space of A then eTe = 0,
that is we can find a solution to the system Ax = b.

4. Let a1, . . . , an be the columns of A. Show that e is perpendicular to each
of the column vectors, i.e., e · ai = 0.

5. Show that ATe = 0.

6. Show that AT Ax̂ = ATb.

7. Show that if the columns of A are independent (i.e., a1, . . . , an are lin-
early independent) then AT A is invertible.

matrices with applications to cs 119

8. Assume that AT A is invertible. Define the projection matrix P =

A(AT A)−1 AT . Show that p = Pb, i.e., the projection of b onto the
column space of A is given by Pb.

9. Show that P2 = P . (The interpretation is that once b is projected in the
column space (as p), the next projection doesn’t do anything.)

10. Suppose A is a square invertible matrix (m = n and AA−1 = A−1 A =

I) then show that P is an identity matrix. Note that in this case the
columns of A spans whole of Rn and hence any vector b ∈ Rn is a linear
combination of the column vectors.

4.43 Find the best line that passes through the following sets of points.
Following the notation of the previous problem, find p, x̂, P , e, and eTe.

1. (2, 5), (3, 6), (4, 8).

2. (1, 2), (−1,−2), (3, 0), (2, 4).

Following set of exercises will help in approximating the product
of two matrices. Let A be a m × n matrix and B be a n × p matrix.
We will denote columns of A by Aj, j = 1, . . . , n and rows of B by
BT

j , for j = 1, . . . , n. The Frobenius norm of a matrix A is defined as

||A||F =

√
m
∑

i=1

n
∑

j=1
A2

ij.

4.44 Show that AB =
n
∑

j=1
AjBT

j . Apply this to the product of A =

1 2
2 0
3 1

and B =

[
2 1
3 2

]
.

4.45 Let x ∈ Rm and y ∈ Rn. Show that ||xyT ||F = ||x||2||y||2. In words,
for any two vectors x and y, show that the Frobenius norm of the matrix
given by the product of xyT is the same as the product of their Euclidean
norms.

Note that the probabilities of selecting the columns of A (or the
rows of B) are based on their norms - higher the norm better are the
chances of selecting them. The division by √cpk(t) biases the entries
in X and Y appropriately so that XY is close to AB. We will explore
these in the following exercises.

4.46 Answer the following.

1. Show that after executing the randomized algorithm, XY =
c
∑

t=1

1
cpk(t)

Ak(t)BT
k(t).

120 notes on algorithm design

Algorithm 4.1: Randomized Algorithm for approximating AB.
Input: Matrices [A]m×n and [B]n×p

Output: Approximation to AB as the product of two matrices
[X]m×c and [Y]c×p

1 C =
n
∑

i=1
||Ai||2||BT

i ||2

2 For k = 1, . . . , n, compute pk =
||Ak ||2||BT

k ||2
C

3 foreach t ∈ {1, c} do
4 Pick a number k(t) ∈ {1, . . . , n} independently with

probability pk(t)

5 Set the t-th column of X as Xt =
1√

cpk(t)
Ak(t)

6 Similarly, set the t-th row of Y as YT
t = 1√

cpk(t)
BT

k(t)

7 end
8 return XY

2. Show that the expected value E[(XY)ij] = (AB)ij. For this, you can
define random variables X1, X2, . . . , Xc, where Xt refers to ij-th entry of
the matrix 1

cpk(t)
Ak(t)BT

k(t), i.e., Xt = (1
cpk(t)

Ak(t)BT
k(t))ij. First show that

E[Xt] =
1
c (AB)ij and then use the independence of Xt’s to show that

E[(XY)ij] = E[X1 + · · ·+ Xc] = (AB)ij.

3. Show that the variance V[(XY)ij] ≤ 1
c ∑n

k=1
A2

ik B2
kj

pk
. Using the notation

of previous exercise, first show that V[(XY)ij] = V[X1 + · · · + Xc],

V[Xt] ≤ E[X2
t], and E[X2

t] =
n
∑

k=1

A2
ik B2

kj
c2 pk

.

4. Show the following:

(a) V[(XY)ij] = E[(XY− AB)2
ij]

(b) E[||AB− XY||2F] =
m
∑

i=1

p
∑

j=1
V[(XY)ij]

(c) E[||AB− XY||2F] ≤ 1
c

n
∑

k=1

1
pk
||Ak||22||BT

k ||22

5. Show that the function f (p1, . . . , pn) =
n
∑

k=1

1
pk
||Ak||22||BT

k ||22 is min-

imized if we choose pk =
||Ak ||2||BT

k ||2
C . (We can use the Lagrange

multiplier’s as we are trying to minimize f (p1, . . . , pn) subject to the

constraint that
n
∑

k=1
pk = 1. Define the function g(p1, . . . , pn, λ) =

n
∑

k=1

1
pk
||Ak||22||BT

k ||22 − λ(
n
∑

k=1
pk − 1) and take partial derivatives of g

with respect to pk’s to obtain the values for pk’s that minimize f .)

matrices with applications to cs 121

6. Show that if we choose pk =
||Ak ||2||BT

k ||2
C as in the algorithm then we

obtain E[||AB− XY||2F] ≤ 1
c C2.

4.47 Let A =

1 2 1
2 0 1
1 1 0

 and B =

2 1
0 3
1 2

. Execute the above algorithm

for different values of c = 1, 2, 3 and evaluate ||AB− XY||F.

The following exercise helps us to understand Rayleigh quo-
tients. They relate eigenvalues to an optimization problem and are
instrumental in partitioning graphs, a topic that will be addressed in
Chapter 7.

4.48 Let S be a n × n real symmetric matrix and let v1, . . . , vn be its n
orthonormal eigenvectors corresponding to its n eigenvalues λ1 ≥ . . . ≥ λn,
respectively. Let x ∈ <n be any vector, and we can express it as linear
combination of vectors v1, . . . , vn, i.e., x = α1v1 + . . . + αnvn, for some
constants α1, . . . , αn. Answer the following:

1. Show that xTx = α2
1 + . . . + α2

n.

2. Show that xTSx = λ1α2
1 + . . . + λnα2

n.

3. For a vector x ∈ <n, consider the expression f (x) = xTSx
xT x . Show that for

any eigenvector vi of S, f (vi) = λi.

4. Show that max
x∈<n

xTSx
xT x = λ1.

5. Show that max
x∈<n , x⊥v1

xTSx
xT x = λ2. (Maximum is over the set of vectors

x ∈ <n that are orthogonal to v1.)

6. In general, show that if we restrict ourselves to vectors x ∈ <n, such that
x is orthogonal to v1, . . . , vk−1, then max

x∈<n , x⊥v1,...,x⊥vk−1

xTSx
xT x = λk.

4.49 Let A be m × n real matrix. Consider X = AT A. Note that AT A
is n × n symmetric matrix. Let U = {u1, . . . , un} be n orthonormal
eigenvectors of AT A corresponding to eigenvalues λ1 ≥ λ2 ≥ . . . λn ≥ 0.
Answer the following.

1. Show that AT Aui = λiui.

2. Show that uT
i AT Aui = λi.

3. Recall that for a vector x, its norm ||x||2 =
√

xTx. Show that ||Aui||2 =√
λi.

4. Using Exercise 4.48, show that max
x∈<n ,||x||2=1

||Ax||2 =
√

λ1.

122 notes on algorithm design

5. Conclude that the spectral norm of a matrix A, defined by max
x∈<n ,||x||2=1

||Ax||2,

is its largest singular value σ1 =
√

λ1. (Recall that the singular values
are the diagonal entries in the matrix Σ in the singular-value decomposi-
tion A = UΣVT .)

4.50 Consider the adjacency matrix of a complete graph on n-vertices. Show
that its eigenvalues are λ1 = n− 1 and λ2 = . . . = λn = −1.

4.51 Consider the adjacency matrix of complete bipartite graph Kmn. Show
that it has exactly two non-zero eigenvalues

√
mn and −√mn.

4.52 Let Q be an orthonormal n × n real matrix. Compute its norms:
||Q||F, ||Q||2, and ||Q||N .

4.53 Let A be n × n real matrix and let Q be an orthonormal n × n real
matrix. Show that ||QA||F = ||A||F, ||QA||2 = ||A||2, and ||QA||N =

||A||N .

4.54 Let A be n × n real matrix and let Q be an orthonormal n × n real
matrix. Show that ||QAQT ||F = ||A||F, ||QAQT ||2 = ||A||2, and
||QAQT ||N = ||A||N .

4.55 Consider a utility matrix M that is typically used in recommender
systems. The rows represents users, the columns represents items, and the
entry Mij in the matrix represents the ranking the user i gives to the item
j. Assume that these ranks are non-negative integers. Consider the SVD of
M = UΣVT . Assume that rank of matrix M is r, it has m rows (users) and
n columns (items). From SVD, we know that U is an m× r and V is n× r
matrices consisting of orthonormal columns, and Σ is a r× r diagonal matrix.
The interpretation associated to r in the context of recommender system is
that it represents the latent concepts that connects rows with columns. For
example, if the utility matrix represents rankings of movies for users, the
concepts may be: type of movie - action, sci-fi, classic, autobiographical;
director and cast; . . . Answer the following:

1. Consider the ranking matrix M =

4 4 0 0
5 4 0 1
1 0 3 4
1 0 4 5
0 0 5 5

 that represents 5

book readers as rows, and 4 books as columns, and the entry in the matrix
represents the ranking of books by readers. The rankings are integers in
[0, 5]. Compute the SVD of M = UΣVT . Use a software package.

2. Deduce that rank of M is 3. Implicitly there are three concepts, and the
strength of these concepts are 10.97, 8.38, and 1.07, respectively. These
are the entries in the matrix Σ.

matrices with applications to cs 123

3. Observe that matrix U =

.14 −.64 −.47
.23 −.71 .32
.45 .07 .42
.58 .12 .30
.61 .23 −.62

 relates readers to

concepts. From the magnitude of the values in the matrix UΣ, give some
interpretation of the strength of the three concepts for each reader.

4. Similar, matrix V =

.25 −.70 .43
.13 −.64 −.55
.61 .22 −.56
.73 .16 .42

, relates concepts with books.

Give a similar interpretation of strength of concepts for each of the books.

5. For the third readers row R3 = (1, 0, 3, 4), show that the entries in R3V
maps this reader to the concept space.

6. Suppose a new reader enters the system who has only read one book, say
2nd book, and has given it a ranking of 4. The row corresponding to this
user in the matrix will be q = (0, 4, 0, 0). Our task is to recommend this
reader other possible books that they may like. Note that qV maps this
reader to the concept space. What will be the interpretation of (qV)VT?
Based on the entries in (qV)VT , what books we will like to recommend
this reader?

7. What will be the best rank 2 approximation of M with respect to Frobe-
nius norm? Call the resulting matrix M′. How much energy will be
lost? Calculate the affect of working with M′ instead of M in making
recommendation with respect to the reader q. Does the recommendation
change?

4.56 Suppose you have two boxes - one colored red and the other colored
blue. The red box contains two red balls, and similarly, the blue box contains
two blue balls. In each step, with equal probability, you select a box. If
the box is not empty, you randomly choose one of the balls from that box
and place that in the other box. You repeat this process till the blue box
contains both the red balls and the red box has both the blue balls. Represent
this process using a Markov chain. What are the states and the transition
probabilities in this Markov chain? Which states are recurrent and which are
transient?

4.57 Assume that we have a star graph S = (V, E) on n + 1 nodes.
It consists of one central node (a resort), say r, and n satellite nodes
(say attractions) only connected to the central node. Assume that the
satellite nodes are labelled 1, 2, . . . , n. Thus V = {r, 1, 2, . . . , n} and
E = {(r, 1), (r, 2), . . . , (r, n)}. Each morning, we wake up at the central
node, choose a satellite node uniformly at random, hike to that node during
the day, and return to the central node by evening. We repeat this process

124 notes on algorithm design

till we visit all the n attractions. Note that the choice of which attraction to
visit on the i-th day is independent of which attractions we have visited on
days 1, . . . , i− 1. Each morning we select the attraction uniformly at random
among the n attractions and may land up visiting the same attraction we
have seen before. Let Xn represent the number of attractions that have been
visited by the end of the day n. (Clearly, X1 = 1, and X2 = 1 or 2 depend-
ing on whether we visit the same attraction on Day 2 as that on Day 1 or a
new one.) Answer the following questions:

1. Design a Markov chain where you may consider Xn to be the states for
n = 1, 2, Or, you may consider Yi to be the state that indicates that
i different attractions have been visited so far. Then we will only have a
finite number of sites Y0, Y1, . . . , Yn.

2. What are the transition probabilities, i.e., write an expression for
Pr(Xn = j|Xn−1 = i), where i, j ∈ {1, . . . , n}. You have think
something similar with respect to Yi’s.

3. Which states are recurrent? What are the periods of various states?

4. What is the expected number of days required to visit all the attractions?

5
Minimum Spanning Trees

We will focus on

1. Cut, light and heavy edges.

2. Kruskal’s MST algorithm

3. Prim’s MST algorithm

4. Borůvka’s algorithm

5. Randomized algorithm

6. MST verification algorithms

5.1 Minimum Spanning Trees

Let G = (V, E) be an undirected connected graph with a cost func-
tion w mapping edges to positive real numbers. A spanning tree is
an undirected tree connecting all vertices of G. The cost of a spanning
tree is equal to the sum of the costs of the edges in the tree. A mini-
mum spanning tree (MST) is a spanning tree whose cost is minimum
over all possible spanning trees of G. It is easy to see that a graph
may have many MSTs with the same cost (e.g., consider a cycle on 4

vertices where each edge has a cost of 1; deleting any edge results in
a MST, each with a cost of 3).

As in the CLRS book1, we will describe the two main algorithms 1 Thomas H. Cormen, Charles E. Leis-
erson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third
Edition. The MIT Press, 3rd edition, 2009

for building MSTs, Kruskal’s and Prim’s. Both of these algorithms are
greedy algorithms and are based on the following generic algorithm
(Algorithm 9.1). The algorithm maintains a subset of edges A, which
is a subset of some MST of G.

Intuitively this algorithm is straight-forward except for two press-
ing questions: What is a safe edge, and how do we find one? To
answer these questions, we first need a few definitions.

126 notes on algorithm design

Algorithm 5.1: Generic-MST
Input: Graph G, cost function w
Output: A minimum spanning tree of G

1 A← 0
2 while A 6= MST do
3 find a safe edge {u, v} for A
4 A← A ∪ {u, v}
5 end
6 return A

Cut A cut (S, V \ S) of G = (V, E) is a partition of
vertices of V.

Edge crossing a cut
An edge (u, v) ∈ E crosses the cut(S, V \ S) if one of
its end point is in the set S and the other one in the
set (V \ S).

Cut respecting A
A cut (S, V \ S) respects the set A if none of the
edges of A crosses the cut.

Light edge An edge which crosses the cut and which has the
minimum cost of all such edges.

Theorem 5.1.1 Let A be a subset of the edges of E which is included in
some MST, and let (S, V \ S) be a cut which respects A. Let (u, v) be a light
edge crossing the cut (S, V \ S), then (u, v) is safe for A.

Proof. Assume that T is a MST that includes A (similarly, you may
think of A as being a subset of the edges of T, or being “the makings
of” a MST). If T includes the edge (u, v) then (u, v) is safe for A. If
T does not include (u, v), then we will show that there is another
MST, T′, that includes A ∪ {(u, v)}, and this will prove that {(u, v)}
is safe for A. Since T is a spanning tree, there is a path, say PT(u, v),
from the vertex u to vertex v in T. By inserting the edge (u, v) in T
we create a cycle. Since u and v are on different sides of the cut, there
is at least one edge (x, y) ∈ PT(u, v) that crosses the cut(S, T \ S).
Moreover (x, y) 6∈ A, since the cut respects A. But the cost of the edge
(x, y) is at least the cost of the edge (u, v), since edge (u, v) is a light
edge crossing the cut. Construct a new tree T′ from T by deleting the
edge (x, y) in T and inserting the edge (u, v). Observe that the cost
of the tree T′ is at most the cost of the tree T since the cost of (x, y) is
at least the cost of (u, v). Moreover A ∪ {(u, v)} ⊂ T′ and (x, y) 6∈ A,
hence edge (u, v) is safe for A.

minimum spanning trees 127

The above theorem leads to the following corollary, where we fix a
particular cut (i.e. the cut(C, V \ C)).

C
u v

Tree Edges

Graph Edges

Light Edge

Figure 5.1: An example of Corollary
5.1.2. The edge (u, v) connects C to
some other component of GA and is a
light edge; it is therefore safe to add to
the MST.

Corollary 5.1.2 Let A ⊂ E be included in some MST. Consider the forest
consisting of GA = (V, A), i.e., the graph with the same vertex set as G but
restricted to the edges in A. Let C = (VC, EC) be a connected component of
GA. Let (u, v) be a light edge connecting C to another connected component
in GA, then (u, v) is safe for A (See Figure 5.1).

5.2 Kruskal’s Algorithm for MST

Proposed by Kruskal in 1956, this algorithm follows directly from
Corollary 5.1.2. Here are the main steps. To begin with the set A
consists of only isolated vertices, and no edges (so, |V| “connected”
components in all).

1. Sort the edges of E in non-decreasing order with respect to their
cost.

2. Examine the edges in order; if the edge joins two components then
add that edge (a safe edge) to A.

To implement Step 2, we do the following. Let ei be the edge
under consideration, implying that all edges with a lesser cost than
ei = (a, b) have already been considered. We need to check whether
the endpoints a and b are within the same component or whether
they join two different components. If the endpoints are within the
same component, then we discard the edge ei. Otherwise, since it is
the next lightest edge overall, it must be the lightest edge between
some pair of connected components, and so we know from Corollary
5.1.2 that it is safe to add to A. We will need to merge these two
components to form a bigger component.

To accomplish all of this, we will need some data structure which
supports the following operations:

• Make-Set(v) - create a new set containing only the vertex v.

• Find(v) - Find the set which presently contains the vertex v.

• Merge(Vx, Vy) - Merge the two sets Vx and Vy together such that
Find will work correctly for all vertices in merged set.

We can implement this data structure as follows. For each vertex
we keep track of which component it lies in using a label associated
with the vertex. Initially each vertex belongs to its own component,
which is done with Make-Set. During the algorithm the compo-
nents will be merged, and the labels of the vertices will be updated.

128 notes on algorithm design

Assume that we need to merge the two components Va and Vb cor-
responding to the end points a and b of the edge ei = (a, b). We
use Find(a) and Find(b) to get the sets Va and Vb respectively. We
then call Merge which will relabel all of the vertices in one of the
components to have the same labels as the vertices of the other. The
component which we relabel will be the one which is smaller in size.
Given such a data structure, we can implement Kruskal’s algorithm
as in Algorithm 5.2.

Algorithm 5.2: Kruskal-MST
Input: Graph G = (V, E), cost function w
Output: A minimum spanning tree of G

1 A← ∅
2 foreach v ∈ V do
3 MakeSet(v)
4 end
5 sort the edges of E in non-decreasing order w.r.t. w
6 foreach e = {a, b} ∈ E, where e is taken in sorted order do
7 Va ← Find(a)
8 Vb ← Find(b)
9 if Va 6= Vb then
10 A← A ∪ {e}
11 Merge(Va, Vb)

12 end
13 end
14 return A

Let us analyze the complexity of Kruskal’s algorithm. Sorting
the edges takes O(|E| log |E|) time. The test for an edge, whether
it joins two connected components or not, can be done in constant
time. (In all O(E) time for all edges.) What remains is to analyze the
complexity of merging the components which can be bounded by
the total complexity of relabeling the vertices. Consider a particular
vertex v, and let us estimate the maximum number of times this will
be relabeled. Notice that the vertex gets relabeled only if it is in a
smaller component and its component is merged with a larger one.
Hence after merging, the size of the component containing v becomes
at least double. Since the maximum size of a component is |V|, this
implies that v can be relabeled at most log2 |V| times. Therefore, the
total complexity of the Step 2 of the algorithm is O(|E|+ |V| log |V|)
time. These results are summarized in the following theorem.

Theorem 5.2.1 (Kruskal) A minimum (cost) spanning tree of an undi-
rected connected graph G = (V, E) can be computed in O(|V| log |V| +

minimum spanning trees 129

|E| log |E|) time.

5.3 Prim’s MST algorithm

Prim’s algorithm is very similar to Dijkstra’s single source shortest
path algorithm2, and, in fact, their complexity analysis will be the 2 E.W. Dijkstra. A note on two problems

in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959

same. Here the set A at any stage of the algorithm forms a tree,
rather than a forest of connected components as in Kruskal’s. Initially
the set A consists of just one vertex. In each stage, a light edge is
added to the tree connecting A to a vertex in V \ A.

The key to Prim’s algorithm is in selecting that next light edge
efficiently at each iteration. For each v ∈ V \ A, we keep track of
the least cost edge which connects v to A, and the cost of this edge
is used as the “key” value of v. These key values are then used to
build a priority queue Q. See Figure 5.2 for an example of these sort
of light edges.

Edges in G

Edges in A

Least cost edge connecting
a vertex in V \A to a vertex
in A

u

v

Figure 5.2: Example of Prim’s Algo-
rithm showing the set A (encircled) and
the least cost edges associated with
each vertex in V \ A.

In each step of the algorithm, the vertex v with the least priority is
extracted out of Q. Suppose that corresponds to the edge e = {u, v},
where u ∈ A, then observe that e is a safe edge since it is the light
edge for cut(A, V \ A). We update A := A ∪ {e}. Finally, after
extracting v out of Q, we need to update Q. The details are explained
in Algorithm 5.3.

The vertices that are in the set A at any stage of the algorithm are
the vertices in V \ Q, i.e., the ones that are not in Q. kev(v) is the
weight of the light edge {v, π(v)} connecting v to some vertex in
the MST A. Notice that the key value for any vertex starts at infinity,
when it is not adjacent to A via any edge, and then keeps decreasing.

Let us analyze the complexity of the algorithm. The main steps
are the priority queue operations, namely decrease-key and extract-min.
We perform |V| extract-min operations in all, one for each vertex. We
also perform O(|E|) decrease-key operations, one for each edge. The
following table shows the complexity of these operations depending
on the type of priority queue you choose. These complexities are per
operation, although the complexities of Fibonacci Heaps are amortized

130 notes on algorithm design

Algorithm 5.3: PRIM-MST
Input: Graph G = (V, E), cost function w, root vertex r
Output: A minimum spanning tree of G

1 foreach v ∈ V do
2 key(v)← ∞
3 π(v)← nil /* π keeps track of the parent of a vertex

in the tree. */

4 end
5 key(r)← 0
6 Q← V /* Priority queue consists of vertices with

their key values */

7 while Q 6= ∅ do
8 u← Extract-Min(Q)

9 foreach v adjacent to u do
10 if v ∈ Q and w(u, v) < key(v) then
11 π(v)← u
12 key(v)← w(u, v)
13 end
14 end
15 end

(kind of an average over the worst possible scenario! - more on that
later).

Binary Heaps Fibonacci Heaps
Extract-min O(log n) O(log n)
Decrease-key O(log n) O(1)

5.4 Randomized Algorithms for Minimum Spanning Trees

Here we discuss some results related to randomized algorithms
for computing minimum spanning trees. These results are based
on Section 10.3 of Raghavan and Motwani’s book on Randomized
Algorithms 3 and T. Chan’s simplified analysis from 4. Assume that 3 Rajeev Motwani and Prabhakar

Raghavan. Randomized algorithms.
Cambridge University Press, New York,
NY, USA, 1995

4 Timothy M. Chan. Backwards analysis
of the Karger-Klein-Tarjan algorithm for
minimum spanning. Inf. Process. Lett.,
67(6):303–304, 1998

all edge weights are distinct and hence there is a unique MST in
the given graph G = (V, E). The randomized algorithm uses a few
concepts which are discussed in the following subsections followed
by the actual algorithm itself in Section 5.4.3. The first concept is an
algorithm due to Boruvka from 1926

5 which helps us to reduce the
5 Otakar Borůvka. O jistém problému
minimálním. Práce mor. přírodověd. spol.
v Brně III, 3:37–58, 1926; and Otakar
Borůvka. Příspěvek k řešení otázky
ekonomické stavby elektrovodních sítí.
Elektrotechnickỳ obzor, 15:153–154, 1926

number of vertices in the graph. The second is about heavy and light
edges with respect to a spanning tree.

minimum spanning trees 131

5.4.1 Boruvka’s Algorithm

Observe that for any vertex v ∈ V, the edge, say {v, w}, with the
minimum weight incident to that vertex will be included in the MST,
as per Corollary 5.1.2. This leads to a simple way to compute the
MST as given in Algorithm 5.4.

Algorithm 5.4: Boruvka-MST
Input: Graph G, cost function w (all costs distinct)
Output: A minimum spanning tree T of G

1 T ← ∅
// Each iteration of this loop is called a Phase

2 while G contains more than a single vertex do
3 Mark the edges with the minimum weight incident to each

vertex. Add these edges to T
4 Identify the connected components of the marked edges
5 Replace each connected component by a vertex
6 Eliminate all self loops. Eliminate all multiple edges

between a pair of vertices, except the edge with the
minimum weight

7 end
8 return T

A few observations about this algorithm:

• Let G′ be the graph obtained from G after contracting the edges in
a single phase of the algorithm. Then the MST of G is the union of
the contracted edges from that phase and the edges in the MST of
G′.

• In each contraction phase, the number of vertices in the graph
is reduced by at least a half. Hence there will only be O(log |V|)
phases in all.

• Each phase can be implemented in O(|V|+ |E|) time and so we
obtain yet another MST finding algorithm. Total running time for
this algorithm is O(|E| log |V|).

5.4.2 Heavy Edges

We’ve already seen the definition of a light edge. Now we examine
edges which are not light.

Let F be any spanning tree of G (in particular, F may or may not
be a minimum spanning tree). Consider any two vertices, say u and
v, of G and there is a unique path P(u, v) between them in F. Let
wF(u, v) be the edge with the maximum weight along this path.

132 notes on algorithm design

We say an edge {u, v} is F-heavy if the weight of this edge is larger
than the weight of each of the edges on the unique path between
u and v in F. More formally, we define an edge {u, v} ∈ E to be
F-heavy if w(u, v) > wF(u, v), otherwise it is F-light. Observe that by
this definition, all edges of F are F-light (every edge of a path in F is
at most as heavy as the heaviest edge in that path of F).

Lemma 5.4.1 Let F be a spanning tree of G which is not necessarily
minimum. If an edge of G is F-heavy then it does not lie in the Minimum
Spanning Tree of G.

Proof. It is left for you to prove it formally. The proof proceeds by
contradiction. Assume that the edge e = {u, v} ∈ E is F-heavy,
that T is an MST of G, and that e ∈ T (so, we are talking about two
trees here, T, which is known to be an MST, and F, which may be
one as well). Consider the edges on the path P(u, v) in F. Add all
these edges to T and remove e from T, to obtain a graph G′ (that is,
G′ = T ∪ P(u, v) \ {e}, but since it may have some cycles, we cannot
call it a tree). G′ is still connected. Remove edges from P(u, v) one-by-
one from G′ until G′ is once again a tree. Observe that this new tree
is still a spanning tree, but it must have weight lower than that of T,
contradicting the minimality of T.

It is very important to note that because of the way F-light is
defined, an edge which is F-light may or may not be in the MST.
For example, if we construct F such that the heaviest edge of E is in
F, that edge will be counted as F-light, even though it may not be
present in any minimum spanning tree.

5.4.3 Randomized Algorithm

Algorithm 5.5 gives the main steps of the randomized algorithm
we have been discussing. The analysis is based on Timothy Chan’s
paper6. 6 Timothy M. Chan. Backwards analysis

of the Karger-Klein-Tarjan algorithm for
minimum spanning. Inf. Process. Lett.,
67(6):303–304, 1998

Theorem 5.4.2 Algorithm 5.5 correctly computes the MST of G in O(|V|+
|E|) time.

Proof. The correctness of the algorithm is straightforward. To es-
timate the complexity, the crux is in estimating the size of the set
E3, i.e., the size of the set of F2-light edges in E1. We will prove
in the Sampling Lemma (Lemma 5.4.4) that for a random subset
R ⊂ E, the expected number of edges that are light with respect to
MST(R) is at most (|E| · |V1|)/|R|. In our case, the expected value of
|R| = |E1|/2 ≤ |E|/2, and hence the expected number of F2-light
edges will be at most 2|V1| ≤ |V|/4. Hence the running time of this
algorithm is given by the recurrence

minimum spanning trees 133

Algorithm 5.5: Randomized-MST
Input: Connected Graph G = (V, E) with distinct edge weights
Output: A minimum spanning tree T

1 Execute 3 phases of Boruvka’s algorithm (reduces number of
vertices). Let the resulting graph be G1 = (V1, E1), where
|V1| ≤ |V|/8 and |E1| ≤ |E|. Let C be the set of contracted
edges. (Running time: O(|V|+ |E|))

2 Random Sampling: Choose each edge in E1 with probability
p = 1/2 to form the set E2 and obtain the sampled graph
G2 = (V2 = V1, E2).

3 Compute Recursively the Minimum Spanning Tree of G2, and
let it be F2. (T(|V|/8, |E|/2))

4 Verification: Compute the set of F2-light edges in E1, and let
this set be E3. (O(|V1|+ |E1|) time)

5 Final MST: Compute MST, F3, of the graph G3 = (V3 = V1, E3).
(T(|V|/8, |V|/4))

6 return MST of G as C ∪ F3.

T(|V|, |E|) = O(|V|+ |E|) + T(|V|/8, |E|/2) + T(|V|/8, |V|/4),

which magically solves to O(|V|+ |E|).

Before we describe the Sampling Lemma here are some tech-
nicalities. Consider that we are sampling the edges of the graph
G = (V, E), and the sampled edges form the subgraph R.

We use the notation R for both the set of edges as well as the sam-
pled graph. Since we are sampling the edges, it is possible that the
sampled graph R of the graph G is not connected, and hence there
will not be any minimum spanning tree. To ensure connectedness,
we will fix any spanning tree T0 of G, consisting of |V| − 1 edges and
we will consider the minimum spanning tree of R ∪ T0, denoted as
MST(R).

Lemma 5.4.3 (Observation about light edges) An edge e ∈ E is light
with respect to MST(R) if and only if e ∈ MST(R ∪ {e}).
Proof. If e = (u, v) is light then there is some edge e′ on the unique
path between u and v in MST(R) such that its weight, w(e′) =

wMST(R)(u, v), and hence e can be added to MST(R) and e′ can be
removed to obtain MST of R ∪ {e}. Therefore e ∈ MST(R ∪ {e}).

Now suppose e ∈ MST(R ∪ {e}). We need to show that e is light
with respect to MST(R). Since e is part of the MST, by definition it is
light with respect to that MST.

134 notes on algorithm design

Lemma 5.4.4 (Sampling Lemma) For a graph G = (V, E) and a random
subset R ⊂ E, of edges, the expected number of edges that are light with
respect to MST(R) is at most (|E| · |V|)/|R|.

Proof. Pick a random edge e ∈ E (this choice is independent of the
edges in R). We will prove that e is light with respect to MST(R)
with probability at most |V|/|R|. From Lemma 5.4.3 we see that
this is equivalent to finding the bound on the probability that
e ∈ MST(R ∪ {e}). Let R′ = R ∪ {e}. We will use a technique
called backward analysis. First we analyze the probability on a fixed
set R′, and then we will show that the expression obtained is not
dependent on the elements of R′, but just the cardinality, and hence
the probability holds unconditionally as well.

Instead of adding a random edge to R, we will think of deleting
a random edge from R′. This is an easier proposition since we know
the elements of R′, having just fixed it. MST(R′) has |V| − 1 edges,
and e is a random edge of R′, hence the probability that e is an edge
from MST(R′), given a fixed choice of R′, is (|V| − 1)/|R′| ≤ |V|/|R|.
This bound is independent upon the choice of the set R′, and holds
unconditionally as well.

5.5 MST Verification

This section is contributed by Gregory Bint. If I give you any tree F
derived from a graph G = (V, E), can you identify whether F is a
minimum spanning tree of G?

A trivial method for determining this would be to run a known-
correct algorithm such as Kruskal’s or Prim’s on G and compare the
output to F, however there are two main drawbacks to this approach:

1. It is too slow

2. The MST may not be unique, making a direct comparison difficult.

What we would like is to be able to calculate this in linear time
with respect to the graph. The following lemma has been shown to
be very useful in this respect, and it is used by virtually every MST
verification algorithm.

Lemma 5.5.1 Let F be a spanning tree of G, then F is a minimum span-
ning tree of G if and only if every edge in E \ F is F-heavy.

Proof. Let P(u, v) be the unique tree path between u and v in F, and
let wF(u, v) be the weight of the heaviest edge along that path. w(e)
or w(u, v) is the weight of the edge e having endpoints u and v.

minimum spanning trees 135

We first show that if F is a MST, then every edge in E \ F is F-heavy.
Let e be any edge in E \ F with endpoints u and v and assume that
e is F-light. Note that P(u, v) ∪ {e} is a cycle. Let e′ = {x, y} be the
edge corresponding to wF(u, v). Since e is F-light, w(e′) > w(e),
meaning we could replace e′ by e in F to obtain a lighter tree overall,
contradicting the minimality of F.

For the other half of the proof, we show that if every edge in E \ F
is F-heavy, then F is a MST of G. Again, we proceed by contradiction.
Suppose that F is not a MST of G, then we should be able to lower
the weight of the tree by replacing some edges in F with those from
E \ F. But, for every e ∈ E \ F with endpoints u and v, we have that
w(u, v) > wF(u, v), so exchanging e for any other edge in P(u, v) will
increase the weight of F.

Given the above lemma, a natural idea for an algorithm would be
to try to classify every edge in the graph, and then check if each non-
tree edge is in fact F-heavy. This turns out to be something which
is possible: given a graph G = (V, E) and a tree F, we can partition
the edges of G in two sets, the set of heavy edges and the set of light
edges, with respect to F in O(|V|+ |E|) time.

We will see that many of the algorithms for doing so fairly com-
plex, although there has been recent progress in simplifying it some-
what.

5.5.1 Overview of verification algorithms

Here we look at a brief history of the literature on MST Verification.
As hinted at above, every single one of the following methods uses
Lemma 5.5.1 as its underpinning. This problem can also be restated
as the following:

Problem 5.5.2 (The Tree Path Maxima Problem) Let F be a spanning
tree of G, then we want to identify the cost of the heaviest edge along each
tree path P(u, v).

Given an answer to Problem 5.5.2, we can perform a simple linear
scan through the the edges of G \ F. For each edge e ∈ G \ F, we
compare the cost of e with the tree path of its endpoints. If every
edge e is heavier than its corresponding tree path maxima, then F is a
MST of G. We look at this sort of translation of the problem in more
detail in Section 5.5.6.

Here is a timeline of some results:

• In 1979, Tarjan introduced a method which uses path compres-
sion7 of trees to achieve a near-linear time of O(mα(m, n)) where α 7 Robert Endre Tarjan. Applications of

path compression on balanced trees. J.
ACM, 26(4):690–715, October 1979

136 notes on algorithm design

is the Inverse Ackermann function.

• In 1984, Komlós’s provided an algorithm8 which showed that 8 J. Komlos. Linear verification for
spanning trees. In Foundations of
Computer Science, 1984. 25th Annual
Symposium on, pages 201–206, 1984;
and J. Komlós. Linear verification for
spanning trees. Combinatorica, 5(1):57–65,
1985

only a linear number of comparisons of the edge costs would be
sufficient to solve the problem, however the algorithm itself has
significantly more than linear overhead.

• In 1992, Dixon et al.9 combine methods from Tarjan’s 1979 algo-
9 B. Dixon, M. Rauch, and R. Tarjan.
Verification and sensitivity analysis
of minimum spanning trees in linear
time. SIAM Journal on Computing,
21(6):1184–1192, 1992

rithm and Komlós’s 1984 algorithm to produce the first linear
time MST verification algorithm. The problem is divided into one
large problem and several small problems, with the larger being
attacked with path compression, and the smaller with a lookup
scheme which is bounded in size by Komlós’s algorithm.

• In 1994, Karger et al. present an algorithm for computing the
MST of a graph in expected linear time.10 While not a verification 10 David R. Karger, Philip N. Klein,

and Robert E. Tarjan. A randomized
linear-time algorithm to find minimum
spanning trees. J. ACM, 42(2):321–328,
March 1995; and Philip N. Klein and
Robert E. Tarjan. A randomized linear-
time algorithm for finding minimum
spanning trees. In Proceedings of the
twenty-sixth annual ACM symposium on
Theory of computing, STOC ’94, pages
9–15, New York, NY, USA, 1994. ACM

algorithm in itself, its output could be useful to help verify another
tree, or to take the place of the other tree altogether (e.g., why
bother verifying a potential MST in linear time when you can just
create one!)

• In 1995, King produced another linear time MST verification
method11 which is a great deal simpler than that of Dixon et al.. In

11 Valerie King. A simpler minimum
spanning tree verification algorithm.
In SelimG. Akl, Frank Dehne, Jörg-
Rüdiger Sack, and Nicola Santoro,
editors, Algorithms and Data Structures,
volume 955 of Lecture Notes in Computer
Science, pages 440–448. Springer Berlin
Heidelberg, 1995; and V. King. A simpler
minimum spanning tree verification
algorithm. Algorithmica, 18(2):263–270,
1997

this method, Boruvka’s algorithm is used to reduce a general tree
down to one which can be handled entirely by the full branching
tree base case of Komlós’s algorithm, which is simpler than his
algorithm for general trees.

• In 2010, Hagerup simplifies King’s method12 even further and

12 Torben Hagerup. An even simpler
linear-time algorithm for verifying
minimum spanning trees. In Christophe
Paul and Michel Habib, editors, Graph-
Theoretic Concepts in Computer Science,
volume 5911 of Lecture Notes in Com-
puter Science, pages 178–189. Springer
Berlin Heidelberg, 2010

provides an implementation in the D programming language. Like
King’s method, Hagerup continues to use Komlós’s full branching
tree case, but eschews complex edge encoding schemes in favour of
a richer logical data type.

We will walk through parts of Komlós’s algorithm, Dixon et al.’s
algorithm, King’s algorithm, and finally Hagerup’s algorithm as we
piece together the tools needed for a reasonably simple approach to
solving this problem.

5.5.2 Komlós’s Algorithm

In 1984, Komlós13 gives an algorithm of sorts which can solve Prob- 13 J. Komlos. Linear verification for
spanning trees. In Foundations of
Computer Science, 1984. 25th Annual
Symposium on, pages 201–206, 1984;
and J. Komlós. Linear verification for
spanning trees. Combinatorica, 5(1):57–65,
1985

lem 5.5.2 in O(n + m) comparisons. Komlós does not provide an
implementable algorithm, however, and there are other factors of
overhead in the method which would drive up the actual cost of a
straight implementation. Nevertheless, this method of breaking down
the problem is built upon by later papers, notably Dixon et al. in 1992,
and King, which we cover in Section 5.5.4.

minimum spanning trees 137

Komlós begins by considering two special cases of spanning trees.
In each case, we consider F to be a directed tree with edges oriented
away from the root. Additionally, we shift the edge costs down to
their lower endpoint vertices, as this simplifies the conceptual model.

The first case occurs when the tree is a path. For the path, we
construct a symmetric order heap, H, which a tree with both the binary
search property on the ordering determined by the path, and the
(maximum) heap property determined by the vertex costs. The root
of H represents the heaviest vertex, and the heaviest vertex of any
path from u to v is found at LCA(u, v). Determining the LCA of two
vertices in a tree can be accomplished in several ways, see Chapter 6.

The second case is somewhat more interesting and is concerned
with processing full branching trees. Not to be confused with full
binary trees, a full branching tree is defined as one where every leaf is
at the same level, and every internal vertex has at least 2 children. Let
F be our full branching tree with root r and all edges directed away
from r.

We need to calculate the maximum cost edge of every path
through F. Given a vertex y, let A(y) be the set of all paths through
F which contain y. That is A(y) = {P(x, z)|x = y = z} where u = v
denotes that u is a predecessor of v (or, u may equal v). Since F is
directed away from the root, this means that u is at least as close
to the root than v. Note that if F was not directed, then it might be
possible for x = y = z to hold even though y 6∈ P(x, y). Given A(y),
let A∗(y) be the set of all paths through y, but restricted to just the
interval [r, y]; that is, just the subpath from the root down to y.

We process F one level at a time, starting from the root, finding the
maximum weights of all paths in the sets A∗(y). To do this, assume
that we have calculated the maximum costs in all such paths up to
level i, and that we are now trying to process some vertex y on level
i + 1. Let ȳ be the parent of y. Since ȳ resides on level i, we know the
maximum cost of all paths in A∗(ȳ).

The key observation to make here is the following.

Property 5.5.3 Consider two paths P(x, ȳ) and P(x′, ȳ). If x is a prede-
cessor of x′ then the maximum cost in P(x, ȳ) is at least as large as the
maximum cost in P(x′, ȳ) (since, under these conditions, P(x′, ȳ) is a
subpath of P(x, ȳ)).

In A∗(ȳ), the shortest path is P(ȳ, ȳ) while the longest is P(r, ȳ).
By the above property, the maximum costs form a non-decreasing
sequence with respect to the length of the path. That is, we can order
the maximum costs by considering the path length. This observation
about the ordering helps us while building A∗(y), as we can use a
binary search insertion of f (y) to compare f (y) against all path cost

138 notes on algorithm design

maximums in A∗(ȳ) simultaneously.
By now you should be asking “How are all these sets like A(y)

and A∗(ȳ) created, copied, and updated?” As far as Komlós’s paper
is concerned, the answer is “slowly”. Essentially what Komlós shows
us is that a linear number of comparisons are sufficient to determine
maximum path costs, however finding those comparisons is left open.

The remainder of Komlós’s paper details how these two primitive
cases can be applied to any general tree, however this method is
fairly complex. No implementable algorithm is given in this paper.

5.5.3 Dixon et al.’s Technique

This technique has the distinction of being the first to achieve a linear
running time, requiring O(m) time on a graph with n vertices and
m edges. The underlying process is fairly complex, however, and
involves first preprocessing the graph into a suitable form.

The preprocessing itself is interesting as it shows a method of
massaging a graph into a more attractive form for the problem at
hand without affecting anything about the spanning tree that we
wish to verify. The preprocessing involves the following steps.

For a given graph G = (V, E) and spanning tree F, not necessarily
minimum, we choose an arbitrary vertex r to be the root of F. Now
consider any non-tree edge {v, w} with cost c(v, w) and lowest com-
mon ancestor u. If u is not one of v or w, then this implies that v and
w are not related; that is, the v is neither ancestor nor descendant of
w. In such a case, we replace the edge {v, w} by {v, u} and {u, w},
each with cost c(v, w). F is unchanged by this process and, more
importantly, the maximum weight along P(v, w) is also unchanged,
which preserves the current minimality of F.

Taken over the entire graph, this will at most double the number
of non-tree edges. When completed, every non-tree edge in F is a
backedge.

In the second stage of preprocessing, we will mark several ver-
tices. We can imagine these marks as subdividing the tree into edge-
disjoint subtrees where a marked vertex represents a “root”, and any
marked descendants are ignored.

The choice of which vertices to mark is based on subtree size.
Using a post-order traversal, for each vertex v we calculate h =

1 + ∑{s(w)|w is a child of v}. Let g be a small integer, then if h ≤ g
we assign s(v) := h, otherwise s(v) := 1 and v becomes marked. We
will look more at the specific choice of g later. Note the following
important properties resulting from this process:

1. The number of marked vertices, and hence the number of subtrees,
is at most (n− 1)/g + 1.

minimum spanning trees 139

marked vertex
u

v

marked subtree

Figure 5.3: An example tree with
marked vertices. The marked subtree
defined by u is enclosed in red.

2. Considering any subtree, if its root (marked vertex) is deleted,
along with incident edges, we get a collection of disjoint trees,
each with size at most g. We call each of these a microtree.

Following that process, r is also marked, although it will probably
not have Property 2.

A final phase of edge replacements will ensure that all backedges
either span two vertices belonging to the same microtree, or span
between microtrees and marked vertices only (i.e., the edge {u, v} in
Figure 5.3 will be replaced).

To accomplish this, we first build the tree F′ whose vertex set
consists of all of the marked vertices of F, and where, for two vertices
s and t in F′, s is the parent of t (i.e, there is a tree edge between
them) if s is the first marked vertex that we encounter when walking
from t to r. We call T′ the macrotree.

We can now eliminate the “long” edges, like {u, v}, by doing the
following. Let p(v) be the nearest marked vertex to v which is a
proper ancestor of v. Note that if v is marked then p(v) 6= v. We also
assume that p(r) is undefined (but it won’t be needed anyway). We
can calculate p(v) for the entire tree using a depth-first search. For
every non-tree edge {u, v}, assume w.l.o.g. that u is an ancestor of v
and find p(u) and p(v). If p(u) = p(v), then u and v are part of the
same microtree (recall that the root of a microtree is not marked).

Otherwise, if p(u) 6= p(v), then we know that there is at least one
marked vertex between them. Let r1 = u if u is marked, or r1 = p(u)
if u is not marked. Similarly, let r3 = v if v is marked, or r3 = p(v)
if v is not marked. Let r2 be the child of r1 in F′ (note: F′, not F). We
then replace {u, v} by {u, r2}, {r2, r3}, and {r3, v}, skipping any edge
that creates either a self-loop or which duplicates a tree edge. For
edges which we did not skip, assign the cost c(u, v). As in the first
phase of edge replacements, assigning this cost preserves the current
minimality of F.

With this preprocessing finished, we have now divided the prob-

140 notes on algorithm design

lem into one large tree rooted at r with several microtrees around the
periphery. The authors complete the process by using Tarjan’s Path
Compression on the large tree.

The microtrees are processed in a very different way. Essentially,
the authors precalculate all possible minimum spanning trees on
graphs containing at most g vertices. Leveraging Komlós’s result,
they show that for any such input, the corresponding decision tree
for comparing edges and determining minimality is not too big. The
choice of g is such that the total size of these precalculations is only
O(n), which places g in the neighbourhood of O(log log n) 14. 14 V. King. A simpler minimum spanning

tree verification algorithm. Algorithmica,
18(2):263–270, 1997

5.5.4 King’s Method

Presented by King15 in 1995, this method is not the first MST verifi- 15 Valerie King. A simpler minimum
spanning tree verification algorithm.
In SelimG. Akl, Frank Dehne, Jörg-
Rüdiger Sack, and Nicola Santoro,
editors, Algorithms and Data Structures,
volume 955 of Lecture Notes in Computer
Science, pages 440–448. Springer Berlin
Heidelberg, 1995; and V. King. A simpler
minimum spanning tree verification
algorithm. Algorithmica, 18(2):263–270,
1997

cation algorithm to achieve linear time (that falls to Dixon et al.16),

16 B. Dixon, M. Rauch, and R. Tarjan.
Verification and sensitivity analysis
of minimum spanning trees in linear
time. SIAM Journal on Computing,
21(6):1184–1192, 1992

however it is quite a bit simpler. King’s method uses Boruvka’s al-
gorithm in a clever way to change any input tree into a full binary
tree, which can then be entirely processed by the appropriate case
presented by Komlós. This method requires linear time and space in
the unit-cost RAM model with Θ(log n) word size.

Boruvka Tree Property

The first step is to take our input tree F and convert it to a full binary
tree. This is accomplished by running Boruvka’s algorithm on the
tree F (we usually would run Boruvka’s on an entire graph, but not
in this case). As Boruvka’s runs on F, we can build a new tree B
which represents the execution of the algorithm on F, rather than a
modification of F itself.

Algorithm 5.6 details the construction of B. In the first step, a leaf
is added to B for each vertex of F, so we already know that |B| ≥ |F|.
In fact, B will have at most twice as many vertices as F when we are
finished. The algorithm proceeds by colouring the vertices and edges
to represent subtrees within F, such that any vertices connected along
a coloured (blue) path is considered part of the same subtree.

Refer to Figure 5.4 for an example of the algorithm’s execution.
Note the following important properties which ensure that B is a full
branching tree.

1. In each step of Loop 1, an edge joins two blue trees into one.

2. In each phase of the while loop, every blue tree is combined by
some edge with another blue tree. Thus, from every level of B,
every vertex has a parent in the next level.

For every v in F there is a vertex f (v) in B, and by construction
we also have that for every path F(x, y) there is a path B(f (x), f (y)).

minimum spanning trees 141

Algorithm 5.6: FullBranchingTree
Input: A spanning tree F = (V, E) with distinct edge weights
Output: A full branching tree B satisfying Lemma 5.5.4

1 Initialize B as an empty tree
2 foreach vertex v of V do
3 Colour v blue, considering it as a singleton tree
4 Add the leaf f (v) to B
5 end

6 while there is more than one blue tree do
// Loop “1”, joins blue trees together

7 foreach blue tree a do
8 Select a minimum cost edge e incident to a and colour it

blue
9 end

// Loop “2”, updates B
10 foreach new blue tree t do
11 Add f (t) to B
12 Let A be the set of trees joined into t in Loop 1

13 Add an edge { f (t), f (a)} for each a ∈ A
14 Set the cost of { f (t), f (a)} to that of edge selected by a

in Loop 1 (i.e., e)
15 end
16 end
17 return B

142 notes on algorithm design

a

b

c
d

e

f

g
h

i

f(a) f(b) f(c) f(d) f(e) f(f) f(g) f(h) f(i)

a

b

d

e

c
f

g
h

i

f(a) f(b) f(c) f(d) f(e) f(f) f(g) f(h) f(i)

t2

t1

t3

f(t1) f(t2) f(t3)

a

b

d

e

c
f

g
h

i f(a) f(b) f(c) f(d) f(e) f(f) f(g) f(h) f(i)

f(t1) f(t2) f(t3)

f(t4)

(1)

(2)

(3)

Figure 5.4: An example of the Full
Binary Tree construction given by
Algorithm 5.6. F is shown on the left
and B on the right. Edge weights are
not shown, so imagine that each tree
chooses its minimum weight edge at
each step.

However, to show that there is any meaningful correspondence
between these paths beyond their existence, we need the following
lemma, presented as Theorem 1 in King’s paper.

Lemma 5.5.4 Let F be any spanning tree and let B be the tree constructed
by Algorithm 5.6. For any pair of vertices x, y ∈ F, the cost of the heaviest
edge in F(x, y) equals the cost of the heaviest edge in B(f (x), f (y)).

Proof. Let the cost of an edge e be denoted by w(e). For every edge
e ∈ B(f (x), f (y)), we will show that there is an edge e′ ∈ F(x, y) such
that w(e′) ≥ w(e).

Suppose that e = {a, b} such that a is the endpoint of e which is
farthest from the root. As a is in B, a = f (t) for some blue tree t, and
t must contain either x or y, but not both. Similarly, b = f (t′) which
is new blue tree consisting of f (t) and others from the previous
phase of the algorithm. Since e ∈ B, e was selected by t.

Let e′ be the edge in F(x, y) with exactly one endpoint in t. Since e′

is adjacent to t, t would have considered e′. Since t ultimately chose e,
it must be that w(e′) ≥ w(e) since t chooses the edge with minimum
cost.

To finish the proof we also need to show the following: The cost
of the heaviest edge in F(x, y) is the cost of the heaviest edge in
B(f (x), f (y)). Let e be the heaviest edge in F(x, y) (for simplicity,
assume that there is a unique such edge). If e is ever selected by a
blue tree which contains either x or y, then B(f (x), f (y)) contains an
edge with the same weight.

Otherwise, assume that e is selected by some other blue tree t′ not

minimum spanning trees 143

containing x or y. We know that e is on the path from x to y in F, so
t′ contained at least one intermediate vertex on that path. But since
F is a tree, if it contains an intermediate vertex of F(x, y), it must be
incident to at least two edges of F(x, y). By our assumption, e is the
heaviest edge on this path, so t′ would have selected the other edge,
giving a contradiction.

The intuition with the last part of the above proof is that, since e is
the heaviest edge along F(x, y), any blue tree which includes part of
that path, but which does not yet include x or y always has another
edge to select which brings it “closer” to x or y.

King’s algorithm now continues with B rather than F, which main-
tains the path maximum cost property for each path in F, implying
that if Lemma 5.5.1 holds for B it will also hold for F.

The remainder of King’s paper shows a bit-wise labeling scheme
from for the vertices and edges of B which exploits Property 5.5.3 of
the full binary tree case presented by Komlós. We will now jump to
Hagerup’s method to conclude our verification method. The paper
simplifies the labeling scheme. Hagerup’s algorithm simplifies the
King’s method from this point.

5.5.5 Hagerup’s Method

Hagerup presents an algorithm for solving the Tree Path Maxima
problem (TPM) rather than MST Verification, per se, but as we have
mentioned, a solution to TPM implies a solution to MST Verification.
A sketch of such a translation is given in the next section.

The input to Hagerup’s method assumes that we are given a tree
on n vertices and a list of pairs (u1, v1), . . . , (um, vm) such that in each
pair ui is a proper ancestor of vi. At most, this list would describe
the endpoints of every root to leaf path in B, and every subpath of
such a root to leaf path. Any subset is also permissible. In practice,
we choose a subset equivalent to the non-tree edges of G, the graph
containing the spanning tree F we are trying to verify.

The basic algorithm involves collecting several types of informa-
tion about each vertex. For every vertex u in B, we store the depth
d(u), and, if u is not the root r, we let w(u) represent the cost of the
edge from u to its parent. For each u we also build the following set:

Du = {d(ui)|ui is a proper ancestor of u and vi is a descendant of u}

Simply put, Du stores the set of depths corresponding to proper
ancestors of u such that u is in the subpath represented by some pair
(ui, vi) from the input.

We would also like to create the set Mu for each u, which stores
a subset of the ancestors of u indicated by Du. The choice of which

144 notes on algorithm design

ones are stored again exploits Property 5.5.3.
Consider any two successive ancestors d and d′ of u which are

indicated by Du such that d is closer to the root, and d′ is closer to u.
Then d ∈ Mu if the path maximum cost of the path d → u is greater
than that of d′ → u. Put another way, we store only those ancestors of
u where there is an actual increase in path maximum cost between it
and the previous (closer) ancestor.

This can still work out to be a lot of entries, however, and a lot
of copying between vertices, which breaks linear time. Fortunately,
Hagerup was able to find an alternate, yet equivalent set repre-
sentation which does satisfy our needs, and our desired running
time, using the set infix operator. The details of this operator and its
equivalence to Mu take a few pages to discuss and can be found in
Hagerup’s paper.

5.5.6 Putting it all together

One way of applying all of the tools we have seen so far to build a
complete MST Verification algorithm is as follows.

Taking a graph G = (V, E) with spanning tree F, let U = E \ F be
the set of non-tree edges. We use King’s method of using Boruvka’s
method to convert F to the full branching tree B. Translate U onto
B so that ∀e = {x, y} ∈ U we create e′ = { f (x), f (y)} and call the
resulting graph G′. We next apply Dixon et al.’s first preprocessing
step to G′ to replace all cross edges with back edges. Let U′ be the set
of non-tree edges in G′ after all of this.

The set U′ corresponds to the pairs (ui, vi) that we need to in-
put into Hagerup’s algorithm. After that algorithm has run, MST
Verification is completed by examining every non-tree edge in G,
translating it to the equivalent one or two edges in U′, querying B,
and determining whether the non-tree edge is costlier than the tree
path maximum.

The extra steps required to find U, translate it to B, and then find
U′ all take time linear in the number of edges.

5.6 Bibliographic Notes

Kruskal’s algorithm, presented in Section 5.2 makes use of a data
structure known as Union-Find or Disjoint-Set. A near-linear time
implementation was first described by Tarjan17. 17 Robert Endre Tarjan. Efficiency of a

good but not linear set union algorithm.
J. ACM, 22(2):215–225, April 1975

Boruvka’s algorithm is quite old18, and not originally published

18 Otakar Borůvka. O jistém problému
minimálním. Práce mor. přírodověd. spol.
v Brně III, 3:37–58, 1926; and Otakar
Borůvka. Příspěvek k řešení otázky
ekonomické stavby elektrovodních sítí.
Elektrotechnickỳ obzor, 15:153–154, 1926

in English. Nešetřil et al. published a translation from the original
Czech in 2001 along with some comments.19

19 Jaroslav Nešetřil, Eva Milková, and
Helena Nešetřilová. Otakar borůvka
on minimum spanning tree problem
translation of both the 1926 papers,
comments, history. Discrete Mathematics,
233(1–3):3 – 36, 2001. <ce:title>Czech
and Slovak 2</ce:title>

The way that King uses Boruvka’s algorithm is first described by

minimum spanning trees 145

Tarjan in 1983
20. 20 Robert Tarjan. Data Structures and

Network Algorithms, volume 44, chapter
6. Minimum Spanning Trees, pages
71–83. SIAM, 19835.7 Exercises

5.1 Let S=(V,T) be a minimum cost spanning tree, where |V| = n + 1. Let
c1 ≤ c2 ≤ ... ≤ cn be the costs of the edges in T. Let S’ be an arbitrary
spanning tree with edge costs d1 ≤ d2 ≤ ≤ dn. Show that ci ≤ di, for
1 ≤ i ≤ n.

5.2 Assume all edges in a graph G have distinct cost. Show that the edge
with the maximum cost in any cycle in G cannot be in the Minimum
Spanning Tree of G. Can you use this to design an algorithm for computing
MST of G by deletion of edges, and what will be its complexity?

5.3 Design an efficient algorithm to find a spanning tree of a connected,
(positive) weighted, undirected graph G = (V, E), such that the weight of
the maximum-weight edge in the spanning tree is minimized (Justify your
answer).

5.4 Prove that if all edge weights are distinct then the minimum spanning
tree of a simple undirected graph is unique.

5.5 Provide a formal proof of Lemma 5.4.1.

5.6 Suppose all edge weights are positive integers in the range 1..|V| in a
connected graph G = (V, E). Devise an algorithm for computing Minimum
Spanning Tree of G whose running time is better than that of Kruskal’s or
Prim’s algorithm.

5.7 Consider a connected graph G = (V, E) where each edge has a non-zero
weight. Furthermore assume that all edge weights are distinct. Show that for
each vertex v ∈ V, the edge incident to v with minimum weight belongs to a
Minimum Spanning Tree.

Can you use this to devise an algorithm for MST - the above step identi-
fies at least |V|/2 edges in MST - you can collapse these edges (by identify-
ing the vertices and then recursively apply the same technique - the graph in
the next step has at most half of the vertices that you started with - and so
on!).

5.8 Which of the following algorithms result in a minimum spanning tree?
Justify your answer. Assume that the graph G = (V, E) is connected.

1. Sort the edges with respect to decreasing weight.
Set T := E.
For each edge e taken in the order of decreasing weight do, if T − {e} is
connected, then discard e from T.
Set MST(G) = T.

146 notes on algorithm design

2. Set T := ∅.
For each edge e, taken in arbitrary order do, if T ∪ {e} has no cycles then
T := T ∪ {e}.
Set MST(G) = T.

3. Set T := ∅.
For each edge e, taken in arbitrary order do
begin
T := T ∪ {e}.
If T has a cycle c then let e′ be a maximum weight edge on c.
Set T := T − {e′}.
end
Set MST(G) = T.

5.9 A spanning tree T of a undirected (positively) weighted graph G is
called a minimum bottleneck spanning tree (MBST) if the edge with the
maximum cost is minimum among all possible spanning trees. Show that a
MST is always a MBST. What about the converse?

5.10 Design a linear time algorithm to compute MBST. (Note that an edge
with medium weight can be found in linear time. Consider the set of edges
whose weight is smaller than the weight of the ‘median edge’. What happens
if this graph is connected? disconnected?

5.11 Consider an undirected (positively) weighted graph G = (V, E) with
a MST T and a shortest path π(s, t) between two vertices s, t ∈ V. Will T
still be an MST and π(s, t) be a shortest path if

a) Weight of each edge is multiplied by a fixed constant c > 0.
b) Weight of each edge is incremented by a fixed constant c > 0.

5.12 Let G = (V, E) be a weighted simple connected graph, and assume
that all edge weights are distinct. Define the weight of a spanning tree to be
the sum total of the weights of edges in that tree. By definition, a minimum
spanning tree T of G has the smallest sum total of the weight among all
possible spanning trees of G. Suppose we are not interested in minimizing
the sum total of the weights, but just the weight of the heaviest edge in a
spanning tree. Call such a tree a light spanning tree (LST). First show
that any MST of G is also a LST. Next show that a LST may not always
be a MST. To compute LST, we can use an algorithm to compute MST and
report that MST as a LST. You are asked to think of an alternate algorithm,
running in O(|V|+ |E|) time, to find a LST. (Hint: Let em be the edge with
the median weight among edges in G = (V, E). Consider the subgraph G′

formed by all edges in E, whose weight is at most the weight of em. Can you
deduce something about LST from the connectivity of G′.)

5.13 Suppose you are given n-points in the plane. We can define a complete
graph G on these points, where the weight of an edge e = (u, v), is Eu-
clidean distance between u and v. We need to partition these points into k

minimum spanning trees 147

non-empty clusters, for some n > k > 0. The property that this clustering
should satisfy is that the minimum distance between any two clusters is
maximized. (The distance between two clusters A and B is defined to be
the minimum among the distances between pair of points, where one point
is from cluster A and the other from cluster B.) Show that the connected
components obtained after running Kruskal’s algorithm till it finds all but
the last k − 1 (most expensive) edges of MST of G produces an optimal
clustering.

6
Lowest Common Ancestor

We will focus on

1. Lowest common ancestors in a binary trees

2. Range minima queries

3. Reduction of LCA queries to RMQ queries

4. Reduction of RMQ queries to LCA queries

Given a rooted binary tree T on n nodes, we are asked to preprocess
it in O(n) time so that the following type of queries can be answered
in O(1) time. Given any two nodes u and v of T, report their Lowest
Common Ancestor LCA(a, b), i.e., among all the common ancestors
of nodes a and b, find the one which is furthest from the root of T.
This subproblem arises in many graph applications. Orginal algo-
rithm is due to Harel and Tarjan [1984]. Many years later, Schieber
and Vishkin [1993] proposed a new algorithm for the same problem
while studying parallel algorithms. Both of these algorithms are fairly
complex and are considered to be far from being implementable.
Recently, Bender and Farach-Colton [2000] proposed a fairly simple
algorithm for the LCA problem, and thats what we present in this
chapter.

It is well known that the following Range Minima Problem (RMQ)
is related to the LCA problem. Given an array A[1...n] consisting of n
numbers, preprocess it so that given any two indices i and j, where
1 ≤ i ≤ j ≤ n, report the minimum element (or its index in A) in
the subarray A[i...j]. Next we will show the reduction of the LCA
problem to RMQ problem, and then provide a solution for the RMQ
problem.

150 notes on algorithm design

6.1 LCA→ RMQ

Let T be the given binary rooted tree. Consider the depth first search
traversal of T. Observe that the shallowest node encountered in the
depth first traversal of T between u and v is the node corresponding
to LCA(u, v). (Recall that the main property of dfs traversal is that
once it enters a subtree, then it completely visits all the nodes in the
subtree - this sort of corresponds to a nice bracketing sequence.) Our
aim is to find this node using the RMQs.

Corresponding to the dfs traversal of T, let E be the Euler tour.
Recall that E stores the nodes of T in the same order as they are vis-
ited during the dfs traversal. The tour E consists of 2n − 1 entries.
Let the level of a node in T be its distance from the root. Corre-
sponding to E, define a level array L[1...2n − 1] which stores the
level of the node E[i] in L[i]. Furthermore, observe that a node may
appear several times in Euler tour. For each node x ∈ T, we main-
tain an index R(x) that stores the index of the first appearance of
x in E. Given our notation, the nodes between E[R(u), ..., R(v)] are
nodes in Euler tour between the first visits of u and v. What is the
shallowest node among the nodes in E[R(u), ..., R(v)]? For this we
will look at the corresponding entries in the level array L. More
precisely, we need to report what is the minimum element in the sub-
array L[R(u)...R(v)]; this returns us the index of the shallowest node
(one with the smallest level) and denote this by RMQL[R(u)...R(v)].
Hence, LCA(u, v) = E[RMQL[R(u)...R(v)]].

Lemma 6.1.1 LCA problem on a rooted binary tree T of n nodes can be
converted to the range minima query problem on an array L of size 2n− 1
elements. The reduction takes O(n) time. Moreover, LCA queries can be
answered within O(1) time in addition to the time required to answer the
range minima queries on L.

Proof. Notice that the depth first traversal and the construction of
Euler tour of T can be done in O(n) time. Within the same time
bounds we can maintain the level array as well as keep track of the
first appearance of each node in Euler tour. Hence the conversion
can be done in linear time. Given the query, LCA(u, v), we need to
find the representatives R(u) and R(v) in E, then need to answer the
query RMQL[R(u)...R(v)] followed by one more look up in the array
E to report the node corresponding to LCA(u, v). This computation
only requires a few pointer manipulation and hence requires O(1)
time in addition to answering the range minima query.

lowest common ancestor 151

6.2 Range Minima Queries

Let A be the array of length n consisting of numbers. Our task is to
preprocess A so that the range minima queries RMQ(i, j), 1 ≤ i ≤ j ≤
n, can be answered in O(1) time.

6.2.1 A naive O(n2) algorithm

A simple way to achieve a constant query time is to precompute and
store minima for each possible query. In all there are O(n2) possible
queries of type RMQ(i, j), where 1 ≤ i ≤ j ≤ n, and for each of
them we can compute and store the minima in the range A[i, ..., j]. It
is easy to see that this computation can be done in O(n2) time and
then given a query it can be answered in O(1) time.

6.2.2 An O(n log n) algorithm

In place of precomputing minima for each possible query, now we
precompute minima’s for only O(n log n) selected types of queries.
For every i between 1 and n and for every j between 1 and log n,
we find minimum element in the subarray A[i, ..., i + 2j] (we are
sloppy with boundary conditions here to keep it simple) and store
it in a table in location M[i, j]. Next we show that using dynamic
programming the table M can be computed in O(n log n) time. Min-
ima in a subarray of size 2j is computed by looking at the minima
of two constituent blocks of size 2j−1. Either M[i, j] = M[i, j− 1] or
M[i, j] = M[i + 2j−1 − 1, j− 1].

How do we answer a range minimum query in O(1) time? Let
the query be RMQ(i.j), where 1 ≤ i ≤ j ≤ n. First compute k =

blog2 j − ic. Now observe that 2k is the largest interval, that is a
power of 2, that fits in the range from i to j. Compute RMQ(i, j) be
finding out the minimum of two entries in the table, namely M[i, k]
and M[j − 2k + 1, k]. Notice that these two table values have been
precomputed and hence query can be answered in O(1) time.

Lemma 6.2.1 An array A consiting of n numbers can be preprocessed in
O(n log n) time so that the range minima queries can be answered in O(1)
time.

6.2.3 An O(n) algorithm with ±1 property

Consider the following special case of the array A where each ele-
ment differs from its previous element either by a +1 or a −1 (this is
especially true for the LCA problem as levels of consecutive nodes
in Euler tour differs by 1). We will show that in this case A can be
preprocessed in O(n) time and RMQs can be answered in O(1) time.

152 notes on algorithm design

The strategy is pretty simple. First we partition array A into
subarrays, where each subarray is of size log n

2 (we are assuming that
n is a nice power of 2, otherwise we have to use floors and ceilings
and that will not add anything more in terms of understanding.)
Within each subarray we find the minimum value and then store all
these minimas in an array A′. Notice that the size of the array A′ is

2n
log n and hence it can be preprocessed in O(n) time by using Lemma
6.2.1.

Consider a range minima query RMQ(i, j) in array A, where
i ≤ j. It is answered as follows: Indices i and j may fall within
the same subarray, therefore we need to preprocess each subarray
for answering RMQs. If i and j fall in different subarrays then we
compute the following three quantities:

1. Minimum value starting at index i up to the end of the subarray
containing i.

2. Minimum value among the subarrays between the subarray con-
taining i and j. This is computed using the preprocessing done for
A′ in constant time.

3. Minimum value from the beginning up to the index j within the
subarry containing j.

Now our subproblem is reduced to solving the RMQ problem in
subarrays of size log n

2 with ±1 property. The key observation here is
that we do not have too many different kinds of these subarrays.

Claim 6.2.2 Given two arrays of same size where each element in the first
array is constant value more than the corresponding element in the second
array, then the answer to RMQ queries (i.e. the index) is identical in both
the arrays.

Essentially the preprocessing and the RMQ queries work with rela-
tive order of elements in these arrays, and they do not need actual
values of the elements. Hence for the two subarrays within the above
claim, same preprocessing is sufficient to answer RMQ queries. We
normalize each of the subarrays by first subtracting the initial value
from each of the elements. Next we show that there are only O(

√
n)

normal subarrays.

Claim 6.2.3 There are at most O(
√

n) normalized subarrays. Each subar-
rays has length log n

2 , where the first element is a 0, and the elements in the
array satisfy ±1 property.

Proof. Each normalized subarray can be specified by a ±1 vector.
Therefore, there are only 2

1
2 log n−1 = O(

√
n) different types of

subarrays of length 1
2 log n.

lowest common ancestor 153

We preprocess each of these subarrays in O(log2 n) time to answer
RMQ queries in O(1) time using the naive algorithm. The preprocess-
ing requires in all O(

√
n log2 n) time. We summarize the results in

the following.

Lemma 6.2.4 An array A consisting of n-numbers satisfying the ±1
property can be preprocessed in O(n) time so that the range minima queries
can be answered in O(1) time.

Corollary 6.2.5 A binary tree on n-nodes can be preprocessed in O(n) time
so that the lowest common ancestor queries can be answered in O(1) time.

6.3 RMQ→ LCA

Next we show that an instance of the RMQ problem can be converted
to an instance of the LCA problem. For a linear array A of size n, the
tree T for the LCA problem consists of n nodes and given a RMQ
query, we perform an equivalent LCA query on T, and whose answer
in turn provides the answer for the original range minima query.
This will imply that the general RMQ problem (i.e., even without
the ±1 property) can be answered in O(1) time by performing an
O(n) time preprocessing. The key to this conversion is the concept of
Cartesian Tree.

Let A[1...n] be the input array on which we need to perform RMQ
queries. Cartesian tree T for A is defined as follows. It is a rooted bi-
nary tree and the root of T stores the index of the smallest element in
A. Deleting the minimum element from A splits it into two subarrays.
Left and right children of the root are recursively defined Cartesion
trees for left and right subarrays of A, respectively (see Figure 6.1).

12 15 4 13 27 9 18 10

4

12 9

15 1013

27 18

Figure 6.1: RMQ→ LCA

Claim 6.3.1 Cartesian tree T for an array A of n-numbers can be con-
structed in O(n) time.

Proof. We scan the array A from left to right and incrementally build
the Cartesian tree T = Tn as follows. Suppose so far we have built
the tree Ti with respect to elements A[1..i] and we want to extend
it for A[1...i + 1] to obtain Ti+1, where i < n. Main observation is
that the node storing the index i + 1 in Ti+1 is on the rightmost path
of Ti+1. We start at the rightmost node of Ti and follow the parent
pointers till we find the location to insert i + 1 in Cartesian tree. Note
that each comparison will either add a node or removes one from
the rightmost path. Since each node can only join the rightmost
path once (if it leaves it then it can’t be back to the rightmost path),
therefore the total time in constructing T is O(n).

154 notes on algorithm design

Claim 6.3.2 Let A be the array on n-numbers and T be the correspond-
ing Cartesian tree storing the indices of elements in A in its node. Then
RMQ(i, j) = LCA(i, j).

Proof. This follows from the recursive definition of Cartesian tree T.
Let k = LCA(i, j) in T. Observe that the node labeled k is the first
node that separates i with j. In other words, the element A[k] is the
smallest element between A[i] and A[j], i.e. RMQ[i, j] = k.

6.4 Summary

In this chapter, we have shown that the lowest common ancestor
query in a rooted binary tree on n-nodes can be answered by solving
the range minima query in an array consisting of 2n − 1 numbers
satisfying the ±1 property. Moreover, the general RMQ problem in
an array can be reduced to solving LCA queries on the corresponding
Cartesian tree. All our preprocessing algorithms require linear time
and the queries can be answered in constant time.

6.5 Exercises

6.1 Prove that in the LCA algorithm of Bender and Farach-Colton, why does
the reduction from the LCA problem to the range-minima query works, i.e.,
show that in place of finding the LCA of nodes u and v in the binary tree,
why does it suffice to compute the smallest level number in the level array
in an interval defined by the first occurrence of the node u an v in the level
array.

6.2 This problem is to show that an arbitrary range minima query (RMQ)
problem can be solved within the same complexity as the one with the ±1
RMQ problem. Recall that the ±1 RMQ problem for an array of size n
required O(n) time to preprocess and then the queries were answered in
O(1) time. The idea is to reduce an arbitrary RMQ problem to the LCA
problem. This reduction uses Cartesian Tree. Let A be an array consiting of
n numbers (need not satisfy the ±1 property). The Cartesian Tree C for A is
defined as follows: The root of C is the minimum element of A, and it stores
the position of this element in the array. Removing the root element splits
the array into left and right subarrays. The left and right children of the root
are recursively constructed Cartesian trees of the left and right subarrays,
respectively. Prove the following:

1. Cartesian tree C of an array A of size n can be computed in O(n) time
(use incremental construction).

2. Show that RMQA(i, j) = LCAC(i, j) (Recall that in C we store the
indices i and j.)

7
Graph Partitioning

We will focus on

1. Planar Graph Partitioning

2. Planar Separator Theorems

3. Spectral Methods for Graph Partitioning

4. Graph Laplacian Matrix

5. Sparse Cuts

The first part of the chapter discusses the planar separator theorem
and it is based on Kozen 1 and the paper by Lipton and Tarjan 2. The 1 D. Kozen. The design and analysis of

algorithms. Springer, 1992

2 Richard J. Lipton and Robert E. Tarjan.
A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics,
36(2):177–189, 1979

second part of this chapter introduces the graph Laplacian matrix,
spectral decomposition, and sparse cuts.

Earlier we have seen that for a binary tree on n-nodes, there exists
a node such that whose removal leaves no component having more
than 2(n + 1)/3 nodes. This can be extended to outerplanar graphs,
where we can remove a pair of vertices such that none of the compo-
nents have more that 2(n + 1)/3 nodes. Usually this phenomenon is
referred to as a balanced decomposition using small size separators.
This is a ‘key idea’ in most of the divide and conquer type algorithms
on these graphs. As can be seen that the depth of recursion will be
O(log n) and since the size of the separator is small, the “merge” step
will be economical as well.

The organization of this chapter is as follows. Section 7.1 has some
basic definitions regarding graph separators in planar graphs. Section
7.2 presents the constructive proof of the planar separator theorem.
Section 7.3 has extensions of planar separator theorem for weighted
graphs, edge separators, and r-division. Section 7.4 introduces the
graph Laplacian matrix, its connection to graph partitioning and
sparse cuts.

156 notes on algorithm design

7.1 Preliminaries

Definition 7.1.1 A graph is called planar if the vertices and edges can be
laid out (embedded) in the plane so that no two edges intersect except at
their end points. An embedded planar graph is usually referred to as a plane
graph.

Definition 7.1.2 In an embedded plane graph, we have vertices, edges and
faces. The dual of a plane graph G is a planar graph G∗ whose vertices
correspond to faces of G and two vertices in G∗ are joined together if the
corresponding faces in G share an edge.

Definition 7.1.3 A plane graph G is triangulated if each of its face is a
triangle, i.e., it is bounded be three edges. In other words, in the dual each
vertex has degree three.

Definition 7.1.4 A set S ⊆ V for a graph G = (V, E) is called a vertex

separator, if removal of vertices (and incident edges on these vertices) from
G results in two disjoint sets of vertices A, B ⊆ V with no edges between
them. If the sizes of the sets A and B are a constant fraction of that of the
size of V, then S is called as a balanced separator.

Definition 7.1.5 A planar graph G = (V, E) consists of at most |E| =
3|V| − 6 edges. This follows from Euler’s relation, i.e. |V| − |E|+ |F| = 2.
You may like to check the proof at

http:\\www.ics.uci.edu/~eppstein/junkyard/euler/

Definition 7.1.6 An outerplanar graph is a plane graph such that all its
vertices lie on a single face. This face is usually referred to as the outerface.

Definition 7.1.7 The dual of a triangulated outerplanar graph is a binary
tree.

We have seen that a complete graph on five vertices, K5, and a
complete bipartite graph on six vertices, K3,3, are nonplanar. It is easy
to see that a tree is planar, and outerplanar graphs are planar. Both of
these graphs admit small size separators. What we will prove in this
chapter is that all planar graphs satisfy a similar property.

Theorem 7.1.8 [Lipton and Tarjan 3] Let G = (V, E) be an embedded 3 Richard J. Lipton and Robert E. Tarjan.
A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics,
36(2):177–189, 1979

undirected triangulated planar graph, where n = |V|. There exists a
partition of V into disjoint sets A, B, and S, such that

1. |A|, |B| ≤ 2n
3

2. |S| ≤ 4
√

n

3. There is no edge in E that joins a vertex in A with a vertex in B.

graph partitioning 157

4. Such a set S can be found in linear time.

It will turn out that the way we prove this theorem, it will lead to a
linear time algorithm (i.e. O(|V|+ |E|)) for finding such a separator.
Note that if the given graph is not embedded in the plane, then there
is a linear time algorithm by Hopcroft and Tarjan that embeds it.
In fact that algorithm also figures out in linear time whether the
given graph is planar or not, and if it is planar it finds an embedding.
Also if a plane graph is not triangulated, then it can be triangulated
in linear time, by inserting required number of edges on each face.
Other than this essentially we will use breadth first and the concept
of fundamental cycles to prove this theorem.

7.2 Proof of the Planar Separator Theorem

Assume that the graph G = (V, E) is undirected, connected, planar,
triangulated and embedded. The first step in the proof/algorithm is
to do a breadth-first search starting at an arbitrary vertex, say s, in G,
and assign levels to vertices. Vertex s is at level 0, vertices adjacent
to s are at level 1, vertices adjacent to level 1 vertices that have not
been assigned any level are level 2 vertices, and so on. Let l be the
last level, and pretend that there is a level l + 1 which consists of no
vertex (this is just required for the proof!). Let L(t) denote the set of
vertices that are in level t, 0 ≤ t ≤ l. Recall that in BFS, no edge can
span over two or more levels. All edges must connect vertices in the
same level or consecutive levels. Observe that each of the level, L(t),
for 0 < t < l, is a separator in its own right, although may not be of
small size and may not lead to a balanced decomposition!

Number the vertices according to BFS ordering, where s gets
number 1, followed by vertices in level 1, then vertices in level 2,
and so on (see Figure 7.1). Let t1 be the middle level, that is the
one which contains the vertex number n/2 in the BFS numbering.
Consider the set L(t1). Note that | ∪t<t1 L(t)| < n/2 and | ∪t≤t1 L(t)| ≥
n/2. If |L(t1)| ≤ 4

√
n, then S = L(t1) and we are done. Note that in

that case we can set the set A to be all the vertices in levels 0 up to
the level t1 − 1. Similarly the set B can be defined as all the vertices in
levels t1 + 1 to l. Clearly |A| < n/2 and |B| < n/2. In general, it is not
necessary that L(t1) may satisfy the requirements on the size of the
separator. Here is the lemma which will be very handy in that case.

Lemma 7.2.1 There exists levels t0 ≤ t1 and t2 > t1 such that, t2 − t0 ≤√
n, |L(t0)| ≤

√
n and |L(t2)| ≤

√
n.

Proof. Note that |L(0)| = 1 and |L(l + 1)| = 0. Let t0 ≤ t1 be the
largest number such that |L(t0)| ≤

√
n. Let t2 > t1 be the smallest

158 notes on algorithm design

1

2 3 4 5

6 7 8

n

t1

t0

t2

0

1

s

l

l + 1

|L(0)| = 1

|L(t0)| = 3

|L(l + 1)| = 0

|L(1)| = 3

n
2

|L(t2)| = 3

Figure 7.1: BFS and the sets L(·).

number such that |L(t2)| ≤
√

n. Note that every level between t0 and
t2 contains more than

√
n vertices, therefore by pigeon hole principle

there must be fewer than
√

n levels between t0 and t2, otherwise G
will have more than n vertices! Therefore, t2 − t0 ≤

√
n.

Define three sets C, D and E as follows: C = ∪t<t0 L(t), D =

∪t0<t<t2 L(t) and E = ∪t>t2 L(t). If |D| ≤ 2/3n, then we have the
required separator, by setting S = L(t0) ∪ L(t2), A the largest of C, D
or E and B the union of the other two.

What if |D| > 2/3n? Then both the sets C and E are small, have
less than 1/3n vertices. We will find a 1

3 − 2
3 separator SD, of D, of

size at most 2
√

n. Let D be split into D′ and D′′ by SD. Then S will
include the vertices in L(t0), L(t2), and the separator vertices SD. Set
A = max(C, E) ∪min(D′, D′′) and B = min(C, E) ∪max(D′, D′′).
Observe that S, A, and B satisfy the required size criteria.

Next we will present some ideas regarding finding the separator
SD of D. First we remove all the vertices that are not in D, except the
start vertex s. We connect s to all the vertices in level t0 + 1. This can
be done still preserving the planarity of D, since the original graph
is planar. Now we construct a spanning tree T in D, such that its
diameter is at most 2

√
n. Start with vertices in level L(t2 − 1). For

each vertex in this level, choose one of the vertex in the previous
level L(t2 − 2), adjacent to it as its parent. Continue this process
with vertices in levels t2 − 2, t2 − 3, · · · , to obtain the tree T. Next we

graph partitioning 159

state two lemmas, that are relatively easy to prove, that will show the
critical property relating the tree T, the plane graph D, its dual D∗,
and the dual tree T′.

Lemma 7.2.2 Let G = (V, E) be a connected plane graph and G∗ be its
dual. For any E′ ⊆ E, the subgraph (V, E′) has a cycle if and only if the
subgraph (V∗, E− E′) of G∗ is disconnected.

Figure 7.2: The edges of (V, E′) are in
blue. The edges of (V∗, E− E′) are in
red.

Lemma 7.2.3 Let G = (V, E) be a connected plane graph with dual
G∗ = (V∗, E) and let E′ ⊆ E. Then (V, E′) is a spanning tree of G if
and only if (V∗, E − E′) is a spanning tree of G∗ (see Figure 7.2 for an
illustration).

Let ET be the edges of the spanning tree T, constructed by follow-
ing the parents in D as stated above. Recall that the diameter of T is
at most 2

√
n. Also D is triangulated. Consider the dual D∗ of D, and

consider the edges in E− ET . They define a spanning tree T′ in D∗

(by Lemma 7.2.3). Also we can orient each edge in T′ away from the
root. Pick a face of D (say its outer face) and choose this as the root
T′. It will turn out that the required separator SD will be defined by
an edge, e = (u, v) in e ∈ E − ET , and the unique path in the tree
T between u and v. In other words, e defines a unique cycle, c(e), in
T. The cycle c(e) is referred to as a fundamental cycle in literature. To
compute/define c(e) appropriately we first perform a DFS of T′ and
compute the following three quantities.

1. I(e)= number of vertices which are in the interior of the cycle c(e).

2. |c(e)|= number of vertices on the cycle c(e).

3. Linked list representation of c(e).

160 notes on algorithm design

For each step of DFS, one of the following four cases will occur (see
Figure 7.3)

Case 1: DFS visits a leaf of T′ (i.e. a triangular face of D). Then
I(e) = 0, |c(e)| = 3, and c(e) = {x, u, v}.

Case 2: DFS visits a triangle corresponding to an edge e = (u, v) ∈
E − ET , its degree is two and the other edge of the triangle is
e′ = (u′, v) ∈ E − ET which was visited in the previous step.
Moreover u′ ∈ c(e). Then I(e) = I(e′), |c(e)| = |c(e′)| + 1, and
c(e) = uc(e′).

Case 3: DFS visits a triangle corresponding to an edge e = (u, v) ∈
E − ET , its degree is two and the other edge of the triangle is
e′ = (u′, v) ∈ E − ET which was visited in the previous step.
Moreover u′ 6∈ c(e). Then I(e) = I(e′) + 1, |c(e)| = |c(e′)| − 1, and
c(e) equals to c(e′) except that u′ is removed from the front of the
list.

Case 4: DFS visits a triangle corresponding to edge e = (u, v) ∈ E−
ET and its degree is three. The other two edges e′ = (u, y) ∈ E− ET

and e′′ = (vy) ∈ E − ET have been already visited by the DFS.
Let p be the common path between the cycles c(e′) and c(e′′). One
of the end points of p is x, and the other end point is y. Then
I(e) = I(e′) + I(e′′) + |p| − 1, |c(e)| = |c(e′)|+ |c(e′′)| − 2|p|+ 1,
and c(e) consists of c′xc′′, where c′ is the cycle c(e′) with path p
removed, and similarly c′′ is the cycle c(e′′) with path p removed.

u v

x

u′

u

v

u

v
u′

u v

y

p

x

Figure 7.3: Red edges represent the DFS
traversal of faces of D corresponding to
the tree T′. Dashed edges corresponds
to edges in E − ET and blue edges
corresponds to edges in ET , i.e. a
spanning tree of D. Case 1: DFS
visits a leaf, i.e. DFS visits a triangle
corresponding to e = (u, v) ∈ E− ET ,
its degree is one. Case 2: DFS visits a
triangle corresponding to e = (u, v) ∈
E− ET , its degree is two and the other
edge of the triangle is e′ = (u′, v) ∈ E−
ET which was visited in the previous
step and u′ ∈ c(e). Case 3: Same as
Case 2 except that u′ 6∈ c(e). Case 4:
DFS visits a triangle corresponding to
edge e = (u, v) ∈ E− ET and its degree
is three.

Lemma 7.2.4 In the above setting of the graph D, there exists an edge
e ∈ E− ET such that I(e) ≤ 2/3n and n− (I(e) + |c(e)|) ≤ 2/3n.

Proof. Let e ∈ E− ET be the first edge in the leaf to root path in T′

such that I(e) + |c(e)| ≥ n/3. Then n− (I(e) + |c(e)|) ≤ 2/3n. We will
prove that I(e) ≤ 2/3n. The edge e corresponds to one of the four
cases encountered in the DFS.

graph partitioning 161

1. In Case 1, I(e) = 0 ≤ 2/3n.

2. In Case 2, I(e)+ |c(e)| = I(e′)+ |c(e′)|+ 1, and I(e′)+ |c(e′)| < n/3,
and hence I(e) + |c(e)| ≤ 2/3n.

3. In Case 3, since I(e) + |c(e)| = I(e′) + |c(e′)|, e cannot be the first
edge with this property.

4. In Case 4, I(e′) + |c(e′)| < n/3 and so is I(e′′) + |c(e′′)| < n/3.
I(e) + |c(e)| = I(e′) + I(e′′) + |p| − 1 + |c(e′)|+ |c(e′′)| − 2|p|+ 1 ≤
2/3n− |p| ≤ 2/3n.

7.3 Generalizations of the Planar Separator Theorem

In the previous section we saw that the planar separator theorem
provides us with a procedure to separate the vertices of a planar
graph G = (V, E), |V| = n, into three sets A, B, S, where |A|, |B| ≤
2n/3, |S| ≤ 4

√
n, and there exists no edge between A and B. In this

section we will consider some generalizations of this theorem.

7.3.1 Weighted Separators

In our version of the planar separator theorem we considered all
vertices to be equal. However, a common variant permits vertices to
be weighted such that the sum of all weights is equal to 1 (any other
set of non-negative weights can be trivially mapped to one like this).
The only difference is that instead of bounding the sizes of the the
sets A and B to be ≤ 2n/3, we bound their weights to be ≤ 2/3. The
separating set S however is still bounded in terms of the number of
vertices it contains, and may therefore have arbitrary weight.

To prove the weighted planar separator theorem, our proof from
the previous section is sufficient. We need only change certain refer-
ences to the sizes of sets to refer to the weight of the sets. The rest of
the analysis largely follows unchanged.

From now on, we will assume that the planar separator theorem
refers to the weighted variant of the planar separator theorem. If
no weights are specified, we will assume that all vertices have equal
weight, which coincides with our original definition.

7.3.2 r-Divisions

In this section we will use the planar separator theorem to construct
a more general graph partitioning. The contents of this section are
based on a paper by Frederickson 4. 4 Greg N. Frederickson. Fast algorithms

for shortest paths in planar graphs,
with applications. SIAM J. Comput.,
16(6):1004–1022, 1987

162 notes on algorithm design

We define a region to be a subset of the vertices of a graph G =

(V, E). An interior vertex of a region R is contained only in R, and
adjacent only to other vertices in R. A boundary vertex is one that
is shared between at least two regions. All vertices will be either
boundary or interior. Given a parameter r, we will divide the graph
into Θ(n/r) regions with O(r) vertices each, and O(

√
r) boundary

vertices each. Such a division will be called an r-division. Note that
the planar separator theorem provides an n-division by taking the
two sets A ∪ S and B ∪ S.

We begin with a potential naive algorithm. Start with a single
region containing all of V. While any region R contains more than r
vertices, apply the planar separator theorem on R to produce A, B, S.
Now replace R with R′ = A ∪ S and R′′ = B ∪ S.

Clearly this procedure produces regions with no more than r
vertices, and since it reduces the size of a region by at most 2/3
until this bound is satisfied, it follows that each region contains Θ(r)
vertices. Consequently, there must be Θ(n/r) regions. However the
number of boundary vertices is more complicated. Initially we have
a single region that is made of all interior vertices. Further, A and B
consist entirely of interior vertices after constructing R′ and R′′, and
S consists entirely of boundary vertices. Therefore we introduce at
most 4

√
n boundary vertices at each recursive step.

To determine the number of boundary vertices, we define b(v)
for some vertex v to be one less than the number of regions it is
contained in, and B(n, r) to be the sum of b(v) for all v ∈ V. Note
that B(n, r) is strictly greater than the number of boundary vertices,
as b(v) ≥ 1 for all boundary vertices, by definition. Our algorithm
gives us the following recurrence:

B(n, r) ≤ 4
√

n + B(αn + O(
√

n), r) + B((1− α)n
+O(
√

n), r) for n > r
B(n, r) = 0 for n ≤ r,

where 1/3 ≤ α ≤ 2/3. This recurrence can be solved for
B(n, r) ≤ 4n/

√
r−O(

√
n). Therefore, the number of boundary ver-

tices produced by this algorithm is O(n/
√

r). However this tells us
nothing about the number of boundary vertices per region. Indeed,
some regions may have many boundary vertices. To resolve this, we
perform further processing on regions with more than c

√
r bound-

ary vertices, for some constant c. Given such a region R, we set all k
boundary vertices of R to have weight 1/k, and all interior vertices
of R to have weight 0. We then apply the planar separator theorem
to R and replace R as before. Since only the boundary vertices have
weights, the planar separator theorem will split up the boundary

graph partitioning 163

vertices among the two resultant regions. Therefore, after enough it-
erations all regions will have few enough boundary vertices. Further,
since the regions are still strictly shrinking, we cannot have violated
the bounds on the size of the region. It remains to be proven that we
have not violated the constraint on the maximum number of regions.

If a region has i > c
√

r boundary vertices, then at most di/(c
√

r)
splits will be performed, for some constants c and d. This will result
in at most di/(c

√
r) new regions. If ti is the number of regions with i

boundary vertices, then the number of new regions will be at most

∑
i
(di/c

√
r)ti = O(n/r)

Therefore, our modified algorithm produces an r-division.
In our construction, the recursion tree has a depth of O(log(n/r)).

Further, for each level we spend O(n) time. Therefore, this algorithm
runs in O(n log(n/r)) time.

Further processing on the graph can provide our r-division with
additional properties such as regions having a constant number of
neighbors, and boundary vertices being shared between at most a
constant number of regions.

7.3.3 Edge Separators

Up until now, we have only considered vertex separators. Edge
separators are exactly the same as vertex separators, except that
instead of removing vertices, we wish to remove edges. Specifically,
given a graph G = (V, E) we wish to find a cut-set S ⊆ E that
separates V into two disjoint subsets A, B. Every edge in S has one
endpoint in A and one endpoint in B, and every edge in E \ S has both
of its endpoints in only A or B. In general we would like to ensure
that A and B are approximately the same size, and S is small.

For graphs with low (e.g. constant) maximum degree, the results
for edge separators are generally very similar to those for vertex
separators. However on arbitrary planar graphs, edge separators
perform much worse.

For instance, consider a graph G = (V, E) in which every vertex
has degree 1, except for some vertex v with degree n− 1. This graph
is a tree, and therefore planar. An excellent vertex separator for G
would be {v}, as it would disconnect the entire graph, allowing us to
pick any subsets of V \ {v} we want for our separated sets. However
an edge separator would have to remove a linear number of edges to
get balanced sets.

From this example it is clear that not all results for vertex separa-
tors hold for edge-separators. In general, vertex separators are more
powerful, as for every edge an edge-separator would need to remove,

164 notes on algorithm design

a vertex separator would need to remove at most one vertex, but
potentially far fewer. Equivalently, if a vertex separator includes some
vertex v, an edge separator would need to include every edge of v
to achieve the same result. Consequently, results on edge separators
often include factors based on the maximum or average degree of the
graph [55].

We conclude our look at the planar separator theorem and its
generalizations with a table of separator results. There are far too
many results on separators with special requirements and for special
classes of graphs to adequately report here. As a result, this table
is by no means comprehensive. Note that ∆(G) = ∑v∈V deg(v)2,
σ(G) = ∑

v∈V
c(v)2 and c(v) is cost associated with each vertex, and

TSSSP(G) denotes the time to compute single-source shortest paths in
G.

Separator Graph # of Sets Set Sizes Separator Size Time Ref.
Vertex Tree 2 ≤ 2n/3 1 O(n) [109]
Vertex Planar 2 ≤ 2n/3 O(

√
n) O(n) [98]

Vertex Planar Θ(n/r) O(r) O(n/
√

r) O(n log(n/r)) [54]
Vertex Genus g - ≤ εn O(

√
(g + 1/ε)n) O(n + g) [3]

Vertex Planar - tw(G) ≤ 4
√

2σ(G)/t O(n + TSSSP(G)) [4]
Edge Planar - tw(G) ≤ 4

√
2∆(G)/t O(n + TSSSP(G)) [4]

7.4 Graph Laplacian

This section is based on 5. First, recall eigenvalues and eigenvectors 5 Miroslav Fiedler. Algebraic connectivity
of graphs. Czechoslovak Mathematical Jour-
nal, 23(2):298–305, 1973; and Daniel A.
Spielman. Spectral and Algebraic Graph
Theory. Yale University, USA, 2019

of a matrix from Chapter 4. Given an n × n matrix A, a non-zero
vector v is an eigenvector of A, if Av = λv for some scalar λ. λ is
the eigenvalue corresponding to the vector v. If A has n distinct
eigenvalues, then the corresponding eigenvectors are linearly inde-
pendent. Let S be a real symmetric matrix. All eigenvalues of S are
real, and all the components of the eigenvectors are real. Any pair
of eigenvectors of S corresponding to two different eigenvalues are
orthogonal.

Symmetric matrix S is positive semi-definite if all its eigenvalues are
≥ 0. Alternatively, for all non-zero vectors x ∈ Rn, if xTSx ≥ 0 holds,
then all the eigenvalues of S are ≥ 0.

As a warmup, consider the adjacency matrix of a complete graph
on n-vertices. It consists of all 1s except that the diagonal entries

are 0s. For example, for K4, we have A =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 and its

eigenvalues are λ1 = n− 1 = 4 and λ2 = λ3 = λ4 = −1.

graph partitioning 165

Definition 7.4.1 (Graph Laplacian Matrix)
Let G = (V, E) be a graph with n vertices. Let A be its adjacency matrix

of size n× n. Let D be an n× n diagonal degree matrix, where

D(i, j) =

degree(vi), if i = j

0, otherwise

The graph Laplacian matrix L of the graph G is given by L = D− A. The
set of eigenvalues of L constitutes the spectrum of G.

Example 7.4.2 The Laplacian matrix for complete graph K4 is given by

L = D− A =

3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

−

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 =

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

We make some observations.

Observation 7.4.3 Let
−→
1 be a n-dimensional vector where all of its com-

ponents are 1. The vector
−→
1 is an eigenvector of L and the corresponding

eigenvalue is 0.

Observation 7.4.4 L is a symmetric matrix and hence all of its eigenvalues
will be real, and the components of all eigenvectors are real.

Let N be the node-edge incidence matrix of dimension |V| ×
|E| of the graph G = (V, E). Let V = {1, . . . , n}. There is a row
corresponding to each vertex - row i for vertex i in N. Similarly,
there is a column corresponding to each edge e ∈ E. For each edge
e = (i, j), i < j, the entries in its column in N corresponding to the
row of vertex i is 1, the entry corresponding to the row of vertex j is
−1, and all other entries are 0.

Example 7.4.5 Let G = (V, E) be K3. Let V = {a, b, c}.

The node-edge matrix N =

ab ac bc
a 1 1 0
b -1 0 1
c 0 -1 -1

Observe that

NNT =

 2 −1 −1
−1 2 −1
−1 −1 2

 =

2 0 0
0 2 0
0 0 2

−
0 1 1

1 0 1
1 1 0

 = D− A = L

Example 7.4.6 Let G = (V, E) be K13. Let V = {a} ∪ {b, c, d}.

166 notes on algorithm design

The node-edge matrix N =

ab ac ad
a 1 1 1
b -1 0 0
c 0 -1 0
d 0 0 -1

Observe that

NNT =

3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

 =

3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 = D−A = L

Observation 7.4.7 L = NNT .

Proof. Consider the ij-th entry of NNT . First consider the case that
i = j. Row i of N consists of information of all the edges incident
on vertex i (encoded as +1 or -1). The number of non-zero entries in
row i is equal to the degree of vertex i in G. Since the entry NNT

ii is
the dot product of row i with itself, and hence it equals the degree of
vertex i.

Now consider when i 6= j. Here we want to understand what
is the dot product of rows i and j of N. Each column of N has only
two non-zero entries, namely +1 and −1, and no two columns are
the same as edges connect distinct pairs of vertices. Hence the dot
product is either 0 or −1. It is −1 if and only if ij ∈ E.

Observation 7.4.8 L is positive semi-definite matrix. Its smallest eigen-
value is 0 and all other eigenvalues are ≥ 0.

Proof. In the singular value decomposition in Chapter 4, we have al-
ready seen that for a real matrix A, AAT and AT A are real-symmetric
positive semi-definite matrices. Hence all the eigenvalues of L are
≥ 0. By Observation 7.4.3, 0 is an eigenvalue of L with respect to the
eigenvector

−→
1 .

We can also express L as sum of Laplacian matrices corresponding
to each edge of G. For an edge e = (i, j), define the n× n Laplacian
matrix Le, where all the entries are 0 except Lii = 1, Lij = −1, Lji =

−1, Ljj = 1. Now L = ∑
e∈E

Le. Exercise 7.12 asks you to prove that Le

and L are positive semi-definite matrices, and results in an alternate
proof of Observation 7.4.8.

Let be be a n-dimensional column vector consisting of 1 and −1 in
i and j coordinate, respectively, and the remaining coordinates are 0.

Observation 7.4.9 Le = bebT
e .

graph partitioning 167

By Observation 7.4.8, one of the eigenvalues of L for any graph G
is 0 and it corresponds to the eigenvector

−→
1 . Next, we show that G

is connected if and only if the spectrum of L consists of eigenvalue 0
with multiplicity 1 (i.e. 0 occurs exactly once as an eigenvalue).

Lemma 7.4.10 A graph G = (V, E) is connected if and only if the eigen-
value 0 occurs with multiplicity 1 in L(G).

Proof. First, assume that G is disconnected. It consists of two or more
components. Assume that it has two components G1 and G2. Then
L(G) can be expressed (possibly may require permutation of the

rows) as L(G) =

[
L(G1) 0

0 L(G2)

]
. If the number of vertices in the

component G1 are k, than observe that a = (1, . . . , 1, 0, . . . , 0) and
b = (0, . . . , 0, 1, . . . , 1), where a (resp., b) consists of k 1s (resp., 0s)
followed by n− k 0s (resp., 1s), are eigenvectors of L with eigenvalue 0.
Since a and b are linearly independent, the eigenvalue 0 occurs with
multiplicity > 1.

Now assume that G is connected. Consider the following:

xT Lx = xT

(
∑
e∈E

Le

)
x

= ∑
e∈E

xT Lex

= ∑
e∈E

xTbebT
e x (see Observation 7.4.9)

= ∑
e=(i,j)∈E

(xi − xj)
2

≥ 0

Consider an eigenvector x corresponding to eigenvalue 0. Then
Lx = λx = 0. Thus xT Lx = 0 = ∑

e=(i,j)∈E
(xi − xj)

2. This implies that

all xi = xj for each edge e = (i, j). But G is connected, and hence it
will be the case that x = (α, α, . . . , α) for some non-zero α. Therefore
x and the vector of all 1s are in the same direction. This implies that
only eigenvector corresponding to eigenvalue 0 is

−→
1 .

Now assume that given graph G = (V, E) is connected. Then the
second smallest eigenvalue λ2 > 0 of its Laplacian matrix L(G). Con-
sider the eigenvector v2 corresponding to λ2. Since L is symmetric,
v2 is orthogonal to the eigenvector

−→
1 corresponding to eigenvalue

0. This implies that
−→
1 · v2 = 0 =⇒

n
∑

i=1
v2i = 0, where v2i denotes

the i-th coordinate of v2. Since v2 6=
−→
0 , some of the coordinates

of v2 are positive and some are negative. We can partition the set
of vertices V into two groups A and B, where A consists of all the

168 notes on algorithm design

vertices corresponding to positive coordinates of v2, and set B = V \ A.
This typically results in a nice partition of G provided that λ2 is small.
There is an alternate way to partition the graph using the second
eigenvector v2 using the concept of graph conductance.

Definition 7.4.11 (Conductance) For a graph G = (V, E), define vol(S),
where S ⊆ V, to be the sum total of the degree of the vertices in S. Note
that Vol(V) = 2|E|. Let δ(S) be the number of edges in the cut(S, V \ S),
i.e. the number of edges where one end is in S and the other end is in V \ S.
Define the conductance of the cut(S, V \ S) as

Φ(S) =
δ(S)

vol(S)

The conductance of the graph G as

Φ(G) = min
S⊂V:vol(S)≤|E|

|δ(S)|
vol(S)

It is the smallest fraction with respect to the number of edges in the
cut(S, V \ S) and the volume of the set S. To be more precise, we should
express

Φ(G) = min
S⊂V:|S|≤|V|/2

|δ(S)|
(min vol(S), vol(V \ S))

Example 7.4.12 Conductance of a cycle on n vertices Cn is 2
n . Let the

vertices in order in the cycle be 1, 2, . . . , n and assume n is even. We form
two components A = {1, . . . , n/2} and B = V \ A. Now conductance of the

cut(A, B) = 2
min(vol(A),vol(B)) =

2
n , as vol(A) = vol(B) =

n/2
∑

i=1
deg(i) = n.

Example 7.4.13 Conductance of Kn is 1
2 . Partition the set of vertices in

two groups of equal size. Observe that the volume of a group is (n− 1)n/2
and the number of edges in the cut is (n/2)2.

Definition 7.4.14 (Sparse Cut) A subset S ⊂ V forms a sparse cut of G if
Φ(S) = |δ(S)|

vol(S) is small (for example less than 0.1). The edges connecting S
with the rest of the graph are very few compared to the sum total of degrees
of the vertices in S. By removing the edges on the cut, we partition G into
subgraphs of smaller sizes.

The second eigenvalue λ2 and the corresponding eigenvector v2 of
L are used as follows to compute the sparse cut of G.

graph partitioning 169

Sparsecut Heuristic

Input: A connected graph G = (V, E).
Output: A Sparse Cut (S, V \ S).

Step 1: Compute the second Eigenvector of L and let it be v2 ∈ Rn, i.e.
Lv2 = λ2v2

Step 2: Sort coordinates of v2 and let the order be v21 ≥ v22 ≥
. . . ≥ v2n. Note that v2i corresponding to the value assigned to the
vertex i by the eigenvector v2.

Step 3: For i := 1 to n do, let Si =

{v1, . . . , vi}, if i ≤ |V|/2

{vi+1, . . . , vn}, if i > n/2

Step 4: Return (Si, V \ Si) corresponding to min
1≤i≤n

φ(Si) as the sparse

cut of G.

Example 7.4.15 Consider the graph in the margin.

L =

2 −1 −1 0 0 0 0
−1 3 −1 −1 0 0 0
−1 −1 2 0 0 0 0
0 −1 0 4 −1 −1 −1
0 0 0 −1 2 −1 0
0 0 0 −1 −1 3 −1
0 0 0 −1 0 −1 2

A

B C

D

E

F

G

Figure 7.4: Figure for Example 7.4.15λ2 = 0.398 and v2 = (−1.38,−.83,−1.38, .6, 1, 1, 1)

Si φ(Si)

E 2/2
E,F 3/5
E,F,G 3/7
D,B,C,A 3/min(7, 11)
A,B,C 1/7
A,C 2/4
A 2/2

Example 7.4.16 Consider the graph in the margin.

L =

2 −1 −1 0 0 0 0
−1 4 −1 −1 0 0 −1
−1 −1 2 0 0 0 0
0 −1 0 4 −1 −1 −1
0 0 0 −1 2 −1 0
0 0 0 −1 −1 3 −1
0 −1 0 −1 0 −1 3

A

B C

D

E

F

G

Figure 7.5: Figure for Example 7.4.16λ2 = 0.64 and v2 = (−2.93,−1.04,−2.93, 1.34, 2.5, 2.05, 1)

170 notes on algorithm design

Si φ(Si)

E 2/2
E,F 3/5
E,F,D 3/9
G,B,A,C 3/min(9, 11)
B,A,C 2/8
A,C 2/4
C 2/2

In both the above examples, the sparse cut has been obtained by
the same set S = {A, B, C}. We would have got the same cut if we
partitioned the vertices with respect to the positive and negative
coordinates in the second eigenvector.

The sparse cut heuristic is grounded on Cheeger’s inequality,
stating that the conductance and second smallest eigenvalue of a
connected graph G are closely related. The inequality states the
following.

Lemma 7.4.17 (Cheeger’s inequality) Let A = D−
1
2 AD−

1
2 be the

normalized adjacency matrix, and let L = I − A be the normalized
Laplacian matrix of a connected graph G = (V, E). It is known that The normalization removes the de-

pendence on the largest degree in the
Laplacian.

for the normalized Laplacian matrix, all its eigenvalues λi ∈ [0, 2]. Let G

See Exercise 7.17
be a connected graph and let λ2 > 0 be the second smallest eigenvalue of L.
Cheeger’s inequality states that

λ2/2 ≤ Φ(G) ≤
√

2λ2

Computation of the conductance of the graph is a NP-hard
problem. Rather than computing the conductance, the sparse cut
heuristic finds the second smallest eigenvalue λ2 in polynomial
time. If λ2 → 0, then Φ(G) → 0 as by Cheeger’s inequality
λ2/2 ≤ Φ(G) ≤ √2λ2. Moreover, the same inequality also states
that if λ2 9 0, then Φ(G) 9 0.

7.5 Exercises

7.1 Let T=(V,E) be a connected undirected tree such that each vertex has
degree at most 3. Let n=|V|. Show that T has an edge whose removal discon-
nects T into two disjoint subtrees with no more than (2n+1)/3 vertices each.
Give a linear time algorithm to find such and edge; prove its correctness.

7.2 Provide an algorithm running in O(n log k) time to partition the binary
tree on n vertices into k (k ≤ n) subtrees, so that each of the subtree is of
size at most (2/3)kn. Try to see whether you can improve the running time
of this algorithm (this is not easy!).

graph partitioning 171

7.3 Prove the weighted version of the planar-separator theorem. Let G =

(V, E) be an embedded undirected triangulated planar graph, where n =

|V|. Each vertex v ∈ V has a positive weight w(v) ≥ 0 and ∑v∈V w(v) =
1. There exists a partition of V into disjoint sets A, B, and S, such that

1. w(A), w(B) ≤ 2
3 , where w(A) is the sum total of weights of all the

vertices in set A

2. |S| ≤ 4
√

n

3. There is no edge in E that joins a vertex in A with a vertex in B.

4. Such a set S can be found in linear time.

7.4 Prove Lemma 7.2.2. Let G = (V, E) be a connected planar graph and
G∗ be its dual. For any E′ ⊆ E, the subgraph (V, E′) has a cycle if and only
if the subgraph (V∗, E− E′) of G∗ is disconnected.

7.5 Prove the following theorem on Geometric Separators. In 2-dimensions
assume that you have n squares of arbitrary sizes. Squares are axis aligned.
Moreover none of the points in the plane is inside more than k-squares.
Prove that there exists either a vertical or a horizontal line which partitions
the set of squares in such a way that at least b n+1−k

4 c of squares interiors lie
to each side of the line. How fast you can find such a line?

7.6 Show that for a complete graph on n vertices, the eigenvalues of its
adjacency matrix are λ1 = n− 1, and λ2 = . . . = λn = −1. (Hint: Think
about the eigenvectors corresponding to these eigenvalues.)

7.7 Define the trace of a square n× n matrix A to be the sum of its diagonal

entries, i.e., tr(A) =
n
∑

i=1
Aii. Show that tr(A) =

n
∑

i=1
λi, where λ1, . . . , λn

are eigenvalues of A. (Hint: Consider the polynomial equation det(A −
λI) = (λ− λ1)(λ− λ2) . . . (λ− λn).)

7.8 Show that the eigenvalues of the adjacency matrix of a bipartite graph
occur in complementary pairs. If λ is one of the eigenvalues then −λ is
also an eigenvalue. In other words, the spectrum of a bipartite graph is
symmetric around the origin. (Hint: Observe that the adjacency matrix of a

bipartite graph can be rearranged to look like A =

[
0 B

BT 0

]
. Now if λ is an

eigenvalue and A

[
x
y

]
=

[
0 B

BT 0

] [
x
y

]
= λ

[
x
y

]
, then show that

[
x
−y

]
is

also an eigenvector corresponding to eigenvalue −λ).

7.9 Show that for a graph G = (V, E), if the eigenvalues of its adjacency
matrix A come in complementary pairs, then G is a bipartite graph. (Hint:
To show that G is bipartite, it is sufficient to show that it has no odd-length

172 notes on algorithm design

cycles. Consider matrices Ak for odd powers of k. If any of the diagonal
entries of Ak is > 0, we know it has an odd cycle. Show that if eigenvalues
of A come in complementary pairs than tr(Ak) = 0 and conclude that all
diagonal entries of Ak are 0 for odd powers of k.)

7.10 Show that for a complete bipartite graph Kmn, two eigenvalues of
its adjacency matrix are

√
mn and −√mn. Moreover, all the remaining

m + n − 2 eigenvalues are 0. (Hint: Show that the rank of the adjacency
matrix of A is 2. This implies that there are two non-zero eigenvalues.
Let us call them λ1 and λ2. Use the fact that tr(A) = 0 to show that
λ1 = −λ2 = α. Express det(A− λI) = (λ− λ1)(λ− λ2)λ

n+m−2 =

λn+m − α2λn+m−2. Expand det(A− λI), and show that α =
√

mn. Think
of what contributes to the coefficient of λn+m−2 term in the expansion of
det(A− λI).)

7.11 Let G be d-regular graph. Show that if v is an eigenvector of the
adjacency matrix A corresponding to eigenvalue λ, than v is eigenvector of
the Laplacian matrix L of G with eigenvalue d− λ. What can you say about
the spectrum (the set of all eigenvalues) of A and L in this case?

7.12 Show that if A and B are two square symmetric positive semi-definite
n× n real matrices, than A + B is a square symmetric positive semi-definite
matrix. Let G = (V, E) be a graph and let Le be the Laplacian n× n matrix
corresponding to an edge e ∈ E. Show that Le is positive semi-definite.
Show that L = ∑

e∈E
Le is positive semi-definite matrix.

7.13 Show that a graph G = (V, E) has k-connected components if and only
if the eigenvalue 0 occurs with multiplicity k in L(G). (Hint: See proof of
Lemma 7.4.10).

7.14 Let ei denotes the standard basis vector in n-dimensional Euclidean
space. It has 1 in the i-th coordinate and all other coordinates are 0. Let
G = (V, E) be a graph, and let V = {1, . . . , n). Show that the Laplacian
matrix L(G) = ∑

e=(i,j)∈E
(ei − ej)(ei − ej)

T .

7.15 Given a graph G = (V, E), where V = {1, . . . , n}, and an n-
dimensional real vector x, whose i-th coordinate corresponds to a real value
assigned to vertex i, show that xT Lx = ∑

e=(i,j)∈E
(xi − xj)

2.

a

a

a

a

0

0

0

0

1

1

1

1

b

b

b

I

II

III

IV
c

Figure 7.6: Graphs for Exercise 7.16

7.16 In the four graphs in Figure 7.6, two of the vertices have been assigned
values. Find an assignment of real values to the remaining vertices so that

∑
e=(i,j)∈E

(xi − xj)
2 is minimized.

Following exercises are derived from Lap Chi Lau’s notes.

graph partitioning 173

7.17 Let D be a diagonal degree matrix of a connected graph G. Let A =

D−
1
2 AD−

1
2 be its normalized adjacency matrix. Define L = I −A as its

normalized Laplacian matrix. Answer the following

1. Show that L = D−
1
2 LD−

1
2

2. Show that 0 is an eigenvalue of L corresponding to the vector D−
1
2
−→
1 .

3. Show that L is positive-semi definite. (Hint: Recall that L = ∑
e∈E

Le. For

positive semi-definite, try to show that xTLx ≥ 0 for any x ∈ <n.)

4. Show that the largest eigenvalue of A is ≤ 1 as eigenvalues of L = I −A
are ≥ 0.

5. Show that I +A is positive semi-definite. (Hint: Express xT(I +A)x =

xTLx + 2xTAx)

6. Show that the smallest eigenvalue of A ≥ −1.

7. Conclude that all eigenvalues of L are in [0, 2], and all eigenvalues of A
are in [−1, 1].

The following exercise defines the concept of Rayleigh Quotient that
connects eigenvalues and eigenvectors to optimization problems.

7.18 Let S be a real symmetric n × n matrix. Let its eigenvalues be
α1 ≥ α2 . . . ≥ αn and the corresponding orthonormal eigenvectors are
v1, v2, . . . , vn, respectively. First we show that We denote eigenvalues by α’s to keep

them distinct from eigenvalues λ’s of
Laplacian matrix.

α1 = max
x∈<n ,x 6=−→0

xTSx
xTx

Answer the following.

1. Show that any vector x ∈ <n can be expressed as a linear combination of
eigenvectors v1, v2, . . . , vn, i.e., x = c1v1 + . . . + cnvn, where c1, . . . , cn

are constants.

2. Show that xTSx =
n
∑

i=1
c2

i αi.

3. Show that xTx =
n
∑

i=1
c2

i .

4. Show that xTSx
xT x =

n
∑

i=1
c2

i αi

n
∑

i=1
c2

i

≤ α1

5. Show that for x = v1, xTSx
xT x = α1.

6. Conclude that α1 = max
x∈<n ,x 6=−→0

xTSx
xT x

174 notes on algorithm design

7. Now consider all the vectors in <n that are orthogonal to v1. Let the
set of these vectors be T2. Now for any vector x ∈ T2, where x =

c1v1 + . . . + cnvn, we have that ci = x · vi and c1 = x · v1 = 0. Show
that α2 = max

x∈T2,x 6=−→0
xTSx
xT x .

8. In general, define Tk to be the set of vectors in <n that are orthogonal to
v1, . . . , vk−1. Show that αk = max

x∈Tk ,x 6=−→0
xTSx
xT x .

9. What can you say about smallest eigenvalues αn−1 and αn in terms of
Rayleigh Quotients?

7.19 Let G = (V, E) be a d-regular graph, i.e., degree of each vertex is d.
Let V = {1, . . . , n}.

1. Show that for the normalized Laplacian matrix of G, L(G) = 1
d L(G).

2. Using the Rayleigh Quotients, show that λ2 = min
x⊥−→1

xTLx
xT x = min

x⊥−→1

∑
e=(ij)∈E

(xi−xj)
2

d ∑ x2
i

3. Assume that the graph conductance of G is given by a set S such that
|S| = |V|

2 . Set xi = +1 for each vertex i ∈ S and xi = −1 for each
vertex in V \ S. Observe that x ⊥ −→1 . Show that λ2 ≤ 2Φ(S).

4. Now consider a general subset S ⊂ V that defines the graph conductance,
i.e. Φ(G) = Φ(S). Set xi =

1
|S| for all i ∈ S and set xi =

−1
|V\S| for all

i ∈ V \ S. Observe that x ⊥ −→1 . Show that λ2 ≤ 2Φ(S). This proves one direction of Cheeger’s
inequality for regular graphs.

Following exercises will help us build more intuition for the
sparse cut heuristic. Let G = (V, E) be a connected graph and let
V = {1, . . . , n}. Let S = {1, . . . , i} ⊂ V. For each vertex 1 ≤ j ≤ i,
assign j an integer sj = +1. Similarly, for each vertex i + 1 ≤ j ≤ n,
assign the vertex j an integer sj = −1. Hence, all the vertices in S are
assigned +1 value and all the vertices in V \ S are assigned a value of
−1. Let cut(S, V \ S) be the edges in the cut, i.e., one end of the edge
is in S and the other end in V \ S. Answer the following.

1. Let e ∈ E. Show that if e = (k, l) ∈ cut(S, V \ S), then |sk − sl | = 2.

2. Let e ∈ E. Show that if e = (k, l) 6∈ cut(S, V \ S), sk − sl = 0.

3. Show that the number of edges in the cut, |cut(S, V \ S)| =
1
4 ∑

e=(i,j)∈E
(si − sj)

2.

4. Let A be the adjacency matrix of S. Show that |cut(S, V \ S)| =
1
8 ∑

1≤i,j≤n
Aij(si − sj)

2.

graph partitioning 175

5. Let D be the diagonal n× n matrix where Dii is the degree of vertex
i, and all other entries Dij = 0 for i 6= j. Show that the number of
edges in the cut can be expressed as

|cut(S, V \ S)| = 1
4 ∑

1≤i,j≤n
(Dij − Aij)sisj

6. Show that the size of the cut(S, V \ S) can be expressed as

|cut(S, V \ S)| = 1
4

sT Ls,

where L = D − A is the Laplacian matrix of G and s is the ±1
vector indicating which vertices are in S and which ones are in the
set V \ S.

S

S

S

Figure 7.7: P4, C4, and K4 with the set S.

7. Evaluate the size of the cut using the expression

1
4 ∑

1≤i,j≤n
(Dij − Aij)sisj

for the following graphs:
(a) P4 - a path on 4 vertices and assume that S consists of the first
two vertices of the path and V \ S consists of the last two vertices,
(b) A cycle C4 consisting of 4 vertices and assume that S consists of
a pair of vertices connected by an edge, and
(c) K4 and assume that S consists of exactly one vertex.

7.20 Consider the expression 1
4 sT Ls that determines the number of edges in

the cut, given the partition of V into S and V \ S for a graph G = (V, E).
In this exercise we are looking for ways to find the best partition. Among
all possible ±1 n-dimensional vectors, let s ∈ {−1,+1}n minimizes 1

4 sT Ls

under the condition that s · −→1 =
n
∑

i=1
si = 0. Show that the resulting s

gives us a minimum balanced partition of the graph G. (Note that 1
4 can be

ignored when we want to compute the best partition, as eventually we worry
about the sign’s of the coordinates in s.)

7.21 The optimization problem in the previous exercise is a discrete problem

as s ∈ {−1,+1}n and
n
∑

i=1
si = 0. Consider a relaxation where x is an n-

dimensional vector in <n, where ∑ x2
i = n, and

n
∑

i=1
xi = 0 and it minimizes

1
4 xT Lx. Since x · −→1 = ∑ xi = 0, for each xi ≥ 0, set si = +1 and for each
xi < 0, set si = −1. Show that by setting si’s by this strategy, we obtain a
partition of G.

7.22 Consider the problem of finding a vector x ∈ <n such that xT Lx is

minimized, where ∑ x2
i = n = xTx, and x · −→1 =

n
∑

i=1
xi = 0. Let us use the

176 notes on algorithm design

Lagrange multiplier’s method to find an optimum x. So we want to optimize
the function xT Lx − γ(xTx − n) under the constraint that x · −→1 = 0. We are using γ instead of λ here for

Lagrange multiplier as λ is reserved for
eigenvalues.

Answer the following.

1. Show that the partial derivative with respect to γ of the function xT Lx−
γ(xTx− n) is xTx− n.

2. Compute the partial derivative with respect to x of the function xT Lx−
γ(xTx − n), where x · −→1 = 0. Show that it corresponds to eigenvalue
equation Lx = γx.

3. Show that the optimal value for the optimization problem corresponds to
eigenvalues and eigenvectors of the system Lx = γx, where x · −→1 = 0.

4. Recall that the smallest eigenvalue of L is 0 and the corresponding
eigenvector is

−→
1 . Show that the minimum value of the objective function

1
4 xT Lx under the constraints that xTx = n and x · −→1 = 0, is attained at
the second smallest eigenvalue λ2 of L.

5. Show that the optimum value of 1
4 xT Lx under the constraints that

xTx = n and x · −→1 = 0 is n
4 λ2. (Hint: Substitute Lx = λ2x in the

Lagrange equation.) Note that if λ2 → 0, then the size of the cut is small.

6. Consider the second eigenvector v2 corresponding to λ2. Partition the set
V into S and V \ S with respect to the sign of the coordinates in v2. Show
that S 6= ∅ and S 6= V, and hence (S, V \ S) forms a proper cut of G.

8
Locality-Sensitive Hashing

Given a collection of items we can identify duplicate items using
hashing. For example, we hash items using an appropriate hash
function, and the duplicate items will fall within the same bucket.
Suppose, we want to identify near similar items. For example, sup-
pose we have Boolean vectors in d dimensions, and we want to
identify vectors that match in at least 98% of coordinates. Clearly, we
cannot apply hashing directly as if the two vectors differ in at least
one coordinate, we expect the hash function to place them in different
buckets. This is the topic of study in this chapter.

The concept of Locality-Sensitive Hashing (LSH) is used to deter-
mine which items in a given set are similar under some well-defined
similarity measure. The key idea is to hash the items using several
hash functions. The hash functions have the property that the prob-
ability of collision is higher for items that are similar as compared
to the items that are dissimilar. Hence the similar items are more
likely to hash into the same buckets. Rather than using the naive
approach of comparing all pairs of items within a set, LSH technique
only compares items within a bucket, thereby reducing the number
of comparisons. LSH is often used for finding similar items in very
large data sets. LSH provides a method for efficient approximate
nearest neighbor search and it has been used in data mining, pattern
recognition, computer vision, computational geometry, data compres-
sion, spell checking, plagiarism detection, and chemical similarity.

This chapter is organized as follows. We will describe the LSH
using an example of finding similar documents in a collection of
documents. In Section 8.1 we explain what are shingles in a docu-
ment, the set comprising of shingles in a document, and the notion of
Jaccard similarity to measure the similarity between sets. In Section
8.2 we describe minhashing for summarizing sets. In Section 8.3 we
describe the LSH technique for finding sets (documents) having high
Jaccard similarity based on minhashing. In Section ?? we discuss
finite metric spaces. Section 8.5 discusses the theory of locality sensi-

178 notes on algorithm design

tive functions. In particular, we define a sensitive family of functions
and show how to construct AND and OR families. In Section 8.6 we
provide construction of various LSH families including Hamming
distance, Cosine distance, Euclidean Distance, Fingerprint similarity,
and Image similarities. We also discuss the properties of the similar-
ity measure under which we can apply the theory of LSH. Section
?? consists of some problems for broadening our understanding of
LSH technique and its applications. We conclude this chapter by
providing some bibliographic remarks.

8.1 Similarity of Documents

We will introduce LSH using the problem of finding similar docu-
ments. This problem appears, for example, on the web when attempt-
ing to find similar, or even duplicate web pages. A search engine
would use this technique to allow these similar documents to ei-
ther be grouped or only shown once on a results page, so that other
possible search matches could also be prominently displayed.

Problem 8.1.1 Given a collection of web-pages, find the near duplicate
web-pages.

Clearly the content of the page is what matters, so for a prepro-
cessing step any HTML tags are stripped away and main textual
content is kept. Typically multiple white spaces are also replaced by
a singe or no space during this preprocessing. As a result we are left
with a document containing a string of text characters. Keeping in
mind that we want to compare similarity of documents opposed to
exact equality, the text is split up into a set of smaller strings by a
process called shingling. This allows the documents to be represented
as sets, where fragments of documents can match others. The shingle
length k should be large enough so that the probability of any given
k-shingle appearing in any given document is relatively low. But if
the two documents are similar, the probability that a particular shin-
gle will appear in both the documents is higher. For our purposes,
it is sufficient to know that choosing k = 5 works well for electronic
mail, and k = 9 is suitable for large text documents. In other words,
we look for concatenation of strings made of k words.

Definition 8.1.2 k-shingle: A k-shingle of a text document is defined to
be any substring of length k which appears in the document.

Example 8.1.3 Let the document D = ‘The cow jumped over the moon’,
and k = 2. Then the possible k-shingles for D are:
{Thecow, cowjumped, jumpedover, overthe, themoon}.

locality-sensitive hashing 179

For simplicity, we will assume that the document contains one
long sequence made up of alphabets and we will work with k-
shingles of the sequence.

Example 8.1.4 Let the document D = {adbdabadbcdab}, and k = 2. Then
the possible k-shingles for D are: {ad, db, bd, da, ab, ba, bc, cd}. Note that
the set representing the shingles of D consists of unique shingles.

Note that in the above example, D consists of 13 alphabets, each
alphabet requires 1-byte of memory space. For k = 2, we need 8 shin-
gles to represent D, each requiring 2-bytes of memory space. Thus,
the shingle representation as such increases the memory requirement.
However we can work instead with integers by using a hash func-
tion to map each k-shingle to an integer. For example, consider the
following hash function that maps 9-byte shingles to an integer.

Example 8.1.5 Let k = 9, and let H be a hash function that maps the set of
characters to integers: H : |C|9 → Z. Let |Z| ≤ 232 − 1.

H potentially reduces the space requirements as a 9-byte shingle is
converted to a 4-byte integer. However, this representation of shingles
may use 4 times more memory space than the original document. A
solution to overcome this is the subject of the next section.

Now that we have documents mapped to sets of k-shingles, we can
use a similarity measure called Jaccard similarity to compare the two
sets. The Jaccard similarity is defined with respect to two sets S and
T, and is the ratio of the size of the intersection of S and T to the size
of their union. See Figure 8.1 for an illustration.

Definition 8.1.6 Jaccard Similarity: Let S and T be two sets. Define the
Jaccard Similarity of S and T as SIM(S, T) = |S∩T|

|S∪T| .

S T

Figure 8.1: Jaccard similarity of two
sets. The intersection |S ∩ T| = 3 and
the union |S ∪ T| = 10. Therefore their
Jaccard similarity is 3/10.

As a result, we redefine our problem statement as follows:

Problem 8.1.7 Given a constant 0 ≤ s ≤ 1 and a collection of sets S , find
the pairs of sets in S whose Jaccard similarity is greater than s.

Refer to Example 8.1.3. Suppose we have two documents D
and E, where D = “The cow jumped over the moon′′ and E =

“The dog jumped over the moon′′, and let k = 2. The shingles corre-
sponding to D and E are
{Thecow, cowjumped, jumpedover, overthe, themoon} and
{Thedog, dogjumped, jumpedover, overthe, themoon}, respectively.

Their Jaccard similarity is 3/7. We will report that D and E are
similar documents for any value of s ≤ 3/7.

180 notes on algorithm design

8.2 Similarity-Preserving Summaries of Sets

In this section, we will present a solution for the storage of sets
of shingles using smaller representations called signatures. These
signatures will also have the property that the similarity measure
between any two will be approximately the same as the similarity
between the two sets of shingles which they are derived from.

First, let us consider a natural representation of a set. Let U be the
universe from which the elements of the set are drawn. Order the
elements of U in some order. A set S ⊆ U can be represented by a
0-1 vector of length |U|, where a 1 represents that the corresponding
element from the universe is present in the set, and a 0 represents
that the element is absent from the set. Similarly for a collection of
sets over the universe U, we can associate a characteristic matrix M,
where each column represents the vector corresponding to a set and
each row corresponds to an element of U.

An example is given in Table 8.1, where we have four sets (repre-
senting households in a neighborhood), a universe U consisting of
five elements (possible vacation destinations), and the characteristic
matrix M. Observe that the set S1 prefers cruise and safari, S2 loves
to visit resorts, S3 loves Ski, Safari and prefers to stay at home, etc.

S1 S2 S3 S4
Cruise 1 0 0 1

Ski 0 0 1 0

Resorts 0 1 0 1

Safari 1 0 1 1

Stay at Home 0 0 1 0

Table 8.1: A characteristic matrix M for
4 sets {S1, S2, S3, S4}. The universe U
consists of 5 elements.

One effective way to compute the signature for a collection of sets
is to use minhashing. For minhashing, the rows of the characteristic
matrix are first randomly permuted. Let π be a permutation of rows.
Then for each set (column in the characteristic matrix), its minhash
value h is the index of the first row which is a 1 after applying the
permutation π. In the previous example, suppose we permute the
rows by applying the permutation π : 01234 → 40312. The result-
ing table after permutation is shown as Table 8.2. Observe that the
minhash values of the sets with respect to the permutation π are:
h(S1) = 1, h(S2) = 3, h(S3) = 0, and h(S4) = 1. (Note that the rows
are numbered 0,1,2,3,4).

S1 S2 S3 S4
Ski 0 0 1 0

Safari 1 0 1 1

Stay at Home 0 0 1 0

Resorts 0 1 0 1

Cruise 1 0 0 1

Table 8.2: Characteristic matrix after the
permutation π : 01234→ 40312 of rows
of Table 8.1.

In the following lemma we establish an important connection
between the Jaccard similarity of two sets and the probability that
their minhash values are the same after a random permutation of the
rows of the characteristic matrix. We show that the Jaccard similarity
is equal to the probability that these minhash values are the same.

Lemma 8.2.1 For any two sets Si and Sj in a collection of sets S where the
elements are drawn from the universe U, the probability that the minhash
value h(Si) equals h(Sj) is equal to the Jaccard similarity of Si and Sj, i.e.,

Pr[h(Si) = h(Sj)] = SIM(Si, Sj) =
|Si∩Sj |
|Si∪Sj | .

Proof. Focus on the columns representing the sets Si and Sj in the
characteristic matrix before the random permutation. For any row,

locality-sensitive hashing 181

the entries corresponding to these columns are either (a) both 0, (b)
both 1, or (c) one is 0 and the other is 1. Let X be the number of rows
of type (b) and let Y be the number of rows of type (c). Observe that
the Jaccard similarity of Si and Sj is SIM(Si, Sj) =

|X|
|X|+|Y| .

Now, what is the probability that when we scan the rows from
top to bottom, after the random permutation, we meet a type (b) row
before a type (c) row? This is exactly |X|

|X|+|Y| , which is also precisely
when h(Si) = h(Sj).

Consider minhash signature matrix SIG(M). These are matrices
constructed by repeatedly minhashing a characteristic matrix M of
a set system S with universe U as follows. Pick a set of n random
permutations of rows of M. For each set in S compute its h-value
with respect to each of the n-permutations. This results in SIG(M)

— it consists of |S| columns and n-rows, and the (i, j)-th entry cor-
responds to the signature of the j-th set with respect to the i-th
permutation.

Example 8.2.2 Shown in Table 8.3 is the minhash signature matrix
SIG(M) created from the characteristic matrix of Table 8.1 using n = 2
permutations. The first permutation π1 maps row x to x + 1 mod 5 and the
second permutation π2 maps the row x to 3x + 1 mod 5. (Note that rows are
numbered 0, 1, 2, 3, 4.) Let us denote the minhash signatures corresponding
to π1 and π2 by h1 and h2, respectively.

S1 S2 S3 S4
h1 1 3 0 1

h2 0 2 0 0

Table 8.3: Signature matrix SIG(M) for
4 sets corresponding to permutations
π1 and π2 of characteristic matrix M in
Table 8.1.

Next we discuss how to compute SIG(M) efficiently. Since the
characteristic matrix M is typically very large, we cannot afford to
permute its rows. In place of performing the permutations explicitly,
we use several hash functions h1, . . . , hn, where each hi : {1, . . . , U} →
{1, . . . , U}, 1 ≤ i ≤ n. The i− th row of M is mapped to the row at
index h(i) after permutation. Note that hi may not result in a valid
permutation as two different rows of M may hash to the same index
due to collisions. Nevertheless this is not a major issue as it avoids
the need for explicitly permuting the rows of M. Shown below is
an outline of the required steps to compute this signature matrix
SIG(M). (If required, we can replace the hash functions by actual
permutations, and this will not alter these steps.)

Step 1: Initialize each entry of the signature matrix SIG(M) to ∞.

Step 2: Pick n random hash functions h1, . . . , hn, where hi : {1, . . . , U} →
{1, . . . , U}.

Step 3: Execute the following steps for each row r of M.

1. Compute h1(r), h2(r), . . . , hn(r).

182 notes on algorithm design

2. For c = 1, . . . , |S|; if M[r, c] = 1 then for each i = 1, . . . , n,
SIG(i, c) := min(hi(r),SIG(i, c)).

Let us analyze the running time of the above algorithm. Step 1 re-
quires O(n|S|) time. Step 2 requires time proportional to computing
n hash functions. For Step 3, observe that for each non-zero entry of
M, we compute n hash values, and this requires O(n) time. So the
total computation time is upper bounded by O(n|S||U|), or more
precisely O(|S||U|+ n|K|), where K is the total number of elements
in all the sets. We do not need any additional memory except to store
the description of n hash functions and the signature matrix SIG(M)

and . Although the signature matrix is fairly small compared to the
characteristic matrix, its size could still be large.

Just to have some perspective. Every year, Carleton admits approx-
imately 5000 students. Each student typically takes 5 courses and
each course consists of usually 4 assignments. So in all 5000 ∗ 5 ∗ 4 =

100, 000 assignments (i.e., documents) are generated by the students
each term. If we want to find near similar documents by comparing
every pair of documents, we need to evaluate (100,000

2) = 1010 pairs of
documents. If the comparison between a pair of documents requires
10−5 seconds, it will take ∼ 28-hours to find near similar documents.
Instead, suppose we generate 125 signatures, each of size 4-bytes,
for each of the documents. Then we have a signature matrix consist-
ing of 125 ∗ 100, 000 signatures of total size that equals to 50Mb. In
the next section, we will introduce the Locality-Sensitive Hashing
(LSH) technique and show how we can find near similar documents
(without using pairwise direct comparisons) very efficiently using the
signature matrix.

8.3 LSH for Minhash Signatures

First we replace each document by its shingles forming a well-
defined set. From these sets and by the application of minhashing
concept of the previous section, we construct the signature matrix.
Following the notation of the previous section, let the signature ma-
trix be SIG(M) for the set of documents S . We partition the rows
of this matrix into b = n/r bands, where each band is made of r-
consecutive rows. See Table 8.4 for an illustration. For simplicity, we
assume that r divides n. For each band we define a hash function
h : Rr → Z, which takes a column vector of length r and maps it to
an integer (i.e. a bucket). If we want we can even choose the same
hash function for all the bands, but the buckets are kept distinct for
each band. Now if two vectors of length r in any one of the bands
hash to the same bucket, we declare that the corresponding sets

locality-sensitive hashing 183

(documents) are potentially similar.

Band # S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

2 2 1 0 0 1 3 2 5 0 3

Band 1 1 3 2 0 2 2 1 4 2 1 2

3 0 3 0 4 3 2 0 0 4 2

0 4 3 1 5 3 3 2 3 5 4

Band 2 2 1 1 0 4 1 2 1 4 2 5

4 2 1 0 5 2 3 2 3 5 4

2 4 3 0 5 3 3 4 4 5 3

Band 3 0 2 4 1 3 4 3 2 2 2 4

0 2 1 0 5 1 1 1 1 5 1

0 5 1 0 2 1 3 2 1 5 4

Band 4 1 3 1 0 5 2 3 3 6 3 2

0 5 2 1 5 1 2 2 6 5 4

Table 8.4: Partitioning of a signature
matrix for |S| = 11 sets, with n = 12
hash functions, into four bands (b = 4)
of three rows each (r = 3). Note that
(a) in Band 1, the sets {S3, S6} are
hashed into the same buckets, (b) in
Band 3, {S3, S6, S11} are hashed into
the same bucket, and also {S8, S9} are
hashed into the same bucket (possibly
different from the bucket consisting
of {S3, S6, S11}), and (c) In Band 4,
{S2, S10} are hashed into the same
bucket.

Lemma 8.3.1 Let s > 0 be the Jaccard similarity of two sets. The probabil-
ity that the minhash signature matrix agrees in all the rows of at least one of
the bands for these two sets is f (s) = 1− (1− sr)b.

Proof. The proof is straightforward and uses the following chain of
simple arguments.

1. From Lemma 8.2.1, the probability that the minhash signatures for
these two sets are the same in any particular row of the signature
matrix is s.

2. The probability that the signatures agree in all the rows in one
particular band is sr. The probability is computed by taking AND
of r independent events.

3. The probability that the signatures do not agree in at least one
of the rows in this band is 1 − sr. This is the probability of the
complementary event. Alternatively, one can think of this as the
probability of an OR-event, i.e. the signatures do not agree in the
first row OR the signatures do not agree in the second row OR . . .
OR the signatures do not agree in the last row.

4. The probability that the signatures do not agree in any of the b
bands is (1− sr)b.

5. Therefore, the probability that the signatures agree in at least one
of the bands is f (s) = 1− (1− sr)b.

Corollary 8.3.2 In the above method, the probability that the two sets with
Jaccard similarity 0 ≤ s ≤ 1 are detected similar is 1− (1− sr)b.

184 notes on algorithm design

In Table 8.5 we evaluate the probability function f (s) = 1− (1− sr)b

for different values of s, b, and r.

(b, r) (4, 3) (16, 4) (20, 5) (25, 5) (100, 10)
f (s) = 1− (1− sr)b ↘

s = 0.2 0.0316 0.0252 0.0063 0.0079 0.0000

s = 0.4 0.2324 0.3396 0.1860 0.2268 0.0104

s = 0.5 0.4138 0.6439 0.4700 0.5478 0.0930

s = 0.6 0.6221 0.8914 0.8019 0.8678 0.4547

s = 0.8 0.9432 0.9997 0.9996 0.9999 0.9999

s = 1.0 1.0 1.0 1.0 1.0 1.0

t = (1
b)

(1
r) 0.6299 0.5 0.5492 0.5253 0.6309

Table 8.5: Values of the function f (s) =
1− (1− sr)b for different values of s, b,
and r.

The graphical representation of f (s) = 1− (1− sr)b is in Figure
8.2. In the graph, x-axis represents values of s and y-axis represents
the value of the probability function f (s). As we can see the curve is
S-shaped for different combinations of values of b and r. We observe
that as s → 1, the probability function f (s) = 1− (1− sr)b → 1, i.e.,
the higher the Jaccard similarity between two sets, the probability
that these two sets will map to the same bucket is high.

One important aspect of this curve is that the steepest slope occurs
at the value of s which is approximately t = (1/b)(1/r) and this can
derived as follows. To find the steepest slope, we need to compute for
what values of s, f ′′(s) = 0. It turns out that s = (r−1

br−1)
1
r results in

the steepest slope. For values of br >> 1, s ≈ (1
b)

1
r . In other words, if

the Jaccard similarity s of the two sets is above the threshold t = (1
b)

1
r ,

then the probability that they will be found potentially similar is
very high. For example, the last row of Table 8.5 lists the thresholds.
Consider the entries in the row corresponding to s = 0.8 and observe
that most of the values for f (s = 0.8)→ 1 as s > t.

What this technique has done is to give us some idea in terms of
which sets are very likely to be similar. If required, we can actually
compare these potential pairs of sets (or their minhash signatures) to
find out whether they are actually similar. Note that in this technique
we need to choose appropriate values of parameters n, b, and r, given
the value of the threshold t. Then any pairs of sets whose Jaccard
similarity s > t will likely be classified as similar sets. Increasing
the value of n results in higher running time as we have to compute
those many minhash signatures. Choosing smaller values of n results
in less accurate results. See, for example, the results for n = 12
corresponding to the b = 4, r = 3 column in Table 8.5 in comparison
to the results for n = 125 corresponding to the b = 25, r = 5 column
or the results for n = 1000 corresponding to the b = 100, r = 10

locality-sensitive hashing 185

column.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s

f(
s)

=
1
−
(1
−

sr)
b

r = 3, b = 4
r = 4, b = 16
r = 5, b = 20
r = 5, b = 25

r = 10, b = 100

Figure 8.2: The S-curve f (s) = 1− (1−
sr)b for different values of b and r of
Table 8.5.

At an abstract level what we have done here is to use a family of
functions (the minhash functions) and the banding technique (with
parameters b and r) to distinguish between pairs which are at a low
distance (similar) to the pairs which are at a large distance (dissim-
ilar). The steepness of the S curve suggests a threshold where this
technique can be effective. In the next section, we will see that there
are other families of functions that can be considered to separate the
pairs which are at a low distance from the pairs which are at a higher
distance.

8.4 Metric Space

Consider a finite set X. A metric or distance measure d on X is a func-
tion

d : X× X → [0, ∞)

satisfying the following properties. For all elements u, v, w ∈ X:

1. Non-negativity: d(u, v) ≥ 0.

2. Symmetric: d(u, v) = d(v, u).

3. Identity: d(u, v) = 0 if and only if u = v.

4. Triangle Inequality: d(u, v) + d(v, w) ≥ d(u, w).

Consider the following examples of metric spaces.

Example 8.4.1 (Euclidean Distance) Let X be a set of n-points in plane.
Euclidean distance between any two points pi = (xi, yi) and pj = (xj, yj) of

186 notes on algorithm design

X is defined as d(pi, pj) =
√
(xi − xj)2 + (yi − yj)2. Observe that X with

the Euclidean distance measure satisfies the metric properties.

Example 8.4.2 (Jaccard Distance) Let S be a collection of sets. First
observe that the Jaccard Similarity doesn’t satisfy the metric properties as
for any set S ∈ S , the Jaccard similarity SIM(S, S) = 1. This violates the
identity property. Define the Jaccard distance between two sets Si, Sj ∈ S as
JD(Si, Sj) = 1− SIM(Si, Sj). Since 0 ≤ SIM(Si, Sj) ≤ 1, JD(Si, Sj) ≥ 0.
Thus Jaccard distance satisfies the non-negativity property. Symmetry and
Identity is obvious. To show the triangle inequality, it may be best to look
at the relationship between the minhash signatures and Jaccard similarity.
By Lemma 8.2.1 we know that Pr[h(Si) = h(Sj)] = SIM(Si, Sj). Since
JD(Si, Sj) = 1− SIM(Si, Sj), thus JD(Si, Sj) = Pr[h(Si) 6= h(Sj)]. Now
consider three sets Si, Sj, Sk ∈ S . To show that JD(Si, Sj) + JD(Sj, Sk) ≥
JD(Si, Sk), it is enough to show that Pr[h(Si) 6= h(Sj)] + Pr[h(Sj) 6=
h(Sk)] ≥ Pr[h(Si) 6= h(Sk)]. Observe that if h(Si) 6= h(Sk) then at
least h(Si) 6= h(Sj) or h(Sj) 6= h(Sk) must hold. If h(Si) = h(Sj) and
h(Sj) = h(Sk) then it will follow that h(Si) = h(Sk). Thus, the set S with
the Jaccard distance measure satisfies the metric properties.

Example 8.4.3 Let X be a set of n elements, where the distances between
any pair of elements x, y ∈ X are defined as follows.

d(x, y) =

1, if x 6= y

0, otherwise

Observe that X with distance function d satisfies the metric properties.

Example 8.4.4 (Hamming Distance) Consider the space X of d-dimensional
Boolean vectors. Consider two vectors x, y ∈ X. The Hamming distance
HAM(x, y) is defined as the number of coordinates in which x and y differ.
For example, let x = 110011 and y = 100111. Then HAM(x, y) = 2, as
they differ in exactly two coordinates. Observe that the Hamming distance
is non-negative, symmetric, and that the distance between two identical
vectors is 0. The Hamming distance between any three vectors x, y, and z
also satisfies the triangle inequality HAM(x, y) +HAM(y, z) ≥ HAM(x, z)
since the number of components in which x differs from z cannot be larger
than the sum of the number of components in which x differs from y and y
differs than z. Therefore, we can use Hamming distance as a metric over the
d-dimensional vectors.

8.5 Theory of Locality Sensitive Functions

In this section we will consider a family of functions F . The families
are typically comprised of hash functions. We say that a hash func-
tion f ∈ F identifies two items x and y to be similar if f hashes them

locality-sensitive hashing 187

to the same bucket. We use the notation f (x) = f (y) to denote that x
and y are hashed to the same bucket. For example, the minhash func-
tions seen previously form a family of functions. Recall the definition
of a distance measure from Section 8.4. Next we define a notion of
sensitive family that encapsulates the idea that if two items are close to
each other with respect to the distance measure, then the probability
that they hash to the same bucket by any function f ∈ F will be
high. Conversely, if the two items are far from each other, then the
probability that they hash to the same bucket will be low.

P1

P2

d2d1

Distance

Probability
of being
hashed to
the same
bucket

Figure 8.3: A smaller distance between
items corresponds to a higher probabil-
ity of similarity.

Definition 8.5.1 Let d be a distance measure and let d1 < d2 be two
distances in this measure. Let 0 ≤ p2 < p1 ≤ 1. A family of functions F
is said to be (d1, d2, p1, p2)-sensitive if for every f ∈ F the following two
conditions hold;

1. If d(x, y) ≤ d1 then Pr[f (x) = f (y)] ≥ p1.

2. If d(x, y) ≥ d2 then Pr[f (x) = f (y)] ≤ p2.

See Figure 8.3 for an illustration.

Example 8.5.2 Consider the Jaccard distance measure for finding similar
sets in a collection of sets S . Let 0 ≤ d1 < d2 ≤ 1. The family of minhash-
signatures is (d1, d2, p1 = 1− d1, p2 = 1− d2)-sensitive and this can be
argued as follows. Suppose that the Jaccard similarity between two sets is
at least s. Then their Jaccard distance is at most d1 = 1− s. By Lemma
8.2.1 the probability that they will be hashed to the same bucket by minhash
signatures is ≥ p1 = 1− d1. Similarly, suppose that the Jaccard similarity
is at most s′. Then their Jaccard distance is at least d2 = 1 − s′. The
probability that the minhash signatures map them to the same bucket is at
most p2 = 1− d2.

Next we look into amplifying sensitive families using AND and
OR constructions. Suppose we have a (d1, d2, p1, p2)-sensitive family
F . We can construct a new family G by an AND-construction as
follows. Each function g ∈ G is formed from a set of r independently
chosen functions of F , say f1, f2, . . . , fr for some fixed value of r.
Now, g(x) = g(y) if and only if for all i = 1, . . . , r, fi(x) = fi(y).

Claim 8.5.3 G is an (d1, d2, pr
1, pr

2)-sensitive AND family.

Proof. Each function fi is chosen independently. For any 0 ≤ p ≤ 1, if
p is the probability that any fi ∈ F will hash two items u and v to the
same bucket, then the probability that any function g ∈ G will hash
u and v to the same bucket is pr. This is the probability of all the r
independent events to occur simultaneously.

188 notes on algorithm design

Similarly we can construct G by an OR-construction. Each member
g in G is constructed by taking b independently chosen members
f1, f2, . . . , fb from F . We say that g(x) = g(y) if and only if fi(x) =

fi(y) for at least one of the members in { f1, f2, . . . , fb}.
Claim 8.5.4 G is an (d1, d2, 1− (1− p1)

b, 1− (1− p2)
b)-sensitive OR

family.

Proof. Each function fi is chosen independently, and this is the
probability of at least one of the b-events to occur. We can compute
this by first finding the probability that none of the b events occur.
Let p be the probability that any function fi ∈ F hashes two items u
and v to the same bucket. Then 1− p is probability that fi does not
hash them to the same bucket, and (1− p)b is the probability that
none of the functions { f1, f2, . . . , fb} hash them to the same bucket.
Thus, 1− (1− p)b is the probability that at least one of the functions
{ f1, f2, . . . , fb} hash them to the same bucket.

Observe that the AND-construction reflects rows within a band in
Table 8.4. Moreover, the OR-construction reflects the combination of
various bands in that table. Furthermore, AND construction lowers
all the probabilities, and by choosing the family F and the parameter
r, we can try to push pr

2 → 0. The OR-construction increases all the
probabilities, and by choosing F and b appropriately we can try to
push 1− (1− p1)

b → 1. This is the essence of the idea of amplification.
Next we look into some concrete examples.

Let us play with some values of b and r to see the effect of AND
and OR-constructions. We first construct an AND-family F1 for a
certain value of r, and then construct an OR-family F2 for a certain
value of b. Next we construct an AND-OR family F3 by first con-
structing an AND family followed by an OR family. Similarly we
construct the family F4 by first constructing an OR-family followed
by an AND-family. Let us look at the amplification of the probabili-
ties in Table 8.6 for different values of p.

F1 (AND) F2 (OR) F3 (AND-OR) F4 (OR-AND)
p pr 1− (1− p)b 1− (1− pr)b (1− (1− p)r)b

0.2 0.0001 0.6723 0.0079 0.0717

0.4 0.0256 0.9222 0.1216 0.4995

0.6 0.1296 0.9897 0.5004 0.8783

0.7 0.2401 0.9975 0.7446 0.9601

0.8 0.4096 0.9996 0.9282 0.9920

0.9 0.6561 0.9999 0.9951 0.9995

Table 8.6: Illustration of four families
obtained for different values of p. F1
is the AND family for r = 4. F2 is OR
family for b = 5. F3 is the AND-OR
family for r = 4 and b = 5. F4 is the
OR-AND family for r = 4 and b = 5.

Let us try to understand the columns of Table 8.6. Let F be a
(0.2, 0.6, 0.8, 0.4)-sensitive minhash function family. This means if

locality-sensitive hashing 189

the distance between two sets Si and Sj is ≤ 0.2, any function in F
will hash them to the same bucket with probability ≥ 0.8. Similarly
if the distance between them is ≥ 0.6, with probability at most 0.4
they will hash to the same bucket. Let us focus our attention on
rows corresponding to p2 = 0.4 and p1 = 0.8 in Table 8.6. For the
AND-family F1 we see that pr = p4 is substantially lower than p,
but still p4

2 → 0 and p4
1 is away from 0. For the OR-family F2 for

b = 5, 1 − (1 − p)5 ≥ p, but still the value corresponding to p1

tends towards 1 and the value corresponding to p2 is away from 1.
More interesting are the last two columns. Notice that the AND-OR
family F3 corresponds to the LSH for minhash signature family
of Section 8.3. Here we first apply a r-way AND-construction and
then a b-way OR-construction. The AND-construction converts any
probability p to pr. This, when followed by a b-way OR-construction
further converts the probability to 1− (1− pr)b. As we can see from
Table 8.6 the value corresponding to p1 tends towards 1 and the
value corresponding to p2 is closer to 0. Notice that the value of the
function 1− (1− pr)b with respect to the values of p forms an S-curve.
Its fixed-point p = 1− (1− p4)5 is p ≈ 0.6672 and its threshold value
t = (1

b)
(1

r) ≈ 0.6687.1 This implies that for values of p significantly 1 Thanks to WolframAlpha

less than 0.6672, AND-OR family amplifies it towards 0. Similarly,
values of p larger than 0.6672 are amplified to 1. Notice that this
technique amplifies the probabilities in the right direction (away from
threshold and fix-point), provided we can apply the function several
times (e.g. 20 times in our example with r = 4 and b = 5). The
OR-AND family F4 does not provide anything interesting. In this
construction first we have applied a r-way OR-construction followed
by a b-way AND-construction.

8.6 LSH Families

In the previous section we saw LSH families for the Jaccard distance
measure. In this section we will construct LSH-families for various
other distance measures.

8.6.1 LSH family for Hamming Distance

Consider two d-dimensional Boolean vectors x and y. Recall from
Example 8.4.4 that the Hamming distance HAM(x, y) is defined as
the number of coordinates in which x and y differ. We construct a
locality-sensitive family for the d-dimensional Boolean vectors as
follows. Let fi(x) denote the i-th coordinate of x. For two vectors
x and y, the probability that fi(x) = fi(y) for a randomly chosen
coordinate i will equal the number of coordinate agreements out of

190 notes on algorithm design

the total number of coordinates. Since the vectors x and y disagree
in HAM(x, y) positions out of d positions, then they agree in d −
HAM(x, y) positions. Hence Pr[fi(x) = fi(y)] = 1− HAM(x,y)

d .

Claim 8.6.1 For any d1 < d2, F = { f1, f2, . . . , fd} is a (d1, d2, 1 −
d1/d, 1− d2/d)-sensitive family of hash functions.

Proof. Recall Definition 8.5.1. Let p1 = 1− d1/d and p2 = 1− d2/d. A
family of functions F is said to be (d1, d2, p1, p2)-sensitive if for every
fi ∈ F the following two conditions hold:

1. If HAM(x, y) ≤ d1 then Pr[fi(x) = fi(y)] ≥ p1

2. If HAM(x, y) ≥ d2 then Pr[fi(x) = fi(y)] ≤ p2

8.6.2 LSH family for similarity of vectors using dot products

Consider two d − dimensional vectors x = (x1, x2, . . . , xd) and y =

(y1, y2, . . . , yd) with tails at the origin o. Their dot product is defined
as x · y = ∑d

i=1 xiyi. Note that the dot product is positive if the
angle between the vectors is between 0 and π/2 and is negative if
the angle is between π/2 and π. The vectors x and y define a plane,
say P. Consider the intersection of any d-dimensional hyperplane H
(different than P) passing through o. The intersection between H and
P defines a line h passing through o. The vectors x and y may or may
not be on the same side of h. Let v be the normal vector to H and
passing through o in the plane P. To determine whether x and y are
on the same side of h, we can compute the dot products v · x and v · y.
If the dot product has the same same sign, then h does not separate x
from y. Whereas, if they have different sign, then h separates them, as
the angle between v and one of x or y will be less than π/2, and with
the other one it will be more than π/2.

For example, in Figure 8.4, the hyperplane H1 intersects the plane
containing vectors x and y in line h1 passing through o. Note that
the dot products v1 · x and v1 · y have different signs, where v1 is the
normal to H1 passing through o. Furthermore, H2 intersects the plane
containing vectors x and y in the line h2, and v2 · x and v2 · y have the
same sign, where v2 is the normal to H2 passing through o.

x

y

h1

v1

h2

v2

o

Θ

Figure 8.4: Two vectors x and y shown
in a plane. The intersection of hy-
perplanes H1 and H2 with the plane
containing x and y forms lines h1 and
h2. Vectors v1 and v2 are normal to
H1 and H2, respectively, and are in
the plane containing x and y. Observe
that v1 · x > 0, v1 · y < 0, v2 · x > 0,
v2 · y > 0.

Let us choose a random hyperplane H passing through o. We want
to estimate the probability that it will separate the vectors x and y,
i.e. what is the probability that x will be one side of H and y is on
the other side? Let the angle between x and y be θ. It is easy to see
that for H to separate x and y, the line h (and the corresponding
normal vector v) have to be in a particular sector of angle θ at o. If h

locality-sensitive hashing 191

falls within this sector, then H separates x from y. Or equivalently
we say that the dot products v · x and v · y have different signs,
which we write as fv(x) 6= fv(y), where fv(x) represents the sign
of the dot product v · x. Therefore, Pr[fv(x) 6= fv(y)] = θ/π and
Pr[fv(x) = fv(y)] = 1− θ/π.

We construct a sensitive family of functions F as follows. We
select a set of random d− dimensional vectors v anchored at origin.
These vectors constitute the set F . Given any d-dimensional vector
x, for each vector v ∈ F , we compute the sign of the dot product
v · x, and store it as fv(x). From the above arguments, it is easy to see
that if the angle between two vectors x and y is at most d1 = θ1, then
the probability that for any v ∈ F , Pr[fv(x) = fv(y)] ≥ 1− d1/π.
Similarly if the angle is at least d2 = θ2, then Pr[fv(x) = fv(y)] ≤ 1−
d2/π. Thus, our resulting family F is a (d1, d2, 1− d1/π, 1− d2/π)-
sensitive family of functions.

8.6.3 LSH family for Near Neighbors in 2-dimensions

Consider a set of points P in a 2-dimensional space. We are inter-
ested in finding pairs of points which are within certain distance to
each other, say ∆. Each hash function f in the family F will be repre-
sented by a line l with random orientation in this space. We partition
l into intervals of equal size 2∆, and orthogonally project all points
of P on l. For a point x ∈ P, let fl(x) denote the interval in which x
lies after the projection. If two points x, y ∈ P lie in the same interval
after projection, then fl(x) = fl(y). Next, we show that if the dis-
tance between x and y is at most ∆, then with probability at least 1/2,
fl(x) = fl(y), i.e. if d(x, y) ≤ ∆ then Pr[fl(x) = fl(y)] ≥ 1/2. More-
over, if d(x, y) > 4∆, then Pr[fl(x) = fl(y)] ≤ 1/3. Using this method,
if two points are close to each other then there are high chances that
they will project to the same interval. Conversely, if the points are far
away, it is unlikely they will project to the same interval.

Without loss of generality, we assume that the line l is horizon-
tal. Let x and y be two points in the plane. Now we show that if
d(x, y) ≤ ∆, then Pr[fl(x) = fl(y)] ≥ 1/2. Let m be the mid-point of
the interval fl(x). With probability 1/2, the projection of x lies to the
left of m in fl(x). Furthermore, with probability 1/2, the projection
of y lies to the right of projection of x. In this case, since d(x, y) ≤ ∆,
projection of y lies in fl(x) (i.e., fl(x) = fl(y)). Thus with probability
1/4, the projections of x and y lie in fl(x) where the projection of x is
to the left of m and the projection of y is to the right of the projection
of x. Similarly, with probability 1/4, projections of x and y lie in fl(x)
where the projection of x is to the right of m and the projection of y is
to the left of projection of x. Since the above two cases are mutually

192 notes on algorithm design

exclusive, if d(x, y) ≤ ∆, then Pr[fl(x) = fl(y)] ≥ 1/2.
Next we show that if d(x, y) > 4∆, then Pr[fl(x) = fl(y)] ≤ 1/3.

As before let l be horizontal and let θ be the angle of the line passing
through x and y with respect to l. For the projections of x and y to
fall in the same interval, we will need that d(x, y) cos θ ≤ 2∆. For
this to happen cos θ ≤ 1/2, or the angle the line xy forms with the
horizontal needs to be between 60◦ and 90◦. Observe that there is at
most 1/3rd chance that the angle between the horizontal and xy is in
that range. See Figure 8.5 for an illustration.

x

y p

l

2∆ 2∆ 2∆

θ

q
θ′

Figure 8.5: Points x and y project to
the same interval on l, whereas p and q
project to different intervals.

Hence, the family with respect to the projection on a random line
with intervals of size 2∆ is a (∆, 4∆, 1/2, 1/3)-sensitive family. Again,
we can amplify these probabilities by taking combination of ANDs
and ORs as in Section 8.5.

8.6.4 LSH family for answering near-neighbor queries

Suppose we are given a set of n points P in D-dimensional Euclidean
space RD. For a query point q ∈ RD, if there is a point p ∈ P such
that d(q, p) = R, then any point x ∈ P that is within a distance
of (1 + ε)R from q, for some constant ε > 0, is called a (R, ε)-near
neighbor (denoted as (R, ε)-NN) of q. (Note that all the distances are
Euclidean distance in this subsection.) If p happens to be the closest
point of q in P, an (R, ε)-NN is usually referred to as an approximate
nearest neighbor. We first sketch a construction of a family F of hash
functions f to answer (R, ε)-NN queries, where for all x ∈ P and
given value of R, the following holds (with high probability):

- if x is a (R, ε)-NN of q, f (q) = f (x).
- if x is not a (R, ε)-NN of q, f (q) 6= f (x).
We will utilize the data structure for answering (R, ε)-NN queries

to answer the approximate nearest neighbor queries as follows.
Let dmin and dmax be the smallest and the largest inter-point dis-
tances in P, respectively. We will construct data structures for
(R, ε)-NN queries for values of R = dmin/ε, dmin, (1 + ε)dmin, (1 +

ε)2dmin, . . . , dmax. For the query point q, we will perform binary
search in the data structures for various values of R to find the small-
est value of R for which we obtain an element x ∈ P such that x
is a (R, ε)-NN of q (i.e., f (q) = f (x)). The binary search incurs an
additional cost of O(log Dmax

Dmin
).

Now we turn our attention to answering (R, ε)-NN queries. Pick a
window size w > 0, where w is real number. We will hash points in P
to buckets by the following procedure.

1. For α = 1, . . . , b do

(a) Pick r = O(log n) random vectors v1, v2, . . . , vr in RD. The

locality-sensitive hashing 193

components vij, j = 1, . . . , D for the vectors vi, i = 1, . . . , r, are
chosen independently from the standard normal distribution
N(0, 1).

(b) For each vi, choose an offset oi ∈ (0, w] uniformly at random.

(c) Each point x ∈ P is mapped to the bucket fα(x) = (d 〈v1,x〉+o1
w e, . . . , d 〈vr ,x〉+or

w e).
(Note that 〈vi, x〉 represents the dot-product of vi and x.)

To answer the (R, ε)-NN query for point q ∈ RD, we execute the
following steps:

1. Compute f1(q), f2(q), . . . , fb(q) to identify the buckets in which
point q falls.

2. Form a set Candidate(q) by taking union of points of P in buckets
f1(q), f2(q), . . . , fb(q).

3. For up to 2b elements of Candidate(q), if there exists an element
x ∈ Candidate(q) such that ||x − q||2 ≤ (1 + ε)R, report x as
(R, ε)-NN of q. Otherwise report NIL.

Before we proceed further, let us look at the vectors vi’s chosen
in the above procedure. Each component of these vectors are inde-
pendent identical random variable from the distribution N(0, 1).
Let X1, . . . , Xr be i.i.d. random variables from N(0, 1). We are inter-
ested in understanding the distribution of the linear combination of
X1, . . . , Xr.

Claim 8.6.2 Let X = (X1, . . . , Xr), where each random variable Xi,
1 ≤ i ≤ r, is from the standard normal distribution N(0, 1). Let u =

(u1, . . . , ur), where each ui is a real number. The dot product 〈u, X〉 has the
distribution N(0, ||u||22).

Proof. E[〈u, X〉] = E[∑r
i=1(uiXi)] = ∑i uiE[Xi] = 0 by linear-

ity of expectation. Note that for any random variable Y, its vari-
ance Var(Y) = E[Y2] − E[Y]2. Thus, Var[〈u, X〉] = E[(〈u, X〉)2].
Now E[(〈u, X〉)2] = E[(u1X1 + · · · + urXr)(u1X1 + · · · + urXr)] =

∑i 6=j uiujE[XiXj] + ∑i u2
i E[X2

i] = ∑i 6=j uiujE[Xi]E[Xj] + ∑i u2
i E[X2

i] =

0 + ∑i u2
i = ||u||22, since (a) for i 6= j, E[XiXj] = E[Xi]E[Xj] as

Xi and Xj are independent, and (b) E[X2
i] = 1, since Var[Xi] =

E[X2
i]− E[Xi]

2 = 1 as Xi has N(0, 1) distribution.

Let v be one of the vectors with offset o computed by the proce-
dure where each of its component is i.i.d. random variable from the
standard normal distribution N(0, 1). For a point x ∈ P and a query
point q ∈ RD, we are interested in finding the probability that both
x and q will hash to the same bucket, i.e Pr

(
b 〈v,q〉+o

w c = b 〈v,x〉+o
w c

)
.

Observe that x and q will hash into the same bucket of width w if

194 notes on algorithm design

(1) |〈v, q〉 − 〈v, x〉| ≤ w, and
(2) the ‘divider’ does not fall between 〈v, q〉 and 〈v, x〉.

Note that |〈v, q〉 − 〈v, x〉| ≤ w is equivalent to |〈v, q− x〉| ≤ w. Let
us apply Claim 8.6.2 to 〈v, q− x〉, where v and q− x play the roles of
X and u, respectively. By the claim we know that 〈v, q− x〉 has the
distribution of N(0, ||q− x||22). Alternatively, we can say that 〈v, q− x〉
is a random variable cZ, where c = ||q− x||2 and Z has φ(z) = N(0, 1)
distribution. Thus the condition |〈v, q − x〉| ≤ w can be written as
|cZ| ≤ w. The probability that the divider falls between 〈v, q〉 and
〈v, x〉 is |〈v,q−x〉|

w . Thus, the probability that the divider does not fall

between 〈v, q〉 and 〈v, x〉 is 1− |〈v,q−x〉|
w .

Now the probability of collision

Pr(c) = Pr
(
b 〈v, q〉+ o

w
c = b 〈v, x〉+ o

w
c
)
=
∫ ≤ w

c

z=0
φ(z)(1− cz

w
)dz.

(8.1)
Substituting t = cz, we obtain

Pr(c) =
∫ w

t=0

1
c

φ
(t

c

)(
1− t

w

)
dt. (8.2)

Also it can be reasoned that the function Pr(c) is monotonically
decreasing in c = ||x− q||2, i.e. the probability of collision decreases as
the distance between x and q increases.

To answer the (R, ε)-NN query, we consider two critical values
of c, namely c = R and c = (1 + ε)R, in Equation 8.2 and let the
corresponding probabilities be p1 = Pr(c = R) and p2 = Pr((c =

1 + ε)R). We know that p1 > p2 from the monotonicity. We claim the
following:

Claim 8.6.3 For a query point q ∈ RD, let p∗ ∈ P be a point such that
||q− p∗|| ≤ R. With respect to the above procedure:

1. For some α ∈ {1, . . . , b}, with probability ≥ 1/2, fα(p∗) = fα(q).

2. With probability > 1/2 the total number of elements x ∈ P such that
fα(q) = fα(x) and ||x− q||2 > (1 + ε)R is at most 2b.

Proof. We prove the first statement. From Equation 8.2, we know that
probability of collision between p∗ and q is at least p1. Therefore, for
a fixed α, Pr[fα(p∗) = fα(q)] ≥ pr

1. By setting r = log 1
p2

n, we have

pr
1 = p

(
log 1

p2
n
)

1 = n
−
(

log 1
p1

log 1
p2

)
= n−ρ,

where ρ =
log 1

p1
log 1

p2

. From the banding technique, we know that the

probability that the collision occurs in at least one of the b bands is

locality-sensitive hashing 195

1− (1− n−ρ)b. We set b = nρ. Then this probability can be expressed
as

1− (1− n−ρ)b = 1− (1− n−ρ)nρ ≥ 1− 1
e
>

1
2

.

Next we prove the second part. Let p ∈ P such that ||p − q|| >
(1 + ε)R. We know from Equation 8.2, the probability of collision

for a fixed α ∈ {1, . . . , b} is ≤ pr
2 = p

(
log 1

p2
n
)

2 = 1
n . Since the set

P has n elements, the expected number of collisions per band is at
most 1, and the total number of the collisions is at most b. Thus the
probability that the number of collisions exceeds more than 2b is at
most 1/2 from Markov’s inequality.

Claim 8.6.4 The queries can be answered in O(nρD log n) = o(nD) time.

Proof. To evaluate a query q ∈ RD, we need to compute b = nρ hash
functions f (q). Each of them requires a computation of r = O(log n)
quantities of the form d 〈vi ,q〉+oi

w e. The dot product requires O(D)

time. Thus the total time required to hash q is O(nρD log n). Once
we compute all the buckets in which q lies, we need to evaluate the
distance between q and at most 2b elements of P. This requires a total
of O(nρD) time. Thus the queries can be answered in O(nρD log n)

time. Since p1 > p2, ρ =
log 1

p1
log 1

p2

< 1. Hence the queries require o(nD)

time. Furthermore, notice that the dimension D is not

in the exponent, as in the Voronoi diagram based methods for finding
nearest neighbors.

Claim 8.6.5 The procedure requires O(n1+ρ + Dnρ log n) space to store the
data structures.

Proof. We need to store the non-empty buckets, i.e. partition of
points in P, for each of the b = nρ bands. Also, we need to store
the parameters for each of the hash functions f . For each band,
this includes O(r) vectors v’s and offsets oi’s. In all this requires
O(bn + rbD) = O(n1+ρ + Dnρ log n) memory space.

The material of this subsection is adapted from the notes of L.
Cayton.

8.6.5 Fingerprint Matching

Fingerprint matching typically requires comparison of several fea-
tures of the fingerprint pattern. These include ridge lines which form
arches, loops, or circular patterns, along with minutia points and pat-
terns which form ridges, and bifurcations (see Figure 8.6). Typically

196 notes on algorithm design

each fingerprint is mapped to a normalized grid that takes care of
the size and orientation of the fingerprint. After the normalization, it
is expected that for two fingerprints of the same finger, if a grid cell
of one fingerprint contains a minutia, the corresponding grid cell of
the other fingerprint, with high probability, will contain that minutia.
Therefore, we can abstract a fingerprint to be a set of grid points,
where matching any two fingerprints amounts to matching elements
in the corresponding grid cells.

Ridge Ending

Bifurcations

Ridge Dot

Figure 8.6: Miniutia in fingerprints.

Assume that the probability of finding a minutia in a random
grid cell of any given fingerprint is 0.2. Also, assuming that we have
two fingerprints of the same finger, let the probability of a minutia
appearing in the same grid cell of both fingerprints given that one
of them does have a minutia there be 0.85. We will define a locality-
sensitive family of functions F as follows. Each function f ∈ F
sends two fingerprints to the same bucket if they have minutia in
each of the three specific grid cells. Let us estimate the chance of
ending up with two matching fingerprints. First, the probability that
two arbitrary fingerprints will map to the same bucket with respect
to the function f is 0.26 = 0.000064. Assuming that we have two
fingerprints from the same finger, f maps them to the same bucket
with a probability of 0.23 × 0.853 = 0.0049. Note that the probability
that the three particular cells of the first fingerprint contains minutia
is 0.23, and given that the two fingerprints are from the same same
finger, the other fingerprint will have minutia in the same cells
with probability 0.853. Now we can use the OR-sensitive families to
amplify these probabilities.

As an example, suppose we use 1000-way OR-functions. Then
two fingerprints from different fingers will map to the same bucket
with a probability of 1− (1− 0.000064)1000 ≈ 0.061. Similarly, two
fingerprints from the same finger will map to the same bucket with a
probability of 1− (1− 0.0049)1000 ≈ 0.992.

For another example, let us now use 2000 OR-functions that are
partitioned in two groups of 1000 functions each. Assume also that
we have constructed buckets for each group. Given a query finger-
print, we will find the fingerprints which are potential matches using
the above scheme in each group independently. We select only those
fingerprints which are potential matches in both the groups. This
produces a set of fingerprints that we will actually compare against
the query fingerprint. Note that in this scheme actual comparisons
of fingerprints occur with only a few fingerprints (those in the in-
tersection). Hence, the probability that we will detect matching
fingerprints is (0.992)2 ≈ 0.984. The probability of false positives
(the non-matches which we will detect after making the comparison
with the query fingerprint) is 0.0612 ≈ 0.00371, which is insignificant.

locality-sensitive hashing 197

Notice that in this scheme we have been able to avoid comparing
the query fingerprint with all the fingerprints and with very high
probability we will find matching fingerprints.

8.7 Bibliographic Notes

A method, based on shingling, for finding similar files in a large
file system was proposed [102]. The k-shingles of a document and
minhashing technique are formally introduced in [29, 28]. These
concepts were developed as a result of the authors’ work on the
AltaVista web index algorithm which was used for detecting similar
documents. Minwise-independent families also underpin the theory
behind minhashing, as the resemblance of document-sets is shown to
be equal to the probability that the min-wise permutation of two sets
using random permutation functions are equal.

Locality-sensitive hashing technique was introduced in [76] where
the approximate nearest-neighbor search problem was first reduced
to the problem of point location in equal balls. Along with this,
the distance measures for Hamming distance and the resemblance
measure given in [29] were used as schemes. It is worth noting that
the approximate search is deemed accurate enough for practical
purposes, where the actual closest neighbor can still be found by
checking all approximate near-neighbors [8]. A scheme based on
p-stable distributions (p ∈ (0, 2]) under the Lp norm for locality-
sensitive hashing was introduced in [40]. Further improvements are
given in [8].

Locality-sensitive hashing is used in for video identification and
retrieval. In this case, feature vectors are usually constructed from
video frames using certain color histograms. In [83], the authors ad-
dress two weaknesses of using LSH for this purpose. Responding to
a non-uniform distribution of points in the space, they focus on using
a hierarchical hash table to produce a more uniform distribution.
In addition to this, they also attempt to partition dimensions more
carefully in order to produce a more even hashing. A new scheme for
video retrieval is then proposed in [75], where a color histogram is
used which better handles the adverse effects of brightness & color
variations. This is used in conjunction with an additional uniform dis-
tance shrinking projection which is applied to the produced feature
vectors.

Locality-sensitive hashing is also used in image search. Similar to
applications in video (for a single frame), images are often processed
using color histograms to produce feature vectors which can be com-
pared. This method was used in [61], with the histograms compared
using the L1 norm. Following this, techniques using χ2 distance [64],

198 notes on algorithm design

p-stable distributions [79], and kernelized locality-sensitive hashing
[97] have been proposed. Kernelized locality-sensitive hashing has
also been used as a basis for search on text images in [112].

LSH has recently been proposed for use in a wide range of other
areas. One of these is the creation of hash values in P2P networks
[41]. This would allow for a conceptual search, as data with similar
ontologies would be located near each other. Here, data is defined
by its extracted concept vectors, which are then hashed into buckets
based on the cosine distance measure. Another, in [78], kernelized
LSH is applied to an utterance model in order to identify speakers. In
this case the Hamming distance metric is used. Other areas include
use for species diversity estimation by allowing ease of grouping
similar DNA sequences [122], and incremental clustering for affinity
groups in Hadoop in order to store related data closer together [81].
[137] has proposed a new scheme based on entropy for LSH. The
argument is that an improvement can be made for [40] such that the
distribution of mapped values will be approximately uniform. 2 2 Parts of this section are contributed by

Andrew Wylie.

8.8 Exercises

8.1 Show that Euclidean metric satisfies triangle inequality.

8.2 Given two documents D1 = {“His brow trembled”} and D2 =

{“The brown emblem”}, compute all k-shingles for each document with
k = 4.

8.3 Compute the Jaccard Similarity of the two sets of k-shingles for D1 and
D2.

8.4 Compute the signature matrix (minhash signature) of a given permu-
tation of characteristic matrix in Table 8.7, using n = 3 different hash
functions.

Element S1 S2 S3 S4

a 1 0 1 1

b 1 0 1 0

c 0 1 0 1

d 1 0 1 0

e 0 0 1 0

Table 8.7: A characteristic matrix.

8.5 Explain the reasoning behind the proof of Lemma 8.2.1.

8.6 Show that the minhash function family is (d1, d2, 1 − d1, 1 − d2)-
sensitive.

locality-sensitive hashing 199

8.7 Calculate hamming distance for the vectors v = [5, 1, 3, 2, 4] and
u = [1, 1, 2, 2, 4].

8.8 Show that the AND amplification construction is (d1, d2, pr
1, pr

2)-
sensitive.

8.9 When applying amplification constructions to a locality-sensitive family
of functions, which order of composition is ‘better’, and why? Explain when
you would want to use different orders of construction.

8.10 Show that the Jaccard Distance which is defined as 1− the Jaccard
Similarity between the two sets is a metric.

8.11 In Section 8.6.3 we considered the problem of computing LSH families
for near neighbors in 2-dimensions. This exercise extends that solution to
3-dimensions. Let P be a set of points in 3-dimensions. Consider a line l
with a random orientation that is partitioned in intervals of size 2∆. Project
points in P orthogonally on l, and for a point x ∈ P, let fl(x) be the interval
it projects on l. For any pair of points x, y ∈ P, show the following.

1. If d(x, y) ≤ ∆, Pr[fl(x) = fl(y)] ≥ 1/2.

2. If d(x, y) ≥ 4∆, Pr[fl(x) = fl(y)] < 1/2.

8.12 Show that the function 1− (1− sr)b is non-decreasing with respect to s
for fixed values of r and b.

8.13 Assume that we have a set of points P with the distance function
d(·, ·) between pairs of points of P that satisfies the metric property. Let
a be a positive real number and let 0 < sβ < sα < 1. Let F be a family
of functions such that for all fi ∈ F and any pair of points x, y ∈ P the
following holds:

1. If d(x, y) < a/2, Pr[fi(x) = fi(y)] ≥ sα.

2. If d(x, y) > 2a, Pr[fi(x) = fi(y)] < sβ.

Show that one can always choose positive integers b and r such that the
AND-OR family constructed from F with parameters r and b satisfies

1. If d(x, y) < a/2, 1− (1− sr
α)

b → 1.

2. If d(x, y) > 2a, 1− (1− sr
β)

b → 0.

Note that we are given that 0 < sβ < sα < 1, but we do not know the actual
values of sα and sβ. For example, can one always find r and b such that if
d(x, y) < a/2, 1− (1− sr

α)
b ≥ 0.95 irrespective of knowing the actual

value of sα? Similarly, can one always find r and b such that if d(x, y) > 2a,
1− (1− sr

β)
b < 0.05.

200 notes on algorithm design

8.14 This exercise is inspired by Section 3.2 of 3 and it relates to the origins 3 Sariel Har-Peled, Piotr Indyk, and
Rajeev Motwani. Approximate nearest
neighbor: Towards removing the curse
of dimensionality. Theory of Computing,
8(1):321–350, 2012

of the LSH scheme. Consider the problem of finding near neighbors. First
we establish some notation. Let (X, d) be a metric space where X is a set
of points from a finite dimensional metric space and let d(·, ·) denote the
distance function satisfying the metric properties between pairs of elements
of X. Given a set P ⊆ X, we are asked to preprocess P such that for any
query point q ∈ X, report a c-approximate nearest neighbor from P to q
which is defined as follows. Let p ∈ P be the point closest to q with respect
to the distance measure d. Then any point of P which is within a distance
of cd(q, p) from q is called an c-approximate nearest neighbor, where c > 1
is a constant. Let B(x, α) denote the set of points of X within the distance
α from x. Let 0 < α and 1 > p1 > p2 > 0 be real numbers. Suppose we
have a family of hash functions F = {h : X → U} that is (α, cα, p1, p2)-
sensitive for (X, d) satisfying the following. For any p, q ∈ X,

1. If d(p, q) ≤ α then Pr[h(x) = h(y)] ≥ p1.

2. If d(p, q) > cα then Pr[h(x) = h(y)] ≤ p2.

Suppose we amplify the gap between ‘high’ probability p1 and ‘low’ prob-
ability p2 by applying the banding technique where b = |P|ρ/p1 and
r = dlog 1

p2
|P|e, where ρ = log 1

p1
/ log 1

p2
. Using this structure, we hash

each point p ∈ P to the appropriate bucket for each band. Given a query
point q ∈ X, we also hash q to the appropriate bucket for each band. When-
ever q has collisions with elements of P already present in those buckets, we
append them to a list say L, but terminate this process if the size of L reaches
3b. If there exists an element p ∈ L such that d(p, q) ≤ cα then we report p,
otherwise output NIL.

8.15 Suppose the probability of finding the minutia in a random grid cell
of a random fingerprint is 25%. Assume that if we have two fingerprints
from the same finger, given that one of them has a minutia in a grid cell,
than the probability that the other one also has minutia in the same grid
cell is 90%. Suppose you define locality sensitive hash functions with
respect to four (random) grid cells. Any of the hash functions h declares
the two fingerprints f and f ′ to be potentially similar, if each of the four
cells (corresponding to h) in f and f ′ consists of minutia. Suppose our
sensitive family of functions is composed of 1000 such functions. For finding
similar fingerprints, we use an OR-sensitive family, i.e. if any of these 1000
functions identifies the two fingerprints to be same, then we report them
to be similar. Estimate what is the probability of false positives and false
negatives? (You don’t have to evaluate the actual values - you can just leave
them as expressions.)

8.16 Assume that input is an array A of n elements (say integers). Suppose
you want to pre-process this array to answer the following queries:

locality-sensitive hashing 201

1. Membership(x, A): For a query element x, report if x ∈ A.

2. Nearest(x, A): Report the element of A that minimizes |ai − x|, for
i = 1, . . . , n.

For each of these queries, what will be the time required for preprocessing A
and what will be the time of query, if you are interested to know (a) Exact
Answer (b) Approximate Answer. (You need to define what approximate
means to you.)

8.17 Show that the Jaccard distance measure between sets satisfies the
metric properties.

8.18 For the locality-sensitive hashing technique with respect to signatures
of sets, we partitioned the signature matrix in b bands, each band consisting
of r rows, and analyzed that the probability that the two sets with Jaccard
similarity of s, will be reported similar with probability f (s) = 1− (1− sr)b,
using the so called AND-OR construction. This analysis was based on
estimating the probability that signatures for the two sets should match
in all rows (constituting the AND-family) of at least one of the bands (the
OR-family). Suppose, we alter our strategy, and use OR-AND construction.
To be more precise, we have the same partitioning in terms of b bands and
r rows, but now we say that the signatures match in a band, if they match
in at least one of the rows in that band, but we declare the two sets to be
similar if their signatures match in all the bands. Estimate what will be the
probability that the two sets are reported similar whose Jaccard similarity
is s using the OR-AND strategy. Call this estimate f ′(s). Furthermore,
compare the two estimates, f (s) and f ′(s), for various values of s, (you may
fix b = 20 and r = 5 or to any other values).

8.19 Continuing the thread of the last question, and let us again consider
AND-OR construction. Let the bands be B1, . . . , Bb. But now within each
band we further apply the banding technique. To be more precise, for any
band Bi, i = 1, . . . , b, we further subdivide its rows in b′ sub-bands, each
sub-band consists of r′ rows, where r = b′r′. Within each band Bi, we per-
form the AND-OR construction for its b′ sub-bands. Derive an expression,
say f ′′(s), for the probability that two sets will be reported similar with
Jaccard similarity of s. Evaluate f ′′(s), f ′(s), f (s) for a few different values
of s, r, b, r′, b′ to reason whether is there any point in applying the banding
technique within each band Bi.

8.20 Suppose, we have a case of fake currency bills of $50 that are circulat-
ing in the market. The association of 〈FraudBusters〉 employs a cumbersome
method that is computationally inefficient. It is based on scanning and
digitizing the bill. Let us assume that the digital copy has a resolution of
2048× 1536 pixels (approximately 3 million Pixels). To check whether the

202 notes on algorithm design

Bill is real, this organization compares each pixel of the digital copy with
the corresponding pixel of a digitized copy of a real bill. It is given that if
the bill is original, then the probability that any pixel will match with the
corresponding pixel of the real bill is 95%, but if the bill isn’t original then
the probability of the match decreases to 60%. Given this information, can
you devise a LSH based scheme to determine most of the fake bills?

8.21 Let us assume that we have a large collection B of binary vectors in
dimension d = 10, 000. We are asked to compute a data structure so that the
following queries can be answered efficiently. Given any query binary vector
q in dimension d, we are interested to report all the binary vectors in B that
are approximately 95% similar to q. We say that two vectors a = a1a2 . . . ad

and b = b1b2 . . . bd are 95% similar if ai = bi for at least 95% of indices i,
1 ≤ i ≤ d. Design an algorithm that computes such a data structure and
show how each query can be answered efficiently. The time to answer the
query q should not exceed O((k + 1)d), where k is the number of vectors in
B that are at least 95% similar to q. It is fine if you have some false positives
and negatives, but their percentage shouldn’t be large.

8.22 You want to use the locality-sensitive hashing (LSH) technique to
identify similar sets from a collection S of sets with the following objectives.
Let X, Y ∈ S and let their Jaccard similarity be s = |X∩Y|

|X∪Y| .

Pr(X and Y are reported similar if s ≥ 0.9) ≥ 0.99, and
Pr(X and Y are reported similar if s ≤ 0.5) ≤ 0.2
Can you achieve these objectives by using minHash signature matrix

M with at most 100 signatures, i.e., the number of rows in M is ≤ 100?
Justify.

8.23 This problem is about classifying vectors that are oriented in a similar
direction. Assume that we have a collection V of d-dimensional vectors from
the origin and assume that d is large. If we take any two distinct vectors
p, q ∈ V, there is a unique plane Πpq passing through the origin that
contains p and q. (You may want to visualize this first for the vectors in
three dimensions.) Suppose p = (p1, p2, . . . , pd) and q = (q1, q2, . . . , qd).
The angle θ between p and q is related to their dot-product by the expression
cos(θ) = p·q

|p||q| , where |p| and |q| is the length of vectors p and q. For

example, if p = (1, 3) and q = (−3, 4), |p| =
√

12 + 32 =
√

10 and
|q| =

√
32 + 42 = 5 and cos(θ) = p·q

|p||q| =
1·−3+3·4

5
√

10
= 9

5
√

10
, or θ ≈ 55◦.

Choose a random vector ηh at origin and consider the (hyper)plane h
(i.e. plane in 3-dimensions, or a line in 2-dimensions) normal to ηh passing
through origin. Any hyperplane h partitions the space into two half spaces,
usually referred to as h+ and h−. Assume that none of the vectors p and q
are incident on h. The vectors p and q may lie in the same half-space with
respect to h or one resides in h+ and the other in h−. It should also be clear
that if the angle between p and q is small, then there is more chance that p

locality-sensitive hashing 203

and q will reside in the same half-space of h, as compared to when the angle
is large. Observe that if the dot products p · ηh and q · ηh have the same
sign, then p and q are within the same half-space of h. Otherwise, they are
in different half-spaces.

p

q

h+

h−

h

ηh

u

Cone of small angle anchored at u

θ

Suppose we want to identify vectors that are close together, i.e., they
point approximately in the same direction. (For example, if we take a cone of
small-angle centred in the direction of vector u with the apex at origin, we
want to find all the vectors that are within this cone. All these vectors are
pointing in (approximately) the same direction as u. See the Figure.) For a
random vector ηh and its corresponding normal hyperplane h, we assign a
signature h(u) ∈ {+,−} to each vector u ∈ V based on the sign of u · ηh.
For any two vectors u, v ∈ V, we say h(u) = h(v) if sign of u · ηh is the
same as the sign of v · ηh. Show that Pr(h(u) = h(v)) = 1− θ

π , where
cos(θ) = u·v

|u||v| . Observe that if the angle between u and v is small, there is
high chance that h(u) = h(v). We can construct a family of hash functions
by choosing several random hyperplanes h1, . . . , hn, and use the banding
technique to amplify the probability of classifying the similar vectors.

9
Data Streams

We will focus on

1. Heavy Hitters: Finding a majority element (if it exists) in an
array using O(1) memory in linear time.

2. Count Min Sketch: Finding frequent elements in a data
stream.

3. Bloom Filters: Detecting membership in a set.

4. Flajolet-Martin algorithm for estimating distinct elements in a
stream.

5. Counting in sliding windows.

9.1 Heavy Hitters

Let A be an array consisting of n elements (positive integers) and
suppose A consists of a majority element, i.e. an element that occurs
> n/2 times. We want to locate the majority element by performing a
linear scan of A.

Notice that in the above algorithm, each non-majority element can
‘cancel’ at most one majority element. Since the number of majority
elements are at least b n

2 c+ 1, one copy of the majority element will
be stored in the current. Observe that the above algorithm runs in
O(n) time and uses only two variables, c and current, to maintain
the majority element. In the i-th step, the element at location A[i] is
compared against the current and the value of the counter is used to
update the status of the current. We summarize our discussion in the
following claim.

Claim 9.1.1 Let A be a data stream of size n that contains a majority

206 notes on algorithm design

Algorithm 9.1: Finding the majority element in A
Input: Array A of size n consisting a majority element
Output: The majority element

1 c← 0
2 for i = 1 to n do
3 if c = 0 then
4 current← A[i]
5 c← c + 1
6 end
7 else
8 if A[i] = current then
9 c← c + 1

10 end
11 else
12 c← c− 1
13 end
14 end
15 end
16 return current

element. This element can be reported in O(n) time using O(1) memory
space.

Next we turn to the following variant. Given a parameter 0 <

k < n, report all the elements in A that occur at least n/k times.
As can be seen, this has applications in finding what are the most
frequent items bought in a store, what are the most frequent search
queries, etc. Here, to gain efficiency in terms of computation time
and the required memory space, in place of reporting all the elements
that occur at least n/k times, we will report all the elements that
occur at least n/k − εn times for some constant 0 < ε < 1. For
example, if ε = 1/3k, then we report all the elements that occur
at least 0.667 n

k times instead of the elements that occur at least n/k
times. We use a count min sketch (CMS), a two dimensional table with
r rows and b columns, that keeps track of approximate counts for
each element in A. It utilizes r hash functions h1, h2, . . . , hr, where
each hi maps natural numbers to one of the possible b buckets, i.e.,
hi : N → {1, . . . , b}. We will assume that hi’s map any natural
number to any of the possible b buckets uniformly at random. We
compute the CMS table as follows:

If we assume that each hash value hj(A[i]) can be computed in
O(1) time then it is easy to see that the CMS table can be computed
in O(nr) time. Next let us see how we can use this table to estimate

data streams 207

Algorithm 9.2: Computation of Count Min Sketch
Input: An array A consisting of n natural numbers and r hash

functions h1, . . . , hr, where hi : N→ {1, . . . , b}
Output: CMS[·, ·] table consisting of r rows and b columns

1 for i = 1 to r do
2 for j = 1 to b do
3 CMS[i, j]← 0
4 end
5 end

6 for i = 1 to n do
7 for j = 1 to r do
8 CMS[j, hj(A[i])]← CMS[j, hj(A[i])] + 1
9 end

10 end
11 return CMS[·, ·]

the frequency of an element x in A. Let f ∗x be the true frequency of x
in A. Let fx = min{CMS[1, h1(x)], . . . , CMS[r, hr(x)]}. We claim the
following.

Claim 9.1.2 Let b = 2
ε . Then Pr[| fx − f ∗x | ≥ εn] ≤ 1

2r .

Proof. First observe that for any 1 ≤ j ≤ r, CMS[j, hj(x)] ≥ f ∗x as each
copy of x increments the counter CMS[j, hj(x)]. Moreover, due to the
collisions in the hash function, it is possible that hj may ‘hash’ other
elements to the same location where it hashes x (and thus increments
the count). Note that since each value is hashed uniformly at random,
we expect about n/b elements of A to be hashed in the same bucket
as that of x. Why?

Let us establish an indicator random variable Iy corresponding to
each value y ∈ A as follows:

Iy =

1 if hj(y) = hj(x)

0, otherwise

Let V represents the set of all distinct values in A. Note that x ∈ V.
For any element v ∈ V, let f ∗v represents the true frequency of the
value v in A. We have

CMS[j, hj(x)] = f ∗x + ∑
y∈V
y 6=x

Iy ∗ f ∗y (9.1)

Since we have assumed that the hash function maps any value to
any of the buckets uniformly at random, Pr(Iy = 1) = 1/b and its

208 notes on algorithm design

expected value E[Iy] = 1/b. Thus,

E[CMS[j, hj(x)]] = f ∗x + ∑
y∈V
y 6=x

f ∗y /b ≤ f ∗x + n/b (9.2)

By setting b = 2
ε , we obtain

E[CMS[j, hj(x)]] ≤ f ∗x + n/b = f ∗x + εn/2 (9.3)

If we define a random variable Xj that equals the difference of the
value of the counter in CMS[j, hj(x)] and f ∗x , then it is easy to see
that E[Xj] ≤ n/b = εn/2. Thus, by Markov’s inequality, Pr(Xj > Markov’s inequality states that the

probability that a random variable
deviates from its expectation by a factor
of c is at most 1/c.

2(εn/2)) ≤ 1/2. This also holds for each value of j = 1, . . . , r. Fur-
thermore, Xj is independent of Xk as the corresponding hash func-
tions hj and hk are independent for any k 6= j and 1 ≤ k, j ≤ r . There-
fore, we have that for fx = min{CMS[1, h1(x)], . . . , CMS[r, hr(x)]},
the probability Pr[| fx − f ∗x | ≥ εn] ≤ 1

2r .

Now let us see how to report all the elements in A that occur
frequently. Let us choose ε = 1/3k. Thus b = 2/ε = 6k. The size of
the CMS table will be b× r = 6kr. We will scan the array A, starting at
the location 1, and update the CMS table by the above procedure. In
addition, we maintain a set of O(k) items that occur most frequently
among all the elements in A scanned so far. Note that these are the
heavy hitters! The items are stored in a heap data structure and their
key is their frequency. Assume that we have so far scanned i− 1 items
and have updated the CMS table and the heap accordingly, and now
consider the i-th item. First we update the counts in the CMS table
by executing CMS[j, hj(A[i])] ← CMS[j, hj(A[i])] + 1, for j = 1 to r.
Let x = A[i]. If the count returned for x is ≥ i/k, we need to perform
the following heap operations: If x is present in the heap, we delete
x and re-insert it again with the updated count value. If x was not
present in the heap, then we insert it in the heap, but remove all the
elements (Extract-min) whose count is less than i/k.

Next we do some complexity analysis. First assume that the
count value in the CMS table for each element is exact, i.e. equals
the frequency in A. Then, observe that the heap contains all the
heavy hitters, i.e. all the items that occur at least n/k times. The
size of the heap is at most k, and for each element we perform O(r)
computation for updating the CMS table, and at most one insertion
and one deletion in the heap, which costs at most O(log k) time.

Since our counts are not accurate, let us try to figure out what
actually is in the heap. Clearly all the elements whose frequency is
at least n/k are in the heap since the count in CMS table is at least
the frequency. But for some elements, the count in the CMS table is
an overestimate of their frequency. By how much? We know by the

data streams 209

above claim, for any element the probability that the count exceeds
the frequency by εn is small (≤ 1/2r). Thus, all the elements in
the heap will have frequency at least n

k − εn = n
k − n

3k = 0.667 n
k .

Thus with a heap of size O(k), we can report all the elements in A
that occur at least 0.667 n

k times. The total memory usage is O(6kr)
and the probability of error is ≤ 1/2r. If we choose r = c log2 n,
then this translates to O(k log n) space and the probability of error
≤ 1/2r = 1/nc.

9.2 Bloom Filters

Suppose we have a set S consisting of a large number of elements
from a universe U, and we want to repeatedly query S to know
whether any query element x ∈ U is a member of S. Bloom filters are
a simple (randomized) data structures that can answer these queries
extremely fast, though may incur false positives. For example, the
set S may represent non-spam e-mail addresses, and we may want
to know whether a new mail received is from a non-spam e-mail
address to not to qualify it as a Junk mail. It is fairly important that
the membership can be decided quickly, though it may be possible to
wrongly classify some of the junk mails as regular mails.

The Bloom filter B is a binary array of size m. We can think of B
as a bit vector of length m. Initially all bits of B are initialized to 0. In
addition we have k hash functions, say h1, h2, . . . , hk, that map each
element of the universe to one of the locations in [1, . . . , m]. For each
element x ∈ S, we set B[h1(x)] = B[h2(x)] = · · · = B[hk(x)] = 1.
For testing the membership of an element y of the universe in B, we
check whether each of the locations B[hi(y)] = 1 for 1 ≤ i ≤ k. It is
easy to see that each element in S can set the bits in the filter in O(k)
time, and the membership test takes O(k) time. Moreover, if y ∈ S,
our structure always returns the correct result, but if y 6∈ S, it may
wrongly classify (false-positive) that y ∈ S due to the collisions in the
hashing. The main challenge in the design of the Bloom filters is to
decrease the false positive rate.

Let us evaluate the probability that a particular bit of B is set to 1.
Let us focus on the i-th bit and we want to evaluate the probability
that Pr(B[i] = 1). Let n = |S|. Then any of the kn hash’s can set B[i]
to 1. What is the probability that none of these hash values happen to
be i? This is exactly (m−1

m)kn = (1− 1
m)kn as each value has a choice of

m− 1 other locations out of m. Thus, p = Pr(B[i] = 1) = 1− (1− 1
m)kn.

Now for a false-positive to occur, all of the k locations (may not be
distinct) corresponding to the hash values h1(y), . . . , hk(y) must be
1. One may guess that the probability of false-positives to occur is
pk, but as it turns out that the analysis is not that simple. First we

210 notes on algorithm design

answer, by an example, why pk is not the right value.

Example 9.2.1 Consider the scenario when n = 1, k = 2, and m = 2.
Let S = {x} and the two hash functions be h1 and h2. We will see that the
false-positive rate is 10/16, whereas pk = p2 = 9/16. Observe that h1(x)
and h2(x) can set either one or both of the locations of B to 1. We have the
three cases:

Case A: Only the first location is set to 1. This happens with probability
1/4.

Case B: Only the second location is set to 1. This happens with probabil-
ity 1/4.

Case C: Both the locations are set to 1. This happens with probability
1/2.

Now on querying for an element y, where y 6= x, let us see what is the
probability of the false-positive.

In Case A, the probability is the product of (a) the probability of false-
positive given that we are in Case A (= 1/4), and (b) the probability of
being in Case A (= 1/4). This is given by 1/4 ∗ 1/4 = 1/16.

By symmetry, for Case B, the probability of false-positive is 1/4 ∗ 1/4 =

1/16.
In Case C the probability of false-positive is 1/2 ∗ 1 = 1/2.
Thus, the false-positive rate is 1/16 + 1/16 + 1/2 = 10/16, whereas

p = 1− (1− 1
m)kn = 1− (1− 1

2)
2 = 3

4 and p2 = 9/16.

It turns out that the derivation of the actual expression for the
false positive rate is technical. We state the result, without derivation,
and the interested reader can consult the research article. In the theorem we use Stirling number

of second kind. It is the number of
ways to partition a set of a objects into
b non-empty subsets and is denoted by
{a

b}.

Theorem 9.2.2 1 Let pk,n,m be the false-positive rate for a Bloom filter that

1 Prosenjit Bose, Hua Guo, Evangelos
Kranakis, Anil Maheshwari, Pat Morin,
Jason Morrison, Michiel H. M. Smid,
and Yihui Tang. On the false-positive
rate of bloom filters. Inf. Process. Lett.,
108(4):210–213, 2008

stores n elements of a set S in a bit-vector of size m using k hash functions.

1. We can express pk,n,m in terms of the Stirling number of second kind as
follows:

pk,n,m =
1

mk(n+1)

m

∑
i=1

iki!
(

m
i

){
kn
i

}

2. Let p = 1− (1− 1/m)kn, k ≥ 2 and k
p

√
ln m−2k ln p

m ≤ c for some c < 1.
Upper and lower bound on pk,n,m are given by

pk < pk,n,m ≤ pk
(

1 + O
(k

p

√
ln m− 2k ln p

m

))

9.3 Flajolet-Martin Algorithm

In this section we will discuss the algorithm of Flajolet and Martin’s
2 for estimating the frequency moments in a data stream. We adapt 2 Philippe Flajolet and G. Nigel Martin.

Probabilistic counting. In 24th Annual
Symposium on Foundations of Computer
Science, Tucson, Arizona, USA, 7-9
November 1983, pages 76–82. IEEE
Computer Society, 1983

data streams 211

the description and notation from the paper by Alon, Matias and
Szegedy 3. 3 Noga Alon, Yossi Matias, and Mario

Szegedy. The space complexity of
approximating the frequency moments.
J. Comput. Syst. Sci., 58(1):137–147, 1999

This paper won the Gödel Prize.

Let A = (a1, . . . , am) be a sequence (data stream) of m-elements,
where each ai ∈ N = {1, . . . , n}. For simplicity we assume that
n = 2d, and hence d = log n-bits are sufficient to represent any
number in N. We define frequency moments using the quantity mi

that represents the numbers of i’s in A, i.e. mi = |{j|aj = i}|. We
define k-th frequency moments Fk, k ≥ 0, by

Fk =
n

∑
i=1

mk
i

Note that F0 equals the number of distinct elements in A (assuming
00 = 0), F1 equals the number of elements in A, and F2 represents the
surprise number. Low surprise number refers to an even distribution
of data in the stream. It is straightforward to see that if we can store
all the elements in A in memory then we can compute any of the
frequency moments Fk’s exactly as follows: Sort A and compute mi’s

for each i ∈ {1, . . . , n}, and evaluate Fk =
n
∑

i=1
mk

i . Next, we will show

the following theorem due to Flajolet and Martin’s [53].

Theorem 9.3.1 We can design an algorithm that uses only O(log n)
bits of memory space and computes an approximation F̂0 of F0 such that
1
c ≤

F̂0
F0
≤ c, with probability at least 1− 2

c , for c > 2.

Before we describe the algorithm, we assume that we have a perfect
hash function h : N → N that maps any x ∈ N uniformly at random
to any element of N. In the algorithm, for each element x ∈ A, we
will be interested in the location of the rightmost 1 in the binary
representation of h(x). Note that the least-significant bit is at location
1 and the most significant bit is at location d. Here is the algorithm:
It is obvious that the above algorithm only requires O(log n) bits of
memory to store the value of R. Moreover, the running time is O(m),
assuming that we can evaluate h(·) and the rightmost 1 in the binary

representation of h(·) in O(1) time. Next, we show that 1
c ≤

F̂0
F0
≤ c

with probability at least 1− 2
c , for c > 2. We make the following

observations.

Observation 9.3.2 Consider h(ai) for some ai ∈ A. The probability that
the location of the rightmost 1 in the binary representation of h(ai) is at
least r, where r ∈ {1, . . . , d}, equals 1

2r .

Proof. If h(ai) maps to any number such that its r− 1 least significant
bits are all 0s, then the location of the rightmost 1 in h(ai) ≥ r. By
assumption, h(ai) maps ai uniformly at random to any of the 2d

212 notes on algorithm design

Algorithm 9.3: Compute F̂0, an approximation to the number
of distinct elements in A

Input: Array A of size m where each ai ∈ N = {1, . . . , n}
Output: F̂0

1 R← 0
2 for i = 1 to m do
3 Compute binary representation of h(ai)

4 Let r be the location of the rightmost 1 in h(ai)

5 if r > R then
6 R← r
7 end
8 end
9 return F̂0 ← 2R

values. Thus the probability that the binary representation of h(ai)

has r− 1 least significant bits that are all 0s is 2d−r

2d = 1
2r .

Define an indicator random variable Ir
x for each element x ∈ A as

follows:

Ir
x =

1, if rightmost 1 in h(x) is at location ≥ r

0, otherwise.

Define A′ to be a set containing exactly one copy (with no duplicates)
of all the elements in A. Note that |A′| = F0. Define

Zr = ∑
x∈A′

Ir
x.

Observation 9.3.3 Following are the expectations and variances of the
random variables Ir

x and Zr.

1. E[Ir
x] =

1
2r

2. Var[Ir
x] =

1
2r (1− 1

2r)

3. E[Zr] = F0
2r

4. V[Zr] < E[Zr]

Proof.

1. Note that E[Ir
x] = 1 · Pr(Ir

x = 1) + 0 · Pr(Ir
x = 0) = 1

2r .

2. Var[Ir
x] = E[(Ir

x)
2]− E[Ir

x]
2 = 1

2r − (1
2r)2 = 1

2r (1− 1
2r).

3. E[Zr] = E[∑
x∈A′

Ir
x] = ∑

x∈A′
E[Ir

x] =
F0
2r .

data streams 213

4. Var[Zr] = Var[∑
x∈A′

Ir
x]. This equals ∑

x∈A′
Var[Ir

x] as Ir
x’s are indepen-

dent. Therefore, Var[Zr] = F0
1
2r (1− 1

2r) < F0
1
2r = E[Zr].

Observation 9.3.4 If 2r > cF0 then Pr(Zr > 0) < 1
c .

Proof. Recall Markov’s inequality (see Theorem 2.5.1) that states
that for a non-negative discrete random variable X and s > 0 be a
constant, Pr(X ≥ s) ≤ E[X]/s. We have, Pr(Zr > 0) = Pr(Zr ≥ 1) ≤
E[Zr]

1 ≤ F0
2r < 1

c .

Observation 9.3.5 If c2r < F0 then Pr(Zr = 0) < 1
c .

Proof. Recall Chebyshev’s inequality (see Exercise 2.24) that states
the following. Let X be a random variable with mean µ and variance
Var[X] = σ2. Let s > 0 be a constant. Then P(|X − µ| ≥ s) ≤ σ2

s2 . We
know that Var[Zr] < E[Zr]. Note that Pr[Zr = 0] ≤ Pr(|Zr − E[Zr]| ≥
E[Zr]) ≤ Var[Zr]

E[Zr]2
< 1

E[Zr]
= 2r

F0
< 1

c .

Algorithm 9.3 is correct if 1
c ≤

F̂0
F0
≤ c, where F̂0 = 2R. By

Observation 9.3.4 if 2R

F0
> c, then Pr(ZR > 0) < 1

c and by Observation

9.3.5 if 2r

F0
< 1

c then Pr(Zr = 0) < 1
c . Thus, by the union bound, with

probability at most 2
c , 2R

F0
> c or 1

c > 2R

F0
. Hence, with probability at

least 1− 2
c , 1

c ≤ 2R

F0
≤ c.

The above shows that if c = 6, then the probability of success
of the algorithm is ≥ 2

3 . Next we see how we can further improve
the success probability. We will execute Algorithm 9.3 s times, with
different hash functions. Assume the s runs of the algorithm evalu-
ates the location of the rightmost 1 at locations R1, . . . , Rs (possibly
not distinct). To compute F̂0, we take the median value R among
{R1, . . . , Rs}, and report F̂0 = 2R. We will show that if we choose
s = O(log 1

ε), then for any c > 4, with probability at least 1 − ε,
1
c ≤

F̂0
F0
≤ c. First we make the following observations.

Observation 9.3.6 Two runs of the algorithm are independent, i.e. values
of Ri and Rj do not depend on each other but only on the chosen hash
functions.

Define an indicator random variable Xi, 1 ≤ i ≤ s, as follows:

Xi =

0, if 1
c ≤ 2̂Ri

F0
≤ c.

1, otherwise.

214 notes on algorithm design

Intuitively, Xi is 1 if and only if the i-th run is not a “success”. Note
that Pr(Xi = 1) ≤ 2

c . We define β = 2
c . Since we have assumed that

c > 4, β < 1
2 . Define X =

s
∑

i=1
Xi. Thus E[X] ≤ sβ < s

2 .

Observation 9.3.7 If X < s
2 , then 1

c ≤
F̂0
F0
≤ c.

Proof. If X < s
2 , then the algorithm fails at most half of the times,

i.e. 2Ri
F0
6∈ (2

c , c) for at most half of the runs. Suppose we failed in the
i-th run of the algorithm. That implies either the value of Ri is much
lower or much higher than the “right” value. But the median value of
{R1, . . . , Rs} has to be the right value, otherwise more than half the
values will be wrong values, contradicting the fact that X < s

2 .

Observation 9.3.8 For any ε > 0, if s = O(log 1
ε), Pr(X < s

2) ≥ 1− ε.

Proof. We will show that Pr(X ≥ s
2) < ε. Since E[X] < s

2 , we have
that

Pr(X ≥ s
2
) = Pr(X− E[X] ≥ s

2
− E[X])

= Pr(X− E[X] ≥ s
2
− sβ)

= Pr(X− E[X] ≥
1
2 − β

β
sβ)

= Pr(X− E[X] ≥
1
2 − β

β
E[X])

= Pr(X ≥ (1 +
1
2 − β

β
)E[X])

Recall Chernoff bounds (see Section 2.5) that states that for a random
variable X that is sum of independent identically distributed 0 −
1 random variables and 0 ≤ δ ≤ 1, we have that Pr(X ≥ (1 +

δ)E[X]) ≤ exp(− δ2E[X]
3). Applying Chernoff bounds, where δ =

1
2−β

β ∈ (0, 1), we have that Pr(X ≥ s
2) ≤ exp(− 1

3 (
1
2−β

β)2E[X]). We

want exp(− 1
3 (

1
2−β

β)2E[X]) ≤ ε. Since E[X] ≤ sβ, this is equivalent to

finding for what value of s, exp(− 1
3 (

1
2−β

β)2sβ) ≤ ε. This reduces to

s > 3 β

(1
2−β)2 log γ

ε , for some constant γ. Thus, if s = O(log 1
ε), we have

that Pr(X ≥ s
2) < ε.

Now look closely at the median value R of {R1, . . . , Rs} that were
computed from the s runs of the algorithm. From the above observa-
tions we conclude that when we set F̂0 = 2R, with probability at least

1− ε, 1
c ≤

F̂0
F0
≤ c. Therefore, the probability of success is much better

but now we need to store s = O(log 1
ε) values each of which is log n

bits long.

data streams 215

9.4 Counting in Sliding Windows

In this section we discuss the Basic Counting algorithm of 4 on main- 4 Mayur Datar, Aristides Gionis, Piotr
Indyk, and Rajeev Motwani. Main-
taining stream statistics over sliding
windows. SIAM J. Comput., 31(6):1794–
1813, 2002

taining statistics over a data stream. In particular, we are interested
in answering queries over the last N >> 0 data items under the con-
straint that there is not sufficient space to store them in the memory.
The input consists of an endless stream of binary bits. At any time,
among the last N bits received, we are interested in queries that seek
an approximate count of the number of 1’s in the stream among the
last k bits, where k ≤ N. For answering these queries the Basic Count-

ing maintains a simple data structure of O(1
ε log2 N) bits, for some

constant ε > 0. For each new bit, the time to update the structure is
O(log N) and the count reported for number of 1’s is within a factor
of 1 + ε. In the exercises, we will see that this can be generalized to the
case where the stream consists of positive numbers and our task is to
report the approximate sum of the numbers and its variations.

Let us discuss the Basic Counting algorithm of [39] for reporting an
approximate count of the number of 1’s in the stream of binary bits
among the last k bits, where k ≤ N. Observe that it is not possible
to report the exact count of 1’s among the last N bits of the stream
by using only o(N) space. If we don’t know the exact locations of
1’s, on the arrival of the new data bit we need to know whether the
N-th latest bit is a “1” or “0” as this will influence the exact count of
number of 1’s. Similarly, when the next bit arrives, we need to know
whether the (N − 1)-th latest bit is a “1” or “0”, . . .

To maintain the approximate count we employ the following data
structure. We will maintain (implicitly) the time stamp of each of
the latest N bits. Each new bit in the stream gets a time stamp of
1 and the time stamps of all other (older) bits are incremented by
one. We create O(log N) buckets. The 1’s among the latest N bits are
partitioned among these buckets. The number of 1’s in a bucket will
be a power of 2, except possibly one bucket. Each 1-bit is assigned
to exactly one bucket and a 0-bit may or may not be assigned to any
bucket. There are at most two buckets of a given size. The size of
the bucket defined as the number of 1s in it. Let Bi denotes a bucket
that holds 2i number of 1-bits, where i ∈ {0, . . . , log N}. Each bucket
also stores the time stamp of its most recent bit. As we will see that
the most recent bit of any bucket will be the bit whose value 1. On
receiving a new bit in the data stream, the following updates are
done depending on whether the value of this bit is 0 or 1.
0-bit: We increment the time stamp of each of the buckets by 1, and if
any of the buckets time stamp exceeds N, we discard that bucket.
1-bit: We create a bucket B0 consisting of the newest 1-bit with a time
stamp of 1. Now we scan the list of buckets in order of increasing

216 notes on algorithm design

size. As a result of creating the bucket B0, we may now have up to
three buckets of size 1. If that is not the case, we increment the time
stamps of each of the buckets as before, and possibly discard buckets
whose time stamps exceed N. Otherwise, we have three buckets of
type B0. Let their time stamps be j, i, and 1, where N ≤ j < i < 1. We
merge the two oldest B0 buckets, i.e. the buckets with time stamps i
and j, to form a new bucket B1 with time stamp i. This new bucket
B1 consists of all the bits from time stamp j up to the time stamp i.
Therefore, this bucket includes exactly two 1-bits, and possibly many
0-bits. As a result of this process, we have one bucket of type B0. But
now we may have three buckets of type B1. So we repeat the process
for the two oldest buckets of type B1 and replace them by a new
bucket of type B2. If this results in creating three buckets of type B2,
we repeat. This process can cascade at most O(log N) times. At the
end, we will have at most two buckets of each type.

If we visualize the stream to be bits coming on a horizontal axis
from right, then we have buckets of type B0, followed by buckets
of type B1, then B2, . . . , as we traverse the stream from right to left.
Moreover, for each type we have at most two buckets, and the last
bucket (of the largest size) may overlap partially with the bits in the
window of interest. See Figure 9.1 for an illustration.

1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0

N

A

B

1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0C

1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0

1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0

1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0

B0B0B1B1B2

B0B0B1B1B2

B0B1B2B2

B0B0B1B2B2

B0B0B1B2

D

E

Time Stamp 1Time Stamp N

Unseen part of the stream

Figure 9.1: Illustration of Basic Count-
ing. (A) Configuration of buckets in
the window of size N of interest. It
consists of two buckets of type B0, each
consisting of one 1-bit with time stamps
1 and 2 (time stamps of buckets are
not shown). This is followed by two
buckets B1, each consisting of two 1-bits
with time stamps 3 and 6, and finally a
bucket B2 which overlaps partially with
the window of interest. (B) Buckets
after receiving a 0 bit. Buckets remain
the same. Their time stamps are in-
cremented by 1. (C) Updated buckets
after receiving a 1-bit. Note that as a
result of creation of a new bucket B0
consisting of the newest 1-bit, we have
three buckets of type B0. We merge the
two older buckets of type B0 to form a
new bucket B1, and that in turn created
three buckets of type B1. Two oldest of
them are merged to form a new bucket
B2. (D) A new bucket B0 is created with
time stamp 1 after receiving the next
1-bit. (E) The last bucket is discarded
as it falls outside of the window of
interest.

Next we analyze the resources required in storing the data struc-
ture and also the time to update. We maintain O(log N) buckets
as the size of window is N and the bucket of type Bi stores 2i 1-

data streams 217

bits. For each bucket we need to store its time stamp and its size
(or type). The time stamps requires O(log N) bits. Since the bucket
Bi, for some i ∈ {0, . . . , log N}, stores 2i 1-bits, it is sufficient to
store i with bucket Bi for its size. As 0 ≤ i ≤ log N, i can repre-
sented using O(log log N) bits. Therefore, the data structure requires
O(log N(log N + log log N)) = O(log2 N) bits of space. Now let us
evaluate the time to update. On receiving a 0-bit, we update the time
stamps of each of the O(log N) buckets. This requires O(log N) time.
On receiving a 1-bit, not only we have to update the time stamps,
but potentially merge and cascade buckets if required. It is easy to
see that time to merge and cascade is proportional to the number of
buckets and can be performed in O(log N) time.

Finally, let us see how to answer the queries. For any query value
k ∈ {1, . . . , N}, we want to report an approximate count of the
number of 1’s among the latest k bits of the stream. We initialize
a count variable, say count, to 0. Following the convention used in
Figure 9.1, we start traversing the buckets from right to left. For each
bucket of type Bi that is encountered in the traversal, we can easily
find out whether all of its bits are completely within the window
of size k by looking at the time stamp of the next bucket. If Bi is
completely contained in the window, we increment the count by 2i.
If a bucket Bi is completely outside the window, its contribution to
the count is 0. This leaves us potentially with at most one bucket, say
of type Bj, that partially overlaps the window. For this bucket, we
know that its last bit is a 1-bit and it is within the window. But we
don’t know location of any of its other 1-bits and how many of them
are within the window. Thus for this bucket, we only add half of its
size, i.e. 2j

2 to the count. This may overestimate or underestimate the
true count. We claim that the accumulated value of count is within
a factor of two of the true count. In the following we justify the
approximation factor.

Except of the bucket of type Bj that is partially in the window
of size k, we know that all buckets of type B0, B1, . . . , Bj−1 are com-
pletely within the window. For those buckets, the count of the num-

ber of 1-bits is
j−1
∑

i=0
2i ≥ 2j − 1. Thus the true count (and the approxi-

mate count) value is at least 2j (as the last bit of the bucket labelled Bj

is in the window of interest). For the bucket Bj that overlaps partially
with the window, the number of bits that can be in the true count can
be anywhere from 0 upto 2j − 1. But we only took a contribution of
2j−1 in the reported value count. Thus the ratio of the true count to
the reported count is within a factor of (1

2 , 2).
Next consider the following minor variation of the data structure.

Let r ≥ 2 be an integer parameter. In place of maintaining two

218 notes on algorithm design

buckets of type Bi let us maintain r or r− 1 copies of Bi for each i ≥ 1.
Note that the buckets of type B0 may be less than r− 1. Updates are as
before, and at any time we exceed r copies of any type of buckets, we
take the oldest two buckets and merge them to form a new bucket of
the next size. As before, for the query assume that the bucket labelled
Bj is only partially overlapping the query window. Now we know

that at least 1 +
j−1
∑

i=1
(r− 1)2i 1-bits are in the query window. We want

to argue that true count and the reported value count are within a
factor of 1± 1

r−1 . By setting r = 1 + 1
ε , we obtain a data structure of

size O(1
ε log2 N) that can approximate the count of the number of 1s

within a factor of 1± ε.

9.5 Bibliographic Notes

A nice description of Heavy Hitters is in Gries and Misra [110].
Count-Min Sketch was proposed by Cormode and Muthukrishnan
[36]. Bloom filters have been sketched by Bloom in [14] and a refined
analysis is given by Bose et al. in [22]. Flajolet-Martin’s algorithm
for estimating distinct elements in a stream is given in [53]. A more
detailed discussion and its generalization, the concept of median of
means, and several exercises have been adapted from the paper by
Alon, Matias and Szegedy [6]. The concept of counting in sliding
windows was introduced in a paper by Datar, Gionis, Indyk, and
Motwani [39]. Exercise 9.24 is also from their paper.

9.6 Exercises

9.1 Suppose we want to ensure that we report all the elements that occur
with a frequency of at least 2% in a stream with probability ≥ 0.97. Try to
come up with reasonable values of b and r for the Count-Min Sketch (CMS)
table. Justify your choice.

9.2 This problem is based on the Count-Min Sketch data structure. Sup-
pose we want to ensure that we report all the elements that occur with a
frequency of at least 3% in a data stream with probability ≥ 0.95. Try to
come up with reasonable values of b and r for the Count-Min Sketch (CMS)
table and justify your choice.

9.3 Consider a stream of IP-addresses that are being routed through a
switch on a given day. Let h1, . . . , hr, be r > 1 hash functions, where each
function maps any IP-address to one of the possible b buckets uniformly
at random. Assume that you are interested in performing some statistics
on frequencies of IP-addresses on two consecutive days that use the same
switch. Let n1 be the number of packets that used the switch on the first

data streams 219

day and the corresponding Count-Min-Sketch table be CMS1 of size r× b.
Let n2 be the number of packets that used the switch on the second day and
let CMS2 be the corresponding count-min-sketch table. For both the days
we use the same set of hash-functions (h1, . . . , hk), though the tables are
kept separate. In the class we did the analysis with respect to estimating
the frequency count for an IP-address x with respect to a single table. Now
suppose we want to estimate the combined frequency of x for the two days.
Note that only thing which we have at the end of these two days are the
two CMS tables and the count of total number of packets on each of the
days. Let fx = min{CMS1[1, h1(x)] + CMS2[1, h1(x)], CMS1[2, h2(x)] +
CMS2[2, h2(x)], . . . , CMS1[r, hr(x)] + CMS2[r, hr(x)]}. How good is this
estimate? In other words, estimate Pr(fx − f ∗x > ε(n1 + n2)), for a constant
ε > 0. Justify your answer.

9.4 This problem refers to Count-Min Sketch. Suppose we have designed a
beautiful CMS table with b columns and r rows for a streaming application
that needs to be launched today afternoon. You worked extremely hard
leading up to now to figure out the exact values of b and r. But, just now
your manager informed you that you can actually increase the size of
the CMS table by 50%. Should you add more rows? More columns? A
combination of both? Justify your answer.

9.5 This is similar to the previous exercise. Recall that in the count-min
sketch, we constructed a table CMS of size r× b, and showed that for b = 2

ε ,
Pr[fx − f ∗x ≥ εn] ≤ 1

2r , where fx is an approximation to the true frequency
f ∗x of an element x in the stream consisting of n elements. The CMS table
uses a total of br space. Suppose, we are told that we can use twice the space.
Given that now we can have 2br space, should we

1. Double the number of rows of the CMS table?

2. Double the number of columns of the CMS table?

3. Have two tables CMS1 and CMS2, each of size br. Both the tables use
independent hash functions. We populate the entries in both the tables
by following the same scheme as before. We set fx = min{ f 1

x , f 2
x},

where f 1
x and f 2

x are the approximate frequency of x in CMS1 and CMS2,
respectively.

Justify your answer.

9.6 Consider a stream S consisting of n natural numbers. We establish a
count-min sketch table of size r× b to estimate the frequency of each element
in S. We are interested in reporting all the elements that occur at least
n/1000 times in S with a probability of at least 0.95. Can we achieve this
objective with a CMS table where we set b = 50 and r = 8? Justify your
answer. You can assume n is sufficiently large.

220 notes on algorithm design

9.7 Here is an example of a tiny Bloom filter. It uses an array B consisting
of 2 bits and two independent hash functions f and g that maps elements
of a universe U uniformly at random to the indices of B. Initially both the
bits of B are set to 0, i.e. B = 0 | 0 . Let S = {a, b} ⊂ U be a set of
two elements. We set up the Bloom filter for the membership in S using
the elements of S as follows: B[f (a)] = 1, B[f (b)] = 1, B[g(a)] = 1,
and B[g(b)] = 1. After this step, the array B has one of the following
configurations:

0 | 1 1 | 0 1 | 1

To test whether an element x from the universe is in S, we compute f (x)
and g(x), and we say that x ∈ S if both B[f (x)] = 1 and B[g(x)] = 1.
Assume x 6∈ S. What is the probability of a false positive, i.e. the probability
of saying that x ∈ S?

9.8 Here is an example of a tiny Bloom filter. It uses an array B consisting
of 3 bits and two independent hash functions h1 and h2 that maps elements
of the universe U uniformly at random to the indices of B. Initially the bits
of B are set to 0,

i.e. B = 0 | 0 | 0 . Let S = {x, y} ⊂ U be a set of two elements. We
set up the Bloom filter for the membership in S using the elements of S as
follows: B[h1(x)] = 1, B[h2(x)] = 1, B[h1(y)] = 1, and B[h2(y)] = 1.
After this step, the array B has one of the following seven configurations:

0 | 0 | 1 0 | 1 | 0 1 | 0 | 0

0 | 1 | 1 1 | 1 | 0 1 | 0 | 1

1 | 1 | 1

To test whether an element α from the universe is in S, we compute h1(α)

and h2(α), and we say that α ∈ S if both B[h1(α)] = 1 and B[h2(α)] = 1.
Consider an element z ∈ U such that z 6∈ S. What is the probability of false
positive, i.e. saying that z ∈ S? Please present details of your calculations.

9.9 Here is an example of a tiny Bloom filter. It uses an array of 9 bits and
two independent hash functions f and g. We want to test membership in
a set S of three elements, so we hash each of the three elements using both
f and g, and we set to 1 any bit that any of the three elements is hashed to
by either of the hash functions. When a new element x arrives, we compute
f (x) and g(x), and we say x is in the set S if both f (x) and g(x) are 1.
Assume x is not in the set S. What is the probability of a false positive; i.e.,
the probability of saying that x is in S.

9.10 Let A be a data stream. Without loss of generality assume that
a1, a2, . . . , ak are the most frequent k elements with frequencies f1 ≥ f2 ≥

data streams 221

· · · ≥ fk, respectively. We sample each element of A uniformly at random
to construct a multi-set A′. We are interested to know how many times we
need to sample A so that the most frequent k elements have a representative
in A′ with high probability. In other words, what should be the size of A′ so
that with probability ≥ 1− ε, for ε > 0, so that a1, . . . , ak ∈ A′.

Hint: Let us assume that s = |A′|. Estimate first the probability that if
we choose s elements from A, each uniformly at random with replacement,
what is the probability that ak 6∈ A′? What is an upper bound on the
probability that none of a1, a2, . . . , ak are in A′? Show that by choosing
s = O(1

fk
log k

ε), with probability ≥ 1− ε, a1, . . . , ak ∈ A′.

9.11 This exercise is taken from 5. Assume that we have a vector a of dimen- 5 Graham Cormode and S. Muthukr-
ishnan. An improved data stream
summary: the count-min sketch and its
applications. J. Algorithms, 55(1):58–75,
2005

sion n and its current state at time t is given by a(t) = [a1(t), a2(t), . . . , an(t)].
Initially, at time t = 0, for all 1 ≤ i ≤ n, ai(0) = 0. Updates to the el-
ements of a are presented over time as a stream consisting of a pair of
integers. At the t-th time instance, an update of the form (it, ct) results in
ait [t] := ait [t− 1] + ct, and for all j 6= it, aj[t] := aj[t− 1]. Assume that
ct ≥ 0. Show that using the count-min sketch we can answer the following:

1. Point Query: At any time t, return an approximation to ai(t).

2. Range Query: At any time t and for two indices 1 ≤ l < r ≤ n,
return an approximation to ∑r

i=l ai(t). Hint: Note that we can construct
O(n log n) ranges of type (x, y), where 1 ≤ x ≤ y ≤ n and y− x = 2k

for some integer k. These are called the dyadic ranges. For each k, we
have O(n) dyadic ranges and we can maintain a CMS table for each k.
Observe that any range (l, r) can be expressed as the union of O(log n)
disjoint precomputed sub-ranges. This can be deduced by looking at the
binary representation of r− l + 1.

3. Approximate Median: Let ε > 0. Let the number of elements seen by
time t in the data stream be mt. At any time t, report an index 1 ≤ j ≤ n
such that ∑

j
i=1 ai(t) ≥ mt

2 − εmt and ∑
j−1
i=1 ai(t) ≤ mt

2 + εmt.

4. Inner Product Query: Suppose we have two n-dimensional vectors a and
b. At any time t, report an approximation of the dot product a · b.

9.12 Assume that a very large data stream S consists of elements from a
universe U. Each element in S has the property that it may occur at most
twice. Let s1 be the count of the number of elements in S that occur exactly
once. Similarly, let s2 is the total count of the elements that occur exactly
twice in S. To count the number of distinct elements in the stream S you
may take a sample S′ ⊂ S, say each element of S is chosen uniformly at
random with probability 0 < p < 1. Let the count of the number of elements
in S′ that occur exactly once be s′1 and the number of elements that occur
exactly twice be s′2. Derive an expression for expected value of E[s′1] and

E[s′2]. Is it true that s2
s1+s2

=
s′2

s′1+s′2
?

222 notes on algorithm design

9.13 This exercise is based on the paper of Alon et al. [6]. The following set
of questions will provide us an estimate on the second frequency moment
F2 in a data stream A = (a1, . . . , am), where each ai ∈ N = {1, . . . , n}.
Recall that F2 =

n
∑

i=1
m2

i , and mi is the number of elements in A that are

equal to i, for 1 ≤ i ≤ n. Let h be a hash function that maps elements
of N independently and uniformly at random to {−1,+1}. Consider the
following algorithm:

Algorithm 9.4: Computation of F̂2

Input: Array A of size m where each ai ∈ N = {1, . . . , n}
Output: F̂2

1 R← 0
2 for i = 1 to m do
3 R← R + h(ai)

4 end
5 F̂2 ← R2

6 return F̂2

1. Show that R2 = (
n
∑

i=1
h(i)mi)

2.

2. Show that for any i ∈ N, E[h(i)] = 0 and h(i)2 = E[h(i)2] = 1.

3. For any i ∈ N, evaluate expected values of h(i)3 and h(i)4.

4. Show that E[R2] = F2.

5. Show that E[R4] =
n
∑

i=1
m4

i + 6 ∑
1≤i<j≤n

m2
i m2

j ≤ 3F2
2 .

6. Show that Var[R2] ≤ 2F2
2 .

7. Modify the algorithm by taking s random hash functions h1, . . . , hs,
that are independent of each other and each of them maps elements of
N independently and uniformly at random to {−1,+1}. We initialize
s different counts: R1 = R2 = · · · = Rs = 0. For 1 ≤ i ≤ s and

1 ≤ j ≤ m, set Ri := Ri + h(aj). Report X = 1
s

s
∑

i=1
R2

i as an estimate for

F2. Show that E[X] = F2 and Var[X] ≤ 2
s F2

2 .

8. Using Chebyshev’s inequality, show that Pr(|X− F2| ≥ γF2) ≤ 2
sγ2 , for

some positive constant γ.

9. Show that if we choose s = 2
γ2ε

in the previous exercise, then Pr(|X −
F2| ≤ γF2) ≥ 1− ε.

10. How much memory Algorithm 12 requires for execution?

data streams 223

9.14 This exercise is about the power of medians of means. Assume that
we want to compute a value X using a randomized algorithm. In the
analysis of our algorithm we use a random variable X that estimates X , i.e.
E[X] = X . To have a good estimation, we take k× s independent random
variables that have identical distribution as that of X, where s = O(log 1

ε)

and k = cVar[X]
γ2E[X]2

for some positive constants c, γ, and ε. We denote them by
{X11, . . . , X1k, X21, . . . , X2k, . . . , Xs1, . . . , Xsk}. Now we use the method of

[6], where we define Yi =
1
k

k
∑

j=1
Xij, 1 ≤ i ≤ s, and Z as the median value of

{Y1, . . . , Ys}. Show the following.

1. For i ∈ {1, . . . , s}, E[Yi] = X .

2. E[Z] = X .

3. Var[Yi] =
1
k Var[X].

4. Using Chebyshev’s inequality show that Pr(|Yi −X | ≥ γX) ≤ 1
c .

5. Using the ideas from Observation 9.3.7 and the Chernoff bounds, show
that Pr(|Z−X | ≥ γX) ≤ ε.

9.15 This exercise is similar to the previous exercise where we make some
assumptions on Var[X]. Let E[X] = X and Var[X] < cX 2. By using the
median of means with s = 3 log 2

ε and k = 8 c
γ2 , show that Pr(|Z−X | >

γX) < ε. As a hint, try to answer the following questions.

1. For i ∈ {1, . . . , s}, E[Yi] = X and E[Z] = X .

2. Var[Yi] =
1
k Var[X].

3. Using Chebyshev’s inequality show that Pr(|Yi −X | ≥ γX) < 1
8 .

4. For each Yj define an indicator random variable Ij given by

Ij =

1, if |Yj −X | > γX
0, otherwise.

Show that E[Ij] <
1
8 and E[

s
∑

j=1
Ij] <

s
8 .

5. Recall that Z is the median of Y1, . . . , Ys. Show that if Z 6∈ ((1 −
γ)X , (1 + γ)X), then

s
∑

j=1
Ij >

s
2 . Show, using the Chernoff bounds, that

Pr(|Z−X | ≥ γX) < 2 exp(− s
3) = ε.

9.16 (see Theorem 2.2. in [6]) By combining Exercises 9.13 and 9.14, show
that for any ε > 0 and γ > 0, we can compute an estimate F̂2 of the second
frequency moment F2 for a data stream A = (a1, . . . , am) in one pass, where

224 notes on algorithm design

each ai ∈ N = {1, . . . n}, using only O(
log 1

ε
γ2 (log n + log m)) memory bits

and Pr(|F2 − F̂2| ≥ γF2) ≤ ε. (Hint: See whether the choice of s = 2 log 1
ε

and k = 16
γ2 will suffice in Exercise 9.14.)

9.17 This exercise estimates the k-th frequency moment Fk. It is based on
Section 2.1 of [6]. Let k be a positive integer. Let A = (a1, . . . , am) be a data
stream of m elements, where each ai ∈ N = {1, . . . , n}. Choose an index
p ∈ {1, . . . , m} uniformly at random. Define r to be the number of times
the element ap occurs in the stream among the elements (ap, ap+1, . . . , am).
Define the random variable X = m(rk − (r− 1)k).

1. Show that it is sufficient to maintain O(log n + log m) bits to compute X.

2. Let A = (1, 2, 2, 3, 1, 1). Evaluate Fk and E[X].

3. Show that E[X] = Fk.

4. Show that if a > b > 0, then ak − bk ≤ (a− b)kak−1.

5. Show that E[X2] ≤ kmF2k−1 = kF1F2k−1.

6. Assume that for n positive numbers m1, . . . , mn, where each mi ≥ 0, the
following inequality is true:

n

∑
i=1

mi

n

∑
i=1

m2k−1
i ≤ n1− 1

k

(
k

∑
i=1

mk
i

)2

.

Show that Var[X] ≤ E[X2] ≤ kn1− 1
k F2

k .

7. Apply the framework of Exercise 9.16 by constructing sufficient number
of estimates similar to X. Define Y1, . . . , Ys, where each Yi is average of
some random variables, and show that with high probability the median Y
value doesn’t deviate from Fk significantly.

8. Estimate the space used by the algorithm.

9.18 Let S = {x1, . . . , xn} be a set of n distinct numbers. We are interested
in finding an approximate median element of S. Define the rank of an
element y ∈ S as the number of elements in S that are ≤ y, i.e. rank(y) =
|{x ∈ S|x ≤ y}|. An element y ∈ S is an approximate median of S, if
n
2 − εn ≤ rank(y) ≤ n

2 + εn for some ε ≤ 1
6 . We employ the following

strategy to find an approximate median element. We sample s elements
from S, each independently and uniformly at random with replacement. Let
S′ ⊂ S be the set of sampled elements. We set y to be the median of the
sampled elements. Define the three subsets of S as follows.

L = {x ∈ S : rank(x) <
n
2
− εn}

U = {x ∈ S : rank(x) >
n
2
+ εn}

M = {x ∈ S :
n
2
− εn ≤ rank(x) ≤ n

2
+ εn}

data streams 225

Answer the following.

1. Show that the probability that a sampled element is from the set L is 1
2 − ε.

2. Let X = |L ∩ S′|. Show that E[X] = (1
2 − ε)s.

3. Show that if |L ∩ S′| > s
2 , then y is not an approximate median. Same

holds if |R ∩ S′| > s
2 .

4. Show that Pr(X > s
2) ≤ Pr(X ≥ (1 + ε)E[X]).

5. Using Chernoff bounds and by setting s = 9
ε2 log 2

δ show that Pr(X ≥
(1 + ε)E[X]) ≤ exp(− ε2

3 E[X]) ≤ δ
2 .

6. Show that if |L ∩ S′| ≤ s
2 and |R ∩ S′| ≤ s

2 , then y is an approximate
median.

7. Show that if we draw s = 9
ε2 log 2

δ samples, Pr(n
2 − εn ≤ rank(y) ≤

n
2 + εn)) ≥ 1− δ.

8. How many samples we need to draw if ε = 0.1 and we want to succeed
with probability at least 3/4?

9.19 Continuing with the previous exercise, suppose input is a data stream
A of unknown size where we are allowed to perform one pass in order to
find an approximate median. We do not have enough space to store all the
elements of A, but have enough space to store the s sampled elements of
A. This exercise is about how to sample s elements from a data stream A,
uniformly at random, where we do not know the size of A in advance and
we can only afford to store O(s) elements. Let S be the set of s sampled
elements of A that we wish to report. We employ the following strategy:
Store the first s elements of A in S. For each successive element of A, say the
i-th element (i > s), we toss a coin where the probability of the favourable
outcome is s/i. If the outcome is favourable, the i-th element replaces one of
the elements S, selected uniformly at random. Show that when the algorithm
has terminated, each element of A has a probability of s

|A| being in S. (Hint:
Think first of the simpler cases where s = 1 or s = 2.)

9.20 Let us look at the Count Sketch algorithm, an alternate method for
estimating the frequency of elements in a stream [33], that came before
the Count-Min-Sketch. Similar to CMS, we have a table consisting of r
rows and b columns. In addition to having the hash functions h1, . . . , hr,
we also have hash functions s1, . . . , sr, where each si : N → {−1,+1}.
The algorithm is similar to CMS except that for each element of the stream
A[i], we increment/decrement the value in the j-th row of the table based
on the outcome of sj(A[i]). The details are sketched in Algorithm 9.5. To
estimate the frequency ηx of an element x ∈ A, we report the median value
of {s1(x) · CS[1, h1(x)], s2(x) · CS[2, h2(x)], . . . , sr(x) · CS[r, hr(x)]}. For

226 notes on algorithm design

Algorithm 9.5: Computation of Count Sketch Table
Input: An array A consisting of n natural numbers and 2r hash

functions h1, . . . , hr, s1, . . . , sr, where each
hi : N→ {1, . . . , b} and each si : N→ {−1,+1}

Output: CS[·, ·] table consisting of r rows and b columns

1 for i = 1 to r do
2 for j = 1 to b do
3 CS[i, j]← 0
4 end
5 end

6 for i = 1 to n do
7 for j = 1 to r do
8 CS[j, hj(A[i])]← CS[j, hj(A[i])] + sj(A[i])
9 end

10 end
11 return CS[·, ·]

an element x ∈ A and i ∈ {1, . . . , r} and j ∈ {1, . . . , b}, define Bi[hi(x)]
to be the set of elements other than x that are mapped to the same bucket
where x is mapped in the i-th row of the CS table. Let K be the set of k most
frequent elements in A and similarly K̄ to be the set of non-frequent items in
A, i.e. K̄ = N∩ (A \ K). Define B>k

i [hi(x)] = Bi[hi(x)] ∩ K̄. Let c > 1 be
a constant. Answer the following questions.

1. Show that for any element x ∈ A and for any i ∈ {1, . . . , r},
si(x) · CS[i, hi(x)] = ηx + si(x) ∑

y∈Bi [hi(x)]
si(y) · ηy.

2. Show that for any element x ∈ A and for any i ∈ {1, . . . , r},
E[si(x) · CS[i, hi(x)]] = ηx.

3. Show that Var[si(x) · CS[i, hi(x)]] = ∑
y∈Bi [hi(x)]

η2
y .

4. Show that E[∑
y∈B>k

i [hi(x)]
η2

y] =
1
b ∑

z∈K̄
η2

z .

Using Markov’s inequality, show that Pr(∑
y∈B>k

i [hi(x)]
η2

y ≤ c
b ∑

z∈K̄
η2

z) ≥

1− 1
c .

5. Let b ≥ ck. Show that Pr(Bi[hi(x)] ∩ K = ∅) ≥ 1− 1
c .

6. Show that for any element x ∈ A, Pr((si(x) · CS[i, hi(x)] − ηx)2 ≤
cVar[si(x) · CS[i, hi(x)]]) ≥ 1− 1

c

7. Combining the previous three exercises, show that Pr(∑
y∈B>k

i [hi(x)]
η2

y ≤

data streams 227

c
b ∑

z∈K̄
η2

z) ∧ Pr(Bi[hi(x)] ∩ K = ∅) ∧ Pr((si(x) · CS[i, hi(x)]− ηx)2 ≤

cVar[si(x) · CS[i, hi(x)]]) ≥ 1− 3
c . Furthermore, suppose for some

x ∈ A and i ∈ {1, . . . , r}, the above three probability statements are true.

Then show that Pr(|si(x) · CS[i, hi(x)]− ηx| ≤ c

√
∑

z∈K̄
η2

z

b) ≥ 1− 3
c .

8. To estimate the frequency ηx of x ∈ A, we return the median value η̂x

of {s1(x) · CS[1, h1(x)], s2(x) · CS[2, h2(x)], . . . , sr(x) · CS[r, hr(x)]}.
Let r = Ω(log n

δ) and c ≥ 8. Show that the expected number of indices

in {1, . . . , r} that satisfy Pr(|si(x) · CS[i, hi(x)]− ηx| ≤ 8

√
∑

z∈K̄
η2

z

b) is
≥ 5

8 r. Using Chernoff bounds show that with high probability at least r
2

indices in {1, . . . , r} satisfy Pr(|si(x) · CS[i, hi(x)]− ηx| ≤ 8

√
∑

z∈K̄
η2

z

b).

Conclude that Pr(|ηx − η̂x| ≤ 8

√
∑

z∈K̄
η2

z

b) ≥ 1− δ
n , as η̂x is the median

9. While executing the Algorithm 9.5 we can maintain a heap of k-elements
that have the k highest median values. When the next element x ∈ A is
considered, if it is already in the heap its count is incremented. Otherwise,
if its median value is greater than the smallest median value in the heap,
then x is added to the heap and the element with the smallest median
value is removed. Let ηk be the frequency of the k-th most frequent

element in A. Let b = max(8k,
256 ∑

z∈K̄
η2

z

(εηk)2), for some ε > 0. Show that
when the algorithm has terminated all the elements whose frequency is at
least (1 + ε)ηk are in the heap. Furthermore, show that no element whose
frequency is less that (1− ε)ηk will be in the heap.

9.21 In the Basic Counting algorithm why we need to take multiple copies of
the buckets of type Bi for i ≥ 0? What will happen in the analysis if we only
take at most one copy of each of the bucket types?

9.22 This question is about Stream Statistics Over Sliding Windows. You
need to determine the value of r, where we use up to r ≥ 2 buckets of type
Bi for i ≥ 0, so that the count of the number of 1s reported by the algorithm
is within 5% of the actual count of 1s among the last N bits seen in a data
stream. Justify your choice of r. Furthermore, analyze the total space used
by the data structure that maintains all the required buckets to achieve the
desired accuracy?

9.23 Consider a stream consisting of positive numbers, where each number
is represented using d-bits. We are interested in answering queries among
the last N numbers received. The query consists of a value k ∈ {1, . . . , N},
and we want to know the (approximate) sum of the last k numbers in the
stream. Modify the Basic Counting algorithm’s data structure so that now

228 notes on algorithm design

in place of counting 1’s in the bit stream, it can approximate the sum. Note
that you only have memory to store o(N) numbers as before.

Hint: Consider d-streams, where the k-th stream represents the k-th
most-significant bit of the numbers.

9.24 Assume that we have a stream consisting of numbers from the set
{−1, 0,+1} and we are interested in maintaining the sum of last N bits of
the stream. In this exercise we will show that it will require Ω(N) bits to
maintain an approximate sum that is within a constant factor of the exact
sum. Suppose we have an algorithm A that maintains the approximate sum
within a constant factor on the input consisting of stream of {−1, 0,+1} .
Assume that we have a bit string X consisting of N

2 -bits composed of only 0s
and 1s. We form an input of N bits for Algorithm A as follows: We replace
each 0-bit of X by a pair of bits (1,−1) and each 1-bit of X by the pair
(−1, 1). Now this sequence of N-bits is presented to our algorithm A. Note
that the exact sum of these N-bits is 0. In addition to these N bits derived
from stream X, the next set of N bits that will be presented to A consists of
only 0-bits and we will show that we will recover completely the original bit
vector X. Answer the following:

1. Show that if the (N + 1)-st bit in the stream for A is 0, the output to the
exact sum query on receiving this bit will be +1 (respectively −1) if and
only if the 1st bit in the stream of X was a 1 (respectively, 0). Moreover,
on receiving this (N + 1)st 0 bit, Algorithm A will output a positive
number (resp. negative number) if and only if the 1st bit in the stream of
X was a 1 (respectively, 0)

2. For a positive integer i < N
2 , show that after receiving the (N + 2i− 1)-th

0 bit, the output to the approximate sum query algorithm A is a positive
number (respectively a negative number) if and only if the i-th bit in the
stream X was a 1 (respectively, 0).

3. Show that after receiving the 2N-th 0 bit by A , we would have com-
pletely recovered all the bits of the stream X (and therefore the first N bits
of the stream A).

4. Conclude that to estimate the approximate sum within a constant factor
in a sliding window of size N in a stream of (positive and negative)
numbers we need to store Θ(n) bits.

9.25 Consider the following snapshot in the DGIM algorithm, where we
want to count the number of 1s in a sliding window. The table below gives
a snapshot of the last 100 bits received. (Assume that the most recent bit
has an end time of 100, i.e. the new bits enter the table from the right. Note
that the meaning of the entry in the column corresponding to eighty is that
there are exactly eight 1s in the locations from sixty-six (inclusive) to eighty
(inclusive), and the location eighty is 1.)

data streams 229

End Time 65 80 87 92 95 98 100
Size (#1s) 8 8 4 2 2 1 1

Answer the following:

1. What will be the estimate of the number of 1s in the most recent 21 bits
and in the most recent 40 bits?

2. What will be the minimum and maximum number of 1s that are possible
in the most recent 21 and 40 bits, respectively.

3. Construct the table after the following four bits (in order) are added: 1 0
1 1.
(To remove any confusion, 101st bit is 1, 102nd bit is 0, 103rd bit is 1,
and 104th bit is 1.)

9.26 Consider an endless stream of binary bits. Consider the following
snapshot in the DGIM algorithm, where we want to count the number of 1s
in a sliding window. Recall that we choose at most two buckets that consist
of the same number of 1s. Moreover, the number of 1s in a bucket is some
power of 2. The table below gives a snapshot of the last 100 bits received.
(Assume that the most recent bit has an end time of 100, i.e. the new bits
enter the table from the right. Note that the meaning of the entry in the
column corresponding to sixty-five is that there are precisely eight 1s in the
locations from forty-one (inclusive) to sixty-five (inclusive), and the location
sixty-five is 1.)

End Time 40 65 72 82 90 97 100
Size (#1s) 8 8 4 2 2 1 1

Answer the following:

1. What will be the estimate of the number of 1s in the most recent 45 bits
reported by the DGIM algorithm?

2. What will be the minimum and the maximum number of 1s possible in
the most recent 45 bits in the above setting.

3. Construct the table after the following four bits (in order) are added in the
stream: 1 1 0 1 (Note that: 101st bit is 1, 102nd bit is 1, 103rd bit is 0,
and 104th bit is 1).

9.27 Consider tracking the most popular movies from the sale of movie
tickets sold worldwide. Let c = 10−6 and τ = 1/2. We maintain decaying
scores for movies whose threshold is at least τ. For each new ticket sale for
a movie, say without loss of generality this is for the movie M, perform the
following steps.

1. For each movie whose score is being maintained, its new score is reduced
by a factor of (1− c). (To be precise, if the score of a movie was s, the new
score is s := s(1− c).)

230 notes on algorithm design

2. If we have the score of M, add 1 to that score. Otherwise, create a new
score for M and initialize it to 1.

3. Remove any score that falls below τ.

Answer the following questions:

1. What is the sum of all scores at any point in time?

2. How many scores are maintained at any given time?

3. If τ = 1/3 instead of 1/2, what will be the number of scores maintained
and the sum of all the scores at any point in time?

9.28 Suppose you have a stream S consisting of 55 numbers, where each
number i, 1 ≤ i ≤ 10, occurs i times. (To clarify, 1 occurs once, 2 occurs
twice, 3 occurs thrice, . . ., 10 occurs ten times.) Answer the following
questions:

1. Compute the frequency moment F0 of S.

2. Execute the following algorithm to evaluate the estimate F̂0 for the given
input stream S.

Step 1: Initialize R := 0

Step 2: For each element i ∈ S do:

(a) Compute binary representation of i

(b) Let r be the location of the rightmost 1 in the binary representation

(c) if r > R, R := r

Step 3: Return F̂0 = 2R

3. Evaluate the second frequency moment F2 of S.

4. Execute the following algorithm to evaluate the estimate F̂2 for the input
stream S. You can assume that the hash function h maps every even
integer to −1 and every odd integer to +1.

Step 1: Initialize Y := 0.

Step 2: For each element i ∈ S, Y := Y + h(i)

Step 3: Return F̂2 = Y2

9.29 Here is an alternative simple method to find an estimate on F0, i.e.,
the number of distinct elements, in a stream A consisting of n elements.
Elements in A are drawn from a universe U. Let h : U → (0, 1] be a
random hash function. The steps in the algorithm are as follows:

Step 1: Y := 0.

Step 2: On the arrival of element x in the stream A, compute h(x).
If Y > h(x), Y := h(x).

data streams 231

Step 3: Return F̂0 = d 1
Y e.

Answer the following.

1. Show that E[Y] = 1
1+F0

.

Hint: Show that E[Y] =
∫ 1

0 Pr(Y ≥ x)dx =
∫ 1

0 (1− x)F0 dx.

2. Show that Var[Y] ≤
(

1
1+F0

)2
. Recall probability density functions,

cumulative probability density func-
tions, expected value and variance of
continuous random variables.

Hint: Show that E[Y2] =
∫ 1

0 x2F0(1− x)F0−1dx = 2
(1+F0)(2+F0)

.

Instead of using one hash function, let us use k independent hash func-
tions h1, . . . , hk : U → (0, 1], and compute the corresponding Y1, . . . , Yk.

Define Ȳ = 1
k

k
∑

i=1
Yi. Answer the following.

1. Show that E[Ȳ] = 1
1+F0

.

2. Show that Var[Ȳ] ≤
(

1
k(1+F0)

)2
.

3. By applying Chebyshev’s inequality show that
Pr(|Ȳ− 1

1+|F0| | ≥
ε

1+F0
) ≤ 1

kε2 .

4. Show that with probability ≥ 1− 1
kε2 ,

(1−O(ε))F0 ≤ d 1
Ȳ e − 1 ≤ (1 + O(ε))F0.

5. Show that if k > 4
ε2 , with probability ≥ 3

4 , Ȳ ∈
[

1−ε
1+|F0| ,

1+ε
1+|F0|

]
.

10
Online Algorithms

We will focus on

1. Online algorithm for bipartite matching.

2. WATERLEVEL algorithm for fractional bipartite matching.

3. RANKING randomized algorithm for bipartite matching.

4. BALANCE algorithm for b-matching.

Keywords: LP, LP Duality, competitive ratio, matching, online
algorithms, WATERLEVEL Algorithm, BALANCE algorithm, RANK-

ING algorithm.

An algorithmic solution to a problem consists of efficiently trans-
forming the given input to the desired output. Typically, the whole
input is presented before the algorithm starts. Whereas in an online
algorithm the input items arrive over time. When the new input item
arrives, the online algorithm has to make an irreversible decision on
what to do with the new item. Therefore, once the decision is being
made, it cannot be reversed or altered on the arrival of future items.
In this chapter we look at some of the recent algorithms related to
online fractional bipartite matching problem and its implications to
web advertising. We will also look at some classical results in online
learning theory related to regret minimization and its applications to
zero-sum games. This chapter is based on [42, 85, 91, 103, 124].

10.1 Online Bipartite Matching

Figure 10.1: Red edges forms matching.
Maximum matching may not be unique.

In this section we discuss an online algorithm for finding a matching
in a bipartite graph. Let G = (V = L ∪ R, E) be a bipartite graph
where the vertex set V consists of the sets L and R (referred to as

234 notes on algorithm design

‘left’ and ‘right’ sets) and a set E of edges (v, w) where v ∈ L and
w ∈ R. The set M ⊆ E is a matching in G if no two edges in M share
a vertex.

Graph G is presented in an online manner. All the vertices in the
set L are known in advance, but the vertices in R and the edges are
presented over time. At each time instant t ∈ {1, 2, 3, . . . }, a new
vertex rt ∈ R and all its incident edges arrive. The online matching
algorithm needs to decide among all the currently unmatched neigh-
bors of rt in the set L to which vertex (if any) rt should be matched.
The vertex rt remains matched to that vertex (if any) for the rest of
the algorithm.

1 2 3 4

l1

l2

l3

l4

r1

r2

r3

r4

Figure 10.2: Online arrival of vertices in
R with their incident edges over 4 time
steps.

Our task is to come up with an online algorithm that maximizes
the size of the matching M reported by the online algorithm. By size,
we mean the number of edges in M. To understand the quality of
our solution we use the widely popular notion of the competitive
analysis where we compare the size of M against the size of the
maximum matching M∗ in G. This comparison seems to be unfair
as the online algorithm doesn’t have the full knowledge of G and an
adversary may choose a permutation of vertices of R that is possibly
the worst for making matching decisions at each time stance. Even
in this adversarial setting competitive bipartite matching algorithms
have been proposed. We will present a straightforward simple greedy
strategy and show that it is 1

2 -competitive using the LP-duality
framework.

First let us see that a deterministic algorithm can’t achieve better
than 1

2 -competitive ratio.

Example 10.1.1 Consider a bipartite graph on 4 vertices, where L =

{l1, l2} and R = {r1, r2}. At the first time step the algorithm is presented
with the vertex r1 and the two incident edges (r1, l1) and (r1, l2). Let us say
that the online algorithm decides to add the edge (r1, l1) to M. At the next
time step, the algorithm receives r2 and only one edge (r2, l1). Since l1 is
already matched to r1, r2 remains unmatched. So the size of M is 1, whereas
the optimal matching for G is (r1, l2), (r2, l1) of size 2.

l1 r1

l2

l1 r1

l2

l1 r1

l2

r2

r2

Figure 10.3: Example where the compet-
itive ratio is 1

2

Depending on the action of r1, the adversary can decide which edge
to present as an incident edge to r2 in the second step and therefore the
deterministic online algorithm can’t do better.

We first define a few quantities before presenting the linear pro-
gramming (LP) formulation. For each edge e ∈ E let xe to be a
non-negative variable taking a real value. Let Adj(v) refers to the
edges incident to the vertex v ∈ L ∪ R. We will also express the LP
using the standard matrix-vector notation, where

online algorithms 235

1. c =

1
1

. . .
1

 is a vector of length |E|.

2. b =

1
1

. . .
1

 is a vector of length |V|.

3. x =

x1

x2

. . .
x|E|

 is the vector of variables corresponding to the edges. A =

l1
l2
l3
l4
r1
r2
r3
r4

e1 e2 e3 e4 e5 e6

1 1 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 1

l1

l2

l3

l4

r1

r2

r3

r4

e1

e2 e3

e4

e5

e6

4. A is a |V| × |E| matrix and its ij-th entry is 1 if the edge correspond-
ing to the column j is incident on the vertex corresponding to the
row i, otherwise 0.

The Primal Linear Program can be stated as follows.

Primal LP:

Objective function:
max ∑

e∈E
xe max cTx

Subject to:

∑
e∈Adj(v)

xe ≤ 1, for all v ∈ L ∪ R Ax ≤ b

xe ≥ 0, for all e ∈ E x ≥ 0.

In the above formulation the variables can take fractional values,
but it is also known that there is an integral solution that achieves
an optimal value. (We know this from the existence of maximum
matching. Alternatively, we can argue as follows. If an edge e takes
a fractional value xe > 0, then it will have a neighboring edge taking
a fractional value, and so on. This forms a cycle where each edge
on the cycle is taking a fractional value. Then one can move around
the smallest fractional value to other edges on the cycle without
altering the value of the objective function. This results in one fewer
edge taking the fractional value. Continuing this process on the
finite graph we can eventually show that each edge (i.e. xe) takes an
integral value. The optimal value of the Primal LP is the size of the
maximum matching |M∗| in G and the edges taking the value xe = 1
constitute M∗.

236 notes on algorithm design

Example 10.1.2 Consider the complete bipartite graph where |L| = |R| =
2. Assume that L = {l1, l2} and R = {r1, r2}. It is easy to see that for this
graph the maximum value of the objective function of the Primal LP is 2.

l1 r1

l2 r2

a

b

dc

For example, we can achieve an optimum value of 2 by setting xl1,r1 =

xl2,r2 = xl1,r2 = xl2,r1 = 1
2 . We can also achieve the optimal value by setting

xl1,r1 = xl2,r2 = 1 and xl1,r2 = xl2,r1 = 0.

Primal Dual
max cTx min bTy
Ax ≤ b ATy ≥ c
x ≥ 0 y ≥ 0.

What is a Dual LP?
Consider the following Linear Program:

max x1 + x2

x1 + 2x2 ≤ 4

2x1 + x2 ≤ 6

x1, x2 ≥ 0

Let us try to find an upper bound to the value of the objective func-
tion. Given that x1, x2 ≥ 0, from the first constraint we have x1 +

x2 ≤ x1 + 2x2 ≤ 4 and from the second constraint we have x1 +

x2 ≤ 2x1 + x2 ≤ 6. Thus the constraints state that the value of the
objective function cannot be more than 4. But we can also consider
linear combinations of the constraints. For example, consider α(x1 +

2x2 ≤ 4) + β(2x1 + x2 ≤ 6), where α, β ≥ 0. The combination 4α +

6β can be an upper bound to the objective function of LP provided
that α + 2β ≥ 1 (corresponding to x1) and 2α + β ≥ 1 (correspond-
ing to x2). Suppose we set α = 1

2 and β = 1
4 . This results in tak-

ing the linear combination 1
2 (x1 + 2x2)+

1
4 (2x1 + x2) = x1 +

5
4 x2 ≥

x1 + x2. Since this choice of α and β also satisfies α + 2β ≥ 1 and
2α + β ≥ 1, 1

2 4 + 1
4 6 = 7

2 is another upper bound to the value
of objective function. We may also consider α = β = 1/3. This
choice satisfies the constraints and results in an upper bound of 10

3 ,
bit better than 7

2 . We can see that x1 = 8
3 and x2 = 2

3 satisfies the
constraints of the LP and results in the objective value of 10

3 . Thus
the upper bound using the linear combination that we obtained is
the optimal value! Moreover, finding the right upper bound can also
be written as a (dual) linear program:

min 4α + 6β

α + 2β ≥ 1

2α + β ≥ 1

α, β ≥ 0

In general, given the Primal Linear Program max cTx subject to Ax ≤
b, x ≥ 0, its Dual LP is expressed as min bTy, subject to ATy ≥ c,

online algorithms 237

y ≥ 0. Looking closely at the Primal-Dual pair, we observe that

1. For each variable in the Primal we have a constraint in the Dual.

2. For each constraint in the Primal we have a variable in the Dual.

3. Maximization becomes a Minimization problem.

4. If x and y are feasible solutions to the Primal and Dual LPs, re-
spectively, then cTx ≤ (ATy)Tx = yT(Ax) ≤ yTb = bTy. Note
that if x and y are feasible then x, y ≥ 0 and are bounded and
therefore we can apply the above substitution to obtain that cTx ≤
bTy. This is called the Weak Duality.

The Strong Duality Theorem states that if x and y are optimal val-
ues for the Primal and Dual LPs, respectively, then cTx = bTy.

Let us consider the Dual Linear Program to the maximum matching
LP. We will introduce |V| variables corresponding to each vertex
constraint of the primal. We label them p1, p2, . . . , p|V| and let p =

(p1, p2, . . . , p|V|)T . Recall that the value of the objective function of
the Dual LP is an upper bound to the value of the objective function
of the Primal LP.

Dual LP:

Objective function:
min ∑

v∈V
pv min bT p

Subject to:

pv + pw ≥ 1, for all e = (v, w) ∈ E AT p ≥ c
pv ≥ 0, for all v ∈ V p ≥ 0.

Now we have all the tools necessary to show that the following
Greedy Online Algorithm is 1

2 -competitive.

Greedy Online Matching Strategy: At time step t:
Match rt to any of the unmatched neighbors in the set L.

l1

l2

l3

l4

r1

r2

r3

r4

l1

l2

l3

l4

r1

r2

r3

l1

l2

l3

l4

r1

r2

l1

l2

l3

l4

r1

1 2 3

Figure 10.4: Execution of Greedy
Online Algorithm. Red edges in greedy
matching.

Example 10.1.3 Consider the graph in Figure 10.4 where |L| = |R| = n.
Assume that L = {l1, l2 . . . , ln} and R = {r1, r2, . . . , rn}. Let E =

{(li, rj)|i ≥ j, for all i, j ∈ {1, . . . , n}}. It is easy to see that for this graph
the maximum value of the objective function of the Primal LP is n. For
example, we can achieve the optimal value by setting all the variables xe’s

238 notes on algorithm design

corresponding to the edges e = (li, ri) to 1, for i = 1, . . . , n, and all other
variables to 0. The set of edges {(l1, r1), (l2, r2), . . . , (ln, rn)} forms a perfect
matching and it satisfies all the constraints of the LP.

Now consider the execution of the greedy online algorithm where the
vertices of the set R and their incident edges come in increasing order
of their indices. Assume that the greedy algorithm matches the vertices
r1, r2, . . . , rb n

2 c to ln, ln−1, . . . , ld n
2 e, respectively. But any of the remaining

vertices rj where j > b n
2 c cannot be matched as there are no free vertices left

in L that are adjacent to them. Thus the size of the greedy matching is ≈ n
2 .

We make the following observation.

Lemma 10.1.4 The matching M computed by the Greedy Online Algo-
rithm in G = (V = L ∪ R, E) is maximal.

For the purpose of analysis, for each vertex v ∈ V we introduce a
quantity qv that is a real number and it is initialized to zero. When-
ever we find an edge e = (v, w) in the matching during the execution
of the greedy algorithm, we set qv = 1

2 and qw = 1
2 . Clearly the size

of the matching M reported by the greedy algorithm is

|M| = ∑
v∈V

qv

After the execution of the greedy algorithm consider the dual LP
where we set pv = 2qv for all v ∈ V.

l1

l2

l3

l4

r1

r2

r3

r4

q-valueq-value

1/20

1/2

0

0

0

1/2

1/2

p-value

0

0

1

1

p-value

1

1

0

0

Figure 10.5: Assignment of p and q
values to vertices.

Observe that pv ≥ 0 for all v ∈ V. Moreover, for each edge
e = (v, w) ∈ E, pv + pw = 2qv + 2qw ≥ 1. Otherwise, both the end-
points of e aren’t matched. That contradicts the fact that the greedy
algorithm computes a maximal matching. The value of the objective
function of the dual is given by

∑
v∈V

pv = 2 ∑
v∈V

qv = 2|M|.

Using the fact the the value of the objective function of the Dual LP
is an upper bound to the value of the objective function of Primal we
obtain that 2|M| ≥ |M∗|, or equivalently |M|

|M∗ | ≥ 1
2 .

10.2 Fractional Online Bipartite Matching - WATERLEVEL

In this section we discuss the fractional matching problem on the
bipartite graph G = (V = L ∪ R, E). The vertices in L are known in
advance and each has a unit capacity. The vertices in R come in an
online fashion along with its incident edges. Each vertex in R has a
unit amount of information to handout. At each time instant t, we
need to transmit the information from the current vertex rt to its
neighboring vertices in the set L so that the following conditions are
met:

online algorithms 239

1. Sum total of the information that is transmitted from rt to its
neighbors in L is at most 1.

2. One or more neighbors of rt may receive the information provided
they do not exceed their capacity of 1. I.e. the sum total of the
information received by any particular vertex v ∈ L over the entire
execution of the algorithm is at most 1.

3. Once the information is transmitted from rt to its neighbors it
cannot be reversed in the online algorithm.

Let xe represent the amount of information that travels on an edge
e ∈ E. The above two conditions imply that for any vertex v ∈ V,
Level(v) = ∑

w∈N(v)
xvw ≤ 1, where N(v) denotes the neighbors of v

in G. The objective is to maximize the total information received by
the vertices in the set L over the entire execution of the algorithm,
or equivalently maximize ∑

e∈E
xe. Observe that for the (static) graph

G the LPs stated in the previous section also apply to this problem
formulation as xe’s can take fractional values. Moreover, the value of
the objective function is the size of the maximum matching in G.

The following algorithm, so called the WATERLEVEL algorithm that
generalizes the greedy matching strategy discussed previously, is
proposed for the fractional online bipartite matching. We will show
that it is 1− 1

e ≈ 0.63-competitive.

l1 r1

l2 r2

1/2

1/2

1/2

l1 r1

l2

1/2

1/2

l1

l2

1 2 3

Figure 10.6: Execution of WATER-
LEVEL Algorithm. Cost of fractional
matching is 3

2 , and the competitive ratio
is 3

4 .

WATERLEVEL Algorithm

At any time step t:
Drain the water (information) from rt to its neighbors where

the preference is always given to the neighbor with the largest
residual capacity remaining till

Case 1: All neighbors of rt are saturated, or
Case 2: rt transmits all its information.

More precisely the steps involved in the computation on the
arrival of the vertex rt are as follows:

1. Initialize for all v ∈ N(rt), xvrt = 0.

2. Recall that Level(v) = ∑
w∈N(v)

xvw denotes the current level of any

vertex v ∈ L ∪ R. On the arrival of rt we compute the quantity
NLevel given by

∑
v∈N(rt)

max{NLevel, Level(v)} = 1 + ∑
v∈N(rt)

Level(v)

and set NLevel = min{1, NLevel}.

240 notes on algorithm design

3. We raise the level of each vertex v ∈ N(rt) to NLevel unless it was
already above it. I.e., for all v ∈ N(rt) set

xvrt = max{NLevel, Level(v)} − Level(v)

Level(v) = Level(v) + xvrt

Claim 10.2.1 On the completion of the processing for rt, Level(v) for all
neighbors of rt is at least NLevel.

Example 10.2.2 Consider the execution of the WATERLEVEL algorithm on
the graph in Figure 10.4. Assume that the vertices in R arrive in the order
of increasing indices. Let us walk through the execution of the algorithm on
the arrival of each of the vertices in R. Initially, for all v ∈ L, Level(v) = 0
and for all edges e ∈ E, xe = 0.

r1

r2

r3

r1

r2

r1

r2

r3

r4

r1

1 2 3 4

Figure 10.7: Fractional Flow Value
= 4× 1

4 + 3× 1
3 + 2× 5

12 = 17
6 > 2. Total

flow value received at vertices in L are
Level(l1) = 1

4 ; Level(l2) = 1
4 + 1

3 = 7
12 ;

and Level(l3) = Level(l4) = 1
4 + 1

3 + 5
12 =

1.

Computation for r1: r1 is adjacent to l1, l2, l3, and l4 and their current
Level’s are 0. Therefore, NLevel = 1

4 as it satisfies ∑
v∈N(r1)

max{ 1
4 , 0} =

1 + ∑
v∈N(r1)

0. Moreover, xl1r1 = xl2r1 = xl3r1 = xl4r1 = 1
4 and Level(l1) =

Level(l2) = Level(l3) = Level(l4) = 1
4 .

Computation for r2: r2 is adjacent to l2, l3, and l4 and their current Level’s
are 1

4 . Therefore, NLevel = 7
12 as it satisfies ∑

v∈N(r2)
max{ 7

12 , 1
4} = 1 +

∑
v∈N(r2)

1
4 . Moreover, xl2r2 = xl3r2 = xl4r2 = 7

12 − 1
4 = 1

3 and Level(l1) = 1
4 ,

Level(l2) = Level(l3) = Level(l4) = 7
12 .

Computation for r3: r3 is adjacent to l3 and l4 and their current Level’s are
7
12 . Since 13

12 satisfies ∑
v∈N(r3)

max{ 13
12 , 7

12} = 1 + ∑
v∈N(r3)

7
12 , NLevel =

min{1, 13
12} = 1. Moreover, xl3r3 = xl4r3 = 1− 7

12 = 5
12 and Level(l1) = 1

4 ,
Level(l2) = 7

12 , Level(l3) = Level(l4) = 1.

Computation for r4: r4 is adjacent only to l4 and l4 is already saturated.
Thus, NLevel = min{1, 2} = 1, and xl4r4 = 1− 1 = 0. The algorithm
finishes with Level(l1) = 1

4 , Level(l2) = 7
12 , Level(l3) = Level(l4) = 1.

online algorithms 241

Therefore the total weight of the fractional matching is 1 + 1 + 7
12 + 1

4 ≈
2.83 and the optimal matching is of size 4. The competitive ratio of the
WATERLEVEL algorithm is > 1

2 for this example.

Example 10.2.3 Consider the graph G = (V = L∪R, E) of Example 10.1.3
where L = {l1, l2, . . . , ln}, R = {r1, r2, . . . , rn}, and E = {(li, rj)|i ≥
j, for all i, j ∈ {1, . . . , n}}. In the previous example, we considered the case
when n = 4.

Let us execute the WATERLEVEL algorithm on G where vertices in the set
R come in an online manner in increasing order of their indices. Let j be the
first index at which there is no further flow of information from vertices in
rt ∈ R for t > j. This implies that all the vertices lj+1, . . . , ln are saturated
(i.e. for any li, i > j, ∑

w∈R
xliw = 1).

r1

r2

rn

rj

lj+1

ln

Saturated

Unsaturated

rj+1

lj

The index j must satisfy

1
n
+

1
n− 1

+ · · ·+ 1
n− j + 1

≥ 1

Recall that the n-th Harmonic number Hn =
n
∑

k=1

1
k ≈ ln n. Thus, we want

to determine for what value of j,

1
n
+

1
n− 1

+ · · ·+ 1
n− j + 1

= Hn − Hn−j ≈ ln
n

n− j
≥ 1.

If j = n(1− 1
e), ln n

n−j = ln n
n−n(1− 1

e)
= ln e = 1. This implies that

the vertices r1, . . . , rj−1 are able to send all of their information to vertices
of L, whereas rj+1, . . . , rn aren’t able to send any. Thus the weight of the
fractional matching computed by the WATERLEVEL algorithm for this
example is ≈ j ≈ n(1− 1

e). Hence the competitive ratio is ≈ (1− 1
e) as G

has a perfect matching.

Next, we analyze the WATERLEVEL algorithm using the primal-
dual LP framework. LPs are for the competitive analysis only - the
algorithm never executes any LP! As remarked earlier the Primal-
Dual LPs of the previous section are valid here. In the analysis of
the Dual LP we introduced the quantity qv for each vertex v ∈ L ∪ R
and for each edge e = vw ∈ E that is added to the matching M we
assigned qv = qw = 1

2 . By setting pv = 2qv for all v ∈ V, all the Dual
LP constraints were satisfied and the greedy matching algorithm was
shown to be 1

2−competitive.
We can try to mimic the similar idea for the fractional matching

analysis as follows. For all v ∈ V, we intialize qv = 0. After the
execution of the WATERLEVEL algorithm, for each edge e = vw ∈ E
we set qv = qv +

1
2 xvw and qw = qw + 1

2 xvw. We have that the size
of the fractional matching |M| = ∑

v∈V
qv. But to satisfy the Dual LP

242 notes on algorithm design

constraints we still need to set pv = 2qv and this can be justified as
follows. Consider the edge l4r4 in the graph in Example 10.2.2. All
the edges e incident to the vertex r4 has xe = 0. For any of those
edges the sum total of the q values of their end points is at most 1

2 .
Therefore, we need an alternate way to devise values for qv’s so that
by setting pv = cqv for some value c < 2 we can satisfy all the Dual
LP constraints and obtain a competitive ratio 1

c > 1
2 .

The main idea is that instead of splitting the value of the flow xe

on each edge e = vw ∈ E between its endpoints evenly, split in such a
way that qv + qw ≥ 1− 1

e . Thus by setting pv = e
e−1 qv we can satisfy

the constraints of the Dual LP and the resulting competitive ratio will
be ≥ 1− 1

e .
In the WATERLEVEL algorithm when we route the information

from the vertex w = rt ∈ R to its neighbors v ∈ L, one of the
following two scenarios take place.
Case 1: Vertex v after receiving information from w gets saturated. i.e.
Level(v) = ∑

z∈R
xvz = 1.

Case 2: Vertex v didn’t get saturated but w runs out of all of its
information to be handed out, i.e. ∑

v∈L
xvw = 1.

Consider Case 2. Assume that after the algorithm has terminated,
the vertex v isn’t saturated. Recall Claim 10.2.1. Let the information
content that v has received during the entire execution of the algo-
rithm equals Level(v) < 1. Moreover, assume that vw ∈ E. Now
consider the step in the online algorithm when w ∈ R was revealed.
In that step w routed the information to its neighbors (including v) in
L whose Level’s were at most Level(v). (This follows from the water-
filling analogy since v finished with Level(v) at the termination and
w can only send information to its neighbors up to Level(v) upon its
arrival.)

Let us initialize qv = 0 for all v ∈ L and qw = 0 for all w ∈ R. Let
f (x) = ex−1 be defined for x ∈ [0, 1]. Consider the execution of the
WATERLEVEL algorithm on G = (L ∪ R, E) at the time instance when
w ∈ R appears in the online algorithm. Let Level(v) < 1 for some
vertex v ∈ L before this time instance and v is one of the neighbors of
w. Assume that there is a very small amount of information dx that
flows from w to v on the edge vw at this time instance. We partition
the increase xvw = dx among qv and qw by using the function f as
follows:

qv = qv + f (Level(v))dx and qw = qw + (1− f (Level(v)))dx

Observe that the increase in the value of qv + qw is dx and if Level(v)
is ≈ 1 then a large proportion of dx is assigned to qv as f (Level(v)) =
eLevel(v)−1 ≈ 1. This is the main difference between the partitioning

online algorithms 243

of the increase xvw using the function f as compared to splitting
evenly among qv and qw.

Let us execute the WATERLEVEL algorithm and on its termina-
tion we make a determination of the q values of the vertices of
G. Consider any edge e = vw ∈ E in the final graph. We know
that the processing on the arrival of the vertex w ∈ R resulted in
Level(v) = ∑

z∈R
xvz = 1 (Case 1) or ∑

v∈L
xvw = 1 (Case 2). If both were

< 1, then there was no reason for w to not send more information to
its unsaturated neighbor v as w is not completely drained out. Next
we analyze the sum qv + qw for both the cases:
Consider Case 1: After termination we are given that v is saturated,
i.e. Level(v) = 1. During the course of the algorithm its Level went
from 0 to 1. Thus for the edge vw,

qv + qw ≥ qv =

1∫
0

f (x)dx =

1∫
0

ex−1dx = 1− 1
e

Consider Case 2: We know that w has sent all of its information to
its neighbors including v. It is possible that v may or may not be
saturated when the algorithm terminated. Suppose Level(v) = X,
where 0 ≤ X ≤ 1, at the termination of the algorithm. By our
observation we know that when w was sending information to its
neighbors all of their Level’s were at most X. Thus using the fact that
f is increasing (therefore, 1− f is decreasing), we get that

qw ≥
1∫

0

(1− f (X))dx = (1− eX−1)

1∫
0

dx = 1− eX−1

Thus

qv + qw ≥
X∫

0

f (x)dx + 1− eX−1 = eX−1 − 1
e
+ 1− eX−1 = 1− 1

e
.

Note that in this case the lower bound on the value of qv + qw is in-
dependent of value of Level(v) at the termination of the algorithm. It
used only the fact that w has sent all of its information to its neigh-
bors. Therefore, in summary, in both the cases we have that for any
edge e = (vw) ∈ E, qv + qw ≥ 1− 1

e .
Set pv = e

e−1 qv for all v ∈ L ∪ R. This ensures that the all the
constraints of the Dual LP are satisfied. We know that ∑

e=vw∈E
(qv +

qw) = |M| and the objective value of the Dual LP is an upper bound
to the objective value of the Primal LP. Since the optimal value of the
Primal is the size of the optimal fractional matching M∗, we obtain

∑
e=vw∈E

pv + pw =
e

e− 1 ∑
e=vw∈E

qv + qw =
e

e− 1
|M| ≥ |M∗|

244 notes on algorithm design

10.3 Randomized Online Bipartite Matching - RANKING

As before let the bipartite graph be G = (V = L ∪ R, E). The vertices
in L = {l1, . . . , ln} are known in advance and the vertices in R =

{r1, . . . , rn} come in an online fashion along with its incident edges
in increasing order of their indices. In this section we will discuss
the randomized algorithm called RANKING of [85] for matching in
G. Now an edge is either in the matching or it isn’t. The analysis
of RANKING will use the Primal Dual LPs of Section 10.1 and the
function f (x) = ex−1 of Section 10.2. This analysis is based on
the paper by [42]. The RANKING algorithm on the bipartite graph
G = (L ∪ R, E) is as follows.

RANKING Algorithm

Step 1: For each vertex v ∈ L:
Assign a rank (i.e. a real number) rank(v) selected uniformly at
random from [0, 1].

Step 2: For each vertex w ∈ R in order of its appearance:
Match w to its lowest ranked unmatched neighbor (if any) in
L.

Recall the Primal-Dual LPs of Section 10.1. We will construct a
Dual LP solution that is randomized (as before, the Dual is only
for the analysis purpose - we only execute the RANKING algorithm).
The constraints of the Dual LP may not be satisfied. We will show
that they hold in expectation, i.e. ∑

e=(v,w)∈E
E[pv + pw] ≥ 1. Thus, Bad choice of notation - E stands for

edges and Expected Value!
on expected the value of the dual solution is at least the size of an
optimum matching |M∗| in G as the objective value of the Dual LP
upper bounds the objective value of the Primal LP (and that equals
|M∗|).

Consider the execution of the RANKING. Let e = (lirj) ∈ E. When
the vertex rj ∈ R is considered by RANKING it may or may not be
matched to li ∈ L as that depends on whether (a) li is unmatched
at that moment and (b) among all the unmatched neighbors of rj,
rank(li) is the lowest. Consider the set L′ = L \ {li} and the graph
G′ = (L′ ∪ R, E′), where E′ is obtained from E by excluding the edges
incident on li. Assume that when RANKING was executed on G′, the
ranks assigned to each vertex in L′ is the same as the ranks assigned
to the full set L. Suppose RANKING when executed on G′ matches
rj to li′ ∈ L. Let Γ = rank(li′). (Note: For good reasons if rj is not
matched to any vertex in G′, we set Γ = 1.) Next we state and prove

online algorithms 245

some claims from [42].

Claim 10.3.1 If rank(li) < Γ, the vertex li ∈ L is matched in the execution
of RANKING to some vertex of R.

Proof. If li is already matched in G before the vertex rj is processed
by RANKING, then there is nothing to prove. For the rest of the proof
we assume that li is not matched even after rj has been processed by
RANKING. By the assumption that the ranks of each vertex in L′ is
the same as that in L it follows that the (partial) matching computed
by RANKING in G′ and G are identical till the vertex rj is considered.
We know that in G′ RANKING matches rj to li′ . This implies that in
G, RANKING will match rj to li as rank(li) < rank(li′) = Γ. Hence li is
matched.

For the rest of this section we fix the rank of each vertex in L′ =
L \ {li} to be same as the rank of the corresponding vertices in L (as
generated by RANKING in Step 1), and we assume that lirj is an edge
in G.

Claim 10.3.2 Let us execute RANKING on the graphs G′ = (L′ ∪ R, E′) and
G = (L ∪ R, E) in parallel. The set of unmatched vertices in L′ is subset of
the set of unmatched vertices in L at the start of any step of the algorithm.

Proof. This is true at the start as the set of matched vertices is empty
and L′ ⊂ L. Assume that it holds true when RANKING considered the
vertices r1, r2, . . . , rj−1. Consider the step when RANKING is going to
consider rj. We ask the following question: For two distinct vertices
lk(6= li) and lk′ that are among the set of unmatched vertices for both
L and L′ before rj was considered, can rj be matched to lk in G and to
lk′ in G′ by RANKING? It is easy to see that this cannot occur. Before
rj was considered, lk′ and lk are among the set of unmatched vertices
for both L and L′. If lk′ is chosen by RANKING in G′ as a match for
rj, then rank(lk′) < rank(lk). But for G, as lk′ was available as an
unmatched vertex when rj was considered by RANKING, there is no
reason to match it to lk which is a higher ranked vertex than lk′ . In
this step in G either rj gets matched to li or to lk′ .

As in the previous section, we define qv and qw values for each
vertex v ∈ L and w ∈ R. We initialize them to 0. If an edge e = (vw ∈
E), where v ∈ L and w ∈ R, is identified to be in the matching by
RANKING, we set qv = f (rank(v)) = erank(v)−1 and qw = 1− qv. Recall
that Γ = rank(li′) is the rank of the vertex li′ ∈ L′ that is matched to w
in the graph G′.

Claim 10.3.3 Let the execution of RANKING on G matches rj ∈ R to some
vertex v ∈ L. Then qrj = 1− erank(v)−1 ≥ 1− eΓ−1.

246 notes on algorithm design

Proof. Consider the step when RANKING considers rj. As discussed
in Claim 10.3.2, before rj is considered, the set of unmatched vertices
in L′ is a subset of the set of unmatched vertices in L. This implies
that rj has a unmatched neighbor in G whose rank is at most Γ. Thus
rj will be matched to a vertex v ∈ L (may be li) with a rank at most
Γ. Since f is an increasing function (and 1− f is decreasing), qrj =

1− f (rank(v)) ≥ 1− f (Γ).

Next we show that by setting pv = e
e−1 qv for all vertices v ∈ L ∪ R,

in expectation, all the Dual LP constraints are satisfied. It is obvious
that pv ≥ 0 for all v ∈ {L ∪ R}. Now we show that for each edge
e = (vw), where v ∈ L and w ∈ R, E[pv + pw] ≥ 1. There are two
cases. Either e is in the matching reported by RANKING or it isn’t.

Suppose e is in matching. Then qv = erank(v)−1 and qw = 1− qv.
Then qv + qw = 1 and therefore pv + pw = e

e−1 ≥ 1. Moreover, this
also establishes that the competitive ration is e

e−1 (in expectation) as
the cost of the Dual LP is an upper bound to the cost of the Primal.

Now consider the case where e = (vw) is not in the matching. The
analysis is analogous to Case 2 of the WATERLEVEL algorithm. We
need to show that E[pv + pw] ≥ 1. Consider the sets L and L′ and
the parameter Γ used in Claim 10.3.1. Assume li = v and rj = w. We
know that if rank(v) < Γ then v is matched by RANKING. Therefore

E[qv] ≥
Γ∫
0

ex−1dx = eΓ−1 − 1
e . By Claim 10.3.3 we know that qw ≥ 1−

eΓ−1. Thus E[qv + qw] = E[qv] + E[qw] ≥ eΓ−1 − 1
e + 1− eΓ−1 = 1− 1

e .
Therefore E[pv + pw] =

e
e−1 E[qv + qw] ≥ 1.

10.4 BALANCE Algorithm

In this section we present the BALANCE algorithm by [82] for the
online b-matching problem. Its analysis is based on the Adwords
paper by [107]. As before consider a bipartite graph G = (L ∪ R, E)
where the vertices in R come in an online manner along with the
edges incident to them. The parameter b is a fixed positive integer.
When a vertex w ∈ R is revealed to the algorithm, our task is to
possibly match it one of its neighbors v ∈ L provided that the
number of vertices matched to v so far by the algorithm is < b.
Whatever decision that we make for w cannot be altered on the
arrival of future vertices of R. Note that b = 1 corresponds to the
classical bipartite online matching problem that was addressed
using the RANKING algorithm in the previous section. The BALANCE

algorithm is as follows:

online algorithms 247

BALANCE Algorithm

For each vertex w ∈ R in order of its appearance:
Among all the neighbors of w in L that have been matched

< b times, match w to that neighbor (if any) that is matched to
the fewest.

We will show that the competitive ratio of BALANCE is 1− 1
e for

large values of b. It will be better to think of this problem (termed
as the AdWords problem [107]) in terms of advertisers and user
keyword queries in an online setting. Assume that the set of vertices
in L = {1, 2, . . . , N} are advertisers where each of them have a daily
budget of $1. These advertisers bid a small amount ε > 0 for a set
of keywords of their liking. For example, an advertiser may bid
for ‘collector coins’ and ‘hockey cards’ whereas another advertiser
may bid for ‘Hot Sauce’. The set R comprises of keyword queries
that arrive in an online manner. Each query keyword needs to be
assigned to an advertiser (if any) who has bid for that keyword
and has some remaining budget ≥ ε. If the query is assigned to an
advertiser, its budget is decreased by ε and we generate a revenue
of ε. In particular, the BALANCE algorithm assigns the query to the
advertiser who has (a) bid for that keyword (b) has remaining budget
≥ ε, and (c) among all those advertisers has the largest remaining
budget. The objective is to maximize the revenue generated by the
algorithm, i.e. the sum total of the budget spent by the advertisers.

We assume that the budget of each advertiser is ‘quantized’ by an
integer parameter k >> 0. I.e., each advertiser’s budget is discretized
in k equal slabs, where each slab represents 1

k -th fraction of the
amount. It is assumed that the advertisers spend their budgets
in increasing order of their slabs. First from slab 1, followed by
slab 2, . . . Further assume that an optimal assignment of queries to
advertisers consumes all of their budgets and its revenue is 1 ∗ |L| = N
and each query can be completely paid by the amount within a single
slab. (Otherwise, if we assume 1

k2 ≥ ε, we can sacrifice 1
k from the

revenue of each advertiser to account for the possibility that ε may
span two consecutive slabs. Note that for an advertiser we may incur
a loss of ≤ 1

k2 per slab and over its k slabs the total loss is at most 1
k .)

We will show that BALANCE achieves a revenue of ≥ (1− 1
e)N yielding

a competitive ratio of 1− 1
e .

To facilitate our analysis we say an advertiser is of Type i if the
fraction of the total amount that it spends during the entire execution
of BALANCE is in the range (i−1

k , i
k], where i ∈ {1, . . . , k}. We may

assume that if a bidder spends nothing then it is considered to be of
Type 1, i.e. the fraction of budget spent by Type 1 advertisers is in

248 notes on algorithm design

the range [0, 1
k]. Let us ask ourselves the following question: If in an

optimal assignment a query keyword q is assigned to an advertiser of
Type i, where i < k, then from which slab the revenue with respect
to q will be generated by BALANCE ? We answer this question as
follows.

We are given that q is assigned to a Type i advertiser in an optimal
assignment and its budget isn’t completely consumed by BALANCE as
i < k. In BALANCE q can’t be paid by any slab > i since the queries
are assigned to potential advertisers who have consumed the smallest
amount of their budget. Therefore the contribution to the revenue
comes from a slab ≤ i. We have the following observation.

Observation 10.4.1 All the query keywords that are assigned by optimal to
a Type i advertiser, for some i < k, are ‘paid’ by slabs ≤ i in BALANCE.

Consider the execution of BALANCE. For i = 1, . . . , k, we say xi

represents the numbers of advertisers of Type i. Let β j represent the
total amount spent from slab j of all the advertisers by BALANCE for
j = 1, . . . , k. The following observation follows from the definitions
and the fact that each advertiser has a budget of $1 to spend.

Observation 10.4.2 β1 = |L|
k = N

k , and β j =
N
k −

j−1
∑

i=1

xi
k .

Lemma 10.4.3 For 1 ≤ i ≤ k− 1,
i

∑
j=1

xj ≤
i

∑
j=1

β j.

Proof. First consider i = 1. We need to show that x1 ≤ β1. We
know that β1 = N

k . All the queries that are assigned to Type 1

advertisers in an optimal assignment need to be paid by slab 1 of
the advertisers according to Observation 10.4.1. The total revenue of
queries assigned to Type 1 advertisers in an optimal assignment is x1

(initial budget of $1 times the number of Type 1 advertisers) and this
need to be paid by β1 (= the total amount in Slab 1). Thus, x1 ≤ β1.

Consider k− 1 ≥ i ≥ 2. We need to show that x1 + x2 + · · · xi ≤
β1 + β2 + · · · βi. This follows from the fact that all the queries that
are assigned to Types 1, 2, . . . , i advertisers in an optimal assignment
need to be paid by Slabs 1, 2, . . . , i.

Lemma 10.4.4 The revenue generated by BALANCE is ≥ N(1− 1
k) −

k−1
∑

i=1

k−i
k xi.

Proof. The revenue of BALANCE comes from advertisers of various
types. An advertiser of Type i, where i < k, generates a revenue
of i

k . There are xi such advertisers and thus the total revenue from

online algorithms 249

Type i advertisers is i
k xi. Also we obtain a revenue of N −

k−1
∑

i=1
xi

from the Type k advertiser. But we may loose a revenue of 1
k for

each advertiser due to ε spanning consecutive slabs. Putting all this

together, the revenue of BALANCE is ≥ N −
k−1
∑

i=1
xi − N

k +
k−1
∑

i=1

i
k xi =

N(1− 1
k)−

k−1
∑

i=1

k−i
k xi.

Our task is to establish a lower bound on the revenue N(1 −
1
k)−

k−1
∑

i=1

k−i
k xi. Since the quantity N(1− 1

k) is fixed, an estimate on

the upper bound on
k−1
∑

i=1

k−i
k xi will help us in deriving bounds for

BALANCE. So our task is to solve the following Linear Program:

Primal LP

Maximize
k−1
∑

i=1

k−i
k xi

Subject to:

For all i ∈ {1, . . . , k− 1}:
i

∑
j=1

xj ≤
i

∑
j=1

β j (Lemma 10.4.3)

For all i ∈ {1, . . . , k} : xi ≥ 0

Observe that the condition
i

∑
j=1

xj ≤
i

∑
j=1

β j can be expressed as follows

using Lemma 10.4.3 and Observation 10.4.2:

i

∑
j=1

xj ≤
i

∑
j=1

β j

≤
i

∑
j=1

(
N
k
−

j−1

∑
l=1

xl
k
)

=
i
k

N −
i

∑
j=1

j−1

∑
l=1

xl
k

=
i
k

N −
i

∑
j=1

i− j
k

xj

Equivalently,

i

∑
j=1

(1 +
i− j

k
)xj ≤

i
k

N

Thus, we can express the Primal LP as follows:

250 notes on algorithm design

Primal LP

Maximize
k−1
∑

i=1

k−i
k xi

Subject to:

For all i ∈ {1, . . . , k− 1}:
i

∑
j=1

(1 + i−j
k)xj ≤ i

k N

For all i ∈ {1, . . . , k} : xi ≥ 0

The Primal LP is of the form max c · x, where Ax ≤ b and x ≥ 0. Its
Dual LP will be of the form, min b · y, where ATy ≥ c and y ≥ 0. More
precisely, the corresponding Dual LP is:

Dual LP

Minimize
k−1
∑

i=1
(i

k N)yi

Subject to:

For all i ∈ {1, . . . , k− 1}:
k−1
∑
j=i

(1 + j−i
k)yj ≥ k−i

k

For all i ∈ {1, . . . , k− 1} : yi ≥ 0

For example, consider the Dual LP constraint with respect to the
Primal LP variable x1. We will need that y1 + y2(1 + 1

k) + y3(1 +

2
k) + · · · + yk−1(1 + k−2

k) ≥ k−1
k . This can be expressed as

k−1
∑

j=1
(1 +

j−1
k)yj ≥ k−1

k . In general, for the i-th variable xi, we have the Dual LP

constraint
k−1
∑
j=i

(1 + j−i
k)yj ≥ k−i

k . We will consider a feasible solution

for both Primal and Dual LP and show that it is also optimal using
complementary slackness. It states that if we have feasible solutions
x and y to Primal and Dual LP’s respectively and if certain equations
are satisfied then they are also the optimal. To motivate this, we will
look at an example, and then get back to the competitive ratio of
BALANCE.

Complementary Slackness

online algorithms 251

Consider the following Primal LP:

Maximize x1 + x2 + x3

2x1 + 3x2 + x3 ≤ 6

x1 + x2 − 7x3 ≤ 4

3x1 − x2 + 5x3 ≤ 10

x1, x2, x3 ≥ 0

A feasible solution for Primal LP is x = (0, 5
4 , 9

4) giving the objec-
tive value of 7

2 . Its Dual LP is:

Minimize 6y1 + 4y2 + 10y3

2y1 + y2 + 3y3 ≥ 1

3y1 + y2 − y3 ≥ 1

y1 − 7y2 + 5y3 ≥ 1

y1, y2, y3 ≥ 0

A feasible solution for Dual LP is y = (3
8 , 0, 1

8) giving an objective
value of 7

2 .
Complementary Slackness conditions state that if feasible solu-

tions x and y to Primal LP (max cx, Ax ≤ b, x ≥ 0) and Dual LP
(min by, ATy ≥ c, y ≥ 0) satisfy ∀i : (bi − ∑

j
aijxj)yi = 0 and ∀j :

(∑
i

aijyj − cj)xj = 0 then they are also optimal:

Substitute the Primal LP’s feasible assignment x = (0, 5
4 , 9

4) into
its constraints. We observe that the inequalities 1 and 3 are tight as
2x1 + 3x2 + x3 = 6 and 3x1 − x2 + 5x3 = 10, whereas there is a
slack in the inequality 2 as x1 + x2 − 7x3 < 4. Since y2 = 0, (b2 −
∑
j

a2jxj)y2 = (4− (x1 + x2 − 7x3))y2 = 0. Similarly, for a feasible

y = (3
8 , 0, 1

8) for the Dual LP, inequalities 2 and 3 are tight, but the
inequality 1 has a slack as 2y1 + y2 + 3y3 > 1. As x1 = 0, ((2y1 +

y2 + 3y3) − 1)x1 = 0. As both x = (0, 5
4 , 9

4) and y = (3
8 , 0, 1

8) are
feasible and satisfy the complementary slackness conditions, they
are optimal.

Let us consider an assignment to variables xj that makes the
following constraints of Primal LP feasible. For all i ∈ {1, . . . , k− 1}:

i
∑

j=1
(1 + i−j

k)xj ≤ i
k N and for all i ∈ {1, . . . , k} : xi ≥ 0. We set

x1 = N
k , x2 = N

k (1− 1
k), x3 = N

k (1− 1
k)

2, . . . , xi =
N
k (1− 1

k)
i−1,. . . ,

xk = N
k (1− 1

k)
k−1. These are derived by setting

i
∑

j=1
(1 + i−j

k)xj =
i
k N

and solving for xi for i = 1, 2, . . . , k− 1. Moreover, each xi ≥ 0. Thus

252 notes on algorithm design

the assignment xi =
N
k (1− 1

k)
i−1 is a feasible solution for Primal LP.

Now consider the Dual LP constraints and try to find a feasible

solution. For all i ∈ {1, . . . , k − 1}:
k−1
∑
j=i

(1 + j−i
k)yj ≥ k−i

k and i ∈

{1, . . . , k − 1} : yi ≥ 0. Again we solve for yi’s by setting
k−1
∑
j=i

(1 +

j−i
k)yj =

k−i
k . We obtain yk−1 = 1

k , yk−2 = 1
k (1− 1

k), yk−3 = 1
k (1− 1

k)
2,

. . . , yk−i =
1
k (1− 1

k)
i−1, . . . , y1 = 1

k (1− 1
k)

k−2. All yi’s are feasible and
are ≥ 0.

In the above assignment of x and y, all the Primal and Dual con-
straints are satisfied. Since all the inequalities are equalities, there
is no slack, and thus the complementary slackness conditions hold.
This implies that not only x and y are feasible, but they are also op-
timal solutions for Primal and Dual LPs. Let us evaluate the value
of the objective function by substituting the value of x (or y) in the
Primal (respectively, Dual) LP.

k−1

∑
i=1

(
k− i

k

)
xi =

k−1

∑
i=1

(
k− i

k

)(
N
k

)(
1− 1

k

)i−1

=
N
k2

[
k−1

∑
i=1

k
(

1− 1
k

)i−1
−

k−1

∑
i=1

i
(

1− 1
k

)i−1
]

=
N
k2

k

1−
(

1− 1
k

)k−1

1−
(

1− 1
k

)
− k2

k− 1

((
1− 1

k

)k
− k

(
2
(

1− 1
k

)k
− 1

)
− 1

)
=

N
k2

[
k2

(
1−

(
1− 1

k

)k−1
)
− k2

k− 1

(
(1− 2k)

(
1− 1

k

)k
+ k− 1

)]

= N

 (k− 1)
(

1−
(

1− 1
k

)k−1
)
− (1− 2k)

(
1− 1

k

)k
− k + 1

k− 1

= N

−(k− 1)
(

1− 1
k

)k−1
− (1− 2k)

(
1− 1

k

)k

k− 1

= N

−k
(

1− 1
k

)k
− (1− 2k)

(
1− 1

k

)k

k− 1

= N

(
1− 1

k

)k

As k → ∞,
(

1− 1
k

)k
→ 1

e . This implies that the upper bound on the

value of
k−1
∑

i=1

k−i
k xi =

N
e . Therefore the revenue of BALANCE by Lemma

online algorithms 253

10.4.4 is atleast N(1− 1
k)−

k−1
∑

i=1

k−i
k xi ≥ N(1− 1

k)− N
e ≈ N(1− 1

e) for

large values of k.

10.4.1 A Lower Bound Example

1 2 3 4 5 6

Advertisers

Figure 10.8: BALANCE with 6 advertisers
numbered 1 to 6. Each has a budget of
$1 and can pay for 6 queries. Advertiser
i bids for keywords {K1, . . . , Ki}. Thirty-
six online queries arrive: first 6 for K1
(pink dots), followed by next 6 for K2
(dark red),. . . Revenue of BALANCE is
26 whereas optimal revenue is 36.

Let the set L has N vertices (advertisers) where budget of each of
them is $1. There are a total of N keywords K1, . . . , KN and the ad-
vertiser i bids for the keywords {1, . . . , i}. Assume ε = 1

N . Each
advertiser can pay for at most N queries. The online query sequence
consists of N2 queries, where the first N queries are for the keyword
K1, next N queries are for the keyword K2, . . . , and last N queries
are for the keyword KN . An optimal solution assigns N queries of
type Ki to the advertise i, for i = 1, . . . , N generating a total revenue
of N. This is maximum possible and each advertisers budget is com-
pletely exhausted. Let us see how BALANCE will assign these queries
and what will be its revenue? The first N queries corresponding to
the keyword K1 will be distributed evenly among all the advertis-
ers. The next N queries corresponding to the keyword K2 will be
distributed among the advertisers 2, . . . , N, as advertiser 1 doesn’t
bid for K2. The 2nd advertiser is assigned two queries of Type K2

and the advertisers 3 to N will get one query each. (We can assume
that if two advertisers have the same remaining budget and bid for
the same keyword, the query on that keyword will be assigned to
the advertiser with lower vertex number.) In general, N queries for
the keyword Ki will be distributed evenly among advertisers i, . . . , n
provided that they have sufficient remaining budget. Observe that in
this scheme, the first advertiser only receives 1(k1) query, the second
advertiser receives 3(1k1 + 2k2) queries, third advertiser receives
4(1k1 + 1k2 + 2K3) queries, . . . For an illustration see Figure 10.8. We
want to estimate the revenue of BALANCE.

Consider the set of queries assigned to the advertiser N. It receives
at least one query of type K1, at least one query of type K2, and in
general at least b N

N−i c queries of type Ki. The maximum number of
queries that it can receive is at most N. We want to find the maxi-
mum index i such that some queries of type Ki can be sent to the
advertiser N. We can estimate the value of i by using the following
inequalities:

N ≤
⌊

N
N

⌋
+

⌊
N

N − 1

⌋
+ · · ·+

⌊
N

N − i

⌋
≤ N

N
+

N
N − 1

+ · · ·+ N
N − i

= N
(

1
N

+
1

N − 1
+ · · ·+ 1

N − i

)

254 notes on algorithm design

Note that the n-th Harmonic number Hn =
n
∑

i=1

1
i ≈ ln n. Therefore the

above inequality reduces to Hn − Hn−i ≥ 1. Equivalently ln n
n−i ≥ 1,

or n
n−i ≥ e. On simplifying we obtain that i ≥ n− n

e . This implies that
BALANCE can only handle queries with respect to keywords K1, K2,
. . . , KN− N

e
. Hence the maximum revenue that it can get on this query

sequence is N(1− 1
e) and that results in a competitive ratio of 1− 1

e .
Therefore BALANCE is an optimal online algorithm for the b-matching
problem.

10.5 Exercises

10.1 Show that any online deterministic algorithm for the fractional bipar-
tite matching cannot have a competitive ratio better than 1− 1

e on the graph
in Example 10.1.3.

10.2 Consider the following linear program.

min x1 + x2

x1 + 2x2 ≥ 4

2x1 + x2 ≥ 6

x1, x2 ≥ 0

Find the best lower bound for the minimum value of the objective function
by taking linear combinations of the constraints. Express this as a Dual
LP and what values of x1 and x2 satisfy the constraints and minimize the
objective value?

10.3 Suppose x ∈ <n is a feasible solution for the Primal LP (max cx, Ax ≤
b, x ≥ 0) and let y ∈ <m be a feasible solution for the Dual LP (min by, ATy ≥
c, y ≥ 0), where A is a m× n matrix.

1. Show that
n
∑

j=1
cjxj ≤

m
∑

i=1
biyi. (Hint: Use the fact that y is feasi-

ble for the Dual LP and x are non-negative to show that
n
∑

j=1
cjxj ≤

n
∑

j=1

(
m
∑

i=1
Aijyi

)
xj. Similarly

m
∑

i=1
biyi ≥

m
∑

i=1

(
n
∑

j=1
Aijxj

)
yi. Observe that

n
∑

j=1

(
m
∑

i=1
Aijyi

)
xj =

m
∑

i=1

(
n
∑

j=1
Aijxj

)
yi.) This is the weak-duality.

2. Show that x and y are optimal if and only if the complementary slackness

conditions ∀i :

(
bi −∑

j
aijxj

)
yi = 0 and ∀j :

(
∑
i

aijyj − cj

)
xj = 0

are satisfied. (Hint: Consider ∑
i

[(
bi −∑

j
aijxj

)
yi

]
+∑

j

[(
∑
i

aijyj − cj

)
xj

]

online algorithms 255

and use the fact that the optimal cost for Primal and Dual is the same
when both of them have feasible solutions.)

10.4 Show that
k−1
∑

i=1
i
(

1− 1
k

)i−1
= k2

k−1

((
1− 1

k

)k
− k

(
2
(

1− 1
k

)k
− 1
)
− 1
)

.

(Hint: Show that
j

∑
i=1

i
(

1− 1
k

)i−1
= k

(
k−

(
1− 1

k

)j
(j + k)

)
by induc-

tion on j and then substitute j = k− 1.

10.5 Consider the following bipartite graph G = (V = L ∪ R, E) where
L = {l1, . . . , ln}, R = {r1, . . . , rn}, and E = {(li, ri)|1 ≤ i ≤ n} ∪
{(li, rj)| n2 + 1 ≤ i ≤ n and 1 ≤ j ≤ n

2 }. Assume that the vertices in L
are known in advance and the vertices in R come in increasing order of their
indices. The online algorithm (called GREEDY RANDOM in [85]) matches
the next vertex rj ∈ R to any of its unmatched neighbors in L (if there is
any) uniformly at random. Show that the expected size of the matching
computed by GREEDY RANDOM is n

2 + log n. (Hint: For 1 ≤ j ≤ n
2 , show

that with probability at most 1
n
2−j+1 the vertex rj will be matched to lj.)

10.6 Show that for η ∈ [0, 1
2], −η − η2 ≤ ln(1− η) ≤ −η.

Hint: Recall that ln(1− x) = −
∞
∑

k=1

(−1)k(−x)k

k for |x| < 1.

10.7 Show that for ε ∈ [0, 1]: (a) (1− ε)x ≤ 1− εx if x ∈ [0, 1] and (b)
(1 + ε)−x ≤ 1− εx if x ∈ [−1, 0].

10.8 Let G = (V, E) be a simple undirected graph. A subset S ⊆ V is said
to hit E, if for each edge e = (u, v) ∈ E, u ∈ S or v ∈ S. A set S∗ ⊆ V is
said to be an optimal hitting set if it has the smallest cardinality among all
hitting sets of G.

The graph G is presented in an online manner as follows. We know all its
vertices V = {1, . . . , n} in advance, and the edge set is empty. At each time
instance t = 1, . . . , |E|, an edge et between a pair of vertices is added to G.
Thus, at each time instance t, we have the graph Gt = (V, Et =

⋃t
i=1 ei).

We need to devise an online algorithm that maintains a hitting set
St ⊆ V of Gt, for t = 1, . . . , |E|, whose cardinality is at most two times the
cardinality of an optimal (offline) hitting set. I.e., if S∗t is an optimal (offline)
hitting set of Gt, |St| ≤ 2|S∗t |, for t = 1, . . . , |E|. Explain your online
algorithm and analyze its competitive ratio.
Note: This is an online algorithm. Therefore, whichever vertices are added to
St, at time t, will remain in the hitting set till the end of the algorithm. I.e.
S1 ⊆ S2 ⊆ · · · ⊆ S|E|.
Hint: When the edge et = (uv) arrives and it isn’t hit with the current set
of vertices in St−1, think of setting St = St−1 ∪ {u, v}.

The following exercises will develop an offline algorithm for the
minimum cost perfect matching in weighted bipartite graphs. These

256 notes on algorithm design

are based on lecture notes of Tim Roughgarden. Let G = (V =

L ∪ R, E) be a bipartite graph, L = {1, . . . , n} and R = {1, . . . , n},
and for each edge e = (i, j), ce ≥ 0 is it costs, where i ∈ L and j ∈ R.
We are interested in finding a perfect matching in G whose cost is
minimum. The cost of a matching M is the sum total of the costs of
the edges forming M. We can assume that G is a complete bipartite
graph as we can always add the missing edges with cost +∞.

First, we define the concept of cycles with respect to a given match-
ing M. Let M be a matching in G, and let C be a cycle in G, such that
every alternate edge of C is in M. We call such cycles M-alternating
cycles. We say that an M-alternating cycle C is a negative cycle if the
total cost of edges in C ∩M is more than the cost of edges in C \M.

10.9 Answer the following:

1. Show that if a matching M contains an M-alternating negative cycle C
in G, it can’t be a minimum cost perfect matching.

2. Assume that M is a perfect matching in G and contains no negative
M-alternating cycles. Let M′ 6= M be any other perfect matching in G.
Answer the following

(a) Consider the symmetric difference between M and M′. It consists
of edges present in one but not the other, i.e. F = M ⊕ M′ =
(M \M′) ∪ (M′ \M). Show that degree of each vertex in F is either 0
or 2.

(b) Show that F is a collection of vertex disjoint cycles.

(c) Show that each cycle in F is an M-alternating cycle (and also an
M′-alternating cycle).

(d) Show that cost of M′ is at least the cost of M.

3. Conclude that M is a min-cost perfect matching if and only if G doesn’t
contain an M-alternating negative cycle.

We define reduced cost of each edge e = (i, j) in G to be w(e) =

c(e)− pi − pj, where pi and pj are real numbers associated to vertices
i and j, respectively. The quantity pv associated to each vertex v is
referred to as its price. An edge e of G is said to be tight if w(e) =

0. During the course of the algorithm we maintain the following
invariant:

Invariant:

Non-negative Reduced Costs: For each edge e ∈ E, w(e) ≥ 0.

Tightness: For each edge e in the (partial) matching M computed at
any step of the algorithm, w(e) = 0.

5

7

2
3

6

5
4

9

2
1

3

8

7

online algorithms 257

10.10 For the graphs in the margin, find min-cost perfect matchings. Fur-
thermore, find an assignment of prices to each vertex so that both the invari-
ants are satisfied.

10.11 Assume that M is a perfect matching that satisfies the invariant.
Prove that M is a min-cost perfect matching. (Hint: Show that all M-
alternating cycles in G are non-negative.)

Assume that M is not a perfect matching (i.e., (i.e., |M| < n), but
it satisfies the invariant (all edges in G have non-negative reduced
weights, and all edges in M are tight). Consider a path Π in G that
satisfies the following conditions:

1. All edges on the path are tight.

2. The number of edges on the path is odd.

3. The path starts at an unmatched vertex in L and ends at an un-
matched vertex in R.

4. Alternate edges on the path are from M.

Such alternating paths, that starts and ends at an unmatched vertex,
and have alternate edges from matching and not from matching are
usually referred to as augmenting paths.

10.12 Answer the following

1. Show that M′ = M⊕Π is a matching of size |M|+ 1 in G.

2. Show that if we replace M by M′, the invariant still holds.

To find such a path Π, we perform a breadth-first search starting
at an unmatched vertex v in L, where the search is restricted among
tight edges. Let us assume v is at Level 0 in BFS-tree. Vertices in
Level 1 will be all the vertices w ∈ R that are adjacent to v, and vw
is a tight edge. Vertices in Level 2 are all the vertices u ∈ L that
are adjacent to Level 1 vertices w, where uw ∈ M. Now, vertices in
Level 3 are all the vertices in x ∈ R that are adjacent to some Level 2
vertex u and ux is a tight edge. We repeat this process and stop when
an unmatched vertex in R is encountered, or we cannot make any
progress in BFS. If we find an unmatched vertex r ∈ R at an odd level,
then Π is the path starting at v and terminating at r, following the
breadth-first tree level-by-level.

9

2

7

3

5

3

4

l1

l2

l3

r1

r2

r3

2

1

3

3

1

2

Figure 10.9: M = {l2r2}. Tight edges
are l1r2, l2r2, l2r3, l3r2. Prices for vertices
are listed next to the vertex.

10.13 Perform a BFS traversal on the tight edges in the figure in the margin
starting at the unmatched vertex l1 in L to find a path Π terminating at the
unmatched vertex r3 in R. Once a path Π is found, construct M′ = M⊕Π.
Now in the resulting graph, construct a BFS traversal starting at the
unmatched vertex l3 with respect to M′. Does the traversal gets stuck?

258 notes on algorithm design

Assume that the BFS traversal gets stuck (i.e. doesn’t reach an
unmatched vertex in R) with respect to a matching M and assume
that M is not a perfect matching. Note that the graph G with respect
to M satisfies the invariant. Define S ⊆ L to be the set of vertices that
are at the even level, and let N(S) ⊂ R to be the collection of vertices
such that for each vertex r ∈ N(S), there exists some vertex l ∈ S,
such that lr is a tight edge.

10.14 Show that |S| > |N(S)|.

Consider all the vertices in R \ N(S) that are adjacent to vertices in
S, and define ∆ = min

{lr|l∈S,r∈R\N(R)}
w(lr).

10.15 Show that for each edge e with one end-point in S and the other
end-point in R \ N(S), w(e) > 0.

10.16 Show that ∆ > 0.

10.17 Suppose we adjust the price of each vertex in l ∈ S by pl ← pl +

∆, and each vertex r ∈ N(S) by pr ← pr − ∆. For all the remaining
vertices the prices are left unchanged. Show that the new prices satisfy the
invariant. (Hint: Consider any edge e = lr in the graph. There are four
cases depending on whether l ∈ S, l 6∈ S, r ∈ N(S), r 6∈ N(S). Argue that
in each of the cases the invariant is maintained after the price adjustments.)

10.18 Show that after the price adjustment as above, at least one of the edges
that wasn’t tight earlier has become tight. (Hint: Think about the edge that
defined ∆.)

10.19 Perform the price update in Exercise 10.13 with respect to matching
M′.

10.20 Answer the following:

1. When we are stuck in a BFS traversal, we add a new edge in the collec-
tion of tight edges (we may lose some). In the new subgraph on tight
edges, we execute the BFS procedure again, and we may be stuck again.
Show that among |V| successive BFS traversals, there is always a traver-
sal where we find the path Π, i.e., the traversal doesn’t get stuck.

2. Show that by executing the BFS procedure at most O(|V|2) times, we
can find the min-cost perfect matching in G.

3. Show that in O(|V|4) time we can find the minimum-cost perfect match-
ing in G.

The above algorithm is called the Hungarian algorithm for min-
cost matching in a bipartite graph. Next, we establish the primal-dual

online algorithms 259

linear program for the min-cost bipartite matching problem and show
that the prices pv associated to vertices v ∈ L ∪ R are the variables
in dual LP. The invariant in the Hungarian algorithm ensures that
the dual solution is feasible. Moreover, the objective function in the
dual provides a lower bound to the cost of any perfect matching in G.
The requirement on the tight edges will correspond to maintaining
the complementary slackness conditions in the Primal-Dual LP
framework.

For each edge e ∈ E, let xe be an indicator variable defining the

presence of e in a matching M, i.e., xe =

1, if e ∈ M

0, otherwise

10.21 Primal LP: Show that the following LP corresponds to the min-cost
matching problem in bipartite graphs.

Objective function: min ∑
e∈E

cexe

Subject to: ∑
e∈Adj(v)

xe = 1, for all v ∈ L ∪ R, xe ≥ 0, for all e ∈ E.

(Note: xe can possibly take any positive fractional values, though it turns
that either xe = 0 or xe = 1.)

10.22 Suppose the prices on vertices satisfy the invariant (we = ce − pi −
pj ≥ 0, where e=(ij)). Then for any perfect matching M, show that the
following holds

∑
(i,j)∈M

cij ≥ ∑
v∈L∪R

pv

10.23 Conclude that ∑
v∈L∪R

pv is a lower bound on the cost of any perfect

matching M in G.

10.24 Dual LP: Show that the following LP gives the best lower bound on
the min-cost perfect matching.

Objective function: max ∑
v∈L∪R

pv

Subject to: For all edges (ij) ∈ E : pi + pj ≤ cij,
and for all v ∈ {L ∪ R} : pv ∈ <

Recall that in the Hungarian algorithm, we explicitly enforced the
invariant wij = cij − pi − pj ≥ 0 for all the edges (ij) ∈ E, and this
ensures that the dual solution is feasible.

10.25 Show that Primal-Dual LP for the min-cost bipartite matching
satisfies the complementary slackness conditions. (Hint: Observe that the
inequality in Primal LP is equality. In the Hungarian algorithm, all the
edges e = (ij) in the matching M are tight, thus cij = pi + pj.)

260 notes on algorithm design

10.26 Conclude that the min-cost perfect matching M reported by the
Hungarian algorithm satisfies,

∑
(i,j)∈M

cij = ∑
v∈L∪R

pv

The following set of exercises will help us design an O(|E|
√
|V|)

algorithm for computing a maximum cardinality matching in an
unweighted bipartite graph G = (V = L ∪ R, E). The algorithm is due
to Hopcroft and Karp 1. 1 John E. Hopcroft and Richard M.

Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM J.
Comput., 2(4):225–231, 1973

Let M be a matching in G. Recall that a simple path Π (without
repeated vertices) is an augmenting path with respect to M if the
first and the last vertex of the path are unmatched vertices and the
edges in Π alternate between E \M and M. Let M1 and M2 be two
matchings in G. The symmetric difference between M1 and M2 is
given by M1 ⊕M2 = (M1 \M2) ∪ (M2 \M1).

10.27 Let M be a matching in G and let Π be an augmenting path in G
with respect to M. Show that M′ = Π ⊕ M is a matching in G and
|M′| = |M|+ 1.

10.28 Let M1 and M2 be two matching in G, where |M1| > |M2|. Show
the following

1. Consider the graph G′ = (V, M1 ⊕M2). Show that each vertex in G′ has
degree at most 2.

2. Show that each component of G′ is either (a) an isolated vertex, (b) a
cycle where edges alternate between M1 \M2 and M2 \M1, or (c) a path
where edges alternate between M1 \M2 and M2 \M1.

3. Define the surplus of a component Ci = (Vi, Ei) of G′, δ(Ci) = |Ei ∩
M1| − |Ei ∩ M2|, i.e., the difference in the number of edges in Ei that
are from M1 with respect to the number of edges from M2. Show that
δ(Ci) ∈ {−1, 0,+1}.

4. Show that ∑
i

δ(Ci) = |M1| − |M2|.

5. Show that each component Ci of G′ for which δ(Ci) = +1 is an augment-
ing path with respect to M2.

6. Show that G′ has at least |M1| − |M2| vertex disjoint augmenting paths
with respect to M2.

Let M∗ be a maximum cardinality matching in G. Let M be a
matching in G and assume that |M| < |M∗|.

10.29 Show that there exists an augmenting path of length at most 1 +

2
⌊ |M|
|M∗ |−|M|

⌋
in G with respect to M. (Hint: How many vertex disjoint

online algorithms 261

augmenting paths are there in M∗ ⊕M with respect to M? Use the pigeon-
hole principle to show that at least one of these augmenting paths has at
most

⌊ |M|
|M∗ |−|M|

⌋
edges from M.)

10.30 Let M be a matching in G and let Π be a shortest (i.e. minimum
number of edges) augmenting path in G with respect to M. Let Π′ be an
augmenting path in G with respect to M⊕Π. Answer the following:

1. Let N = (M⊕Π)⊕Π′. Show that N is a matching in G consisting of
|M|+ 2 edges.

2. Show that N ⊕ M contains two augmenting paths Π1 and Π2 with
respect to M.

3. Show that |N ⊕M| = |Π⊕Π′| ≥ |Π1|+ |Π2|.

4. Show that |Π1| ≥ |Π| and |Π2| ≥ |Π|, and conclude that |Π⊕Π′| ≥
2|Π|.

5. Show that |Π′| ≥ |Π|+ |Π ∩Π′| by using the fact that |Π⊕Π′| =
|Π|+ |Π′| − |Π ∩Π′|.

Consider the following incremental procedure. Let M0 = ∅.
In each successive step construct larger matchings M1, M2, . . . as
follows. Let Πi be a shortest augmenting path with respect to Mi. Set
Mi+1 = Mi ⊕Πi.

10.31 Show that for each i, |Πi+1| ≥ |Πi|.

10.32 Suppose for two indices 1 ≤ i < j, |Πi| = |Πj|. Show the following:

1. Let k < l be two indices such that i ≤ k < l ≤ j such that Πk and
Πl are not vertex disjoint, but for each m, where k < m < l, Πm is
vertex disjoint from both Πk and Πl . (Note that if l = k + 1, there is no
feasible value for m.) Show that Πl is an augmenting path with respect to
Mk ⊕Πk.

2. Show that |Πl | ≥ |Πk|+ |Πk ∩Πl |. Show that Πk and Πl cannot share
an edge.

3. Show that Πk and Πl are vertex disjoint.

4. Conclude that Πi and Πj are vertex disjoint, i.e. if the two shortest
augmenting paths at steps i and j have the same length, they are vertex
disjoint.

10.33 Let M∗ be a maximum cardinality matching in G. Answer the
following.

262 notes on algorithm design

1. For any matching M in G, show that |M∗| − |M| ≤ |V|/k, where k is
the length of the shortest augmenting path in G with respect to M.

2. Define r =
⌊
|M∗| −

√
|M∗|

⌋
. Show that in the sequence of matchings

M0, M1, . . ., where Mi+1 = Mi ⊕Πi and Πi is a shortest augmenting
path with respect to Mi, there exists a matching Mr, such that |Mr| = r.

3. From Exercise 10.29, conclude that |Πr| ≤ 2b
√
|M∗|c+ 1.

4. Show that for i ∈ [1, r], |Πi| ≤ 2b
√
|M∗|c+ 1.

5. Show that |Πr+1|, . . . , |Π|M∗ || can be at most
√
|M∗| distinct numbers.

6. Conclude that |Π1|, . . . , |Π|M∗ || forms at most 2
√
|M∗| + 1 distinct

numbers (recall that |Πi| is odd).

The main steps of the Hopcroft-Karp’s maximum cardinality
matching algorithm are as follows.

Input: A bipartite graph G = (V = L ∪ R, E)
Output: A maximum cardinality matching in G.

Step 1: Set M← ∅

Step 2: While there exists augmenting paths in G with respect to M:

1. Let l be the length of the shortest augmenting path in G with
respect to M.

Find a maximal collection of vertex disjoint augmenting paths
of length l with respect to M. Let the paths be Q1, Q2, . . . , Qr.

2. M← M⊕Q1 ⊕ . . .⊕Qr

Step 3: Return(M)

10.34 Show that the matching returned by the algorithm is a maximum
cardinality matching in G.

10.35 Show that after each iteration of the While-loop, the length of a
shortest augmenting path increases by at least 2 as compared to the previous
iteration. (I.e. if the length of the shortest augmenting path is l in the
current iteration, it will be ≥ l + 2 in the next iteration.) Conclude that after√
|V| iterations, the length of shortest augmenting paths will be ≥ 2

√
|V|.

10.36 Show that after executing the While-loop for
√

V iterations, there
are at most 1

2

√
V augmenting paths left to be processed. Conclude that the

While loop iterates, in all, at most 3
2

√
V times.

10.37 Show that the length of the shortest augmenting path with respect
to M in each iteration of the While-loop can be computed by performing a

online algorithms 263

(modified) breadth-first traversal in G in O(|V|+ |E|) time as follows. In the
BFS, Level 0 consists of all the unmatched vertices in L. Level 1 consists of
all their neighbors in R. Level 2 contains the matched neighbors of vertices
in Level 2. Level 3 consists of neighbors of vertices in Level 3 in the set R
that haven’t been discovered so far, and so on. We stop the BFS traversal
when we encounter an unmatched vertex in R (at an odd level) for the first
time and return the level number as the length of the shortest augmenting
path. Note that in the BFS traversal, the edges from level Li to level Li+1

satisfy the following: If i is even, the edges are from the set E \M. If i is odd,
the edges are from M.

10.38 Given the BFS traversal corresponding to an iteration of the While-
loop, show that we can find a maximal set of vertex-disjoint augmenting
paths (of shortest length l) in O(|V|+ |E|) time. Think of starting from the
last level (Level l) in BFS where unmatched vertices in R were discovered,
and walk backwards to Level 0.

10.39 Conclude that the Hopcroft-Karp’s algorithm finds a maximum cardi-
nality matching in a bipartite graph G = (V = L ∪ R, E) in O(|E|

√
|V|)

time.

11
Multiplicative-Weight Update Method

We will focus on

1. Multiplicative weights algorithm for regret minimization in
online learning.

2. Applications to Linear Programming using the Set Cover LP.

3. Applications to zero-sum games.

We will look at some classical results in online learning theory related
to regret minimization and its applications to zero-sum games. This
chapter is based on [9, 124].

11.1 Multiplicative Weight Update Algorithm

This section is based on the survey paper by Arora, Hazan and Kale
1. This is also influenced by lecture notes of Gabor Lugosi, Tim 1 Sanjeev Arora, Elad Hazan, and Satyen

Kale. The multiplicative weights
update method: a meta-algorithm and
applications. Theory of Computing,
8(1):121–164, 2012

Roughgarden, and Umesh Vazirani.
Suppose we are a naive investor in the stock market and are

interested in seeing the behaviour of Dow Jones Industrial Average
(DJIA) at the end of each day of trading. We have access to n experts
(newspapers, stock briefs, ...) and based on their advise we need
to make a prediction whether DJIA will go up or down at the end
of each day. Our prediction costs us 0 if it is correct and costs us
1 if it is wrong. We need to devise an algorithm that helps us in
making prediction for each day. Suppose we are at day t, where
t ∈ {1, . . . , T}. Our algorithm can use our predictions as well as
that of all the experts for all of the previous t − 1 days. At the end
of T days we want to be competitive with respect to the best expert,
i.e. our cost is not significantly higher than the cost of any expert
(including the best expert). In this section we devise algorithms for

266 notes on algorithm design

this problem and its variants. As a warmup we first consider some
special cases.

11.1.1 Real Experts

Suppose we are told that among all the n experts there is at least
one expert that never misses the mark. The predictions of this expert
are always correct. But we do not know who is that expert. We can
devise a fairly straightforward algorithm that makes at most O(log n)
wrong predictions as follows.

Let the set of experts be E = {1, . . . , n}.
For each day t := 1 to T do:

Step 1: Among all the remaining experts in E, poll them to find
the prediction of the majority of them for that day. Record that
as the prediction of the algorithm.

Step 2: Observe the true outcome at the end of the day. Discard
all those experts that predicted wrong from E from future
considerations.

Observe that for each mistake (i.e., a wrong prediction) that the
algorithm makes, the size of the set E is reduced by at least a half.
Since we know that there is at least one expert that never makes
mistakes, the set E is non-empty during the entire execution of the
algorithm. Thus the number of wrong predictions are bounded by
O(log n). An alternate way to view this algorithm is that each expert
i has an associated weight wi that is initialized to 1. If during any
step (i.e. the day t) of the algorithm, if an expert makes a mistake its
weight is set to 0 and the experts with weight 0 are not considered for
the rest of the algorithm.

11.1.2 Expert with at most m wrong predictions

Now suppose that we do not have any perfect expert but let us
assume that the best expert makes at most m mistakes over the entire
period of T days. We do not know who is the best expert. Can we
use this knowledge to devise a competitive algorithm to predict.
Some aspects of the analysis will be useful in understanding other
algorithms that we will study in the rest of this section. Our first
weighted majority update algorithm works as follows:

multiplicative-weight update method 267

Let the set of experts be E = {1, . . . , n}.
For each expert i, set its weight w1

i = 1.

For each day t := 1 to T do:

Step 1: Find the weighted majority prediction of the experts.
To be precise, sum total the weights of all the experts that
predict “UP”. Similarly, sum total the weights of all the expert
that predict “DOWN” . Whichever of the two sums is higher,
record that as the prediction of the algorithm for day t.

Step 2: Observe the true outcome at the end of the day t.

Step 3: For all experts i that predicted correctly, their weight
for the next day is set to wt+1

i = wt
i . For all the experts i that

predicted wrongly, their weight is set to wt+1
i = wt

i /2.

Define the potential function Φt for day t ∈ {1, . . . , T} to be the
sum total of the weights of all the experts at the start of day t, i.e.

Φt =
n
∑

i=1
wt

i . Note that Φ1 = n. The key to the analysis of all the
multiplicative weight update algorithms
is this potential function.Observation 11.1.1 If the algorithms makes a wrong prediction on day t,

Φt+1 ≤ 3
4 Φt.

Proof. Since the algorithm follows the weighted majority and it
has made a mistake, that implies that the weight for the next day
is decreased by at least 1

4 -th of the total weight at the start of day t.
Thus Φt+1 ≤ Φt − 1

4 Φt = 3
4 Φt.

If the algorithm has made M mistakes in T days, its total weight at
the end of day T,

ΦT+1 ≤
(

3
4

)M
Φ1 =

(
3
4

)M
n (11.1)

Let us assume that the best expert is i (note that we don’t know its
identity and just using it to establish the bounds). At the end of day

T its weight is at least
(

1
2

)m
since it makes at most m mistakes. Since

ΦT+1 is the sum total of the weights of all the experts at the end of
day T, we know that

ΦT+1 ≥
(

1
2

)m
(11.2)

Putting both the equations together, we obtain:(
1
2

)m
≤ ΦT+1 ≤

(
3
4

)M
n

268 notes on algorithm design

and taking log’s we obtain:

−m ≤ M log
(

3
4

)
+ log n

−M log
(

3
4

)
≤ m + log n

M log
(

4
3

)
≤ m + log n

M ≤ 2.41(m + log n)

So this ensures that the bound on the number of wrong predictions
made by the algorithm M isn’t that much off compared to the best ex-
pert who makes at most m mistakes. This bound has a multiplicative
and an additive term.

What was so special about reducing the weight for the wrong
experts by 1

2 ? We can replace that by a factor η ∈ (0, 1
2]. Then, we can

reduce the weight of an expert by evaluating wt+1
i = (1− η)wt

i . Next
we will see that this will result in M ≤ 2(1 + η)m + 2

η log n. Before we
dive into the analysis, let us state some mathematical inequalities.

Observation 11.1.2 1. For η ∈ [0, 1
2], −η − η2 ≤ ln(1− η) ≤ −η.

2. For ε ∈ [0, 1], (1− ε)x ≤ 1− εx if x ∈ [0, 1].

3. For ε ∈ [0, 1], (1 + ε)−x ≤ 1− εx if x ∈ [−1, 0].

Now with each mistake by the algorithm at least half of the total
weight decreases by a factor of (1− η). Suppose on day t the algo-
rithm made the wrong prediction. Then the sum total of weights at
the end of day t is given by Φt+1 ≤ 1

2 Φt + 1
2 (1− η)Φt = (1− η

2)Φ
t.

Following the previous analysis, at the end of day T with the new
update rule wt+1

i = (1− η)wt
i , the best expert will have weight at

least (1− η)m. The potential function ΦT+1 after M mistakes will be at
most (1− η

2)
Mn. Thus we have

(1− η)m ≤ ΦT+1 ≤ (1− η

2
)Mn (11.3)

We take log’s and use Observation 11.2(1) to simplify.

m ln(1− η) ≤ M ln(1− η

2
) + ln n

−m(η + η2) ≤ −M
η

2
+ ln n

M
η

2
≤ ln n + (η + η2)m

M ≤ 2
η

ln n + 2(1 + η)m

Next we look into ways to get rid of the factor 2 in the above analysis
using randomization.

multiplicative-weight update method 269

11.2 Randomized Multiplicative Weight Update Algorithm

Assume that the costs are real numbers in the interval [0, 1]. For
every expert i ∈ {1, . . . , n} and for every day t ∈ {1, . . . , T}, we
associate a cost of mt

i ∈ [0, 1] on day t. We want our algorithm to be
competitive against the cost of the best expert. If Mt is the expected
cost that the algorithm incurs on day t, and let us assume that i is the
best expert, then we will see that the following randomized algorithm

will ensure that
T
∑

i=1
Mt ≤ ln n

η + (1 + η)
T
∑

i=1
mt

i .

Let the set of experts be E = {1, . . . , n}.
Let η to be any real number in (0, 1

2].
For each expert i, set its weight w1

i = 1.

For each day t := 1 to T do:

Step 1: Define Φt =
n
∑

i=1
wt

i . For each expert i, compute pt
i =

wt
i

Φt .

Step 2: Choose an expert based on their probabilities and
predict according to the chosen expert.

Step 3: Update Weights: For each expert i set wt+1
i = wt

i (1−
ηmt

i).

Our analysis follows the same method. We use the potential
function Φt to establish lower and upper bounds and then take log’s
to establish the desired bound. Let us first evaluate the expected
loss Mt that the algorithm incurs on day t. By definition of expected
value, it is given by

Mt =
n

∑
i=1

pt
i m

t
i = 〈pt ·mt〉, (11.4)

where pt = (pt
1, pt

2, . . . , pt
n) and mt = (mt

1, mt
2, . . . , mt

n) are treated as
vectors. Their dot product is expressed as 〈pt ·mt〉.

270 notes on algorithm design

Consider Φt+1. We have the following:

Φt+1 =
n

∑
i=1

wt+1
i

=
n

∑
i=1

wt
i (1− ηmt

i)

=
n

∑
i=1

wt
i − η

n

∑
i=1

wt
i m

t
i

= Φt − η
n

∑
i=1

Φt pt
i m

t
i (as pt

i =
wt

i
Φt)

= Φt − ηΦt
n

∑
i=1

pt
i m

t
i

= Φt(1− η〈pt ·mt〉)
≤ Φte−η〈pt ·mt〉 (as 1− x ≤ e−x)

= Φte−ηMt

Using induction on t, we obtain

ΦT+1 ≤ Φ0e
−η

T
∑

t=1
Mt

= ne
−η

T
∑

t=1
Mt

Since all mt
i ∈ [0, 1], wt

i ≥ 0. This implies that Φt+1 ≥ wt+1
i for any

individual weight as Φt+1 =
n
∑

i=1
wt+1

i . Using the update rule of wt+1
i , Recall that for ε ∈ [0, 1], 1 − εx ≥

(1− ε)x if x ∈ [0, 1].

we can conclude that ΦT+1 ≥ wT+1
i = w1

i

T
∏

t=1
(1− ηmt

i) ≥ (1− η)

T
∑

t=1
mt

i .

Putting both the upper and lower bounds for ΦT+1 we obtain

ne
−η

T
∑

t=1
Mt

≥ ΦT+1 ≥ (1− η)

T
∑

t=1
mt

i (11.5)

Now we take log’s and divide by η and obtain:

ln n
η
−

T

∑
t=1

Mt ≥ ln(1− η)

η

T

∑
t=1

mt
i (11.6)

This is equivalent to

T

∑
t=1

Mt ≤ ln n
η
− ln(1− η)

η

T

∑
t=1

mt
i (11.7)

Now apply Observation (1) that states that for η ∈ [0, 1
2], −η − η2 ≤

ln(1− η) and we obtain:

T

∑
t=1

Mt ≤ ln n
η

+
η + η2

η

T

∑
t=1

mt
i (11.8)

multiplicative-weight update method 271

or
T

∑
t=1

Mt ≤ ln n
η

+ (1 + η)
T

∑
t=1

mt
i (11.9)

On the left we have the expected cost of our algorithm and on the
right we have the cost of any of the experts. The cost of the algorithm
is at most an additive factor ln n

η and a multiplicative factor (1 + η)

away from the cost of any of the experts (including the best expert).

11.2.1 Multiplicative Weight Update Algorithm With Costs in [−1, 1]

Only difference from the previous subsection is that now the costs
of each expert can be positive or negative, i.e. mt

i ∈ [−1, 1]. The
algorithm remains unchanged and it is restated in the following:

Let the set of experts be E = {1, . . . , n}.
Let η to be any real number in [0, 1

2].
For each expert i, initialize its weight w1

i = 1.

For each day t := 1 to T do:

Step 1: Define Φt =
n
∑

i=1
wt

i . For each expert i, compute pt
i =

wt
i

Φt .

Step 2: Choose an expert based on their probabilities and
predict according to the chosen expert.

Step 3: Update Weights: For each expert i set wt+1
i = wt

i (1−
ηmt

i).

Let us mimic the analysis of the previous subsection and take
into account that the costs may be negative. From the definition
of expected value, the expected cost of our algorithm on day t is

given by Mt =
n
∑

i=1
pt

i m
t
i = 〈pt · mt〉, where pt = (pt

1, pt
2, . . . , pt

n)

and mt = (mt
1, mt

2, . . . , mt
n) and we take their dot product 〈pt · mt〉.

The upper bound for Φt+1 follows the same analysis and we obtain Recall that for ε ∈ [0, 1], (1− ε)x ≤ 1−
εx if x ∈ [0, 1] and (1 + ε)−x ≤ 1− εx if
x ∈ [−1, 0].Φt+1 =

n
∑

i=1
wt+1

i =
n
∑

i=1
wt

i (1− ηmt
i) ≤ Φte−ηMt

. And using induction

on t we have ΦT+1 ≤ ne
−η

T
∑

t=1
Mt

. Since for all i ∈ {1, . . . , n} and
t ∈ {1, . . . , T}, mt

i ∈ [−1, 1], we have 1− ηmt
i ≥ 0. Thus, wt

i ≥ 0.
This implies that Φt+1 ≥ wt+1

i for any individual weight. Using
the update rule of wt+1

i , we can conclude that ΦT+1 ≥ wT+1
i =

T
∏

t=1
(1− ηmt

i). This can be expressed by grouping for each day the

272 notes on algorithm design

positive mt
i ’s and the negative mt

i ’s.

ΦT+1 ≥ (1− η)

∑
mt

i≥0
mt

i

(1 + η)

− ∑
mt

i<0
mt

i

(11.10)

Putting both the upper and lower bounds for ΦT+1 we obtain

ne
−η

T
∑

t=1
Mt

≥ (1− η)

∑
mt

i≥0
mt

i

(1 + η)

− ∑
mt

i<0
mt

i

(11.11)

Now we take log’s and divide by η and obtain:

ln n
η
−

T

∑
t=1

Mt ≥ ln(1− η)

η ∑
mt

i≥0

mt
i −

ln(1 + η)

η ∑
mt

i<0

mt
i (11.12)

Rearranging the terms we obtain

T

∑
t=1

Mt ≤ ln n
η
− ln(1− η)

η ∑
mt

i≥0

mt
i +

ln(1 + η)

η ∑
mt

i<0

mt
i (11.13)

This is equivalent to Recall that for η ∈ [0, 1
2] η + η2 ≥

− ln(1− η) and ln(1 + η) ≥ η − η2.
T

∑
t=1

Mt ≤ ln n
η

+ (1 + η) ∑
mt

i≥0

mt
i + (1− η) ∑

mt
i<0

mt
i (11.14)

On expanding we obtain Note that (η − η2) ∑
mt

i<0
mt

i ≥ ln(1 +

η) ∑
mt

i<0
mt

i because of negative values!T

∑
t=1

Mt ≤ ln n
η

+ η
T

∑
t=1
|mt

i |+
T

∑
t=1

mt
i (11.15)

Since |mt
i | ≤ 1, we have

T

∑
t=1

Mt ≤ ln n
η

+ ηT +
T

∑
t=1

mt
i (11.16)

On the left we have the expected cost of our algorithm and on the
right we have the cost of any of the experts. The cost of the algorithm
is at most an additive factor ln n

η + ηT away from the cost of any
of the experts including the best expert. We make the following
observation.

Observation 11.2.1 By setting η =
√

ln n
T in Equation 11.16, we obtain

T
∑

t=1
Mt ≤ 2

√
T ln n +

T
∑

t=1
mt

i .

That is the cost of our algorithm is off by an additive factor that
is proportional to the square root of the product of the number of
days and the number of experts as compared to the best expert. We

multiplicative-weight update method 273

may also look at the average error on each day. This can be done by
dividing the inequality in the observation by T and we obtain

1
T

T

∑
t=1

Mt ≤ 2

√
ln n
T

+
1
T

T

∑
t=1

mt
i

Observe that as T increases the average error drops down. Therefore,
a simple multiplicative weight strategy is able to learn from experts
reasonably well when executed over a number of days. This is the
power of this method.

11.3 An Application of Multiplicative Weight Update Algorithm

Let us look at the fractional set cover linear program (LP) and see
how we can use the Multiplicative Weight Update Algorithm to
approximate the objective value of the LP without actually solving
the LP.

In a set cover problem we are given a universe U consisting of n
elements and a set of m subsets S = {S1, S2, . . . , Sm} of U such that
∪m

i=1Si = U. The set cover problem requires us to find minimum
number of subsets of S such that their union covers all elements of
U (i.e, their union is U). This problem can be formulated as a simple
Integer Linear Program (ILP). We use a 0− 1 indicator variable xS for
each set S ∈ S , where xS = 1 if and only if S is included in the set
cover. The ILP formulation is:

min ∑
S∈S

xS

∀u ∈ U : ∑
u∈S

xS ≥ 1

∀S ∈ S : xS ∈ {0, 1}

The relaxed Linear Program (LP) is where we replace the integrality
constraint xS ∈ {0, 1} by 0 ≤ xS ≤ 1 as now we allow xS’s to take
on real values. Moreover, we can drop the constraint that xS ≤ 1 as
this is a minimization problem and what we require is ∑

u∈S
xS ≥ 1.

Lastly, we will convert this optimization problem to the feasibility
problem by realizing that the value of the objective function is one of
the numbers {1, . . . , m} for this problem instance. Suppose we guess
that the optimal value is β ∈ {1, . . . , m}. If the following feasibility
inequality can be satisfied, we know that the optimal value is at most
β and using this knowledge we can perform a binary search to find

274 notes on algorithm design

the true optimal value. The feasibility inequalities are

∀u ∈ U : ∑
u∈S

xS ≥ 1

∑
S∈S

xS ≤ β

∀S ∈ S : xS ≥ 0

Note that the constraints ∑
S∈S

xS ≤ β and ∀S ∈ S : xS ≥ 0 define a

convex region. Let us denote this region by P = {x ∈ <m|
m
∑

i=1
xi ≤

β ∧ ∀i ∈ {1, . . . , m}, xi ≥ 0}. We can express the feasibility problem
succinctly as follows:

Fractional Set Cover Feasibility Problem:

Report x ∈ P such that ∀u ∈ U : ∑
u∈S

xS ≥ 1,

Otherwise report infeasibility

Let us define the following abstract approximate feasibility prob-
lem. Later we will see how to solve this problem using the Multiplica-
tive Weight Update Method. We state the problem in terms of the
notation of general linear program (feasibility) formulation where A
is n×m matrix, b is a vector of length m, and P is the convex region
as defined above.

Approximate Abstract Feasibility Problem:

Let ε ≥ 0 be an error parameter.
If x ∈ P and Ax ≥ b is feasible then

report x ∈ P such that Aix ≥ bi − ε, ∀i ∈ {1, . . . , n},
Otherwise report infeasibility

Following the abstract formulation the approximate feasibility
version for the set cover problem can be stated as follows. The matrix
A is a 0− 1 matrix of size n×m. It represents elements of U as rows
and subsets in S as columns. The element in A corresponding to row
u ∈ U and column Si ∈ S is 1 if and only u ∈ Si.

Approximate Set Cover Feasibility Problem:

For a universe U of size n and m-subsets of U, we have
- characteristic matrix A of size n×m,
- vector b of length n consisting of 1’s,

multiplicative-weight update method 275

- P = {x ∈ <m|
m
∑

i=1
xi ≤ β ∧ ∀i ∈ {1, . . . , m}, xi ≥ 0}.

- Error parameter ε ≥ 0.

If x ∈ P and Ax ≥ b is feasible then
report x ∈ P such that Aix ≥ 1− ε, ∀i ∈ {1, . . . , n},

Otherwise report infeasibility.

Suppose we have an instance of the set cover feasibility problem
with a given choice of β that is feasible. We know that for this in-
stance, the approximate set cover feasibility problem will return us
an x ∈ P such that ∀u ∈ U : ∑

u∈S
xS ≥ 1− ε. Now by setting x̄ = x

1−ε ,

we can obtain a feasible solution x̄ for the fractional set cover prob-
lem whose value of the objective function is at most (1 + O(ε))β.
Observe that x̄ satisfies the constraints x̄i ≥ 0 for i = 1, . . . , m and
∀u ∈ U : ∑

u∈S
x̄S ≥ 1. Next we see how we can use multiplicative

weight update method to solve the Approximate Set Cover Feasibility
Problem.

We will also require an additional algorithm, so called the ρ-
bounded oracle, that will be used by the multiplicative weight algo-
rithm to solve the feasibility problem. The ρ-bounded oracle takes as

input a probability distribution p = (p1, . . . , pn), where
m
∑

i=1
pi = 1, on

the rows of A (i.e. on the elements of U) and returns the following.

ρ-bounded oracle

If x ∈ P and pT Ax ≥ pTb is feasible,
return x∗ ∈ P such that ∀i : |Aix∗ − bi| ≤ ρ.
Otherwise, return that the system is infeasible.

Note that pT Ax ≥ pTb is a single inequality. It is composed of a
linear combination of rows of A given by the vector p. Thus finding
x ∈ P that satisfies this inequality seems to be easier than satisfying n
constraints of the fractional set cover feasibility problem. Let us now
construct the ρ-bounded oracle for the set cover.

First note that for the set cover pTb = 1. Therefore, we want

x ≥ 0, ∑
S∈S

xS ≤ β, and pT Ax = ∑
u∈U

pu

(
∑

u∈S
xS

)
= ∑

S∈S
xS p(S) ≥ 1,

where p(S) denotes the sum of the probabilities associated to the
elements in S. Let us first understand the two equalities in the above
equation. We are interpreting the product pT Ax in two different
ways. Assume that the universe is U = {u1, . . . , un}, where the i-th
row of A corresponds to the element ui, and let the sets are S =

276 notes on algorithm design

{S1, . . . , Sm} representing the columns of A. As already mentioned
the entry Aij = 1 if and only if ui ∈ Sj, otherwise it is 0. Think of
each element ui ∈ U has an associated probability pi. In the first
interpretation, the product Ax is a vector of dimension n, where
its i-th entry is the number of sets in S that contain the element ui

(i.e, ∑
u∈S

xS). The product pT Ax is the dot-product of vectors pT and

Ax, where the i-th entry in Ax is multiplied by the probability pi.
Therefore, pT Ax is the sum of the products of the probability pi of
element ui times the number of occurrences of ui in S . In the second
interpretation, for each set S ∈ S , we first sum up the probabilities
associated to each element in that set. That is the quantity p(S). We
take the sum p(S) over all sets so that for each element we take into
account the number of times it occurs in the sets of S . Therefore,

pT Ax = ∑
u∈U

pu

(
∑

u∈S
xS

)
= ∑

S∈S
xS p(S).

Given p we want to find an x ∈ P that satisfies ∑
S∈S

xS p(S) ≥ 1. To

do so, we will find the set S ∈ S that maximizes p(S) for the given p.
Suppose the set S∗ ∈ S maximizes this value. Set xS∗ = β and for ev-
ery other set S 6= S∗ set xS = 0. Observe that the vector x∗ has 0’s in
all the coordinates except the coordinate corresponding to S∗ where
it is equal to β, i.e. x∗ = (0, 0, . . . , β, 0, . . . , 0). Furthermore, x∗ ∈ P . If
∑

S∈S
x∗S p(S) ≥ 1, we have the right value x∗. But if ∑S∈S x∗S p(S) < 1,

then no other x ∈ P can satisfy this inequality. Why? Note that under
the constraints (x ≥ 0, ∑

S∈S
xS ≤ β) the choice of x that maximizes the

expression ∑
S∈S

xS p(S) didn’t satisfy the inequality.

To complete the design of the ρ-bounded oracle, let us evaluate
the value of ρ. We want to find the smallest value ρ such that for
all i ∈ {1, . . . , n}, |Aix∗ − bi| ≤ ρ. Due to the choice of x∗ and
matrix A being a 0− 1 matrix, the product Aix∗ is either 0 or β. Thus
|Aix∗ − bi| = |Aix∗ − 1| ≤ |β− 1| ≤ β ≤ m. Note that for this problem
β ≥ 1. So we can choose ρ = β or ρ = m.

Finally, let us see how we can use this ρ-bounded oracle in the
multiplicative weight update algorithm to solve the Approximate Set
Cover Feasibility Problem. Recall from the previous subsection that
to design the multiplicative weight algorithm we need experts, their
costs, their weights, and the probabilities. We will have n experts,
where the i-th expert is associated to the i-th row of A. We modify
the multiplicative weight update algorithm as follows:

Multiplicative Weight Update Algorithm for Approximate Frac-
tional Set Cover

multiplicative-weight update method 277

Step 1: Fix an η ∈ [0, min(1
2 , ε

2ρ)].

Step 2: Set w1 = (1, . . . , 1).

Step 3: For t = 1 to T = 4 ρ2 ln n
ε2 days do:

1. Compute Φt =
n
∑

i=1
wt

i .

2. Compute the probability vector pt = (
wt

1
Φt , . . . , wt

n
Φt).

3. Execute the ρ-bounded oracle for the probability vector pt.
It either returns that the system is infeasible and we STOP
or returns the vector xt.

4. Compute the costs of each expert i by evaluating mt
i =

1
ρ (Aixt − bi). (Observe that mt

i ∈ [−1, 1].)

5. Update weights for the next day for each expert i by execut-
ing wt+1

i = wt
i (1− ηmt

i).

Step 4: If we didn’t report infeasibility during the T days of exe-

cution, return x̄ = 1
T

T
∑

t=1
xt as the answer to the Approximate

Set Cover Feasibility Problem.

Before we analyze this algorithm, let us make a few remarks. Note
that if Aixt ≥ bi, mt

i ≥ 0, and the i-th constraint is satisfied. But if
Aixt < bi, then mt

i < 0. For the rows of A for which the constraints
are satisfied their weights will be smaller compared to the rows for
which the constraints are not satisfied. Hence, in the next round the
unsatisfied rows (experts) will get higher probabilities compared
to the satisfied rows. The more unsatisfied the row is higher is its
probability. That is the key to this algorithm. In each step xt is in the
convex region P . Their average x̄ will also be in P due to convexity.

From the analysis of the previous section (see Equation 11.16)
we know that the expected cost of this algorithm is bounded with
respect to the cost of any expert i by

T

∑
t=1

Mt =
T

∑
t=1
〈pt ·mt〉 ≤ ln n

η
+ ηT +

T

∑
t=1

mt
i

Claim 11.3.1
T
∑

t=1
Mt ≥ 0.

Proof. Since mt = 1
ρ (Axt − b), we have To be precise, we should write (pt)T · xt

for the dot-product, where (pt)T is the
transpose of the probability vector. But
we may get confused as we use T to
denote the number of days and not the
transpose. Therefore we will drop the T
for the transpose unless we really need
it.

278 notes on algorithm design

Mt = 〈pt ·mt〉

=
1
ρ
〈pt · (Axt − b)〉

=
1
ρ
(〈pt · Axt〉 − 〈pt · b〉)

≥ 0

The last inequality holds as the system is satisfied, i.e. (pt)T Axt ≥
(pt)Tb.

For t = 1, . . . , T, all of Mt ≥ 0, we have

ln n
η

+ ηT +
T

∑
t=1

mt
i ≥

T

∑
t=1

Mt ≥ 0

Substitute mt
i =

1
ρ (Aixt − bi), we obtain:

ln n
η

+ ηT +
1
ρ

T

∑
t=1

(Aixt − bi) ≥ 0

This is equivalent to:

ln n
η

+ ηT +
1
ρ

T

∑
t=1

Aixt − T
ρ

bi ≥ 0

Now multiply by ρ
T and use x̄ = 1

T

T
∑

t=1
xt. We obtain:

ρ ln n
Tη

+ ρη + Ai x̄− bi ≥ 0

Now substitute T = 4 ρ2 ln n
ε2 and η ∈ [0, min(1

2 , ε
2ρ)] we obtain

ε + Ai x̄− bi ≥ 0

Observe that in this substitution both the terms ρ ln n
Tη and ρη are

upper bounded by ε
2 . In fact this is how the bounds on T and η are

determined. Therefore, we have what we wanted, i.e. Ai x̄ ≥ bi − ε.
Now we briefly address the computational complexity. We run the

algorithm for T days. For each day we make a call to the ρ-bounded
oracle. So the overall time complexity is bounded by the time it takes

to run O(ρ2 ln n
ε2) calls to the oracle.

Let us recall what we did in this subsection. We wanted to solve
the set cover problem. We described the ILP formulation and then
formulated a relaxed LP that may use fractional values. We converted
the LP to the fractional set cover feasibility problem as we can per-
form a binary search to find what is the size of the minimum set
cover. Then we discussed an approximate version of the feasibility

multiplicative-weight update method 279

problem. We concluded that if we answer the approximate feasibility
problem then we can find an assignment that satisfies all the con-
straints and is within a 1 + O(ε) factor of optimal. To answer the
approximate feasibility we take help of a ρ-bounded oracle. This is an
easier problem as it has a very few constraints. This was used within
the multiplicative weight algorithm to find successive x’s that are
within the convex region P . If the approximate feasibility problem
has a solution, the average of various xt’s that are computed in the
entire run of the multiplicative weight update method over T days
yields an approximation. Otherwise we report infeasibility and adjust
the guess on the optimal value and restart.

11.4 Exercises

11.1 What will be the competitive ratio of the following method for predict-
ing the trend of the stock market? Suppose we have n experts, and each day
we evaluate which of the experts have predicted correctly on that day. We
select any one of those experts and follow that experts advise for the next
day.

11.2 What will be the competitive ratio of the following method for predict-
ing the trend of the stock market? Suppose we have n experts. Each day
our decision is the prediction of the majority of experts. (Note that we don’t
discard any of the experts.)

11.3 Suppose there are only two possible actions {↑, ↓} of Dow Jones Index
at the end of each day. Answer the following questions for the different
scenarios.

1. Each morning the algorithm chooses the actions based on some smart
scheme. If the algorithm chooses ↑ with probability ≥ 1

2 , the adversary
assigns the reward of −1 for choosing the action ↑ and a reward of +1
for choosing ↓. If the algorithm chooses ↓ with probability ≥ 1

2 , the
adversary assigns a reward of +1 to the action ↑ and a reward of −1 to ↓.
Over a run of T days, show that the expected reward of the algorithm is
at most 0. How does this compares with the reward of the adversary if it
somehow choose an optimal action for each day? (Remark: This exercise
shows that the algorithm (even a randomized scheme) has no match for
the adversary that chooses an optimal action on each day.)

2. Each morning the algorithm chooses one of the two actions by following
some deterministic strategy. If the choice of our action for that day
matches DJI we get a reward of +1, otherwise we get a reward of 0. Show
that in a run of T days, an adversary can design the outcomes for each
day in such a way that the reward that our algorithm gets is 0, whereas
there is a fixed action if chosen for all the days will generate a revenue of

280 notes on algorithm design

at least T
2 . If there are n actions, show that the algorithms revenue can be

zero, whereas there is a fixed action that can generate a revenue of at least
T(1− 1

n). Conclude that no deterministic algorithm can ensure a positive
reward. (Note that the problem is that we don’t know which action will
generate that kind of revenue till we have observed the behaviour of all the
actions for T days.)

3. For each day, an adversary tosses a fair coin. If the outcome is Heads, it
assigns a reward of −1 to ↑ and +1 to ↓. Whereas, if the outcome is Tails,
the rewards are flipped, i.e. reward of +1 to ↑ and −1 to ↓. Show that
the expected reward of any algorithm is 0 over a run on T days. In fact
this holds at the end of any of the t days, where t = 1, . . . , T. Show that
at least one of the fixed actions has a reward of c

√
T for some constant

c. Argue that if a fair coin is flipped T times, we expect to get T
2 Heads,

but there is a standard deviation of
√

T
2 . (Variance for getting a head in a

single flip is 1
4 and among n independent flips is n

4 .)

11.4 Consider Observation 11.2.1 that states that by setting η =
√

ln n
T

in Equation 11.16, we obtain
T
∑

t=1
Mt ≤ 2

√
T ln n +

T
∑

t=1
mt

i . Consider the

time-averaged version of the above equation by dividing by T and we obtain
1
T

T
∑

t=1
Mt ≤ 2

√
ln n
T + 1

T

T
∑

t=1
mt

i . Show that after T ≥ 4 ln n
ε2 number of days,

the expected time-averaged cost of MWU algorithm is off by at most ε with
respect to the best expert, where ε > 0 is a constant.

11.5 In Subsection 11.2.1 mt
i ’s were the losses of experts on day t. They can

take any values in the interval [−1, 1]. Instead of thinking of mt
i ’s as the loss

of expert i on day t, assume that it is the gain of the expert. In that section
we wanted to establish that our online strategy doesn’t incur significantly
more loss than the best expert. Show what changes you need to make in
the multiplicative weight update method if mt

i ’s are gains. Show that the

expected gain of the algorithm is
T
∑

t=1
Mt ≥

T
∑

t=1
mt

i − ln n
η − η

T
∑

t=1
|mt

i |, where

T
∑

t=1
mt

i is the gain of the best expert.

(Hint: Can we think of the loss vector as −mt and use the same algorithm as
in Subsection 11.2.1?)

11.6 Consider the following problems:

1. Let r and s be two numbers and α, β ∈ [0, 1] such that α + β = 1. Show
that for any choice of α and β, αr + βs ≤ max(r, s).

2. Let x1, . . . , xn be numbers, and α1, . . . , αn ∈ [0, 1], such that
n
∑

i=1
αi = 1.

Show that for any choice of α1, . . . , αn,
n
∑

i=1
αixi ≤ max(x1, . . . , xn).

multiplicative-weight update method 281

3. Observation 11.2.1 states that by setting η =
√

ln n
T in Equation 11.16,

we have
T
∑

t=1
Mt ≤ 2

√
T ln n +

T
∑

t=1
mt

i . That is, the expected regret/loss of

MWU algorithm is at most 2
√

T ln n, where n is the number of experts
and T is the number of days, with respect to the loss of the best expert

(
T
∑

t=1
mt

i). Show that we can extend the analysis where we replace the best

expert by any (fixed) probability distribution over the experts. Formally,

the quantity
T
∑

t=1
mt

i will be replaced by
T
∑

t=1

n
∑

i=1
p∗i mt

i in Observation

11.2.1, where p∗ is a fixed probability distribution over the experts. Show
that the best expert is as good as any fixed probability distribution over

the experts,
T
∑

t=1

n
∑

i=1
p∗i mt

i ≤
n

max
i=1

T
∑

t=1
mt

i .

Following exercises are adapted from Tim Roughgarden’s lecture
on Applications of MW Update Method.

11.7 (Zero-Sum games) See https://en.wikipedia.org/wiki/

Matching_pennies

Player B
H T

H +1 -1
Player A

T -1 +1

Figure 11.1: Payoff matrix U for the row
player A

Consider the following two-person zero-sum game called matching
pennies. Two rational players A (the row player) and B (the column
player), hold a penny each. In each round of the game, each of them decides,
using whatever strategy they want, whether their penny will show heads or
tails when placed on the table. In each round, both the players place their
pennies simultaneously on the table. A wins this round and gets B’s penny,
if both the pennies are heads or both the pennies are tails. Otherwise, B
gets A’s penny in this round. The game is called the zero-sum game, as
one players gain is the same as the other player’s loss. These games are
represented using the payoff matrix A with respect to the payoff for the row
player. Row player A has two plays - play Head (Row 1) or play Tails (Row
2). Similarly, Column player B has two plays - play Head (Column 1) or
play Tail (Column 2). The payoff matrix of the row player is given in Figure
11.7. The payoff for the column player is the same as the row player, except
that each of the entries has an opposite sign (as the gain of one player is the
loss of the other player).

Assume that the above game is repeated for several rounds. If a player
always plays the same row/column, we say it is playing a pure strategy.
If the player varies the rows/columns, say according to some probability
distribution overs rows/columns, we say it is playing a mixed strategy.
Observe that if any of the players figure out that the opponent is playing a
pure strategy, then this player has an advantage. As will be clear from the
following exercises, it will be better for the players to use a mixed strategy to
be unpredictable.

1. What will be the revenue of A if A employs the pure strategy of always
playing Heads?

https://en.wikipedia.org/wiki/Matching_pennies
https://en.wikipedia.org/wiki/Matching_pennies

282 notes on algorithm design

2. What will be the best strategy for player B if A plays the mixed strategy
of playing Heads and Tails with equal probability? What will be its
expected revenue?

3. What will be the best strategy and the expected revenue of B if A plays
Heads with probability 0.7 and Tails with probability 0.3.

4. Show that the best strategy for both the players is to choose heads and
tails with equal probability.

5. Show that the expected payoff of both the players is 0, if they choose

Heads/Tails with probability = 1/2. I.e., show that
2
∑

i=1

2
∑

j=1
piqj A[i, j] = 0,

where pj =
1
2 represents the probability of choosing row i by Player A,

qj =
1
2 represents the probability of choosing column j by Player B, and

A[i, j] is the entry in i-th row and j-th column of the payoff matrix of the
row player.

6. What is the expected payoff of Player A if A chooses each row with
probability 1

2 , and B can choose any possible mixed strategy.

7. Assume that the row player plays first and chooses the rows 1 and 2 with
probabilities p1 and p2 = 1− p1, and furthermore assume that it informs
its mixed strategy vector p = (p1, p2) to the column player. Show
that the best strategy for the column player is to deterministically play
one of the columns - the column that minimizes the value pT Aq, where
q = (1, 0) or q = (0, 1). In general, express q = (q1, q2), where qi ≥ 0
and q1 + q2 = 1. Show that the optimum payoff to the column player is

at least max
p

(
min

q
−pT Aq

)
- first let the row player choose a strategy p,

and then the column player minimizes over the various choices for q.

8. Show that if the column player plays first and the row player plays sec-

ond, then the optimum payoff for the row player is at least min
q

(
max

p
pT Aq

)
.

9. For the matching pennies game, show that

max
p

(
min

q
pT Aq

)
= min

q

(
max

p
pT Aq

)
= 0.

11.8 What will be the best mixed strategy for the row and column players in
the rock-paper-scissors two person zero-sum game, where the payoff matrix
of the row player is given in Figure 11.8.

B
Rock Scissor Paper

Rock 0 +1 -1
A Scissor -1 0 +1

Paper 1 -1 0

Figure 11.2: Payoff Matrix for the row
player in rock-paper-scissor game

Note that both the players play simultaneously. Rock beats scissors,
scissors beats paper, and paper beats rock. The outcomes of this game are
draw, A wins or A looses. If A plays Rock and B plays Scissor, than A
wins and gets $1 from B. Whereas if both A and B play scissors, it’s a

draw. Note that the payoff to the row player =
3
∑

i=1

3
∑

j=1
piqj A[i, j], where https://en.wikipedia.org/wiki/Rock_

paper_scissors

https://en.wikipedia.org/wiki/Rock_paper_scissors
https://en.wikipedia.org/wiki/Rock_paper_scissors

multiplicative-weight update method 283

(p1, p2, p3) (resp. (q1, q2, q3)) represents the probabilities of choosing rows
(columns) by the row (column) player.

Consider a generic two person zero-sum game between a row and
a column player, where A is the n×m matrix representing the payoff
to the row player, given that the row player has n possible strategies
and the column player has m possible strategies. The payoff to row

player is given by the equation
n
∑

i=1

m
∑

j=1
piqj A[i, j] = pT Aq, where

pi is the probability of choosing row i by the row player and qj is
the probability of choosing column j by the column player, and let
p = (p1, . . . , pn) and q = (q1, . . . , qm) be the corresponding probability
vectors. Suppose the row player commits to the mixed strategy
p = (p1, . . . , pn) first, i.e. it plays first. Than the column player
wants to optimize the function min

q
pT Aq. The interpretation is as

follows. Column player wants to ensure that the row player gets the
smallest possible value once it fixes its strategy p. Row player wants

to choose that p which achieves max
p

(
min

q
pT Aq

)
. Now consider the

scenario when the column player chooses the mixed strategy q first.
Now the row player, using a similar reasoning, will like to optimize
max

p
−pT Aq. The famous minimax theorem states that if both players

play optimally than max
p

(
min

q
pT Aq

)
= min

q

(
max

p
pT Aq

)
, and this

value is called the value of the game. The following exercise, using
the multiplicative weight update method, will help us to derive a
proof of the minimax theorem.

Let the set of experts be E =
{1, . . . , n}.
Let η to be any real number in
[0, 1

2].
For each expert i, initialize its
weight w1

i = 1.

For each day t := 1 to T = 4 ln n
ε2

do:

Step 1: Define Φt =
n
∑

i=1
wt

i . For

each expert i, compute pt
i =

wt
i

Φt .

Step 2: Choose an expert based
on their probabilities and
predict according to the chosen
expert.

Step 3: Update Weights: For
each expert i set wt+1

i =
wt

i (1− ηmt
i).

11.9 Consider a two person zero-sum game where the row player payoff
matrix is A, and assume that each entry A[i, j] ∈ [−1, 1]. Assume that the
row player moves first - it fixes its mixed strategy for day t = 1, . . . , T using
the MWU method of Section 11.2.1. Assign experts to each row, and using
the MWU method, choose probability vector pt for rows for time t. Assume
that the column player responds optimally with the best strategy qt (which is
deterministic given pt). Now for row i, if the column player chose column j,
than the cost incurred by expert i for day t is mt

i = A[i, j]. The algorithm of
Section 11.2.1 is reproduced in the margin. Answer the following:

1. Show that on each day t, the column player can choose an optimal strat-
egy qt to counter row players’ mixed strategy pt for the day t. Note that
we assumed that the row player plays first on each of the days.

2. Define p̂ = 1
T

T
∑

t=1
pt as the average mixed strategy of the row player over

T days. Let q∗ be an optimal response by the column player to the row
players strategy p̂. Show the following:

284 notes on algorithm design

(a) Show that max
p

(
min

q
pT Aq

)
≥ min

q
p̂T Aq.

(b) Show that min
q

p̂T Aq = p̂T Aq∗.

(c) Show that p̂T Aq∗ = 1
T

T
∑

t=1
(pt)T Aq∗.

(d) Use the fact that qt is an optimal response to pt for day t and conclude
that (pt)T Aq∗ ≥ (pt)T Aqt.

(e) Show that max
p

(
min

q
pT Aq

)
≥ 1

T

T
∑

t=1
(pt)T Aqt

(f) Conclude that if the column player plays second on each day, its

expected loss can’t be more than max
p

(
min

q
pT Aq

)
.

3. Define q̂ = 1
T

T
∑

t=1
qt. Show the following:

(a) Show that the average payoff of the row player over T days in the

MWU method is given by 1
T

T
∑

t=1
(pt)T Aqt.

(b) See Exercise 11.4. Note that we ran the MWU method for T = 4 ln n
ε2

days. Using the fact that MWU method ensures that the expected
payoff of the row player is within ε if it either used a fixed strategy or
used a fixed probability distribution p over its rows (see Exercise 11.6),

show that 1
T

T
∑

t=1
(pt)T Aqt ≥ max

p

(
1
T

T
∑

t=1
pT Aqt

)
− ε.

(c) Use the definition of q̂ to show that max
p

(
1
T

T
∑

t=1
pT Aqt

)
= max

p
pT Aq̂.

(d) Show that max
p

pT Aq̂ ≥ min
q

(
max

p
pT Aq

)
.

(e) Conclude that the expected payoff of the row player 1
T

T
∑

t=1
(pt)T Aqt ≥

min
q

(
max

p
pT Aq

)
− ε.

4. Recall that if the column player plays first, the revenue of the row player

is at most min
q

(
max

p
pT Aq

)
. Using the lower and upper bounds on

1
T

T
∑

t=1
(pt)T Aqt and setting ε → 0, conclude the statement of the mini-

max theorem max
p

(
min

q
pT Aq

)
= min

q

(
max

p
−pT Aq

)
.

12
Dimensionality Reduction

We will focus on

1. Metric Spaces

2. Isometric Embeddings

3. Distortion

4. Universality of L∞-normed spaces

5. Johnson-Lindenstrauss Lemma.

Keywords: Dimensionality Reduction, Metric Space, L1, L2 and L∞-
norm, Distortion, Isometric Embeddings, Johnson-Lindenstrauss
Lemma.

In Chapter 4 we have seen various ways to express a matrix in terms
of simpler matrices. The methods included how to express square
matrices with linearly independent eigenvectors as A = XΛX−1, real
symmetric matrices S as QΛQT , singular value decomposition of any
matrix A as UΣVT , approximating any matrix A as a sum of tensor
products, and the exercises included the PCA and its connection
to SVDs. Note that matrix is an abstract mathematical structure
that captures many realistic scenarios. For example, a matrix may
represent users as rows and columns as movies, and the ij-th entry
in the matrix represents the i-th users rating of the j-th movie. For
example, as of December 2019, Netflix has about 160 million users
(rows) and over 6000 movies (columns). This amounts to about 1
trillion entries in the matrix! Rather than working with this giant
matrix, it is much better to work with its SVD and its variants (e.g.
CUR decomposition). We can view these techniques as reducing
the dimensionality of the problem. But in this chapter, we study a
different type of dimensionality reduction centred around metric
embeddings.

The material of this chapter is from Dasgupta and Gupta [38],

286 notes on algorithm design

Dubhashi & Panconesi [47], Matousek [105, 104], Bourgain [23], and
the lecture notes of Harold Racke on a course on metric embeddings
offered at IIIT Chicago a while ago. We will touch upon the following
topics: metric spaces, metric embedding, isometric and nonisometric
embeddings via the concept of distortion - contraction and expansion.
We will show that any n-point metric space 〈X, d〉 can be embedded
isometrically into n-dimensional space with L∞-norm. We will also
show that metric spaces cannot be embedded isometrically always in
the plane endowed with the Euclidean distance norm. We will con-
clude this chapter by sketching a proof of the Johnson-Lindenstrauss
theorem [80] on embedding in Euclidean spaces.

12.1 Preliminaries: Metric spaces and embeddings

In this chapter the following three distance measures between a pair
of points p = (p1, . . . , pk) and q = (q1, . . . , qk) in <k will be used.

1. L2-norm (Euclidean): ||p− q||2 =

√
k
∑

i=1
(pi − qi)2

2. L1-norm (Manhattan): ||p− q||1 =
k
∑

i=1
|pi − qi|

3. L∞-norm: ||p− q||∞ = max{|p1 − q1|, . . . , |pk − qk|}

For example, for two points p = (3, 5) and q = (−2, 7) in <2, we
have
||p− q||1 = ||(3, 5)− (−2, 7)||1 = |3− (−2)|+ |5− 7| = 7.
||p− q||2 = ||(3, 5)− (−2, 7)||2 =

√
(3− (−2))2 + (5− 7)2 =

√
29.

||p− q||∞ = ||(3, 5)− (−2, 7)||∞ = max{|3− (−2)|, |5− 7|} = 5

Definition 12.1.1 Let X be a set of n-points and let d be a distance
measure associated with pairs of elements in X. We say that 〈X, d〉 is
a finite metric space if the function d satisfies metric properties, i.e. (a)
∀x ∈ X, d(x, x) = 0, (b) ∀x, y ∈ X, x 6= y, d(x, y) > 0, (c)
∀x, y ∈ X, d(x, y) = d(y, x) (symmetry), and (d) ∀x, y, z ∈ X,
d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

For example, a finite set of points in <k where distances are mea-
sured with respect to L2-norm (Euclidean) forms a metric space. A
finite set of k-dimensional Boolean vectors where the distances are
measured with respect to Hamming distance forms a metric space.

Definition 12.1.2 Let 〈X, d〉 and 〈X′, d′〉 be two metric spaces. A map
f : X → X′ is called an embedding. It is said to be isometric (i.e., dis-
tance preserving) if for all x, y ∈ X, d(x, y) = d′(f (x), f (y)). The
contraction of f is defined to be maximum factor by which the distances

dimensionality reduction 287

shrink and it equals maxx,y∈X
d(x,y)

d′(f (x), f (y)) . Similarly the expansion of f
is the maximum factor by which the distances are stretched and it equals
maxx,y∈X

d′(f (x), f (y))
d(x,y) . Distortion of an embedding is defined to be the prod-

uct of its expansion and contraction factor. For an isometric embedding, its
contraction factor is 1, its expansion factor is 1 and therefore its distortion is
1. There are other equivalent definitions of distortion.

We will try a couple of examples for embedding very specific
metric spaces.

Example 12.1.3 Consider the metric space defined by a complete graph
on four vertices X = {a, b, c, d}, where the distance between every pair of
distinct vertices is 1. Can we embed X in 3-dimensional Euclidean space
isometrically?

Map the points to the following coordinates (0, 0, 0), (1, 0, 0), (1/2,
√

3/2, 0),
and (1/2, 1/2

√
3,
√

2/3) in 3-dimensional space and observe that the dis-
tance between every pair of points is 1. Therefore, X can be embedded
isometrically in 3-dimensional Euclidean space.

Example 12.1.4 Let X = {a, b, c, d} be a set of 4-points. Let d(a, b) =

d(b, c) = d(c, d) = d(d, a) = 1 and d(a, c) = d(b, d) = 2. Is it possible to
embed X isometrically in Euclidean space in any dimension?

12.2 A Motivating Example

Assume that we have a set X of n-points in k-dimensional space,
where n >> 2k. We want to report a pair of points of X that maxi-
mizes the L1-distance, i.e. we want to find the L1-diameter of X.

A straightforward solution is as follows. Compute the distance be-
tween every pair of points and find the pair with the largest distance.
Distance between a pair of points p = (p1, . . . , pk) and q = (q1, . . . , qk)

requires the computation of |p1 − q1|+ · · ·+ |pk − qk| and it can be
computed in O(k) time. There are in all O(k(n

2)) pairs of points in X.
Thus, we can easily compute the L1-diameter of X in O(kn2) time.
Next, we will outline an algorithm using isometric embedding that
takes O(2kn) time. This algorithm is very efficient if n >> 2k.

We will define an isometric embedding f from points in <k to

points in <2k
. Let x = (x1, . . . , xk) ∈ X. Note that ||x||1 =

k
∑

i=1
|xi| =

k
∑

i=1
sign(xi)xi = sign(x) · x, where sign(x) is the ±1 vector of length k

denoting the sign of each coordinate of x.

Claim 12.2.1 For any ±1 vector y = (y1, . . . , yk) of length k
||x||1 = sign(x) · x ≥ y · x. Moreover, ||x||1 = max{x · y|y ∈ {−1, 1}k}.

288 notes on algorithm design

Example: For each possible ±1 vector y in 3-dimensional space, the
following table gives the dot product between y and x = (−2,−3, 4).
Observe from the table that ||x||1 = | − 2|+ | − 3|+ |4| = (−1,−1, 1) ·
(−2,−3, 4) = 9

y · x y · x
(−1,−1, 1) · (−2,−3, 4) = 9 (−1,−1,−1) · (−2,−3, 4) = 1
(−1, 1, 1) · (−2,−3, 4) = 3 (−1, 1,−1) · (−2,−3, 4) = −5
(1,−1, 1) · (−2,−3, 4) = 5 (1,−1,−1) · (−2,−3, 4) = −3
(1, 1, 1) · (−2,−3, 4) = −1 (1, 1,−1) · (−2,−3, 4) = −9

For each ±1 vector y, define fy : X → < by fy(x) = y · x. For
example, f(1,−1,1)((−2,−3, 4)) = (1,−1, 1) · (−2,−3, 4) = 5

Isometric Embedding: Define f : X → <2k
to be the concatenation of

fy’s for all possible 2k y’s. For our example x = (−2,−3, 4), f (x) =

(9, 3, 5,−1, 1,−5,−3,−9) corresponding to 23 = 8 possible values
for 3-dimensional vector y. Similarly for x′ = (2, 3,−2), f (x′) =

(−7,−1,−3, 3,−3, 3, 1, 7).
Observe that || f (x)− f (x′)||∞ = max

y
{| fy(x)− fy(x′)|} = max(|9−

(−7)|, |3− (−1)|, |5− (−3)|, | − 1− 3|, |1− (−3)|, | − 5− 3|, | − 3−
1|, | − 9− 7|) = 16 = ||x − x′||1. We formalize this in the following
lemma.

Lemma 12.2.2 Under the mapping f : X → <2k
given by the concatena-

tion of fy’s for all possible 2k y’s, where fy(x) = y · x, we have that for any
two points x, x′ ∈ X, || f (x)− f (x′)||∞ = ||x− x′||1

Proof.

|| f (x)− f (x′)||∞ = max
y
{| fy(x)− fy(x′)|}

= max
y
{|y · x− y · x′|}

= max
y
{|y · (x− x′)|}

= ||x− x′||1,

because by Claim 12.2.1, ||x||1 = max{y · x|y ∈ {−1, 1}k}.

In place of finding the furthest pair of points in X with respect to
L1 metric we have the following new problem:

New Problem: Given n points in 2k dimensional space X′, find the
furthest pair of points in X′ with respect to L∞ metric.

dimensionality reduction 289

Observe the following:

max
u,v∈X′

||u− v||∞ = max
u,v∈X′

2k

max
i=1
|ui − vi|

=
2k

max
i=1

max
u,v∈X′

|ui − vi|

Now max
u,v∈X′

|ui − vi|, for a fixed i, can be computed in O(n) time. Thus,

2k

max
i=1

max
u,v∈X′

|ui − vi| can be computed in O(2kn) time. We conclude with

the following theorem.

Theorem 12.2.3 Given a set X of n points in <k, by using the isometric
embedding f : Lk

1 → L2k
∞ , we can compute the furthest pair of points in

X with respect to L1-metric by computing the furthest pair of points in the
embedding with respect to L∞-metric in O(2kn) time.

12.3 Universal Space L∞

Let 〈X, d〉 be any finite metric space, where n = |X|. In this section
we show that X can be isometrically embedded into L∞-metric space
of dimension n. This shows that L∞-metric space is universal, i.e. any
metric space can be embedded isometrically in L∞-metric space of an
appropriate dimension.

Let X = {x1, . . . , xn}. For each point x ∈ X, define f (x) =

(d(x, x1), . . . , d(x, xn)).

a b

c
d

1

2

3

3

Figure 12.1: Metric Space X = {a, b, c, d}
with shortest path distances in the
graph

For the example in Figure 12.1, we have
f (a) = (d(a, a), d(a, b), d(a, c), d(a, d)) = (0, 2, 1, 3)
f (b) = (d(b, a), d(b, b), d(b, c), d(b, d)) = (2, 0, 3, 5)
f (c) = (d(c, a), d(c, b), d(c, c), d(c, d)) = (1, 3, 0, 3)
f (d) = (d(d, a), d(d, b), d(d, c), d(d, d)) = (3, 5, 3, 0)
Note that d(b, d) = || f (b)− f (d)||∞ = 5 and
d(a, d) = || f (a)− f (d)||∞ = 3.

Lemma 12.3.1 Let X = {x1, . . . , xn}. For each point x ∈ X, consider the
mapping f (x) = (d(x, x1), . . . , d(x, xn)). For any pair of points u, v ∈ X,
we have d(u, v) = || f (u)− f (v)||∞ and hence conclude that this mapping is
universal.

Proof. || f (u)− f (v)||∞ = max
x∈X
||d(u, x)− d(v, x)|| ≤ d(u, v) by triangle inequality.

But, max
x∈X
||d(u, x)− d(v, x)|| ≥ ||d(u, u)− d(v, u)|| = d(u, v).

=⇒ || f (u)− f (v)||∞ = d(u, v).
Thus, the mapping of elements of x ∈ X given by f (x) =

(d(x, x1), . . . , d(x, xn)) under L∞-norm is universal as it preserves
the distances.

290 notes on algorithm design

12.4 Embeddings into L∞-normed spaces

This section covers a theorem due to Matousek, see 1, using the proof 1 Jiří Matoušek. On the distortion
required for embedding finite metric
spaces into normed spaces. Israel Journal
of Mathematics, 93(1):333–344, 1996;
and Jiri Matousek. Lectures on Discrete
Geometry. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2002

technique of Bourgain 2. Let 〈X, d〉 be a metric space where X is a

2 J. Bourgain. On lipschitz embedding
of finite metric spaces in hilbert space.
Israel Journal of Mathematics, 52(1-2):46–
52, 1985

set of n-points and let d satisfies the metric properties. We show that
each point in X can be embedded in k = O(Dn

2
D log n)-dimensional

space such that the following holds. Let x, y ∈ X and let f (x), f (y)
be their embedding in the k-dimensional space, respectively. We
measure the distances in the k-dimensional space using the L∞-norm.
We show that the distances get distorted by a factor of at most D ≥ 1.
In fact, in this case, the mapping is a contraction, and the maximum
amount that the distances can shrink is at most D. Succinctly this is
specified as

〈X, d〉 D
↪→ Lk=O(Dn

2
D log n)

∞ .

For the special case, D = O(log n) and k = O(log2 n), i.e. 〈X, d〉
O(log n)
↪→

LO(log2 n)
∞

One may wonder why we should even worry about these embed-
dings. There are several applications. One easy application is the
following. For an n-element set X, to represent the pair-wise dis-
tances, we will require Ω(n2) space. In the embedding, each point
requires space proportional to the dimension, i.e. O(k). Thus the total
storage requirement is O(kn). For example, when D = O(log n), the
space required is O(n log2 n) instead of O(n2). Note that this is at the
cost of replacing exact distances with approximate distances. Let us
try to prove the following theorem in this section.

Theorem 12.4.1 〈X, d〉 D
↪→ Lk=O(Dn

2
D log n)

∞ .

The proof is constructive and leads to a randomized algorithm for
finding an embedding. First, we define the concept of a distance of a
point x ∈ X to a set S ⊆ X, as the distance of x to the nearest point in
S. More formally,

Definition 12.4.2 Let S ⊆ X. For x ∈ X, define d(x, S) = min
z∈S

d(x, z).

Claim 12.4.3 Let x, y ∈ X. For all S ⊆ X, |d(x, S)− d(y, S)| ≤ d(x, y).

Proof.
x′

y′

x

y

S

d(x, S)

d(y, S)

Figure 12.2: Illustration of |d(x, S) −
d(y, S)| ≤ d(x, y).

Proof uses triangle inequality. See Figure 12.2 for an illustration. Let
x′ be the point closest to x in S. Similarly, let y′ be the point closest
to y in S. Then d(x, S) = d(x, x′) and d(y, S) = d(y, y′). Assume that
d(x, x′) ≥ d(y, y′). Then

d(x, x′)− d(y, y′) ≤ d(x, y′)− d(y, y′) ≤ d(x, y).

dimensionality reduction 291

Similarly, assume that d(y, y′) ≥ d(x, x′). Then

d(y, y′)− d(x, x′) ≤ d(y, x′)− d(x, x′) ≤ d(x, y).

Thus, |d(x, x′)− d(y, y′)| ≤ d(x, y).

Definition 12.4.4 (Mapping) Let x ∈ X. Let S1, S2, · · · , Sk ⊆ X. The
mapping f maps x to the point

f (x) = {d(x, S1), d(x, S2), · · · , d(x, Sk)}.

Claim 12.4.5 Let S1, S2, · · · , Sk ⊆ X. For x, y ∈ X, || f (x)− f (y)||∞ ≤
d(x, y).

Proof. Follows from the above claim, as for each 1 ≤ i ≤ k, |d(x, Si)−
d(y, Si)| ≤ d(x, y).

Next we are going to construct a set of k = O(Dm) subsets of X
by a simple randomized selection process, where m = O(n

2
D log n).

For any pair of points x, y ∈ X, we will show that there is at least
one subset in this set for which || f (x)− f (y)||∞ ≥ d(x,y)

D . By Claim
12.4.5, we know that || f (x)− f (y)||∞ ≤ d(x, y). Thus, this construction
will show that the mapping has a distortion of at most D. Let us first
present Algorithm 12.1. This algorithm returns the required mapping
for each point x ∈ X.

Algorithm 12.1: Compute a set of O(Dm) subsets of X and a
mapping of each point x ∈ X

Input: Set X consisting of n-elements and a distortion
parameter D ≥ 1

Output: A set of O(Dm) subsets of X

1 p← min(1
2 , n−

2
D)

2 m← O(n
2
D log n)

3 for j← 1 to dD
2 e do

4 for i← 1 to m do
5 Choose set Sij by sampling each element of X
6 independently with probability pj

7 end
8 end
9 For each x ∈ X return its mapping f (x) as the point

10

(
d(x, S11), · · · d(x, Sm1), d(x, S12), · · · , d(x, Sm2), · · · , d(x, S1d D

2 e
), · · · , d(x, Smd D

2 e
)
)

Before we show that the subsets produced by Algorithm 12.1
satisfies || f (x)− f (y)||∞ ≥ d(x,y)

D for any pair of points x, y ∈ X, we
make the following observation.

292 notes on algorithm design

Observation 12.4.6 Let x, y be two distinct points of X. Let B(x, r) be
the set of points of X that are within a distance of r from x (think of B(x, r)
as a ball of radius r centred at x). Similarly, let B(y, r + ∆) be the set of
points of X that are within a distance of r + ∆ from y. Consider a subset
S ⊂ X such that S ∩ B(x, r) 6= ∅ and S ∩ B(y, r + ∆) = ∅. Then
|d(x, S)− d(y, S)| ≥ ∆.

B(x, r)
B(y, r + ∆)

r
r + ∆

x
y

S

Figure 12.3: Illustration of Observation
12.4.6.

Proof. d(x, S) ≤ r as S∩ B(x, r) 6= ∅ and d(y, S) > r +∆ as S∩ B(y, r +
∆) = ∅.

Lemma 12.4.7 Let x, y be two distinct points of X. There exists an index
j ∈ {1, · · · , dD

2 e} such that if Sij is as chosen in Algorithm 12.1, than

Pr
[
|| f (x)− f (y)||∞ ≥

d(x, y)
D

]
≥ p

12
.

First, let us see why the above lemma implies Theorem 12.4.1.
For a fix, x, y ∈ X, the probability that none of the m trials for that
particular j are good has probability of at most (1− p

12)
m ≤ e−

pm
12 ≤ 1

n2 .
Since there are in all (n

2) pairs in X, the probability that we fail to
choose a good set for any of the pairs, by the union bound, is strictly
less than 1. Now let us prove Lemma 12.4.7.
Proof. (Proof of Lemma 12.4.7) Set ∆ = d(x,y)

D . For i = 0, · · · , dD
2 e,

define balls of radius i∆ as follows. Let B0 = {x}. Let B1 be the ball
of radius ∆ centred at y. Then B2 is the ball of radius 2∆ centred at
x. B3 is the ball centred at y of radius 3∆ and so on. Hence, all balls
with even i’s are centred at x and at odd i’s are centred at y. Since
i ≤ D/2, no even ball overlaps with an odd balls. For even (odd) i, let
|Bi| denote the number of points of X that are within a distance of at
most i∆ from x (respectively, y). Next we claim that, there is an index

t ∈ {0, · · · , dD
2 e − 1}, such that |Bt| ≥ n

2t
D and |Bt+1| ≤ n

2(t+1)
D .

Claim 12.4.8 There is an index t ∈ {0, · · · , dD
2 e − 1}, such that |Bt| ≥

n
2t
D and |Bt+1| ≤ n

2(t+1)
D .

x y

B2
B4 B3

B5

Figure 12.4: Illustration of Claim

Proof. Proof is by contradiction. |B0| = 1 by construction. Thus
|B1| > n

2
D , otherwise the claim holds.

Since |B1| > n
2
D , |B2| > n

4
D , otherwise the claim holds.

Since |B2| > n
4
D , |B3| > n

6
D , otherwise the claim holds.

Continuing this way, for the last possible value of t = dD
2 e − 1, we

obtain |Bt+1| > n
2(t+1)

D ≥ n. Since |X| = n, this is impossible, and
hence there exists an index t that satisfies the statement of the claim.

Consider the index t as stated in this claim. We have two balls, Bt

and Bt+1, such that |Bt| ≥ n
2t
D and |Bt+1| ≤ n

2(t+1)
D . We will next show

dimensionality reduction 293

that for j = t + 1, in Algorithm 12.1, the set Sij chosen by the algorithm
will have a non-empty intersection with Bt with probability at least
p/3, and it will avoid Bt+1 with probability at least 1/4. Formally,
consider the following two events:

Let E1 be the event that Sij ∩ Bt 6= ∅.
Let E2 be the event that Sij ∩ Bt+1 = ∅.

Let us first analyze E1.

Pr[E1] = 1− Pr[Sij ∩ Bt = ∅] (12.1)

= 1− (1− pj)|Bt | (12.2)

≥ 1− (1− pj)n
2(j−1)

D (12.3)

≥ 1− e−pjn
2(j−1)

D (12.4)

= 1− e−p (12.5)

If p ≤ 1/2, 1− e−p ≥ p/3.
Similarly,

Pr[E2] = Pr[Sij ∩ Bt+1 = ∅] (12.6)

= (1− pj)|Bt+1| (12.7)

≥ (1− pj)n
2j
D (12.8)

= (1− pj)
1
pj (12.9)

If pj ≤ 1/2, (1 − pj)
1
pj ≥ 1/4. Note that the function (1 − pj)

1
pj

achieves its minimum value in the interval 0 ≤ pj ≤ 1/2, at the ends
of the interval, i.e. at pj = 0 or at pj = 1/2. At both the extremes, its
value is at least 1/4.

Next we need to estimate what is the Pr[E1 ∧ E2]. Note that events
E1 and E2 are independent as the balls Bt and Bt+1 are disjoint and
do not share any points. Thus Pr[E1 ∧ E2] ≥ p/12.

By setting D = Θ(log n), in Theorem 12.4.1, we obtain the follow-
ing corollary.

Corollary 12.4.9 〈X, d〉
Θ(log n)
↪→ LO(log2 n)

∞ .

Next we show the following

Lemma 12.4.10 〈X, d〉
log2 n
↪→ LO(log2 n)

1 .

Proof. Let k = O(log2 n) be the dimension of embedding in Corollary
12.4.9. Observe that for the same embedding as in Corollary 12.4.9,
for a pair of points x, y ∈ X, we have

|| f (x)− f (y)||1 ≤ kd(x, y).

294 notes on algorithm design

This follows from the fact that for each of the coordinates, | f (x)i −
f (y)i| ≤ d(x, y) by Claim 12.4.3. In the proof of Theorem 12.4.1, for a
pair x, y ∈ X, we know that there is at least one set (as constructed in
Algorithm 12.1) which is good, i.e., with probability at least 1− 1/n2

for which || f (x)− f (y)||∞ ≥ d(x,y)
Θ(log n) . We can extend the machinery

in the Theorem to show that with high probability there are log n sets
which are good. This will require to choose slightly larger value for
m, but still of order of O(log n). If this is the case, then

|| f (x)− f (y)||1 ≥ log n
d(x, y)

Θ(log n)
= Θ(d(x, y)).

Thus we have

Θ(d(x, y)) ≤ || f (x)− f (y)||1 ≤ kd(x, y),

and hence we have a mapping with distortion O(log2 n).

Next we show,

Corollary 12.4.11 〈X, d〉
log1.5 n
↪→ LO(log2 n)

2 .

Proof. Let k = O(log2 n) be the dimension of embedding in Corollary
12.4.9. Observe that for the same embedding as in Corollary 12.4.9,
for a pair of points x, y ∈ X, we have

|| f (x)− f (y)||2 =
√

∑(d(x, Sij)− d(y, Sij))2 ≤
√

kd(x, y).

With similar arguments as in the proof of Lemma 12.4.10,

|| f (x)− f (y)||2 =
√

∑(d(x, Sij)− d(y, Sij))2 ≥
√

log n(
d(x, y)

Θ(log n)
)2 ≥ d(x, y)

Θ(
√

log n)
.

This results in a total distortion of O(log1.5 n).

12.5 Johnson and Lindenstrauss Theorem

First we recall some facts about normal distribution from Chapter 2.
A random variable X has a normal distribution N (µ, σ2), with mean
µ and standard deviation σ > 0, if its probability density function is

of the form f (x) = 1√
2πσ

e−
1
2 (

x−µ
σ)

2
,−∞ < x < ∞. The distribution

N (0, 1), with pdf 1√
2π

e−
x2
2 , is referred to as the standardized normal

distribution.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

Figure 12.5: Plot of N (0, 1) and
N (1, 0.75)

If X has a Normal distribution N (µ, σ2), than aX + b has a Normal
distribution N (aµ + b, a2σ2), for constants a, b. Let X and Y be inde-
pendent r.v. with Normal distributions N (µ1, σ2

1) and N (µ2, σ2
2). Let

dimensionality reduction 295

random variable Z = X + Y. It is well-known that Z has a Normal
distribution N (µ1 + µ2, σ2

1 + σ2
2), i.e., sum of independent Normal

distributions is a Normal distribution.
Next we state the dimensionality reduction theorem of Johnson

and Lindenstrauss 3 from 1984. 3 William B. Johnson and Joram Lin-
denstrauss. Extensions of Lipschitz
mappings into a Hilbert space. In Confer-
ence in modern analysis and probability (in
honor of Professor Shizuo Kakutani, held on
June 8-11, 1982, at Yale University, New
Haven, Connecticut), pages 189–206. 1984

Theorem 12.5.1 Let V be a set of n points in d-dimensions. A mapping
f : Rd → Rk can be computed, in randomized polynomial time, so that for
all pairs of points u, v ∈ V,

(1− ε)||u− v||2 ≤ || f (u)− f (v)||2 ≤ (1 + ε)||u− v||2,

where 0 < ε < 1 and n, d, and k ≥ 4(ε2

2 − ε3

3)
−1 ln n are positive integers.

Intuitively, the theorem says that points in d-dimensional space
can be mapped to a k dimensional space, where k is significantly less
than d, and the interpoint Euclidean distance between a pair of points
in V is preserved up to a factor of (1± ε). The function f is defined
in terms of a matrix Ak×d with entries from Normal distribution
N (0, 1

k). A point x ∈ <d is mapped to the point x′ = Ax. Note that
Ax represents the product of k× d matrix with a vector x of dimension
d and the product results in a vector x′ ∈ <k. For every pair of points
u, v ∈ V, we consider the vector x = u− v, and apply the mapping
f to x. Next we show that the expected squared length of the vector
||Ax||2 is ||x||2.

Lemma 12.5.2 Let Ak×d be a matrix, where each of its entry is chosen
independently from the Normal distribution N (0, 1

k). For any vector
x ∈ <d, we have E[||Ax||2] = ||x||2.

Proof. Assume z = Ax, where z = (z1, . . . , zk) ∈ <k. We want to

show that E[||z||2] = ||x||2. Note that ||z||2 =
k
∑

i=1
z2

i . Consider the first

coordinate z1 of z. Note that z1 =
d
∑

i=1
A1ixi. What is the distribution

of r.v. z1?
Recall that if a random variable X has a Normal distribution

N (0, σ2), aX has a Normal distribution N (0, a2σ2), for a constant a.
Moreover, the sum of two independent r.v. with Normal distributions
N (0, σ2

1) and N (0, σ2
2) has a Normal distribution N (0, σ2

1 + σ2
2).

Since each A1i is distributed independently by N (0, 1
k). The dis-

tribution of z1 =
d
∑

i=1
A1ixi is the same as the sum of d independent

Normal distributions (where each of them have an associated scalar

xi). Thus, z1 has N (0,

d
∑

i=1
x2

i

k) = N (0, ||x||
2

k) distribution.

296 notes on algorithm design

Consider ||z||2 = ||Ax||2 = z2
1 + . . . + z2

k , where zi has N (0, ||x||
2

k)

distribution. Now, by linearity of expectation and the independence
of each entry in A, we have E[||z2||] = E[z2

1 + . . . + z2
k] = kE[z2

1].
By definition: Var[z1] = E[z2

1]− E[z1]
2.

But z1 has N (0, ||x||
2

k) distribution.

=⇒ Var[z1] =
||x||2

k and E[z1] = 0.

=⇒ E[z2
1] = Var[z1] =

||x||2
k

Next we show that E[||Ax||2] is concentrated around ||x||2. We
will estimate Pr(||Ax||2 ≥ (1 + ε)||x||2) and Pr(||Ax||2 ≤ (1 −
ε)||x||2), for ε ∈ (0, 1).

We know that Pr(||Ax||2 ≥ (1 + ε)||x||2) = Pr(
k
∑

i=1
z2

i ≥ (1 +

ε)||x||2), where zi is a random variable with distribution N (0, ||x||
2

k).

Set Yi =
√

k
||x|| zi. Since zi has distribution N (0, ||x||

2

k), Yi has distribu-

tion N (0, 1). In the expression Pr(
k
∑

i=1
z2

i ≥ (1 + ε)||x||2), divide by

||x||2
k , and we obtain Pr(

k
∑

i=1
Y2

i ≥ (1 + ε)k).

Now our problem reduces to estimating Pr(
k
∑

i=1
Y2

i ≥ (1 + ε)k),

where Yi has a N (0, 1) distribution. Next we prove the following

Lemma 12.5.3 Let Y1, . . . , Yk are k-independent random variables, where
each Yi has a N (0, 1) distribution. The following holds These are Chernoff style bounds.

(a) Pr(
k
∑

i=1
Y2

i ≥ (1 + ε)k) ≤ e−
k
4 (ε

2−ε3).

(b) Pr(
k
∑

i=1
Y2

i ≤ (1− ε)k) ≤ e−
k
4 (ε

2−ε3).

We will prove the first part and leave the second part as an exer-
cise. First we state a useful identity, see 4, before proceeding with the 4 Sanjoy Dasgupta and Anupam Gupta.

An elementary proof of a theorem of
Johnson and Lindenstrauss. Random
Struct. Algorithms, 22(1):60–65, 2003;
and D.P. Dubhashi and A. Panconesi.
Concentration of measure for the analysis
of randomized algorithms. Cambridge
University Press, 2009

proof of the lemma.

Lemma 12.5.4 (A useful identity) Let X be a random variable distributed
N (0, 1) and λ < 1

2 be a constant. Then, E
[
eλX2

]
= 1√

1−2λ

Proof. Recall that the probability density function of the standard

normal distribution is f (x) = 1√
2π

e−
x2
2 .

dimensionality reduction 297

By definition, E[H(x)] =
+∞∫
−∞

H(x) f (x)dx. Thus,

E
[
eλX2

]
=

1√
2π

+∞∫
−∞

eλx2
e−

x2
2 dx

=
1√
2π

+∞∫
−∞

e−(1−2λ) x2
2 dx

Substitute y = x
√

1− 2λ, and we obtain

E
[
eλX2

]
=

1√
1− 2λ

 1√
2π

+∞∫
−∞

e−
y2
2 dy

But, 1√

2π

+∞∫
−∞

e−
y2
2 dy = 1, as this is the area under the Normal

distribution curve.

Proof. (of Part (a) of Lemma 12.5.3)

Pr(
k

∑
i=1

Y2
i ≥ (1 + ε)k) = Pr(e

λ
k
∑

i=1
Y2

i ≥ e(1+ε)λk) (for λ > 0)

≤
E

e
λ

k
∑

i=1
Y2

i

e(1+ε)λk

(applying Markov’s Inequality)

=
E
[
eλY2

1

]k

e(1+ε)λk
(Independence of Yi’s)

= e−(1+ε)kλ

(
1√

1− 2λ

)k
(using the identity from Lemma 12.5.4)

Set λ = ε
2(1+ε)

, and we have

Pr(
k

∑
i=1

Y2
i ≥ (1 + ε)k) ≤ e−(1+ε)kλ

(
1√

1− 2λ

)k

= e−
ε
2 k (1 + ε)

k
2

=
(
(1 + ε)e−ε

) k
2

≤ e−
k
4 (ε

2−ε3) (as 1 + ε ≤ eε− ε2−ε3
2)

For Part (b) of the proof we have,

298 notes on algorithm design

Pr(
k

∑
i=1

Y2
i ≤ (1− ε)k) = Pr(e

−λ
k
∑

i=1
Y2

i ≥ e−(1−ε)λk) (for λ > 0)

≤
E

e
−λ

k
∑

i=1
Y2

i

e−(1−ε)λk

(applying Markov’s Inequality)

=
E
[
e−λY2

1

]k

e−(1−ε)λk
(Independence of Yi’s)

= e−(1+ε)kλ

(
1√

1 + 2λ

)k
(from Lemma 12.5.4, where E

[
e−λX2

]
=

1√
1 + 2λ

)

Now use λ = ε
2(1−ε)

and the inequality that ln(1− x) < −x− x2

2 and
derive the proof of Part (b).

Corollary 12.5.5 If k = c ln n
ε2 , for some constant c,

Pr((1− ε)k ≤
k
∑

i=1
Y2

i ≤ (1 + ε)k) ≥ 1− 1
n3

Proof. From Lemma 12.5.3 we have that

Pr(
k
∑

i=1
Y2

i ≥ (1 + ε)k) ≤ e−
k
4 (ε

2−ε3) and Pr(
k
∑

i=1
Y2

i ≤ (1− ε)k) ≤

e−
k
4 (ε

2−ε3).

Hence Pr
(
(

k
∑

i=1
Y2

i ≥ (1 + ε)k) ∨ (
k
∑

i=1
Y2

i ≤ (1− ε)k)
)
≤ 2e−

k
4 (ε

2−ε3)

(by Union Bound)

Thus, Pr((1− ε)k ≤
k
∑

i=1
Y2

i ≤ (1 + ε)k) ≥ 1− 2e−
k
4 (ε

2−ε3)

Substituting, k = c ln n
ε2 we have that Pr((1 − ε)k ≤

k
∑

i=1
Y2

i ≤

(1 + ε)k) ≥ 1− 1
n3 .

Now we restate the Johnson and Lindenstrauss theorem and
complete its proof.

Theorem 12.5.6 Let V be a set of n points in d-dimensions. A mapping
f : Rd → Rk can be computed, in randomized polynomial time, so that for
all pairs of points u, v ∈ V,

(1− ε)||u− v||2 ≤ || f (u)− f (v)||2 ≤ (1 + ε)||u− v||2,

where 0 < ε < 1 and n, d, and k ≥ 4(ε2

2 − ε3

3)
−1 ln n are positive integers.

Proof. By choosing matrix Ak×d consisting of independent values
from N (0, 1

k), we show that ∀u, v ∈ V Pr((1− ε)||u− v||2 ≤ ||Au−
Av||2 ≤ (1 + ε)||u− v||2) ≥ 1− 1

n

dimensionality reduction 299

By Corollary 1, we know that for any vector x ∈ Rd, Pr((1 −
ε)||x||2 ≤ ||Ax||2 ≤ (1 + ε)||x||2) ≥ 1 − 1

n3 . Consider any pair
of points u, v ∈ V. Set x = u − v. Then Pr((1 − ε)||u − v||2 ≤
||A(u− v)||2 ≤ (1 + ε)||u− v||2) ≥ 1− 1

n3 .
There are in all (n

2) pairs of points in V.
By union bound, we have that ∀u, v ∈ V Pr((1− ε)||u − v||2 ≤

||Au− Av||2 ≤ (1 + ε)||u− v||2) ≥ 1− 1
n .

We make some concluding remarks:

1. Choice of the matrix A doesn’t depend on points in V.

2. We required that the matrix A satisfy E[||Ax||2] = ||x||2.

3. Note that A is a very dense matrix, and thus the computation of
Av takes a lot of computation time.

4. We can choose entries of A from {−1, 1, 0} with probabilities
1/6,1/6, and 2/3, respectively, and normalize. It turns out that this
choice of A also works, see 5. Note that in this case, the number of 5 Dimitris Achlioptas. Database-

friendly random projections: Johnson-
lindenstrauss with binary coins. Jour-
nal of Computer and System Sciences,
66(4):671–687, 2003. Special Issue on
PODS 2001

non-zero entries of A is approximately 1/3rd of the total number
of entries.

12.6 Exercises

12.1 Show that for any embedding f of a metric space (X, d) to another
metric space (X′, d′), the distortion of f is at least 1.

12.2 Fill in the missing details to prove Corollary 12.4.11.

12.3 Adapt proof of Lemma 12.5.4 to show the following: Let X be a random
variable distributed N (0, 1) and λ ≥ 0 be a constant. Then, E

[
e−λX2

]
=

1√
1+2λ

.

12.4 Complete the proof of the second part of Lemma 12.5.3.

12.5 Let X = {a, b, c, d} be a set of 4-points. Let d(a, b) = d(b, c) =

d(c, d) = d(d, a) = 1 and d(a, c) = d(b, d) = 2. Is it possible to embed X
isometrically in Euclidean space in any dimension?

12.6 Let X = {a, b, c, d} be a set of 4-points. Let d(a, b) = d(a, c) =

d(a, d) = 1 and d(b, c) = d(b, d) = d(c, d) = 2. Is it possible to embed X
isometrically in Euclidean space in any dimension?

12.7 Let T = (V, E) be a tree on N ≥ 3 vertices. Answer the following

1. Show that there exist subtrees T1 = (V1, E1) and T2 = (V2, E2) that
share a single vertex (|V1 ∩ V2| = 1 and V1 ∪ V2 = V) and no edges
(E1 ∩ E2 = ∅), such that |V1| ≤ 1 + 2

3 n and |V2| ≤ 1 + 2
3 n.

300 notes on algorithm design

2. Consider the metric space 〈X, d〉 defined by the tree T, where X = V and
for any pair of vertices u, v ∈ V, d(u, v) is the number of edges in the
(unique) shortest path between u and v in T. Show that 〈X, d〉 can be
embedded isometrically in O(log n) dimensional L∞-normed space (i.e.,

〈X, d〉 1
↪→ LO(log n)

∞).
Hint: The isometric embedding will associate O(log n) coordinates to
each vertex of T. Consider using the distances from the vertex common to
V1 and V2 in Part (a) to vertices in T as one of the coordinates.
You may assume T is binary, though the statement holds also for non-
binary trees.

12.8 Suppose we are given a set S of n-points in d dimensional space,
where is d is very large. We are interested in computing a Euclidean min-
imum spanning tree (EMST) of S. Show how you can use the Johnson-
Lindenstrauss theorem to compute an approximate EMST of S. What will be
the running time of the algorithm for computing an approximate EMST?

13
Second moment method with applications

We will focus on

1. Second moment method method.

2. Cliques in random graphs G(n, p).

3. Thresholds for random geometric graphs.

The material for Cliques in G(n, 1/2) is adapted from Nikhil Bansal’s
class notes and 1. Thresholds for geometric graphs are from 2. 1 Michael Mitzenmacher and Eli Upfal.

Probability and Computing: Randomized
Algorithms and Probabilistic Analysis.
Cambridge University Press, New York,
NY, USA, 2005

2 Ahmad Biniaz, Evangelos Kranakis,
Anil Maheshwari, and Michiel Smid.
Plane and planarity thresholds for
random geometric graphs. In Proc.
ALGOSENSORS 2015 (Patras, Greece),
Lecture Notes in Computer Science,
Berlin, Germany, 2015. Springer

13.1 Preliminaries

Recall basic probability definitions from Chapter 2. The variance
(second moment) of a random variable X is defined to be

V[X] = E[(X− µ)2], where µ = E[X]. Now consider

V[X] = E[(X− µ)2]

= E[X2 − 2µX + µ2]

= E[X2]− 2µE[X] + E[µ2]

= E[X2]− E[X]2

Moreover, for two independent random variables, X and Y,

Var[X + Y] = Var[X] + Var[Y].

Markov’s inequality states that for a non-negative discrete random
variable X and t > 0, a constant,

P(X ≥ t) ≤ E[X]

t
.

Furthermore, Chebyshev’s inequality states that

Pr(|X− µ| ≥ t
√

Var[X]) ≤ 1
t2 .

302 notes on algorithm design

To illustrate the two inequalities, consider the following experi-
ment. Toss a fair coin n times and estimate what is the probability
of getting 3

4 n heads? Let Xi be a 0-1 random variable indicating the
outcome of the i-th toss, where Xi = 1 (respectively, Xi = 0) indicates

that the outcome is a head (respectively, tail). Let X =
n
∑

i=1
Xi and

X represents the total number of heads in n-tosses. Observe that
E[Xi] =

1
2 and V[Xi] = E[Xi

2]− E[Xi]
2 = 1

2 ∗ 12 + 1
2 ∗ 02 − (1

2)
2 = 1/4.

Thus E[X] = n
2 and since Xi’s are independent, V[X] = n

4 . To estimate
Pr[X ≥ 3

4 n] using Markov’s inequality, set t = 3
2 and it results in

Pr[X ≥ 3
2 ∗ n

2] ≤ 2
3 . To estimate it using Chebyshev’s inequality,

Pr(|X − µ| ≥ t
√

Var[X]) ≤ 1
t2 , we need to set t =

√
n
4 to obtain

Pr(|X− n
2 | ≥

√
n
4

√
n
4) ≤ 4

n .
We will use the following result for the second moment method.

Theorem 13.1.1 If X ≥ 0 is a random variable taking integer values,
Pr[X = 0] ≤ Var[X]

E[X]2
. Moreover, if Var[X] = o(E[X]2) for large values of n,

Pr[X = 0] = o(1).

Proof. We will use Chebyshev’s inequality.
Observe that Pr[X = 0] ≤ Pr[|X− E[X]| ≥ E[X]].
By substituting t = E[X]√

Var[X]
, we have

Pr(|X− E[X]| ≥ t
√

Var[X]) ≤ 1
t2 ,

and we obtain

Pr[X = 0] ≤ Var[X]

E[X]2
.

If Var[X] = o(E[X]2), for large values of n we have ,

Pr[X = 0] = lim
n→∞

Var[X]

E[X]2
→ 0,

or in words, Pr[X = 0] = o(1).

We will see a few applications of this theorem in this chapter.

13.2 Cliques in a random graph

Consider a random graph G(n, p = 1/2). Note that G(n, p) is a
graph on n vertices where each edge between a pair of vertices occurs
(independently of other edges) with probability p. We will provide
an estimate on the size of the largest clique in G(n, 1/2) using the
second moment method. In particular we will show

Theorem 13.2.1 Let ω(G) denote the size of the largest clique in a graph
G. Given an ε > 0,

second moment method with applications 303

(a) Pr[ω(G(n, 1/2)) > (2 + ε) log n] = o(1) and
(b) Pr[(2− ε) log n ≤ ω(G(n, 1/2)) ≤ (2 + ε) log n] = 1− o(1).

Proof. To prove the first part of this theorem, we will estimate how
many subsets of k vertices in G(n, 1/2) will form a clique. Fix a
subset S of k vertices and let XS be a 0-1 indicator r.v. indicating
whether S is a clique or not. If S is a clique, XS = 1, otherwise
XS = 0. Since each edge in S is chosen independent of other edges,

Pr[XS = 1] = (1
2)

(k
2) and E[XS] = Pr[XS = 1].

Let X denote the total number of cliques of size k in G(n, 1/2) and
let V be the set of vertices in G(n, 1/2). Observe that

E[X] = ∑
S⊂V:|S|=k

E[XS] =

(
n
k

)(
1
2

)(k
2)

≤ nk
(

1
2

)(k
2)

=

(√
2n

2k/2

)k

.

By setting k = (2 + ε) log n as in Theorem, we observe that√
2n

2k/2 ≤
√

2n−ε/2. For large values of n, n−ε/2 < 1. Also (n−ε/2)k

is o(1) (as n increases, k = (2 + ε) log n also increases). Thus by
Markov’s inequality Pr[X ≥ 1] ≤ E[X] = o(1), i.e. the probability
that there is a clique on k vertices in G(n, 1/2) is very small for large
values of n.

Next we show the second part of Theorem 13.2.1 using the Second
Moment Method. Let XS and X be as before. Note that (n

k) ≥ (n
k)

k.
Using the value of k = (2 − ε) log n, observe that for large val-

ues of n, E[X] = (n
k)
(

1
2

)(k
2) → ∞. Therefore, we will show that

Var[X] = o(E[X]2) and then use Theorem 13.1.1 to conclude that the
probability that there is no clique is o(1) and hence the probability
that there is a clique is 1− o(1).

Let us first compute Var[X] = E[X2]− E[X]2. Note that

E[X2] = E

 ∑
S⊂V:|S|=k

∑
T⊂V:|T|=k

XSXT

= ∑

S⊂V:|S|=k
∑

T⊂V:|T|=k
E[XSXT].

The last equality follows from the linearity of expectation. Moreover,

E[X]2 = E[X]E[X]

= ∑
S⊂V:|S|=k

E[XS] ∑
T⊂V:|T|=k

E[XT]

= ∑
S⊂V:|S|=k

∑
T⊂V:|T|=k

E[XS]E[XT]

Now consider two sets of k vertices S and T. If they have fewer
than two vertices in common, whether S is a clique or not has no

304 notes on algorithm design

influence on whether T is a clique or not. Therefore, for |S ∩ T| < 2,
E[XSXT] = E[XS]E[XT]. Thus we need to consider

Var[X] = ∑
S⊂V:|S|=k

∑
T⊂V:|T|=k

E[XSXT]− E[XS]E[XT] (13.1)

only for those pairs of S and T such that |S ∩ T| ≥ 2, since for the
other values E[XSXT] cancels E[XS]E[XT]. Thus, Equation 13.1 can be
rewritten as

Var[X] = ∑
S⊂V:|S|=k

k

∑
l=2

∑
T⊂V:|T|=k,|S∩T|=l

E[XSXT]− E[XS]E[XT]. (13.2)

Since, E[XS]E[XT] is non-negative, we can obtain the following in-
equality from Equation 13.2.

Var[X] ≤ ∑
S⊂V:|S|=k

k

∑
l=2

∑
T⊂V:|T|=k,|S∩T|=l

E[XSXT]. (13.3)

Now observe that there are (n
k) possibilities for choosing vertices

for forming the set S of size k, there are (k
l) possibilities for selecting

l vertices that are common between S and T and there are (n−k
k−l)

possibilities for choosing the remaining vertices in T \ S. Hence,

Var[X] ≤
k

∑
l=2

(
n
k

)(
k
l

)(
n− k
k− l

)
E[XSXT]. (13.4)

Let us compute E[XSXT]. Since XS and XT are 0-1 r.v., E[XSXT]

is same as the probability that S is a clique on k vertices and T is
a clique on k vertices, where they have l common vertices. Let us
estimate the number of edges in S ∪ T. The two cliques of size k
have a total of 2(k

2) edges, but we should remove (l
2) edges from this

count as they are counted twice. The total number of edges in S ∪ T is
2(k

2)− (l
2). Thus,

E[XSXT] =

(
1
2

)2(k
2)−(l

2)

(13.5)

Substituting expression for E[XSXT] in Equation 13.4, we obtain

Var[X] ≤
k

∑
l=2

(
n
k

)(
k
l

)(
n− k
k− l

)
2(

l
2)−2(k

2). (13.6)

Next we show that Var[X]/E[X]2 is o(1).
Note that E[X] = (n

k)2
−(k

2).
Define

f (l) =
(n

k)(
k
l)(

n−k
k−l)2

(l
2)−2(k

2)

((n
k)2
−(k

2))2
.

second moment method with applications 305

This can be rewritten as

f (l) =
(k

l)(
n−k
k−l)2

(l
2)

(n
k)

.

Thus,
Var[X]

E[X]2
≤

k

∑
l=2

f (l). (13.7)

Consider

f (2) =
(k

2)(
n−k
k−2)2

(2
2)

(n
k)

=
k(k− 1)(n−k

k−2)

(n
k)

Using some loose bounds, e.g. k = (2− ε) log n << n, (n−k
k−l) ≤

(n−k)k−l

(k−l)! , and (n
k) ≥

(n−k)k

k! , we can show that f (2) = o(1) by simpli-
fying the expression of f (2). It seems that (but I don’t know how
to show this in a simple way) that f (l) = o(1) for l = 2, . . . , k. This
concludes the proof of Theorem 13.2.1.

13.3 Thresholds for Random Geometric Graphs

Given a set P of points in the plane and a positive parameter r, the
disk graph is the geometric graph with vertex set P that has a straight-
line edge between two points p, q ∈ P if and only if |pq| ≤ r, where
|pq| denotes the Euclidean distance between p and q. If r = 1, then
the disk graph is referred to as the unit disk graph. A random geometric
graph, denoted by G(n, r), is a geometric graph formed by choosing n
points independently and uniformly at random in a unit square; two
points are connected by a straight-line edge if and only if they are at
Euclidean distance at most r, where r = r(n) is a function of n and
r → 0 as n→ ∞.

We say that two line segments in the plane cross each other if they
have a point in common that is interior to both segments. Two line
segments are non-crossing if they do not cross. Note that two non-
crossing line segments may share an endpoint. A geometric graph is
said to be plane if its edges do not cross, and non-plane, otherwise. A
graph is planar if and only if it does not contain K5 or K3,3 as a minor.

A graph property P is increasing if a graph G satisfies P , then by
adding edges to G, the property P remains valid in G. Similarly, P
is decreasing if a graph G satisfies P , then by removing edges from G,
the property P remains valid in G. P is called a monotone property
if P is either increasing or decreasing. Connectivity and “having a

306 notes on algorithm design

clique of size k” are increasing monotone properties, while planarity
and “being plane” are decreasing monotone properties in G(n, r),
where the value of r increases.

Define the term w.h.p. (with high probability) to mean that the
probability tends to 1 as n → ∞. For an increasing property P , the
threshold is a function t(n) such that if r = o(t(n)) then w.h.p. P
does not hold in G(n, r), and if r = ω(t(n)) then w.h.p. P holds in
G(n, r). Symmetrically, for a decreasing property P , the threshold is
a function t(n) such that if r = o(t(n)) then w.h.p. P holds in G(n, r),
and if r = ω(t(n)) then w.h.p. P does not hold in G(n, r).

We will investigate thresholds in random geometric graphs for
having a connected subgraph of constant size, being plane, and being
planar. In Section 13.3.1 we show that for a constant k, the distance

threshold for having a connected subgraph on k points is n
−k

2k−2 . We
show that the same threshold is valid for the existence of a clique of
size k. In Section 13.3.2, we prove that n−2/3 is a distance threshold
for a random geometric graph to be plane. In Section 13.3.3, we prove
that n−5/8 is a distance threshold for a random geometric graph to be
planar.

13.3.1 The threshold for having a connected subgraph on k points

In this section, we look for the distance threshold for the existence of
connected subgraphs of constant size; this is an increasing property.

For a given constant k, we show that n
−k

2k−2 is the threshold function
for the existence of a connected subgraph on k points in G(n, r).

Specifically, we show that if r = o(n
−k

2k−2), then w.h.p. G(n, r) has no

connected subgraph on k points, and if r = ω(n
−k

2k−2), then w.h.p.
G(n, r) has a connected subgraph on k points. We also show that the
same threshold function holds for the existence of a clique of size k.

Theorem 13.3.1 Let k ≥ 2 be an integer constant. Then, n
−k

2k−2 is a
distance threshold function for G(n, r) to have a connected subgraph on k
points.

Proof. Let P1, . . . , P(n
k)

be an enumeration of all subsets of k points in
G(n, r). Let DG[Pi] be the subgraph of G(n, r) that is induced by Pi.
Let Xi be the random variable such that

Xi =

1 if DG[Pi] is connected,

0 otherwise.

Let the random variable X count the number of sets Pi for which

second moment method with applications 307

DG[Pi] is connected. It is clear that

X =
(n

k)

∑
i=1

Xi. (13.8)

Observe that E[Xi] = Pr[Xi = 1]. Since the random variables Xi have
identical distributions, we have

E[X] =

(
n
k

)
E[X1]. (13.9)

We obtain an upper bound and a lower bound for Pr[Xi = 1].
First, partition the unit square into squares of side equal to r. Let
{s1, . . . , s1/r2} be the resulting set of squares. For a square st, let
St be the kr × kr square which has st on its left bottom corner; see
Figure 13.1(a). St contains at most k2 squares each of side length r
(each St on the boundary of the unit square contains less than k2

squares). Let Ai,t be the event that all points in Pi are contained in
St. Observe that if DG[Pi] is connected then Pi lies in St for some
t ∈ {1, . . . , 1/r2}. Therefore,

if DG[Pi] is connected, then (Ai,1 ∨ Ai,2 ∨ · · · ∨ Ai,1/r2),

and hence, using the argument that all the k points must lie within
the specified area of kr× kr, we have

Pr[Xi = 1] ≤
1/r2

∑
t=1

Pr[Ai,t] ≤
1/r2

∑
t=1

(k2r2)k = k2kr2k−2. (13.10)

Now, partition the unit square into squares with diagonal length
equal to r. Each such square has side length equal to r/

√
2. Let

{s1, . . . , s2/r2} be the resulting set of squares. Let Bi,t be the event
that all points of Pi are in st. Observe that if all points of Pi are in the
same square, then DG[Pi] is a complete graph and hence connected.
Therefore,

if (Bi,1 ∨ Bi,2 ∨ · · · ∨ Bi,2/r2), then DG[Pi] is connected,

and hence we have

Pr[Xi = 1] ≥
2/r2

∑
t=1

Pr[Bi,t] =
2/r2

∑
t=1

(
r2

2

)k

=
1

2k−1 r2k−2. (13.11)

Since k ≥ 2 is a constant, Inequalities (13.10) and (13.11) and
Equation (13.9) imply that

E[Xi] = Θ(r2k−2), (13.12)

E[X] = Θ(nkr2k−2). (13.13)

308 notes on algorithm design

If n → ∞ and r = o(n
−k

2k−2) we conclude that the following inequali-
ties are valid

Pr[X ≥ 1] ≤ E[X] (by Markov’s Inequality)

= Θ(nkr2k−2) (by (13.13))

= o(1). (13.14)

Therefore, w.h.p. G(n, r) has no connected subgraph on k points.

St

st
r

kr

Sx

sx

(2k-1)r

(a) (b)

Figure 13.1: (a) The square St has st on
its left bottom corner. (b) The square Sx
which is centered at sx .

In the rest of the proof, we assume that r = ω(n
−k

2k−2). In order
to show that w.h.p. G(n, r) has at least one connected subgraph
on k vertices, we show, using the second moment method, that
Pr[X = 0]→ 0 as n→ ∞. Recall from Chebyshev’s inequality that

Pr[X = 0] ≤ Var(X)

E[X]2
. (13.15)

Therefore, in order to show that Pr[X = 0] → 0, it suffices to show
that

Var(X)

E[X]2
→ 0. (13.16)

In view of Identity (13.8) we have

Var(X) = ∑
1≤i,j≤(n

k)

Cov(Xi, Xj), (13.17)

where Cov(Xi, Xj) = E[XiXj]− E[Xi]E[Xj] ≤ E[XiXj]. If |Pi ∩ Pj| = 0
then DG[Pi] and DG[Pj] are disjoint. Thus, the random variables Xi

and Xj are independent, and hence Cov(Xi, Xj) = 0. It is enough to
consider the cases when Pi and Pj are not disjoint. Assume |Pi ∩ Pj| =
w, where w ∈ {1, . . . , k}. Thus, in view of Equation (13.17), we have

Var(X) =
k

∑
w=1

∑
|Pi∩Pj |=w

Cov(Xi, Xj)

≤
k

∑
w=1

∑
|Pi∩Pj |=w

E[XiXj]. (13.18)

second moment method with applications 309

The computation of E[XiXj] involves some geometric considera-
tions which are being discussed in detail below. Since Xi and Xj are
0-1 random variables, XiXj is a 0-1 random variable and

XiXj =

1 if both DG[Pi] and DG[Pj] are connected,

0 otherwise.

By the definition of the expected value we have

E[XiXj] = Pr[Xj = 1|Xi = 1]Pr[Xi = 1]

= Pr[Xj = 1|Xi = 1]E[Xi]. (13.19)

By (13.12), E[Xi] = Θ(r2k−2). It remains to compute Pr[Xj = 1|Xi =

1], i.e., the probability that DG[Pj] is connected given that DG[Pi] is
connected. Consider the k-tuples Pi and Pj under the condition that
DG[Pi] is connected. Let x be a point in Pi ∩ Pj. Partition the unit
square into squares of side length equal to r. Let sx be the square
containing x. Let Sx be the (2k − 1)r × (2k − 1)r square centered
at sx. Sx contains at most (2k − 1)2 squares each of side length r (if
Sx is on the boundary of the unit square then it contains less than
(2k− 1)2 squares); see Figure 13.1(b). The area of Sx is at most (2kr)2,
and hence the probability that a specific point of Pj is in St is at
most 4k2r2. Since Pi and Pj share w points, in order for DG[Pj] to be
connected, the remaining k− w points of Pj must lie in Sx. Thus, the
probability that DG[Pj] is connected given that DG[Pi] is connected
is at most (4k2r2)k−w ≤ cwr2k−2w, for some constant cw > 0. Thus,
Pr[Xj = 1|Xi = 1] ≤ cwr2k−2w. In view of Equation (13.19), we have

E[XiXj] ≤ c′w · r2k−2w · r2k−2 = c′wr4k−2w−2, (13.20)

for some constant c′w > 0.
Since Pi and Pj are k-tuples that share w points, |Pi ∪ Pj| = 2k− w.

There are (n
2k−w) ways to choose 2k − w points for Pi ∪ Pj. Since we

choose w points for Pi ∩ Pj, k − w points for Pi alone, and k − w
points for Pj alone, there are (2k−w

w,k−w,k−w) ways to split the 2k − w
chosen points into Pi and Pj. Based on this and Inequality (13.20),
Inequality (13.18) turns out to

Var(X) ≤
k

∑
w=1

∑
|Pi∩Pj |=w

E[XiXj]

≤
k

∑
w=1

(
n

2k− w

)(
2k− w

w, k− w, k− w

)
c′wr4k−2w−2

≤
k

∑
w=1

c′′wn2k−wr4k−2w−2.

310 notes on algorithm design

for some constants c′′w > 0. Consider (13.16) and note that
by (13.13), E[X]2 ≥ c′′n2kr4k−4, for some constant c′′ > 0. Thus,

Var(X)

E[X]2
≤

k

∑
w=1

c′′wn2k−wr4k−2w−2

c′′n2kr4k−4 =
k

∑
w=1

c′′w
c′′
· 1

nwr2w−2

=
c′′1
c′′
· 1

n1r0 +
c′′2
c′′
· 1

n2r2 + · · ·+ c′′k
c′′
· 1

nkr2k−2 (13.21)

Since r = ω(n
−k

2k−2), all terms in (13.21) tend to zero. This proves
the convergence in (13.16). Thus, Pr[X = 0] → 0 as n → ∞. This

implies that if r = ω(n
−k

2k−2), then G(n, r) has a connected subgraph
on k vertices with high probability.

In the following theorem we show that if k = O(1), then n
−k

2k−2

is also a threshold for G(n, r) to have a clique of size k; this is an
increasing property.

Theorem 13.3.2 Let k ≥ 2 be an integer constant. Then, n
−k

2k−2 is a
distance threshold function for G(n, r) to have a clique of size k.

Proof. By Theorem 13.3.1, if r = o(n
−k

2k−2), then w.h.p. G(n, r) has no
connected subgraph on k vertices, and hence it has no clique of size
k. This proves the first statement. We prove the second statement
by adjusting the proof of Theorem 13.3.1, which is based on the

second moment method. Assume r = ω(n
−k

2k−2). Let P1, . . . , P(n
k)

be an
enumeration of all subsets of k points. Let Xi be equal to 1 if DG[Pi]

is a clique, and 0 otherwise. Let X = ∑ Xi.
Partition the unit square into a set {s1, . . . , s1/r2} of squares of

side length r. Let St be the 2r × 2r square which has st on its left
bottom corner. If DG[Pi] is a clique then Pi lies in St for some t ∈
{1, . . . , 1/r2}. Therefore,

Pr[Xi = 1] ≤ 4kr2k−2.

Now, partition the unit square into a set {s1, . . . , s2/r2} of squares
with diagonal length r. If all points of Pi fall in the square st, then
DG[Pi] is a clique. Thus,

Pr[Xi = 1] ≥ 1
2k−1 r2k−2.

Since k ≥ 2 is a constant, we have

E[Xi] = Θ(r2k−2),

E[X] = Θ(nkr2k−2).

second moment method with applications 311

In view of Chebyshev’s inequality we need to show that Var(X)
E[X]2

tends to 0 as n → ∞. We bound Var(X) from above by Inequal-
ity (13.18). Consider the k-tuples Pi and Pj under the condition that
DG[Pi] is a clique. Let |Pi ∩ Pj| = w, and let x be a point in Pi ∩ Pj.
Partition the unit square into squares of side length r. Let sx be the
square containing x. Let Sx be the 3r × 3r square centered at sx. In
order for DG[Pj] to be a clique, the remaining k− w points of Pj must
lie in Sx. Thus,

E[XiXj] ≤ c′wr4k−2w−2,

for some constant c′w > 0. By a similar argument as in the proof of
Theorem 13.3.1, we can show that for some constants c′′, c′′w > 0 the
followings inequalities are valid:

Var(X) ≤
k

∑
w=1

c′′wn2k−wr4k−2w−2,

Var(X)

E[X]2
≤

k

∑
w=1

c′′w
c′′
· 1

nwr2w−2 .

Since r = ω(n
−k

2k−2), the last inequality tends to 0 as n goes to infinity.
This completes the proof for the second statement.

As a direct consequence of Theorem 13.3.2, we have the following
corollary.

Corollary 13.3.3 n−1 is a threshold for G(n, r) to have an edge, and n−
3
4

is a threshold for G(n, r) to have a triangle.

13.3.2 The threshold for G(n, r) to be plane

In this section we investigate the threshold for a random geometric
graph to be plane; this is a decreasing property. Recall that G(n, r)
is plane if no two of its edges cross. As a warm-up exercise we first
prove a simple result which is based on the connectivity threshold for
random geometric graphs, which is known to be

√
ln n/n.

a

b

c
d

r/
√
2

s1j s2j s3j

s4j s5j s6j

s7j s9js8j

Figure 13.2: A square of diameter r
which is partitioned into nine sub-
squares.

Theorem 13.3.4 If r ≥
√

c ln n
n , with c ≥ 36, then w.h.p. G(n, r) is not

plane.

312 notes on algorithm design

Proof. In order to prove that w.h.p. G(n, r) is not plane, we show
that w.h.p. it has a pair of crossing edges. Partition the unit square
into squares each with diagonal length r. Then subdivide each such
square into nine sub-squares as depicted in Figure 13.2. There are 18

r2

sub-squares, each of side length r
3
√

2
. The probability that no point

lies in a specific sub-square is (1− r2

18)
n. Thus, the probability that

there exists an empty sub-square is at most

18
r2

(
1− r2

18

)n

≤ n
(

1− c ln n
18n

)n
≤ n1−c/18 ≤ 1

n
,

when c ≥ 36. Therefore, with probability at least 1− 1
n all sub-squares

contain points. By choosing four points a, b, c, and d as depicted
in Figure 13.2, it is easy to see that the edges (a, b) and (c, d) cross.
Thus, w.h.p. G(n, r) has a pair of crossing edges, and hence w.h.p. it
is not plane.

In fact, Theorem 13.3.4 ensures that w.h.p. there exists a pair of
crossing edges in each of the squares. This implies that there are
Ω
(n

ln n
)

disjoint pair of crossing edges, while for G(n, r) to be not
plane we need to show the existence of at least one pair of crossing
edges. Thus, the value of r provided by the connectivity threshold
seems rather weak. By a different approach, in the rest of this section
we show that n−

2
3 is the correct threshold.

Lemma 13.3.5 Let (a, b) and (c, d) be two crossing edges in G(n, r),
and let Q be the convex quadrilateral formed by a, b, c, and d. Then, two
adjacent sides of Q are edges of G(n, r).

Proof. Refer to Figure 13.3. At least one of the angles of Q, say ∠cad,
is bigger than or equal to π/2. It follows that in the triangle 4cad the
side cd is the longest, i.e., |cd| ≥ max{|ac|, |ad|}. Since |cd| ≤ r, both
|ac| and |ad| are at most r. Thus, ac and ad—which are adjacent—are
edges of G(n, r).

a

b
c

d a

b
c

d

(a) (b)

Figure 13.3: (a) Illustration of
Lemma 13.3.5. (b) Crossing edges
(a, b) and (c, d) form an anchor.

In the proof of Lemma 13.3.5, a is connected to b, c, and d. So the
distance between a to each of b, c, and d is at most r. Thus, we have
the following corollary.

second moment method with applications 313

Corollary 13.3.6 The endpoints of every two crossing edges in G(n, r) are
at distance at most 2r from each other. Moreover, there exists an endpoint
which is within distance r from other endpoints.

Based on the proof of Lemma 13.3.5, we define an anchor as a
set {a, b, c, d} of four points in G(n, r) such that three of them form
a triangle, say 4cad, and the fourth vertex, b, is connected to a by
an edge which crosses cd; see Figure 13.3(b). We call a as the crown
of the anchor. The crown is within distance r from the other three
points. Note that bc and bd may or may not be edges of G(n, r). In
view of Lemma 13.3.5, two crossing edges in G(n, r) form an anchor.
Conversely, every anchor in G(n, r) introduces a pair of crossing
edges.

Observation 13.3.7 G(n, r) is plane if and only if it has no anchor.

Theorem 13.3.8 n−
2
3 is a threshold for G(n, r) to be plane.

Proof. In order to show that G(n, r) is plane, by Observation 13.3.7,
it is enough to show that it has no anchors. Every anchor has four
points and it is connected. By Theorem 13.3.1, if r = o(n−

2
3), then

w.h.p. G(n, r) has no connected subgraph on 4 points, and hence it
has no anchors. This proves the first statement.

We prove the second statement by adjusting the proof of Theo-
rem 13.3.1 for k = 4. Assume r = ω(n−

2
3). Let P1, . . . , P(n

4)
be an

enumeration of all subsets of 4 points. Let Xi be equal to 1 if DG[Pi]

contains an anchor, and 0 otherwise. Let X = ∑ Xi. In view of Cheby-
shev’s inequality we need to show that Var(X)

E[X]2
tends to 0 as n→ ∞.

Partition the unit square into a set {s1, . . . , s2/r2} of squares with
diagonal length r. Then, subdivide each square sj, into nine sub-
squares s1

j , . . . , s9
j as depicted in Figure 13.2. If each of s1

j , s3
j , s7

j , s9
j

or each of s2
j , s4

j , s6
j , s8

j contains a point of Pi, then DG[Pi] is a convex
clique of size four and hence it contains an anchor. Thus,

Pr[Xi = 1] ≥ r6

23 ·
2
94 .

This implies that E[Xi] = Ω(r6), and hence E[X] = Ω(n4r6). There-
fore,

E[X]2 ≥ c′′n8r12,

for some constant c′′ > 0. By a similar argument as in the proof of
Theorem 13.3.1 we bound the variance of X from above by

Var(X) ≤ c′′1 n7r12 + c′′2 n6r10 + c′′3 n5r8 + c′′4 n4r6.

Since r = ω(n−
2
3), Var(X)

E[X]2
tends to 0 as n → ∞. That is, w.h.p.

G(n, r) has an anchor. By Observation 13.3.7, w.h.p. G(n, r) is not
plane.

314 notes on algorithm design

As a direct consequence of the proof of Theorem 13.3.8, we have
the following:

Corollary 13.3.9 With high probability if a random geometric graph is not
plane, then it has a clique of size four.

Note that every anchor introduces a crossing and each crossing
introduces an anchor. Since, every anchor is a connected graph and
has four points, by (13.13) we have the following corollary.

Corollary 13.3.10 The expected number of crossings in G(n, r) is Θ(n4r6).

13.3.3 The threshold for G(n, r) to be planar

In this section we investigate the threshold for the planarity of a ran-
dom geometric graph; this is a decreasing property. By Kuratowski’s
theorem, a finite graph is planar if and only if it does not contain a
subgraph that is a subdivision of K5 or of K3,3. Note that any plane
random geometric graph is planar too; observe that the reverse state-
ment may not be true. Thus, the threshold for planarity seems to be
larger than the threshold of being plane. By a similar argument as in
the proof of Theorem 13.3.4 we can show that if r ≥

√
c ln n/n, then

w.h.p. each square with diagonal length r contains K5, and hence
G(n, r) is not planar.

Theorem 13.3.11 n−
5
8 is a threshold for G(n, r) to be planar.

Proof. By Theorem 13.3.2, if r = ω(n−
5
8), then w.h.p. G(n, r) has a

clique of size 5. Thus, w.h.p. G(n, r) contains K5 and hence it is not
planar. This proves the second statement of the theorem.

If r = o(n−
5
8), then by Theorem 13.3.1, w.h.p. G(n, r) has no

connected subgraph on 5 points, and hence it has no K5. Similarly,
if r = o(n−

3
5), then w.h.p. G(n, r) has no connected subgraph on 6

points, and hence it has no K3,3. Since n−
5
8 < n−

3
5 , it follows that if

r = o(n−
5
8), then w.h.p. G(n, r) has neither K5 nor K3,3 as a subgraph.

Note that, in order to prove that G(n, r) is planar, we have to show
that it does not contain any subdivision of either K5 or K3,3. Any
subdivision of either K5 or K3,3 contains a connected subgraph on
k ≥ 5 vertices. Since n−5/8 < n−k/(2k−2) for all k ≥ 5, in view of
Theorem 13.3.1, we conclude that if r = o(n−

5
8), then w.h.p. G(n, r)

has no subdivision of K5 and K3,3, and hence G(n, r) is planar. This
proves the first statement of the theorem.

As a direct consequence of the proof of Theorem 13.3.11, we have
the following:

Corollary 13.3.12 With high probability if a random geometric graph does
not contain a clique of size five, then it is planar.

second moment method with applications 315

13.3.4 Bibliographic Notes

Random graphs were first defined and formally studied by Gilbert in
[59] and Erdös and Rényi [48]. It seems that the concept of a random
geometric graph was first formally suggested by Gilbert in [60] and
for that reason is also known as Gilbert’s disk model. These classes
of graphs are known to have numerous applications as a model for
studying communication primitives (broadcasting, routing, etc.) and
topology control (connectivity, coverage, etc.) in idealized wireless
sensor networks as well as extensive utility in theoretical computer
science and many fields of the mathematical sciences.

An instance of Erdös-Rényi graph [48] is obtained by taking n
vertices and connecting any two with probability p, independently of
all other pairs; the graph derived by this scheme is denoted by Gn,p.
In Gn,p the threshold is expressed by the edge existence probability
p, while in G(n, r) the threshold is expressed in terms of r. In both
random graphs and random geometric graphs, property thresholds
are of great interest [16, 25, 56, 63, 106]. Note that edge crossing
configurations in G(n, r) have a geometric nature, and as such, have
no analogues in the context of the Erdös-Rényi model for random
graphs. However, planarity, and having a clique of specific size are of
interest in both Gn,p and G(n, r).

Bollobás and Thomason [17] showed that any monotone property
in random graphs has a threshold function. See also a result of
Friedgut and Kalai [56], and a result of Bourgain and Kalai [24].
In the Erdös-Rényi random graph Gn,p, the connectivity threshold
is p = log n/n and the threshold for having a giant component
is p = 1/n; see [5]. The planarity threshold for Gn,p is p = 1/n;
see [16, 126].

A general reference on random geometric graphs is [119]. There is
extensive literature on various aspects of random geometric graphs
of which we mention the related work on coverage by [69, 77] and a
review on percolation, connectivity, coverage and colouring by [11].
As in random graphs, any monotone property in geometric random
graphs has a threshold function [25, 63, 96, 106].

Random geometric graphs have a connectivity threshold of√
ln n/n; see [66, 116, 117]. Gupta and Kumar [66] provided a con-

nectivity threshold for points that are uniformly distributed in a disk.
By a result of Penrose [118], in G(n, r), any threshold function for
having no isolated vertex (a vertex of degree zero) is also a connectiv-
ity threshold function. Panchapakesan and Manjunath [116] showed
that
√

ln n/n is a threshold for being an isolated vertex in G(n, r).
This implies that

√
ln n/n is a connectivity threshold for G(n, r). For

k ≥ 2, the details on the k-connectivity threshold in random geo-

316 notes on algorithm design

metric graphs can be found in [118, 119]. Connectivity of random
geometric graphs for points on a line is studied by Godehardt and
Jaworski [62].

The book by Alon and Spencer is an excellent resource on the
second moment method [5].

13.4 Exercises

13.1 (Research Question:) Extend Theorem 13.3.1 for connected subgraphs
of k vertices where k is not necessarily a constant, and for connected sub-
graphs of k vertices which have diameter δ.

14
Approximation Algorithms Design Techniques

———— UNDER CONSTRUCTION —————

We will focus on techniques for designing approximation al-
gorithms. They are illustrated using classic examples. We will
also elaborate on some methods for developing fixed-parameter
tractable algorithms for combinatorial optimization problems.

1. Greedy
- Maximum Weight Independent Sets using Recoverable
Values
- Vertex Cover

2. Local Search
- Maximum Cut
- k-Median
- Geometric Hitting Sets

3. Metric Linear Programs
- Min Cost st-cuts
- Multicuts
- Multiway Cuts

4. FPT

The material of this chapter is based on numerous sources, includ-
ing lecture notes of Gupta, Ravi, and Dinitz; books of [138, 45, 37];
articles by [58, 57, 30, 49, 10]; and several video lectures.

14.1 Greedy Algorithms

We illustrate the technique using the vertex cover and the maximum
weight-independent set problem in graphs.

318 notes on algorithm design

14.1.1 Vertex Cover

The vertex cover problem is formally stated as follows.
Input: A simple undirected graph G = (V, E).
Output: A subset S ⊆ V of smallest cardinality such that for each
edge e = (u, v) ∈ E, at least one of u or v is in S.

Our approximation algorithm for vertex cover uses maximal
matching in a graph. A matching M ⊆ E in G = (V, E) is a collec-
tion of edges so that no two edges in M are incident to the same
vertex. Matching M is maximal, if every other edge in E \M shares an
endpoint with some edge in M. The algorithm is as follows.

Vertex Cover Using Maximal Matching

1. Compute a maximal matching M of G by greedily adding edges to
M so that no two edges in M are incident to the same vertex.

2. Let S ⊆ V be the set of vertices incident on the edges in M.

3. Return S as an approximation to the vertex cover of G.

We have the following observations.

Observation 14.1.1

1. Any optimal vertex cover S∗ ⊆ V of G satisfies
|S∗| ≥ |M|.

2. Set of vertices in S forms a vertex cover of G. Moreover, the graph G \ S is
an independent set.

3. The set S returned by the algorithm satisfies |S| = 2|M| ≤ 2|S∗|.

Theorem 14.1.2 The above greedy algorithm is a 2-approximation algo-
rithm for the vertex cover problem. The algorithm runs in O(|V| + |E|)
time.

14.1.2 Maximum Weight Independent Set

Consider the following classical problem of computing a maximum
weight-independent set in a graph. The problem is formally defined
as follows:

Input: An undirected graph G = (V, E) where each vertex has a
positive weight w : V → <+.
Output: A subset S ⊆ V such that

approximation algorithms design techniques 319

(a) Independent: No two vertices in S are connected by an
edge

(b) Maximality: Among all such independent sets, S has the
maximum total weight, where wt(S) = ∑

s∈S
w(s).

The complexity status of this problem is as follows.

• The decision version of the MWIS problem is NP-Hard, both for
the unweighted and weighted graphs.

• NP-Hard for cubic graphs, i.e., the graphs where the degree of
each vertex is three.

• NP-Hard to approximate within a factor of n1−ε, for any 0 < ε < 1,
1. 1 J. Håstad. Some optimal inapprox-

imability results. Journal of the ACM,
48(4):798–859, 2001• Can be solved in linear time for some graph classes, including

trees and bounded tree-width graphs.

We will first see a greedy randomized algorithm.

1

2

3

4

5 6

78

9

Figure 14.1: Order of the vertex is
indicated in the circle. The algorithm
reports S = {1, 2, 3}.

Greedy randmized algorithm for MWIS

Input: Graph G = (V, E) on n vertices with w : V → <+.
Output: A set S that approximates the MWIS.

Step 1: Compute an ordering of vertices in V by using a uniform at
random permutation. WLOG, let the ordering be (v1, . . . , vn).

Step 2: S← ∅

Step 3: For each vertex vi in order do

If none of its neighbors are in S, S← S ∪ {vi}

Step 4: Return S

For an illustration, see Figure 14.1. We make the following observa-
tions.

Observation 14.1.3

1. The set of vertices in S forms an independent set of G.

2. The algorithm is oblivious to the weights of vertices.

3. The algorithm runs in O(|V|+ |E|) time.

320 notes on algorithm design

Lemma 14.1.4 Let v ∈ V be an arbitrary vertex of G and let its degree be
deg(v). Then

Pr(v ∈ S) ≥ 1
deg(v) + 1

where probability is over the random orderings of vertices in V.

Proof. We know that a vertex v is placed in S if none of v’s neighbors
come before v in the ordering. This occurs with probability 1

deg(v)+1 .
Moreover, a neighbor w of v may come before v in the ordering,

but it wasn’t placed in S as one of w’s neighbors (other than v) was in
S. Thus, Pr(v ∈ S) ≥ 1

deg(v)+1 .

Lemma 14.1.5 E
[

∑
v∈S

w(v)
]
≥ ∑

v∈V

w(v)
deg(v)+1

Proof. We set up an indicator random variable Xv for each vertex

v ∈ V, where Xv =

1, if v ∈ S

0, otherwise

Note that E[Xv] = Pr(Xv = 1) = Pr(v ∈ S) ≥ 1
deg(v)+1 .

Using the linearity of expectation, we have

E

[
∑
v∈S

w(v)

]
= E

[
∑

v∈V
Xvw(v)

]
= ∑

v∈V
E [Xvw(v)]

= ∑
v∈V

w(v)E [Xv]

≥ ∑
v∈V

w(v)
deg(v) + 1

Remark 14.1.6 If max degree of vertices in G is ≤ ∆,

E
[

∑
v∈S

w(v)
]
≥ 1

∆+1 ∑
v∈V

w(v)

Remark 14.1.7 Let I be any independent set of G. Then

E
[

∑
v∈S

w(v)
]
≥ ∑

v∈V

w(v)
deg(v)+1 ≥ ∑

v∈I

w(v)
deg(v)+1

Remark 14.1.8 Let I∗ be a maximum weight independent set of G. Then

E
[

∑
v∈S

w(v)
]
≥ ∑

v∈I∗
w(v)

deg(v)+1

The greedy randomized algorithm gives us

E

[
∑
v∈S

w(v)

]
≥ 1 · ∑

v∈I∗

w(v)
deg(v) + 1

,

approximation algorithms design techniques 321

where I∗ is a maximum weight independent set of G. The value
1 is called the recoverable value. We will see a method of Feige and
Reichman 2 where 1 is replaced by 2. This results in a better estimate 2 U. Feige and D. Reichman. Recoverable

values for independent sets. Random
Structures & Algorithms, 46(1):142–159,
2013

of E
[

∑
v∈S

w(v)
]

. First, we show that the recoverable value is < 4

unless P = NP.

Lemma 14.1.9 The maximum value of r in

E

[
∑
v∈S

w(v)

]
≥ r ·∑

v∈I

w(v)
deg(v) + 1

is strictly less than 4, unless P = NP.

Proof. For the cubic graphs (i.e. graphs where each vertex has de-
gree 3), the MWIS problem is NP-Hard. This also holds for the

unweighted cubic graphs. If r = 4 in E
[

∑
v∈S

w(v)
]
≥ r · ∑

v∈I∗
w(v)

deg(v)+1 ,

then we have E
[

∑
v∈S

w(v)
]
≥ r · ∑

v∈I∗
w(v)

4 = ∑
v∈I∗

w(v). Thus we may

obtain an optimal MWIS in polynomial time for cubic graphs. This is
only feasible if P = NP.

Here is the modified randomized algorithm of [50].

1

2

3

4

5 6

78

9

Figure 14.2: F = {1, 2, 3, 4, 5, 6} and
S = {1, 3, 4, 5, 6}

FR13 Algorithm for MWIS

Input: Graph G = (V, E) on n vertices with w : V → <+.
Output: A set S that approximates the MWIS.

Step 1: Compute an ordering of vertices in V by using a uniform at
random permutation. WLOG, let the ordering be (v1, . . . , vn).

Step 2: F ← ∅

Step 3: For each vertex vi in order do

If at most one of the neighbors of vi has been seen so far,

F ← F ∪ {vi}

Step 4: Compute a MWIS S of the induced graph on F.

Step 5: Return S

As an illustration, consider Figure 14.2.

Lemma 14.1.10 The induced graph on F obtained at the end of Step 3 in
the FR13-Algorithm is a forest.

Proof. Consider any cycle C in G. Let v be the last vertex in C in the
ordering in Step 1. Note that v 6∈ F as both neighbors of v have been
seen before v. Thus, the induced graph of F is acyclic.

322 notes on algorithm design

Lemma 14.1.11 MWIS of the induced graph on F obtained in Step 3 in the
FR13-Algorithm can be computed in linear time.

Proof. We apply dynamic programming on a rooted tree. Consider a
vertex v and let I(v) represent the weight of the MWIS of the subtree
rooted at v. MWIS for the subtree rooted at v is one of the following
two types:

Case 1: v ∈ MWIS: I(v) = wt(v) + ∑
x∈{grandchild of v}

I(x)

Case 2: v 6∈ MWIS: I(v) = ∑
x∈{child of v}

I(x)

We can process each of the trees of F in postorder to evalaute I(v)
for each node v. When we encounter a node v in postorder, we know
the I(u)’s for each of its child u . Hence, I(v) can be computed in
time proportional to the degree of v, and overall it takes linear time
to process F.

Lemma 14.1.12 The weight of the independent S returned by the FR13-

Algorithm satisfies E
[

∑
v∈S

w(v)
]
≥ 2 · ∑

v∈I∗
w(v)

deg(v)+1 , where I∗ is a maximum

weight independent set of G.

Proof. Let I be an independent set of G. Observe that I ∩ F is an
independent set of the induced graph of F. Since S is a MWIS of the
induced graph of F (see Step 4), we have

E

[
∑
v∈S

w(v)

]
≥ E

[
∑

v∈I∩F
w(v)

]

Consider a vertex v ∈ I. When does v makes contribution to the

sum E
[

∑
v∈I∩F

w(v)
]

?

Only if, it is included in F.
Thus, Pr(v ∈ F) = 2

deg(v)+1 , as it has to be either the 1st or the
2nd vertex among its neighbors in the permutation ordering to be
included in F.

We have E
[

∑
v∈I∩F

w(v)
]
= E

[
∑

v∈I
w(v)Xv

]
, where Xv is indicator

r.v. stating whether v ∈ F or v 6∈ F. Thus,

E

[
∑
v∈S

w(v)

]
≥ E

[
∑
v∈I

w(v)Xv

]
= ∑

v∈I
w(v)E [Xv]

= ∑
v∈I

w(v)
2

deg(v) + 1

approximation algorithms design techniques 323

Observe that we can replace the independent set I by the MWIS I∗

of G, and we have E
[

∑
v∈S

w(v)
]
≥ 2 · ∑

v∈I∗
w(v)

deg(v)+1 .

14.2 Local Search

The local search approach broadly is as follows.

1. Find a feasible solution.

2. Keep swapping a constant number of objects from the current (lo-
cal) solution to improve the objective function while maintaining
feasibility.

3. Stop when no more local improvements can be made.

4. Output the local solution.

For the analysis, we check whether the algorithm terminates and
what is the quality of the solution produced on termination. We will
illustrate the technique with the help of the following problems.

1. Single Swaps:
- 2-approximation algorithm for max cuts in graphs.
- 5-approximation algorithm for the metric k-median problem in
graphs.

2. Multiple Swaps:
- (1 + ε)-approximation algorithm for the geometric hitting set
problem.

14.2.1 Max Cuts in Graphs

The max-cut problem is defined as follows:
Max-Cut Problem:
Input: An undirected graph G = (V, E).
Output: Among all possible subsets of V, find the subset S ⊂ V such
that the number of edges between S and S̄ = V \ S is maximized.

The subset S maximizing the number of edges between S and S̄ is
called the Max-Cut of G.

Weighted Max-Cut Problem:
Input: An undirected graph G = (V, E), where each edge has a
positive integer weight.
Output: Find a subset S ⊂ V such that the sum total of the weights
on the edges between S and S̄ = V \ S is maximized. The subset S
maximizing the total weight of edges between S and S̄ is called the
weighted Max-Cut of G.

324 notes on algorithm design

We first present a local improvement algorithm for the unweighted
max-cut and show that suitable modifications will help us compute
the weighted max-cut.
Local Search Algorithm for Max-Cut

1. Pick any vertex v ∈ V and set S← {v} and S̄ = V \ S.

2. If ∃v ∈ S̄ such that

cut(S ∪ {v}, S̄ \ {v}) > cut(S, S̄), set S← S ∪ {v} and S̄← S̄ \ {v}.

3. If ∃v ∈ S such that

cut(S \ {v}, S̄ ∪ {v}) > cut(S, S̄), set S← S \ {v} and S̄← S̄ ∪ {v}.

4. Repeat Steps 2 and 3 until the size of the cut doesn’t increase.

5. Report (S, S̄, cut(S, S̄)).

Let us analyse the local improvement algorithm.

Lemma 14.2.1 The algorithm terminates in O(|E|) steps.

Proof. In each iteration of Steps 2 or 3, the size of the cut increases
by at least 1. Since the max-cut size is at most |E|, the algorithm
terminates in O(|E|) iterations.

Lemma 14.2.2 The cut computed by the local improvement algorithm has
≥ |E|2 edges.

Proof. Let (S, S̄) be the cut computed by the algorithm. Consider
any vertex v ∈ S. Let v has dv neighbors. Using the local-optimality
condition, at least dv

2 neighbors of v are in S̄ (otherwise, we can
improve the solution). The same argument applies to any vertex
v ∈ S̄. Thus,

cut(S, S̄) =
1
2 ∑

v∈V
v′s edges crossing the cut

≥ 1
2 ∑

v∈V

dv

2

=
1
2

2|E|
2

=
|E|
2

Theorem 14.2.3 The local improvement algorithm is a 2-approximation
algorithm for the Max-Cut problem. The algorithm runs in polynomial time.

approximation algorithms design techniques 325

Next, we design a local improvement algorithm for the weighted
max-cut problem. For each edge e ∈ E, let we be its positive inte-
ger weight. For a subset S ⊂ V, define the weight of cut(S, S̄) as
w(S, S̄) = ∑

e=uv∈E,u∈S,v∈S̄
we.

Local Improvement Algorithm for Weighted Max-Cut

1. Pick any vertex v ∈ V and set S← {v} and S̄ = V \ S.

2. If ∃v ∈ S̄ such that

w(S ∪ {v}, S̄ \ {v}) > w(S, S̄),

set S← S ∪ {v} and S̄← S̄ \ {v}.

3. If ∃v ∈ S such that

w(S \ {v}, S̄ ∪ {v}) > w(S, S̄),

set S← S \ {v} and S̄← S̄ ∪ {v}.

4. Repeat Steps 2 and 3 until the weight of the cut stops increasing.

5. Report (S, S̄, w(S, S̄)).

Let us analyze the above algorithm. Let W = ∑
e∈E

we be the sum to-

tal of the weights of all edges in G. In each iteration, w(S, S̄) increases
by at least one unit, as all weights are integers. Thus the algorithm
terminates in at most O(W) steps. The analysis of the approxima-
tion factor is based on the observation that for each vertex v ∈ S,

∑
e=uv∈E,u∈S̄

we ≥ 1
2 ∑

e=vw∈E
we. What can we say about the running time

of the algorithm? Is it polynomial time in input parameters? What if
we double the weight of an edge?

The algorithm as stated above performs potentially O(W) itera-
tions in the worst case. This will result in a running time that is not
polynomial with respect to the input parameters. So we present a
modified algorithm. Let ε > 0 be a parameter, and let n = |V|.

326 notes on algorithm design

1. Pick the vertex v ∈ V that has the maximum sum total of the
weights of edges incident to it. Set S← {v} and S̄ = V \ S.

2. If ∃v ∈ S̄ such that w(S ∪ {v}, S̄ \ {v}) ≥ (1 + ε
n)w(S, S̄), set S ←

S ∪ {v} and S̄← S̄ \ {v}.

3. If ∃v ∈ S such that w(S \ {v}, S̄ ∪ {v}) ≥ (1 + ε
n)w(S, S̄), set S ←

S \ {v} and S̄← S̄ ∪ {v}.

4. Repeat Steps 2 and 3 until the weight of the cut stops increasing.

5. Report (S, S̄ and w(S, S̄)).

Let (S, S̄) be the cut returned by the algorithm. We make the
following observation.

Observation 14.2.4

1. For each vertex v ∈ S, by local optimality, we have
w(S, S̄) ≥ w(S \ {v}, S̄ ∪ {v})− ε

n w(S, S̄). Thus,

w(v, S̄) ≥ w(v, S)− ε

n
w(S, S̄) (14.1)

2. Similarly, for each vertex v ∈ S̄, we have w(S, S̄) ≥ w(S ∪ {v}, S̄ \
{v})− ε

n w(S, S̄). Thus,

w(v, S) ≥ w(v, S̄)− ε

n
w(S, S̄) (14.2)

By computing the sum total of the inequality 14.1 for all the ver-
tices in S, we have

w(S, S̄) ≥ ∑
v∈S

w(v, S)− |S| ε
n

w(S, S̄)

= 2 ∑
e=uv;u,v∈S

w(e)− |S| ε
n

w(S, S̄)

S S̄

u

v

w(S, S̄)

∑
v∈S

w(v, S)

= 2
∑

e=(uv);u,v∈S
w(e)

Similarly, the sum total of 14.2 for all the vertices in S̄, we have

w(S, S̄) ≥ 2 ∑
e=uv;u,v∈S̄

w(e)− |S̄| ε
n

w(S, S̄)

Adding the last two inequalities we obtain

2w(S, S̄) ≥ 2 ∑
e=uv;u,v∈S

w(e) + 2 ∑
e=uv,u,v∈S̄

w(e)− |S| ε
n

w(S, S̄)− |S̄| ε
n

w(S, S̄)

Simplifying,

approximation algorithms design techniques 327

w(S, S̄) ≥ ∑
e=uv;u,v∈S

w(e) + ∑
e=uv;u,v∈S̄

w(e)− ε

2
w(S, S̄)

= (W − w(S, S̄))− ε

2
w(S, S̄)

Thus, w(S, S̄) ≥ W
2+ ε

2
. Note that the weight of any cut is upper

bounded by W, including the weight of an optimal cut. Thus, we
have

Lemma 14.2.5 The modified local improvement algorithm is 1
2+ε approxi-

mation algorithm for the weighted max-cut problem.

Next we analyze the running time. Assume that the algorithm
runs for k iterations and the sets computed by the algorithm are
S0, S1, S2, . . . , Sk. Observe that w(Si, S̄i) ≥ (1 + ε

n)w(Si−1, S̄i−1), for
i = 1, . . . , k. This results in w(Sk, S̄k) ≥ (1 + ε

n)
kw(S0, S̄0).

We know that w(S0, S̄0) ≥ W
n and W(Sk, S̄k) ≤W. Thus,

W ≥ W(Sk, S̄k)

≥ (1 +
ε

n
)kw(S0, S̄0)

≥ (1 +
ε

n
)k W

n

Therefore, we have that k ≤ log n
log(1+ ε

n)
.

If ε
n < 1, log(1 + ε

n) ≥ ε
2n (i.e., log(1 + x) > x/2 for small values

of x). Thus, k ≤ log n
log(1+ ε

n)
≤ 2 n

ε log n. We summarize the result in the
following theorem.

Theorem 14.2.6 A local improvement algorithm approximates the maxi-
mum weight cut in a graph in polynomial time. The algorithms approxima-
tion factor is 1

2+ε and the running time depends on 1
ε , |V|, and |E|.

14.2.2 k-Median

Let G = (V, E) be a complete graph on n vertices, where the costs on
edges (d : V ×V → <+) satisfy the metric properties:

• ∀u ∈ V : d(u, u) = 0

• ∀u, v ∈ V : d(u, v) = d(v, u)

• ∀u, v, w ∈ V : d(u, v) ≤ d(u, w) + d(w, v)

We first define a few quantities before formally stating the prob-
lem definition.

1. Facilities: Let F ⊆ V such that |F| = k.

328 notes on algorithm design

2. Distance to nearest facility: d(v, F) = min
f∈F

d(v, f), where v ∈ V.

3. cost(F) = ∑
v∈V

d(v, F)

k-median problem

Given the metric complete graph G = (V, E), find F ⊆ V, |F| = k,
such that cost(F) is minimum.

For an illustration, consider points in plane with Euclidean metric
and k = 5.

Our local search algorithm for the computation of the set of k
facilities is as follows:

Local Search Algorithm for k-median
Input: A metric graph G = (V, E) and an integer k > 0
Output: F ⊂ V such that |F| = k.

Step 1 (Initialize) F ← ∅.

Select any k vertices from V.

Add them to F as the initial set of k facilities.

Setp 2 (Local improvement step)

While there exists a pair of vertices (u, v), where u ∈ V \ F and v ∈
F, such that cost(F \ {v} ∪ {u}) < cost(F),

F ← F \ {v} ∪ {u}.

Step 3 Report F.

We will show that the above algorithm is a 5-approximation al-
gorithm. Let F∗ be an optimal set of k-facilities for the k-median
problem on the metric graph G. The set F returned by the local
search algorithm satisfies cost(F) ≤ 5cost(F∗).

First, let us understand swap pairs and their utility in analyzing
the local search algorithm.

• In Step 2 of the algorithm, if we make a swap (u, v), then cost(F)
improves, i.e., cost(F \ {v} ∪ {u}) < cost(F).

• After the algorithm terminates, there don’t exist any more improv-
ing swap pairs. I.e., for any pair of vertices (u, v), where u ∈ V \ F
and v ∈ F, cost(F \ {v} ∪ {u}) ≥ cost(F).

• To show cost(F) ≤ 5cost(F∗), we will select a set of specific non-
improving swap pairs using the vertices in an optimal solution F∗

and the solution F returned by the algorithm.

approximation algorithms design techniques 329

Next, we find a select set of non-improving swap pairs as fol-
lows. Let F∗ = (f ∗1 , . . . , f ∗k) ⊂ V be an optimal solution. Let
F = (f1, . . . , fk) ⊂ V be the solution the local search algorithm
returns. Define a mapping η : F∗ → F, that maps each facility (vertex)
in F∗ to the nearest facility in F. We partition F = F0 ∪ F1 ∪ F≥2 based
on the in-degree of function η, where

F0 = { f ∈ F| no facilities in F∗ maps to f }
F1 = { f ∈ F| exactly one facility in F∗ maps to f }
F≥2 = { f ∈ F| at least two facilities in F∗ maps to f }

F ∗

F
F0F1 F2 F2

F ∗

F ∗

F
F0F1 F2 F2

η

Pairs in

S

Define the set S ⊂ F∗ × F consisting of the following non-improving
pairs of facilities:

1. All pairs corresponding to F1 are in S. I.e. for each pair (f ∗, r),
where r ∈ F and f ∗ ∈ F∗ and η−1(r) = f ∗, (f ∗, r) ∈ S.

2. For the remaining facilities in F∗, pair them up and assign each
pair to a unique facility in F0.

For an illustration of set S, see the figure. A natural question
is whether there are enough facilities in F0 so that the paired-up
remaining facilities in F∗ can be assigned to unique facilities in F0.

Lemma 14.2.7 |F0| ≥ |F|−|F1|
2

Proof. We observe that k = |F| = |F∗|. By definiition, |F| = |F0| +
|F1| + |F≥2|. Moreover, the number of remaining facilities in F∗

are k − |F1| = |F| − |F1|. The nearest neighbors of the remaining
facilities in F∗ are among F≥2. Observe that each facility in F≥2 is
near neighbor of at least two facilities of F∗. Thus, |F0| ≥ |F|−|F1|

2 .

We establish some notations before we show how to bound cost(F).
Define functions φ : V → F and φ∗ : V → F∗ that map vertices to
the nearest facilities in F and F∗, respectively. If φ(v) = r, than the
nearest vertex of v in F is r. For any vertex v ∈ V, we define the cost
to the nearest facility in F∗ by Ov = d(v, F∗) = d(v, φ∗(v)). Similarly,
we define Av = d(v, F) = d(v, φ(v)). Observe that cost(F∗) = ∑

v∈V
Ov

and cost(F) = ∑
v∈V

Av. We define the neighborhoods of facilities as the

vertices that they serve. For each facility f ∗ ∈ F∗, we have N∗(f ∗) =
{v ∈ V|φ∗(v) = f ∗}. Similarly, for r ∈ F, N(r) = {v ∈ V|φ(r) = f }.
If F∗ = (f ∗1 , . . . , f ∗k), then N∗(f ∗1), . . . , N∗(f ∗k) is a partition of V.
Similarly, N(r1), . . . , N(rk) is partition of V with respect to facilities in
F = {r1, . . . , rk}.

Lemma 14.2.8 Consider a (non-improving) swap pair (f ∗, r) ∈ S. Suppose
we bring in the facility f ∗ ∈ F∗ and remove r from F, i.e., F = F ∪ { f ∗} \

330 notes on algorithm design

{r}. The cost of the resulting k-median solution satisfies

∑
v∈N∗(f ∗)

(Ov− Av)+ ∑
v∈N(r)

2Ov ≥ cost(F∪{ f ∗} \ {r})− cost(F) (14.3) r f ∗

Before providing proof of the lemma, we show that by summing
Inequalities 14.3 over all the swap pairs in S, we have cost(F) ≤
5cost(F∗).

Theorem 14.2.9 Suppose for each swap pair (f ∗, r) ∈ S we have
∑

v∈N∗(f ∗)
(Ov − Av) + ∑

v∈N(r)
2Ov ≥ cost(F ∪ { f ∗} \ {r}) − cost(F),

than cost(F) ≤ 5cost(F∗).

Proof. Each f ∗ ∈ F∗ appears exactly once in S, and
⋃

f ∗∈F∗
N∗(f ∗)

partitions V, we have

∑
(f ∗ ,r)∈S

∑
v∈N∗(f ∗)

(Ov − Av) ≤ cost(F∗)− cost(F) (14.4)

Each r ∈ F appears at most twice in S. Thus,

∑
(f ∗ ,r)∈S

∑
v∈N(r)

Ov ≤ 2cost(F∗) (14.5)

As each swap pair in S is non-improving, we have

cost(F ∪ { f ∗} \ {r})− cost(F) ≥ 0 (14.6)

Summing for all pairs (f ∗, r) ∈ S the inequality
∑

v∈N∗(f ∗)
(Ov − Av) + ∑

v∈N(r)
2Ov ≥ cost(F ∪ { f ∗} \ {r})− cost(F),

and applying inequalities 14.4, 14.5, and 14.6, we obtain
cost(F∗)− cost(F) + 2 ∗ 2cost(F∗) ≥ 0.
Thus, cost(F) ≤ 5cost(F∗)

Now we provide proof of Lemma 14.2.8.
Proof. Note that we are swapping r by f ∗ in F. We are interested to
upper bound cost(F ∪ { f ∗} \ {r})− cost(F). As a result of this swap,
we need to reassign facilities to some of the vertices. For example, all
vertices in N(r) need to find a facility in F ∪ { f ∗} \ {r}.

We will assign each vertex in N∗(f ∗) to f ∗ in F ∪ { f ∗} \ {r}. We
will assign each vertex v ∈ N(r) \ N∗(f ∗) to η(φ∗(v)). For all the
remaining vertices, the assignment remains the same. Note that this
reassignment may not map each vertex to its nearest facility. This is
not a problem as we are interested in upper bound cost(F ∪ { f ∗} \
{r})− cost(F).

For facilities in F ∪ { f ∗} \ {r}, we assign each vertex in N∗(f ∗) to
f ∗. The expression ∑

v∈N∗(f ∗)
(Ov − Av) accounts for the difference in the

costs, as we save Av from their costs, but they cost us Ov.

approximation algorithms design techniques 331

There may be a vertex v ∈ N∗(f ∗) that ideally isn’t served by f ∗

in F ∪ { f ∗} \ {r}. The reason is that r′ ∈ F \ {r} may be closer to v
than f ∗. Nevertheless, as mentioned before, we assign v to f ∗, as we
are trying to find an upper bound (O(v) ≥ d(v, r′) =⇒ Ov − Av ≥
d(v, r′)− Av).

All the vertices in N(r) ∩ N∗(f ∗) are assigned to f ∗ in F ∪ { f ∗} \
{r}. Even if for a vertex v ∈ N(r) ∩ N∗(f ∗) its nearest neighbor in
F ∪ { f ∗} \ {r} may not be f ∗, the same upper bound argument holds.

Next, we account for the costs of members in N(r) \ N∗(f ∗). Let
v ∈ N(r) \ N∗(f ∗). Since v isn’t served by f ∗ in optimal =⇒ v is
served by a facility f̂ ∗ ∈ F∗, i.e., φ∗(v) = f̂ ∗.

f ∗

r

f̂ ∗

r̂ = η(f̂ ∗)

v

∈ S

φ(v)

φ∗(v)

Either f̂ ∗ ∈ F or f̂ ∗ 6∈ F. If f̂ ∗ ∈ F: then we assign v to f̂ ∗. If
f̂ ∗ 6∈ F, consider r̂ = η(f̂ ∗), i.e. nearest neighbor of f̂ ∗ in F. Note:
r̂ 6= r. If it is, than r ∈ F1 ∪ F≥2, we wouldn’t have assigned f ∗ to r. We
assign v to r̂.

By triangle inequality we have d(v, r̂) ≤ d(v, f̂ ∗) + d(f̂ ∗, r̂). Sub-
tracting d(v, r) from both the sides, we obtain d(v, r̂) − d(v, r) ≤
d(v, f̂ ∗) + d(f̂ ∗, r̂)− d(v, r). We know that d(f̂ ∗, r̂) ≤ d(f̂ ∗, r) because
of the nearest neighbor function η. Thus, d(v, r̂)− d(v, r) ≤ d(v, f̂ ∗) +
d(f̂ ∗, r)− d(v, r). By triangle inequality, d(f̂ ∗, r)− d(v, r) ≤ d(v, f̂ ∗).
Thus,

d(v, r̂)− d(v, r) ≤ d(v, f̂ ∗) + d(f̂ ∗, r)− d(v, r)

≤ 2d(v, f̂ ∗)

= 2Ov

Now we analyze the running time of the local search algorithm.
The algorithm terminates as in each execution of Step 2, the cost
improves, and it can’t improve forever. Let us see how many times
Step 2 is executed. Assume all d(u, v) values are positive integers
and let ∆ = ∑

u,v
d(u, v). The number of times Step 2 is executed is at

most ∆. We can modify Step 2 to have a swap if the cost improves by
at least a factor of (1− ε

poly(n)). This, in spirit, is similar to the max
weight cut.

Theorem 14.2.10 Let F∗ be an optimal set of k-facilities for the k-median
problem on the metric graph G. The set F returned by the local search
algorithm satisfies cost(F) ≤ (5 + ε)cost(F∗). Moreover, the algorithm runs
in polynomial time. Run time depends on |V| and 1

ε .

Remark 14.2.11 In place of performing a single swap in Step 2, per-
form t ≥ 1 multi-swaps. A refined analysis shows that cost(F) ≤
(3 + 2

t)cost(F∗).

332 notes on algorithm design

14.2.3 Geometric Hitting Set

The geometric hitting set problem is defined as follows.
Input: A set D of disks and a set P of points in plane.
Output: Find a subset S ⊆ P of smallest cardinality that hits all

disks in D.

We say a point p ∈ P hits the disk D ∈ D if p ∈ D.
Next, we present a local search algorithm.

k-level Local Search algorithm for hitting set of disks
Input: A set D of disks and a set P of points in plane. A (large)
integer k > 0.
Output: A subset S ⊆ P that hits all disks in D.

1. Initialization: S← P. Check if S hits all disks. If not, report infeasi-
bility and stop.

2. Local Improvement Step: Keep replacing any set of k points in S
by at most k− 1 points of P so that points in S hits all disks in D.

3. Return S.

We will prove the following

Theorem 14.2.12 Let S∗ ⊆ P be an optimal hitting set for D. The set S
returned by the algorithm satisfies |S| ≤ (1 + c√

k
)|S∗|, for some constant c.

First, let us state the locality condition. Let B, R ⊂ P be subset of
points of P, and let G = (V = B ∪ R, E) be a bipartite graph such that
the following locality condition holds:

For any disk D ∈ D, where B ∩ D 6= ∅ and R ∩ D 6= ∅, there exist
points b ∈ B ∩ D and r ∈ R ∩ D such that (b, r) ∈ E. We show that the
Delaunay triangulation of B ∪ R satisfies the locality condition.

Lemma 14.2.13 Let G be the planar graph corresponding to the Delaunay
triangulation of B ∪ R, where we only keep the edges between a pair of red
and blue points. The graph G satisfies the locality condition.

Proof.

Figure 14.3: Illustration of Delaunay
Graph G = (B ∪ R, E)

By construction, G is bipartite. If a disk D ∈ D contains points from
B and R, then there is a point b ∈ B and r ∈ R such that the Delaunay
edge br entirely lies inside D. This uses the property that the points
within an arbitrary disk form a connected subgraph in a Delaunay
triangulation.

Let us introduce the concept of neighborhoods. For each vertex
v ∈ G = (V, E), let N(v) be all the vertices adjacent to v. For a subset
of vertices W ⊂ V, define N(W) =

⋃
v∈W

N(v).

approximation algorithms design techniques 333

Let B = S be the set returned by the local search algorithm, and let
R = S∗ be an optimal solution for the hitting set problem. To prove
Theorem 14.2.12, it suffices to show that |B| ≤ (1 + c√

k
)|R|. Assume

that B ∩ R = ∅. This assumption is justified, as we can remove the
common points and disks they hit. Note that B hits all disks in D, If |B ∩ R| = κ, |B||R| ≤

|B|−κ
|R|−κ

.

and similarly, R hits all disks in D. Consider the planar bipartite
graph G = (B ∪ R, E) formed using the Delaunay triangulation of
B ∪ R and retain only the red-blue edges.

Lemma 14.2.14 For any subset B′ ⊂ B, B ∪ N(B′) \ B′ is a hitting set for
D.

Proof. Consider any disk D ∈ D. Since points in B hit all disks,
some point in B hits D. If any of the points in B \ B′ hits D, points in
B ∪ N(B′) \ B′ also hits D.

Assume only the points in B′ hit the disk D. Points in R also hit all
disks in D. Let r ∈ R hits D and let b ∈ B′ hits D. We have both the
points b, r ∈ D. By the Delaunay property, there is a bichromatic edge
in the Delaunay triangulation that completely lies in D. Therefore,
the neighborhood set of B′ also includes a red point in R in the disk
D. Hence, B ∪ N(B′) \ B′ is a hitting set for D.

Next, we state the expansion property.

Lemma 14.2.15 For every subset B′ ⊆ B of size ≤ k in the graph G =

(B ∪ R, E), |N(B′)| ≥ |B′|, i.e. the size of the neighborhood of B′ is at least
|B′|.

Proof. Recall that in the local search algorithm, the set B is obtained
by executing the local search algorithm with parameter k. Once the
algorithm terminates, there doesn’t exist any improving swaps, i.e.,
no set of k points (vertices) in B can be replaced by ≤ k − 1 points
from P to hit all the disks in D.

By Lemma 14.2.14, the set B ∪ N(B′) \ B′ is a hitting set for D.
Moreover, |N(B′)| ≥ |B′| must hold; otherwise, the local optimality
condition is violated.

Now we introduce the balanced partitioning of planar graphs.
In particular, let us look at Fredrickson’s r-partitioning of planar
graphs, Section 7.3. Let G = (V, E) be a planar graph on n vertices,
and let r be a number. Using the recursive application of Lipton and
Tarjan’s planar separator theorem, Fredrickson shows a planar graph
division in regions consisting of interior and boundary vertices. Each
interior vertex is contained within a region and is adjacent to vertices
within that region. Boundary vertices are shared between at least two
regions. We state the r-partitioning result of Frederickson without
proof R1

R2 R3

R4

R5

Internal Vertices Boundary Vertices

Figure 14.4: Illustration of r-partitioning

334 notes on algorithm design

Lemma 14.2.16 Let G be a planar graph on n vertices. A r-division di-
vides G in Θ(n/r) regions, where each region consists of O(r) vertices
and O(

√
r) boundary vertices. A r-division of a planar graph G can be

computed in O(n log n) time.

Now let us get back to estimating the size of the local solution, i.e.,
the size of the set B.

Lemma 14.2.17 Let S ⊂ P be the set of points returned by the local search
algorithm with parameter k and let S∗ ⊂ P be an optimal solution for
the hitting set problem for the disks in D by points in P. We define the
Delaunay triangulation on red-blue points where B = S and R = S∗ and
construct the bipartite graph G = (B ∪ R, E) by retaining only the edges
between red and blue points. The following holds: |B| ≤ (1 + c√

k
)|R| for

some constant c.

Proof.

Vi = Bi ∪Ri

Vj = Bj ∪Rj

Bint
i

Bint
iBint

i

Rint
i

B∂
i

R∂
i

Figure 14.5: Illustration of Notation

Assume that n = |B| + |R|. We apply Fredrickson’s r-partitioning
to the graph G, where r = k. This partitions G into Θ(n/k) regions,
each region consisting of ≤ k vertices and O(

√
k) boundary vertices.

The total number of boundary vertices is O(n/
√

k). Let Vi = Bi ∪ Ri

be the set of vertices in the i-th region in the partitioning. Let Bint
i

and B∂
i be the interior and boundary blue vertices in Vi, respectively.

Similarly, let Rint
i and R∂

i be the interior and boundary red vertices in
Vi, respectively.

Observe that the sum total of the boundary vertices among all
the regions is γn/

√
k, where γ is a constant from Fredrickson’s

r-partitioning. I.e.,

∑
i
(|B∂

i |+ |R∂
i |) ≤ γn/

√
k

The number of interior blue vertices, |Bint
i |, in any region is at most

k. By the expansion Property, Lemma 14.2.15, we know that |Bint
i | ≤

|N(Bint
i)|. Let us look at the vertices that make up N(Bint

i). Note that
N(Bint

i) ⊆ Rint
i ∪ R∂

i . Thus we have

|Bint
i | ≤ |Rint

i |+ |R∂
i |

Add |B∂
i | on both sides, and we obtain

|B∂
i |+ |Bint

i | ≤ |Rint
i |+ |R∂

i |+ |B∂
i |

Summing over all the regions, we have

∑
i

(
|B∂

i |+ |Bint
i |
)
≤∑

i
|Rint

i |+ ∑
i

(
|R∂

i |+ |B∂
i |
)

(14.7)

Note that ∑i

(
|B∂

i |+ |Bint
i |
)
≥ |B|, |R| ≥ ∑i |Rint

i |, and

approximation algorithms design techniques 335

∑i

(
|R∂

i |+ |B∂
i |
)
= γn/

√
k = γ(|B|+ |R|)/

√
k. We have

|B| ≤ ∑
i

(
|B∂

i |+ |Bint
i |
)

≤ ∑
i
|Rint

i |+ ∑
i

(
|R∂

i |+ |B∂
i |
)

≤ |R|+ γ√
k
(|B|+ |R|)

≤
(

1 + γ/
√

k
1− γ/

√
k

)
|R|

= (1 + γ/
√

k)(1 + γ/
√

k + (γ/
√

k)2 + (γ/
√

k)3 + · · ·)|R|(
1

1− x
= 1 + x + x2 + · · ·

)
≤ (1 + γ/

√
k)(1 + 2γ/

√
k)|R| (Set k ≥ 4γ2 and c = 4γ =⇒ γ√

k
≤ 1

2
)

= (1 + 3γ/
√

k + 2(γ/
√

k)2)|R|
= (1 + 4γ/

√
k)|R|

= (1 + c/
√

k)|R|

We summarize the main steps in designing a local search solution.

• Design a local search algorithm with parameter k.

• Consider the solution B returned by the algorithm and an optimal
solution R.

• Set up a bipartite planar graph G with bipartition B and R.

• Find a k-partitioning of G into Θ(n/k) regions, each region consist-
ing of at most k vertices, and the boundary composed of O(

√
k)

vertices.

• Bound the size of B in terms of the size of R using the neighbor-
hood relationships of internal blue vertices in each region.

Extensions: Maximization problems (see Aschner et al.), Max Cover-
age Problems with Cardinality Constraints (see Chaplick et al.).

14.3 Approximation using Metric LPs

14.3.1 Min Cost st-cut

The min-cost st-cut problem in graphs is defined as follows
Input: An undirected graph G = (V, E) on n vertices and each edge
has a positive weight w : E→ <+, and two specific vertices s and t. It

336 notes on algorithm design

will be easier to think of G as a complete graph Kn, as all the edges in
Kn \ G are assigned a weight of 0.
Output: Find a set of edges C ⊆ E of minimum total weight so that
the graph G′ = (V, E \ C) has no path that between s and t. I.e., C
forms a cut of minimum weight that separates s and t.

8

4 3

1

1

2

1

4

2

2 3

5

2

1
s t

Let C be a st-cut in G. We define an indicator variables xe for each
edge e as follows.

xe =

1, if e ∈ C,

0, otherwise

We make the following observation.

Observation 14.3.1

1. The cost of cut equals ∑
e∈E

xewe.

2. The length of any path π(s, t) joining s and t is ≥ 1. The length of π is
defined as the sum total of xe’s values of the edges of π.

s t

0
1

10

0
0

0
0

0

1

1

3. The variables xe’s assigned to the edges of G satisfy the metric property.

Now we formulate the cut problem as a linear program.

Integer Metric LP Formulation
min ∑

e∈E
wexe

Subject to:

1. Membership in the Cut: For each edge e ∈ E, xe ∈ {0, 1}.

2. Cut Constraint: xst ≥ 1.

3. Triangle Inequality: For every set of three distinct vertices u, v, w ∈
V: xuw + xwv ≥ xuv.

Integer LPs are NP-Hard in general, whereas the linear programs
can be solved in polynomial time. Thus we relax the ILP by replacing
the constraint xe ∈ {0, 1} by 0 ≤ xe ≤ 1 and obtain the following LP.

Relaxed Metric LP
min ∑

e∈E
wexe

Subject to:

1. For each edge e ∈ E, 0 ≤ xe ≤ 1.

2. xst ≥ 1.

3. For every set of three distinct vertices u, v, w ∈ V: xuw + xwv ≥ xuv.

approximation algorithms design techniques 337

Let xe ∈ [0, 1] be the value assigned to edge e ∈ E in the solution
of the relaxed LP. Let z∗ = ∑

e∈E
wexe be the value of the objective

function. Note that xe values satisfy

1. Triangle inequality: For any three distinct vertices u, v, w ∈ V,
xuv ≤ xvw + xuw.

2. For any path in G between s and t, the length of the path is ≥ 1.

3. The cost of an optimal min cut in G is at least z∗.

To obtain a cut from the relaxed LP, we perform the following
steps.

.2

.4 .3

.1

.1

.2

.1

.4

.2

.2 .3

.5

.2

.1
s t0

.2

.4

.6

.9

.9

1

.8

R = 0.7

Step 1: Solve the relaxed metric LP to obtain xe values for each edge
e ∈ E.

Step 2: For each vertex v ∈ V, find the shortest distance δ(s, v) from s
with respect to the xe values on edges from s.

Step 3: Choose an arbitrary value R ∈ (0, 1).

Step 4: For each edge e = (uv) ∈ E (assume δ(s, u) ≤ δ(s, v)), place e
in the cut if δ(s, u) < R < δ(s, v).

Step 5: Return the edges in the cut.

The estimate on the expected weight of the cut is as follows.

Lemma 14.3.2 The expected sum total of the weights of the edges in the cut
is at most z∗.

Proof. Let C be the collection of edges in the cut with respect to
R ∈ (0, 1). Consider an arbitrary edge e = (uv) ∈ E. We first estimate
the probability that e ∈ C. The edge e ∈ C if δ(s, u) < R < δ(s, v), i.e.
R ∈ (δ(s, u), δ(s, v)). Therefore,

Pr(e ∈ C) =
δ(s, v)− δ(s, u)

1
= δ(s, v)− δ(s, u)

≤ xe

The last inequality follows from the triangle inequality as δ(s, v)−
δ(s, u) ≤ xe. Thus, Pr(e ∈ C) ≤ xe. Therefore,

E[cost(C)] = ∑
e∈E

wePr(e ∈ C) ≤ ∑
e∈E

wexe = z∗.

338 notes on algorithm design

Let us see how we can find an optimal cut. We will understand
the nature of cuts when R ranges from 0 to 1. When R = 0, the
component containing s contains only a singleton vertex s, and all the
remaining vertices V \ {s} are in the component of t. Analogously,
when R = 1, the component containing s contains all the vertices
except t, and all the component of t is a singleton vertex. Observe
that when R ranges from 0 to 1, one by one, the vertices move to the
component containing s from the component containing t. In all,
there are n = |V| such events. We can find all the events and return
the cut that minimizes the total weight.

Interestingly,

1. If for some R the cost of the cut is > z∗, than there must be a cut
for which the cost < z∗, since the average (i.e. the expected) value
is z∗.

2. The cost of any st-cut is ≥ z∗, as z∗ is the objective value of relaxed
LP. Hence, the cut returned by the method has the optimal cost for
any R ∈ (0, 1).

We summarize the result in the following theorem.

Theorem 14.3.3 Using the Metric LP relaxation, we can find an optimal
cut in polynomial time.

Note that this method’s time complexity depends on the algorithm
for solving a linear program. There are alternate methods for comput-
ing the minimum st-cut. For example, we can calculate the maximum
flow from s to t in G and apply the max flow min cut theorem (see
the chapter on max flow).

14.3.2 Multiway Min Cut

The multiway cut problem on graphs is defined as follows.
Input: An undirected (complete) graph G = (V, E) on n vertices and
each edge has a positive weight w : E→ <+. A set T = {s1, . . . , sk} ⊂
V of k vertices called terminals.
Output: Find a set of edges C ⊆ E of minimum total weight so that
the graph G′ = (V, E \ C) has no path between any pair of terminals
in T. s1

s2 s3

s4

s5s6

s7Let C be a multiway cut that separates every pair of terminals.
Define an indicator variable xe for each edge e as follows:

xe =

1, if e ∈ C,

0, otherwise
The xe values assigned to each edge satisfies

1. Cost of the multiway cut equals ∑
e∈E

xewe.

approximation algorithms design techniques 339

2. For any pair of distinct terminals si, sj ∈ T, the length of any path
π(si, sj) joining si and sj is ≥ 1.

3. xe values satisfy the triangle inequality. I.e., for any three distinct
vertices u, v, w ∈ V, xuw + xwv ≥ xuv.

As before, we will formulate an integer linear program and its
relaxation.

Integer Metric LP Formulation for Multiway Cuts
min ∑

e∈E
wexe

Subject to:

1. Membership in the Cut: For each edge e ∈ E, xe ∈ {0, 1}.

2. Cut Constraint: For every distinct pair si, sj ∈ T, xsisj ≥ 1.

3. Triangle Inequality: For every set of three distinct vertices u, v, w ∈
V: xuw + xwv ≥ xuv.

We replace the constraint xe ∈ {0, 1} for the relaxed linear pro-
gram by 0 ≤ xe ≤ 1. Next, we outline the steps in finding the edges
in the cut using the solution of the relaxed LP. s1

s2 s3

s4

s5s6

R

R

Step 1: C ← ∅.

Step 2: Solve the relaxed metric linear program to obtain xe values
for each edge e ∈ E.

Step 3: Choose an arbitrary value R ∈ (0, 1/2).

Step 4: For each vertex si ∈ T, find the shortest distances δ(si, v) from
si with respect to xe values on edges. For each edge e = (uv) ∈ E
(assume δ(si, u) ≤ δ(si, v)), place e in the cut C if δ(si, u) < R <

δ(si, v).

Step 5: Return the set of edges in C.

Let si ∈ T be a terminal and R ∈ (0, 1/2). Define a ball centered
at si as B(si, R) = {v ∈ V|δ(si, v) < R}. The ball B(si, R) consists
of all the vertices that are within the distance R of si. We make the
following observations.

Observation 14.3.4

1. Let si, sj ∈ T be two distinct terminals and let B(si, R) and B(sj, R) be
the set of vertices within distance of R ∈ (0, 1/2) of si and sj, respec-
tively. Then, B(si, R) ∩ B(sj, R) = ∅, i.e., the balls B(si, R) and B(sj, R)
are disjoint and do not share any vertex.

340 notes on algorithm design

2. Consider any edge e = (uv) ∈ E, where u ∈ B(si, R). The edge e ∈ C if
v 6∈ B(si, R).

Lemma 14.3.5 The cut C returned by the above method is a feasible multi-
way cut.

Proof. We need to show that there is no path between any pair of
distinct terminals si, sj ∈ T in the graph G− C. By the 2nd constraint
of the LP, xsisj ≥ 1. From the triangle inequality, any path π(si, sj)

between si and sj in G will have length ≥ 1. Alternatively, for any
vertex w ∈ V, δ(si, w) + δ(sj, w) ≥ 1. Distance between any two
vertices within a ball B(si, R) is < 1. Thus, for any ball B(si, R), only
terminal that is in B(si, R) is si, i.e., B(si, R) ∩ T = si. Hence each
connected component of G \ C contains at most one terminal.

Now we bound the probability of an edge to be in a cut.

Lemma 14.3.6 Let e = (u, v) be an edge in G. Pr(e ∈ C) ≤ 2xe.

Proof. Define sets X1, . . . , Xk, where Xi = {v ∈ V|δ(si, v) < 1/2}.
Note that for any pair of distinct sets Xi and Xj, Xi ∩ Xj = ∅. More-
over, B(si, R) ⊆ Xi. One of the following cases arises for the edge
e = (u, v).

Case 1: None of the endpoints u, v of e are in any set. This implies
that e 6∈ C and Pr(e ∈ C) = 0 ≤ 2xe.

Case 2: Both uandv are in the same set, say Xi.

Case 3: u ∈ Xi and v ∈ V \ Xi.

Consider Case 2, where u, v ∈ Xi. Without loss of generality,
assume δ(si, u) ≤ δ(si, v). We know that R ∈ (0, 1/2). The edge
e = (u, v) is in the cut C if δ(si, u) < R and δ(si, v) > R. By triangle
inequality, we know that δ(si, v)− δ(si, u) ≤ xe. Since we are choosing
R uniformly at random in (0, 1/2),

Pr(e ∈ C) =
δ(si, v)− δ(si, u)

1
2

≤ 2xe

Consider Case 3, where u ∈ Xi and v ∈ V \ Xi. We know that
δ(si, u) < 1/2 and δ(si, v) ≥ 1/2. By the triangle inequality, we know
that δ(si, v)− δ(si, u) ≤ xe. The edge e = (u, v) ∈ C if δ(si, u) < R.

approximation algorithms design techniques 341

Thus,

Pr(e ∈ C) = Pr(R ∈ (δ(si, u), 1/2))

≤
1
2 − δ(si, u)

1
2

≤ 2(
1
2
− δ(si, u))

≤ 2(δ(si, v)− δ(si, u))

≤ 2xe

Remark 14.3.7 If u ∈ Xi and v ∈ Xj, then part of e lies in B(si, 1/2) and
part in B(sj, 1/2). Observe that (1/2− δ(si, u)) + (1/2− δ(sj, v)) ≤ xe.
Therefore, Pr(e ∈ C) ≤ 2((1/2− δ(si, u)) + (1/2− δ(si, u))) ≤ 2xe.

Lemma 14.3.8 The expected weight of the edges in the multiway cut is at
most 2z∗, where z∗ is the value of the objective function returned by the LP
relaxation, i.e., z∗ = ∑

e∈E
wexe.

Proof. Let C be the collection of edges in the cut with respect to some
R ∈ (0, 1/2). We have already seen that for an arbitrary edge e ∈ E,
Pr(e ∈ C) ≤ 2xe.

E[cost(C)] = ∑
e∈E

wePr(e ∈ C)

≤ ∑
e∈E

we × 2xe

= 2 ∑
e∈E

wexe

= 2z∗

We summarize the result on multiway cuts in the following theo-
rem.

Theorem 14.3.9 Let G = (V, E) be a simple (complete) graph where each
edge has a non-negative real weight. Let T ⊂ V be a set of terminals. We
can find a set C ⊆ E with the following properties:

1. G− C has no path connecting any pair of terminals.

2. The total weight of the edges in C is at most 2 times the weight of an
optimal multiway cut.

3. We can determine C in polynomial time using the solution of the relaxed
LP.

342 notes on algorithm design

Next, we establish an integrality gap. Consider an unweighted star
graph with k + 1 vertices. It consists of k-leaves, and all of them are
connected to a central node. Let the k leaves constitute the set T of
terminals. Cost of an optimal solution = k − 1, as it is achieved by
removing any set of k− 1 edges.

Note that the cost of the relaxed linear program is k/2. This is
achieved by setting the cost of each edge to 1/2.

Thus, the approximation factor k−1
k
2

= 2(1 − 1
k). Hence, us-

ing this approach, we can’t do better in the worst case. This is re-
ferred to as the integrality gap. A different LP relaxation yields a
3
2 -approximation, but we won’t be discussing that here.

14.3.3 Multicuts in Graphs

The multicuts problem is defined as follows.
Input: A complete graph G = (V, E) with non-negative weights on
edges and a set of k-vertex pairs (s1, t1), (s2, t2), . . . , (sk, tk).
Output: A set of edges C ⊆ E of minimum total weight so that G \ C
has no path between si and ti for i = 1, . . . , k.

Let C be a multiway cut that separates every pair (s1, t1), (s2, t2), . . . , (sk, tk).
Define an indicator variable xe for each edge e as follows:

xe =

1, if e ∈ C,

0, otherwise
The assignment of xe values to each edge satisfies

1. Cost of the multicut equals ∑
e∈E

xewe.

2. For any pair (si, ti), length of any path between them is ≥ 1, where
the length of an edge e is its xe value.

3. For any three distinct vertices u, v, w, xuw + xwv ≥ xuv.

The integer and relaxed linear programming formulations are as
follows:

Integer Metric LP Formulation for Multicuts
min ∑

e∈E
wexe

Subject to:

1. Membership in the cut: For each edge e ∈ E, xe ∈ {0, 1}.

2. Cut Constraint: For every pair (si, ti), xsiti ≥ 1.

3. Triangle inequality: For any three distinct vertices u, v, w,
xuw + xwv ≥ xuv.

approximation algorithms design techniques 343

We replace the constraint xe ∈ {0, 1} for the relaxed linear pro-
gram by 0 ≤ xe ≤ 1. The main steps of the algorithm for finding the
edges in the multicut are as follows.

Initialize:

1. Choose an R ∈ (0, 1/2), uniformly at random.

2. Initialize the cut C ← ∅.

3. Define k blocks X1 = . . . = Xk = ∅.

4. Unmark all the vertices of G.

Main Steps:

Step 1: Compute a random permutation of vertices s1, s2, . . . , sk.
WLOG, assume the ordering is s1, s2, . . . , sk.

Step 2: Let Bi(si, R) be the ball consisting of all the vertices within
distance R of si.

For each si in the order of permutation, do:

For each unmarked vertex v ∈ B(si, R), mark v and place it in the
block Xi.

Step 3: For each edge e = (u, v) ∈ E, place it in the cut C if u ∈ Xα

and v 6∈ Xα.

Step 4: Return C.

s1

s2

s3

s4

s5

t1

t2

t3

t4

t5

R

R

R

R

X1

X2

X3

X4

X5

We make the following observation.

Observation 14.3.10 Xi = B(si, R) \
i−1⋃
j=1

B(sj, R).

Lemma 14.3.11 For each pair si, ti, i = 1, . . . , k, the following holds

1. ti 6∈ Xi.

2. if si ∈ Xj then ti 6∈ Xj.

Proof. Since R < 1/2 and from the linear program we know that
xsiti ≥ 1, ti 6∈ B(si, R). Since, Xi ⊆ B(si, R) =⇒ ti 6∈ Xi.

If si ∈ Xj. The set Xj is defined by sj =⇒ δ(sj, si) < R < 1
2 .

All the vertices in Xj are within distance < R of sj. By the triangle
inequality, any vertex in Xj is within distance < 2R < 1 from si. Since
δ(si, ti) ≥ 1, we have ti 6∈ Xj.

Now we estimate the probability of an edge to be present in the
cut C.

344 notes on algorithm design

Lemma 14.3.12 Pr(e ∈ C) ≤ 2Hkxe, where Hk =
k
∑

i=1

1
i ≈ ln k is the k-th

Harmonic number.

Assuming that the above lemma holds, we establish that the expected
cost of the cut C will be within a factor of O(log k) of an optimal cut
that separates k terminal pairs.

E[cost(C)] = E

[
∑
e∈C

w(e)

]
= ∑

e∈E
w(e)Pr(e ∈ C)

≤ ∑
e∈E

2Hkwexe

= 2Hkz∗

The result is summarized in the following theorem.

Theorem 14.3.13 Multicuts in a graph can be approximated within a
factor of O(log k) in polynomial time that separates k- terminal pairs.

Now we present the proof of Lemma 14.3.12.
Proof. Let e = (u, v). We will consider the distance from s1, . . . , sk

to e. We define the distance from si to e = (u, v) as d(si, e) =

min(δ(si, u), δ(si, v)). Without loss of generality, assume that the or-
der of vertices according to increasing distance from e be s1, s2, . . . , sk.
In the random ordering of the vertices in s1, . . . , sk, consider when
an endpoint u or v of e gets marked for the first time. Say it is u,
and it gets marked by si. Without loss of generality, assume that
δ(si, u) ≤ δ(si, v). This implies that u ∈ Xi and we have two cases: (a)
v ∈ Xi, and (b) v 6∈ Xi.

Consider Case (a), where v ∈ Xi. That is v is also marked by si.
Since both the ends of the edge e = (uv) are in Xi =⇒ e 6∈ C.

Now consider Case (b), where v 6∈ Xi. In this case e ∈ C, and we
say si cuts e. We want to estimate Pr(si cuts e). Observe that si cuts e
because of the following uv s1 s2 si sk

R

e

δ(si, u)

δ(si, v)

1. si marked u but not v.

2. d(s1, e) ≤ d(s2, e) ≤ · · · ≤ d(sk, e).

3. Among all the vertices {s1, . . . , sk}, si is the first vertex that marks
any of the endpoints of e.

4. In the random order, none of the vertices with a smaller distance
to e than si appeared before si. Otherwise, si won’t be the first
vertex marking an end of e.

approximation algorithms design techniques 345

The probability that si comes before s1, . . . , si−1 in a random per-
mutation is 1/i. For si to cut e, given that si comes before s1, . . . , si−1,
the radius R ∈ (0, 1/2) should fall in the range δ(si, u) < R < δ(si, v).
This happens with probability ≤ δ(si ,v)−δ(si ,u)

1/2 ≤ xe
1/2 = 2xe. Thus the

probability that si cuts e is 2xe/i.
Now the probability that e is cut by any of s1, . . . , sk is

≤
k

∑
i=1

Pr(si cuts e)

=
k

∑
i=1

1
i

2xe

= 2xe

k

∑
i=1

1
i

= 2Hkxe

14.4 Fixed-Parameter Tractability

We will discuss the techniques used in designing fixed-parameter
tractable algorithms, including branch-and-bound, kernelization,
Nemhauser-Trotter theorem using the LP, iterative compression, and
color coding. For a detailed exposition, see 3. We will use the vertex 3 Rodney G. Downey and M. R. Fellows.

Parameterized Complexity. Springer Pub-
lishing Company, Incorporated, 2012;
and Marek Cygan, Fedor V. Fomin,
Lukasz Kowalik, Daniel Lokshtanov,
Daniel Marx, Marcin Pilipczuk, Michal
Pilipczuk, and Saket Saurabh. Parame-
terized Algorithms. Springer Publishing
Company, Incorporated, 1st edition,
2015

cover problem to illustrate some of these techniques. Recall that the
vertex cover problem is formally stated as follows.
Input: A simple undirected graph G = (V, E).
Output: A subset S ⊆ V of smallest cardinality such that for each
edge e = (u, v) ∈ E, at least one of u or v is in S.

Definition 14.4.1 Fixed-Parameter Tractable (FPT) Problems.
A problem is said to be fixed parameter tractable with respect to a

parameter k if there is an algorithm with running time f (k)nO(1), where n
is the input size of the problem and f is independent of n.

Note that the time complexity of the FPT algorithm for the vertex
cover problem is polynomial in graph parameters |V| and |E| but
exponential in k - the vertex cover size. If k is small, these algorithms
are efficient. Some of the complexity results of the vertex cover
problem are as follows.

• The decision problem is NP-Hard.

• A greedy 2-factor polynomial time approximation algorithm.

• Exact algorithms with the following run times:

346 notes on algorithm design

1. A naive algorithm running in O(|V|k+1) time.

2. An FPT algorithm running in O(|V|2k) time.

3. A faster FPT algorithm running in O(|V|+ |E|+ k22k) time.

14.4.1 An FPT Algorithm

First, we outline a naive algorithm for finding a vertex cover of size k
in the graph G = (V, E).

• Consider all subsets S ⊆ V of size k.

• Check whether G \ S is an independent set.

Observe that the above steps can be implemented in
(n

k)O(n + m) = O(nk(n + m)) time, where n = |V| and m = |E|.
Next, we try to find algorithms that are polynomial in the size of
the graph but are exponential in the size of the vertex cover k. The
decision version of the vertex cover problem is to determine if the
given graph has a vertex cover of sie ≤ k.

S

I = V \ S

A

N(S \ A)

S \ A

S is a vertex cover and I an independent set of G.

Figure 14.6: Sets I and S.

Decision problem: Whether G = (V, E) has a vertex cover of size ≤
k?

1. Find a maximal matching M of G.

2. If |M| > k, return G has no vertex cover of size ≤ k.

3. Let S be the set of vertices constituting the edges in M.

Note: S forms a vertex cover of G, and I = V \ S is an independent
set.

4. Consider all possible subsets A of S of size ≤ k and check whether
A ∪ (N(S \ A) ∩ I) is a vertex cover of G of size at most k. If true,
output A ∪ (N(S \ A) ∩ I) as the vertex cover. (N(X) represents
neighbors of vertices in X in G.)

Observation 14.4.2 Let S be a vertex cover of G = (V, E). For a subset
A ⊆ S, A ∪ (N(S \ A) ∩ I) is a vertex cover of G if and only if there are no
edges in E such that both of its end points are in S \ A.

Let us analyze the running time of the above algorithm.

1. Finding maximal matching M in G requires O(n + m) time.

2. Number of all possible subsets of size at most k of S is 22k = 4k.

3. Checking whether the set A ∪ (N(S \ A) ∩ I) forms the vertex cover
of size at most k requires O(n + m) time.

approximation algorithms design techniques 347

4. Thus, the overall complexity is 4knO(1).

5. The time complexity is of type f (k)nO(1) - a function in k (possibly
exponential in k) and a polynomial function in the size of G.

Lemma 14.4.3 The vertex cover problem is fixed-parameter tractable.
Vertex cover of a graph G = (V, E) on n vertices can be computed in
4knO(1) time.

14.4.2 A Branch-and-Bound Algorithm

The branch-and-bound algorithm is based on the following observa-
tion.

Observation 14.4.4 For each edge e = (uv) of G, any vertex-cover of G
contains at least one of u or v.

Algorithm VertexCoverFPT(G, k)

1. if G has no edges then return TRUE

2. if k = 0 then return FALSE

3. Let e = (uv) ∈ E be an edge of G

4. if VertexCoverFPT(G− u, k− 1) then return TRUE

5. if VertexCoverFPT(G− v, k− 1) then return TRUE

6. return FALSE

The above algorithm is a decision algorithm - that answers
whether G has a vertex cover of size ≤ k. Remembering which
subtree(s) of a node resulted in a positive answer, we can also find
the vertex cover S ⊆ V of size ≤ k. The correctness of the above algo-
rithm is based on induction on the vertex cover size k. If k = 0 =⇒
G has no edges and Step 1 returns TRUE. Let G = (V, E) be a graph
with vertex cover S of size k > 0. To cover the edge e = (uv), S must
contain at least one of u or v. If u ∈ S, the graph G− u (i.e., remove u
and all its incident edges) has a vertex cover of size at most k− 1. Step
4 returns TRUE. If u 6∈ S, then v ∈ S, G − v has vertex cover of size
at most k− 1. Step 5 returns TRUE. And if both returns FALSE, then
clearly G doesn’t have a vertex cover of size ≤ k.

To analyze the algorithm’s time complexity, observe that the
recursion ‘tree’ is a complete binary tree of height k. It consists
of 2k leaves and 2k−1 internal nodes. Each internal node requires
computation time of O(|V|) (e.g., using adjacency list representation
of graphs). For each leaf node, we need to check whether there are no

348 notes on algorithm design

edges in the remaining graph. Therefore, the overall running time is
(2k + 2k−1)O(|V|) = O(|V|2k).

Theorem 14.4.5 Let G = (V, E) be a simple undirected graph that has a
vertex cover of size at most k. We can find a minimum vertex cover of G in
O(|V| × 2k) time.

14.4.3 Kernelization

Next, we introduce the concept of kernelization and obtain a faster
algorithm for the vertex cover problem. The main idea is as follows.

Given a problem instance Q with parameter k, we will execute an
algorithm A, running in polynomial time, to obtain an equivalent
instance Q′ such that Q has a solution if and only if Q′ has a solution.
We say A is a kernelization algorithm if the size of Q′ and k′ can be
bounded by some function of k that is independent of the size of
problem Q. It will be ideal to bound the size of Q′ and k′ by a poly-
nomial function in k (preferably linear or quadratic functions). The
kernelization algorithm A is usually broken down as a set of rules.
For example, for the vertex cover problem, a simple rule is to remove
all vertices of degree 0, and the resulting graph has a vertex of size
≤ k if and only if the original graph has a vertex cover of size ≤ k.

Lemma 14.4.6 If G has a vertex u of degree > k. Let S ⊆ V be a vertex-
cover of G with |S| ≤ k. Then u ∈ S.

Proof. If u 6∈ S, all its neighbors must be in S. But u has > k neigh-
bors and |S| ≤ k.

Thus, if the degree of u > k, we place u in the vertex cover. We
remove u and all its incident edges from G, and seek for a vertex
cover of size at most k− 1 in the resulting graph.

Corollary 14.4.7 Let S′ be the set of all vertices in G whose degree is > k.
Let G′ be the graph obtained from G by removing all vertices in S′ (and
their incident edges). G has a vertex cover of size ≤ k if and only if G′ has a
vertex cover of size ≤ k′ = k− |S′|.

Lemma 14.4.8 Let S′ be set of all vertices in G whose degree is > k. Let
G′ be the graph obtained from G by removing all vertices in S′ (and their
incident edges). The degree of each vertex in G′ is ≤ k.

Lemma 14.4.9 If the graph G′ has more than kk′ edges, then G′ doesn’t
have a vertex cover of size ≤ k′.

approximation algorithms design techniques 349

Proof. Each vertex can cover at most k edges in G′. Thus, k′ vertices
can cover at most kk′ edges.

Algorithm Kernelization-FPT(G, k)

1. Let S′ be the vertices of G of degree > k. If |S′| > k, return FALSE.

2. Let G′ = G− S′ and let k′ = k− |S′|.

3. If G′ has more than kk′ edges, return FALSE.

4. Let G′′ be the graph obtained after removing isolated vertices from
G′.

5. Return VertexCoverFPT(G′′, k′ = k− |S′|)

We first establish the correctness of the algorithm. From Lemma
14.4.6, we know that all vertices in G of degree > k need to be in the
vertex cover. From Lemma 14.4.8, we know that if the graph G′ has
more than kk′ edges, G cannot have a vertex cover of size ≤ k. We
use the algorithm VertexCoverFPT(G′′, k′), which correctly returns the
outcome of whether G′′ has a vertex cover of size ≤ k′.

Now we analyze the time complexity of the Algorithm Kerneliza-
tion. Step 1 takes O(|V|+ |E|) time. Step 2 takes O(|V|+ |E|) time.
Step 3 takes O(|V| + |E|) time, and Step 4 takes O(|V| + |E|) time.
Consider the graph G′′ obtained in Step 4. G′′ has at most kk′ ≤ k2

edges. Since G′′ has no isolated vertices, it has ≤ 2k2 vertices. Graph
G′′ is the ‘small’ kernel for the vertex cover problem. We can execute
an exponential time algorithm on G′′.

By Theorem 14.4.5, in Step 5, execution of VertexCoverFPT(G′′, k′)
takes O(k2 × 2k) time.

Theorem 14.4.10 Let G = (V, E) be a simple undirected graph twith
a vertex cover of size at most k. Vertex cover problem admits a kernel
consisting of O(k2) vertices and O(k2) edges. We can find the minimum
vertex cover of G in O(|V|+ |E|+ k22k) time.

14.4.4 Crown Decomposition

This is a general kernelization technique. The crown decomposition of a
graph is defined as follows.

Definition 14.4.11 Crown decomposition of a graph G = (V, E) is a
partitioning of the set of vertices V in three disjoint sets V = C ∪ H ∪ R
such that

1. There is no edge between vertices in C and R. H separates C from R.

350 notes on algorithm design

2. C is a non-empty independent set.

3. There is a matching of size |H| in the bipartite graph induced between the
vertices in C and H. I.e., the matching saturates the vertices in H.

C

H

R

(Independent Set)

(Separates C from R)

We will show that the following holds.

Lemma 14.4.12 Let G = (V, E) be a graph with at least 3k + 1 vertices;
none are isolated. In polynomial time we can determine either G has a
matching of size at least k + 1 or find its crown decomposition.

We can use any of the matching algorithms to determine whether
G has a matching of size ≥ k + 1 in polynomial time. Assume that all
possible matchings have fewer than k + 1 edges.

Let M be a maximal matching of G. Let VM be the set of vertices
corresponding to edges in M. The vertices I = V \VM form an inde-
pendent set. Consider the bipartite graph B(VM, I) consisting only of
edges between VM and I in G. Let M′ be a maximum matching in B
and let X be a minimum vertex cover of B. Now |X| = |M′| ≤ k, as B
is bipartite graph and maximum matching in G has < k + 1 edges (by
assumption).

We claim that X ∩ VM 6= ∅, and prove this using contradiction.
Suppose not, i.e., X ∩VM = ∅. This implies that X ⊆ I. We claim that
X = I. If so, |VM|+ |I| ≤ 2k + k = 3k, and that contradicts the fact that
G has at least 3k + 1 vertices, and thus it can’t be that VM ∩ X = ∅.
Now suppose X 6= I. Let v ∈ I \ X. Since no vertex of G is isolated,
there is an edge uv incident on v where u ∈ VM. But to cover the
edge uv, we need to have u ∈ X. But we assumed that VM ∩ X = ∅.

Now we have that X ∩ VM 6= ∅. Since |X| = |M′|, exactly one
end of each edge of M′ is in X. Let M∗ ⊆ M′ such that every edge in
M∗ has one endpoint in X ∩VM. Let VM∗ be the union of all vertices
defining the edges in M∗.

a

a′ b c d

b′ c′ d′

X = {a, b, c, d}
M ′ = {aa′, bb′, cc′, dd′}

VM

I

b c d

b′ c′ d′

a a′

C = I ∩ VM∗

H = X ∩ VM∗

R = V \ (C ∪H)

M∗ = {bb′, cc′, dd′} VM∗ = {b, b′, c, c′, d, d′}
Define the sets C, H, and R for the crown decomposition as fol-

lows: H = X ∩VM∗ ; C = I ∩VM∗ ; R = V \ (H ∪ C). We establish some
of the properties of these sets.

Lemma 14.4.13 The set C = I ∩VM∗ is a non-empty independent set.

Proof. The set C is independent as I is independent. Moreover,
C 6= ∅ as X ∩VM 6= ∅, and each edge in the matching M′ contributes
exactly one endpoint to the vertex cover X of B(VM, I).

Lemma 14.4.14 The set H = X ∩VM∗ separates C from R. Moreover, the
induced bipartite graph on C ∪ H has a matching of size |H|.

Proof. For any vertex v ∈ C = I ∩VM∗ there exists u ∈ H = X ∩VM∗

such that uv ∈ M∗ ⊆ M′ (and u ∈ X). This implies that v 6∈ X as

approximation algorithms design techniques 351

for any edge uv ∈ M′ exactly one of its ends is in X. Thus, C ∪ H has
a matching of size |H|. Since v ∈ I and v 6∈ X, all neighbors of v in
B(VM, I) are in X ∩VM∗ = H.

Now we analyze the time complexity of the computation of crown
decomposition. The main computational steps are (a) finding a
maximum matching in G, and (b) finding the sets C, H, and R. It is
easy to see each step can be implemented in polynomial time. From
Lemmas 14.4.13 and 14.4.14 and the above time complexity analysis,
we have established the proof of Lemma ??. Next, we construct a
small kernel for vertex cover using Lemma ??.

Algorithm VC-Kernel〈G, k〉

1. Remove isolated vertices from G.

2. If G has ≤ 3k vertices, output G as the kernel and terminate.

3. Apply Lemma ?? on G. Either it reports that matching in G has
≥ k + 1 edges (=⇒ G has a vertex cover of size > k) or a partition-
ing V = C ∪ H ∪ R.

4. Place all vertices in H in the vertex cover, and execute VC-
Kernel〈G− H, k− |H|〉.

Lemma 14.4.15 Algorithm VC-Kernel〈G, k〉 reports whether G = (V, E)
has a vertex cover of size > k or outputs a kernel of size ≤ 3k.

Proof. If G has a matching of size ≥ k + 1, the vertex cover of G re-
quires ≥ k + 1 vertices. Otherwise, consider the crown decomposition
V = C ∪ H ∪ R. Recall C is an independent set and H 6= ∅. The set
H separates C from R. A matching of size |H| exists in the bipartite
graph formed by C and H. This implies that H is a vertex cover of
the induced graph of C ∪ H. The subgraph G− H consists of isolated
vertices in C and possibly some isolated vertices in R. In the next call
to VC-Kernel〈G− H, k− |H|〉, they will be removed.

Observe that the crown decomposition reduces the problem of
finding a vertex cover of size ≤ k− |H| in graph G− H. As H 6= ∅,
G − H is a smaller graph. Recursion terminates when G has fewer
than 3k + 1 vertices.

14.4.5 Kernel from Linear Program

We first formulate an integer linear program for the vertex cover
problem. Let G = (V, E) be the given graph. Associate an indicator

352 notes on algorithm design

0− 1 variable xv for each vertex v ∈ V that indicates whether v is in
the cover. The LP is given by

Objective Function: minimize ∑
v∈V

xv

Subject to: ∀e = (uv) ∈ E : xu + xv ≥ 1

xv ∈ {0, 1}

The above ILP results in a vertex cover. Each edge is covered
because of the constraint xu + xv ≥ 1, and at least one of u or v has
to be 1, indicating that the corresponding vertex is in the cover. The
relaxed LP is given by

Objective Function: minimize ∑
v∈V

xv

Subject to: ∀e = (uv) ∈ E : xu + xv ≥ 1

0 ≤ xv ≤ 1

Now the variables xv’s can take fractional values. The value of
the objective function of the relaxed LP is a lower bound on the size
of the vertex cover. We will construct a solution for the vertex cover
problem using the fractional values.

V0 V1 V 1
2

Define three sets of vertices based on the LP values of variables
xv’s:

V0 = {v ∈ V|xv < 1
2}, V1 = {v ∈ V|xv > 1

2}, and V1
2
= {v ∈

V|xv = 1
2}. We have the following observation.

Observation 14.4.16

1. V0, V1, and V1
2

is a partition of V, i.e. V = V0 ∪V1 ∪V1
2
.

2. The set V0 is an independent set.

3. There are no edges between vertices in V0 and V1
2
.

The Nemhauser-Trotter theorem states there is a minimum vertex
cover S such that V1 ⊆ S ⊆ V1 ∪V1

2
.

Theorem 14.4.17 There is a minimum vertex cover S ⊆ V of G such that
V1 ⊆ S ⊆ V1 ∪V1

2
.

Proof. Let S∗ be a minimum vertex cover of G. Let S = (S∗ \V0) ∪V1.
Observe that S is a vertex cover of G as any vertex in V0 is only
adjacent to vertices in V1. Using contradiction, we show that S forms
a minimum vertex cover.

Assume |S| > |S∗|. Observe that |S| = |S∗| − |S∗ ∩ V0|+ |V1 \ S∗|.
This implies that |V1 \ S∗| > |S∗ ∩ V0| as we assumed |S| > |S∗|.

approximation algorithms design techniques 353

We will construct another feasible solution of the relaxed LP with a
smaller optimum value contradicting the optimality of LP.

Define ε = min{|xv − 1
2 |, v ∈ V0 ∪V1}.

V0 V1 V 1
2

V0 ∩ S∗

V1 \ S∗

+ε/2

−ε/2
Modify xv values as follows.

• For all vertices v ∈ V1 \ S∗, set yv = xv − ε
2 .

• For all vertices v ∈ V0 ∩ S∗, set yv = xv +
ε
2 .

• For all remaining vertices, set yv = xv.

Note that ∑ xv > ∑ yv, as we had |V1 \ S∗| > |S∗ ∩ V0|. We will
show that yv values satisfy the constraints of relaxed LP, and this will
imply that xv’s are not optimal, and it will lead to a contradiction to
the optimality of LP.

Consider any edge e = (uv) ∈ G. We need to show that yu + yv ≥ 1.
Consider the cases where one of the end vertices of any edge is in
V0 ∩ S∗ or V1 \ S∗, as for all other edges yu + yv = xu + xv ≥ 1.

First, suppose u ∈ V0 ∩ S∗. In this case, v can only be in V1. If
v ∈ V1 \ S∗, xu + xv = yu + ε/2 + yv − ε/2 = yu + yv ≥ 1. If
v ∈ V1 ∩ S∗, yu + yv = xu + ε/2 + xv ≥ xu + xv ≥ 1.

Now suppose u ∈ V1 \ S∗. If v ∈ V0, a similar argument applies. If
v ∈ V1

2
, yu + yv = xu − ε/2 + xv ≥ 1 as xv = 1

2 and xu > 1
2 + ε/2.

As a result of the above lemma, we know that an optimal vertex
cover S satisfies V1 ⊆ S ⊆ V1

2
∪V1. We perform the following steps to

determine if G has a vertex cover of size ≤ k.

Step 1: If the value returned by relaxed LP is > k. Report G has
vertex cover of size > k and Stop.

Step 2: Include V1 in the vertex cover and determine if G \ (V0 ∪ V1)

has a vertex cover of size ≤ k− |V1|.

Lemma 14.4.18 G has a vertex of size ≤ k if and only if G \ (V0 ∪V1) has
a vertex cover of size ≤ k− |V1|.

Proof. We know that there is a minimum vertex cover S of G such
that V1 ⊆ S ⊆ V1

2
∪ V1. If S is a vertex cover of size ≤ k for G,

S \ V1 is a vertex cover of size ≤ k − |V1| for the graph induced by
V \ (V0 ∪V1) = V1

2
.

For the other direction, observe that the graph induced by V0 is
isolated and only has edges to the vertices in the set V1. If S′ is a
vertex cover of the graph induced by V1

2
, S′ ∪V1 is a vertex cover of G.

2

Lemma 14.4.19 |V1
2
| ≤ 2k.

354 notes on algorithm design

Proof. By definition, the linear program has assigned each variable
xv ∈ V1

2
the value of 1

2 . Thus,

|V1| = ∑
v∈V1

2

2xv

≤ 2 ∑
v∈V

xv

≤ 2k 2

Lemma 14.4.20 The induced graph on the vertices in V1
2

forms a kernel for
the vertex cover problem consisting of at most 2k vertices. Moreover, we can
determine the kernel in polynomial time.

Proof. Linear programs can be solved in polynomial time. Using the
xv values, we can form the sets V0, V1, and V1

2
in O(|V|) time. The

computation of the induced graph on V1
2

takes O(|V| + |E|) time.
Thus, we can determine the kernel of size ≤ 2k of G in polynomial
time, provided it has a vertex cover of size ≤ k.

14.4.6 Iterative Compression

We start with the following property of vertex covers.

Lemma 14.4.21 Let X, S ⊆ V be two vertex covers of G = (V, E). Let
A = S ∩ X, and let N(X \ A) represent the neighbors of vertices in X \ A in
the set V \ X. The set Y = A ∪ N(X \ A) is a vertex cover of G if the graph
induced by the vertices in X \ A is an independent set.

A = S ∩X X \ AX

V \X

N(X \ A)

Proof. Since X is a vertex cover, V \ X is an independent set. As
A ⊆ Y, all edges incident to A are covered. Since N(X \ A) ⊆ Y, all
the edges incident to N(X \ A) are covered. If X \ A is independent, Y
is a vertex cover of G.

Now we present the main idea of the iterative compression tech-
nique, where we construct a smaller vertex cover from a given larger
vertex cover. Assume that we have the following.
Input: X ⊆ V, G = (V, E), |X| = k + 1, and X is a vertex cover of G.
Output: Does G contain a vertex cover of size ≤ k?

Our method is to select an arbitrary subset A ⊂ X of ≤ k vertices
and check whether there exists a vertex cover S ⊇ A consisting of k
vertices using Lemma 14.4.21.

We make the following observation.

Observation 14.4.22 Let N(X \ A) represents the neighbors of X \ A in
V \ X. Set S = A ∪ N(X \ A). The set S is the required vertex cover of G if

approximation algorithms design techniques 355

1. |S| ≤ k.

2. There are no edges in the graph induced by X \ A.

The compression algorithm for testing whether G has a vertex
cover of size ≤ k is as follows.

Compression algorithm for testing if G has a vertex cover of size
≤ k

Step 1: Consider an arbitrary permutation of vertices of G. Let it be
v1, . . . , vn.

Step 2: Let Gk be the graph induced by vertices Vk = {v1, . . . , vk}.
Note that X = Vk is a vertex cover of Gk of size k.

Step 3: For i := k + 1 to n do

1. Compute Gi by adding the vertex vi and all of its incident edges
to Gi−1. Note that Vi = {v1, . . . , vi}.

2. Set X ← {vi} ∪ X. Note that X is a vertex cover of Gi.

3. If |X| = k + 1, check whether there exists a vertex cover S ⊂ Vi

of size ≤ k for Gi. If so, set X ← S; otherwise, report G doesn’t
have a vertex cover of size ≤ k.

Lemma 14.4.23 The above algorithm correctly determines whether G has a
vertex cover of size ≤ k in O(2k|V|(|V|+ |E|)) time.

Proof. Note that G = Gn. At the start of the iteration i ∈ {k + 1, n},
we know that X is a vertex cover of size ≤ k for the graph Gi−1.
If |X ∪ vi| ≤ k, we already have a vertex cover of size ≤ k for Gi.
Otherwise, we apply the observation as X is a vertex cover of Gi

consisting of k + 1 vertices, and we are seeking a vertex cover S of
size at most k. We consider all possible subsets A of size ≤ k of X
and determine whether there exists S ⊃ A consisting of ≤ k vertices
that cover Gi. The outcome is either we find a set S or we fail. If we
find S, we set X ← S and proceed to the next iteration. If we fail, G
can’t have a vertex cover of size ≤ k as its subgraph Gi doesn’t admit
a vertex cover of size ≤ k.

Running time for each iteration is O(2k(|V|+ |E|).

Let us look at another example of the iterative compression tech-
nique. Let G = (V, E) be a simple undirected graph. A subset S ⊂ V
of vertices is called a feedback vertex set (FVS) if the graph induced
on the vertices V \ S (denoted by G(V \ S)) is acyclic. The decision
problem is whether G contains an FVS of size at most k.

356 notes on algorithm design

We will first look into a specific version of the FVS problem, called
the disjoint feedback vertex cover problem, and show how an iterative
compression technique can be applied to answer the decision prob-
lem. For the disjoint feedback vertex set problem, the input consists
of G = (V, E), a parameter k, and an FVS X ⊂ V of size k + 1. We
need to decide whether G has FVS S ⊆ V \ X of size ≤ k. We denote
this problem as D-FVS(G, X, k).

First, we make the following observation.

X

H = V \X

Observation 14.4.24

• If X is FVS of G = (V, E), the graph G(H = V \ X) induced on the
vertices H = V \ X is a forest.

• Some S ⊂ H can be FVS of G provided that the graph G(X) induced on
the vertices of X is acyclic.

We exhaustively apply the following reduction rules to simplify
the graph to find a disjoint FVS.

R1: Delete all vertices of degree ≤ 1 from G as they can’t be in any
FVS of G.

R2: If ∃v ∈ H that has two or more edges incident to the same
component in X (i.e., G(X ∪ {v}) has cycle(s)), v has to be in FVS.
Thus, remove v from G and solve D-FVS(G \ {v}, X, k− 1). If k < 0,
report G doesn’t have a D-FVS of size ≤ k.

R3: Let v ∈ H be a vertex of degree two in G and let u and w be its
neighbors. If u or w ∈ H, remove v and add an edge uw (this may
create a multi-edge between u and w).

Note that

1. In R3, if both u, w ∈ X, no shortcut is added. The reason is that
none of the vertices in X can be in D-FVS.

2. After rules R1-R3 are applied exhaustively, each vertex in H has
degree at least 2. For all non-isolated vertices in G(H), their degree
is ≥ 3.

Let us see the graph’s structure obtained after exhaustively apply-
ing the above rules.

Observation 14.4.25 Let G be the graph obtained after exhaustively
applying the reduction rules R1-R3.

1. The number of connected components in G(X) is ≤ k + 1.

approximation algorithms design techniques 357

2. Consider the forest G(H) induced by vertices in H. For any isolated
vertex in G(H), its degree is ≥ 2 in G. For any non-isolated vertex in
G(H), its degree is ≥ 3 in G.

Perform the following branching steps for any degree ≤ 1 vertex v
of G(H). During each branching, we also apply the reduction rules.

v ∈ D-FVS: Execute D-FVS(G \ {v}, X, k− 1).

v 6∈ D-FVS: Move v to the set X, merge the components in X that are
adjacent to v, and execute D-FVS(G, X ∪ v, k).

We make some observations about the branching process.

Observation 14.4.26

1. In each call to branching, we either reduce k by 1, or reduce the number
of connected components in X by at least 1. Therefore, the branching
process terminates in at most 2k + 1 steps, as ≤ k + 1 components are in
G(X).

2. Moving a degree ≤ 1 vertex v ∈ G(H) to X is safe as G(X ∪ {v}) is
acyclic. Otherwise, we would have applied the reduction rule R2.

3. If ever k < 0, we terminate and report that D-FVS(G, X, k) has no
solution.

4. We may reach a situation during branching where we have a single
component in G(X). Remember that we are still applying the reduction
rules R1-R3, and that ensures what vertices will be added to D-FVS.

Now we have

Lemma 14.4.27 Discrete feedback vertex set problem D-FVS(G, X, k) can
be solved in O(4knO(1)) time, where n is the number of vertices in G.

Proof. Rules R1-R3 can be implemented in polynomial time with
respect to the size of G. The branching process terminates in at most
2k + 1 steps, where in each step, either we include a vertex v of degree
≤ 1 of G(H) in D-FVS or exclude it. Thus, the branching tree has
22k+1 = O(4k) nodes.

Our iterative compression algorithm for testing whether G has
FVS of size ≤ k is as follows.

358 notes on algorithm design

Iterative compression algorithm for FVS

Step 1: Consider an arbitrary permutation of vertices of G. Let it be
v1, . . . , vn.

Step 2: Let Gk be the graph induced by vertices Vk = {v1, . . . , vk}.
Note that X = Vk is an FVS of Gk of size k.

Step 3: For i := k + 1 to n do

1. Compute Gi by adding vertex vi and all of its incident edges to
Gi−1. Now Vi = {v1, . . . , vi}.

2. Set X ← {vi} ∪ X. Note that X is a FVS of Gi.

3. If |X| = k + 1, check whether there exists a FVS S ⊂ Vi of size
≤ k for Gi. If so, set X ← S; otherwise, report G doesn’t have an
FVS of size ≤ k.

To find S, we try all subsets A ⊂ X and solve for D-FVS(G(Vi) \
A, X \ A, k− |A|).

Theorem 14.4.28 For a given graph G and a parameter k, we can check in
5knO(1) time whether G has a feedback vertex set of size at most k, where n
is the number of vertices in G.

Proof. Recall that in the D-FVS(G, X, k) problem, the input consists of
a graph G, a parameter k, a FVS X ⊂ V of size k + 1, and the problem
is to decide whether G has FVS S ⊆ V \ X of size ≤ k.

Consider any iteration i ≥ k + 1 of the algorithm. We have the FVS
X ∪ {vi} of size ≤ k + 1 for Gi. Thus, Gi(Vi \ X) is a forest. Our task is
to decide if a subset S ⊂ Vi of size ≤ k exists such that S is FVS of Gi.

For this, guess which vertices of S are from X. Assume A = S ∩ X
and consider the graph Gi(Vi \ A). We want an FVS of size ≤ k− |A|
in Gi(Vi \ A) where all its vertices are from the set Vi \ X. This is
precisely the D-FVS(G(Vi) \ A, X \ A, k− |A|) problem.

Next, we analyze the running time. In iteration i ≥ k + 1, we try
all possible subsets A of X, where |X| = k + 1, and for each subset
A, we make a call to an appropriate D-FVS(G(Vi) \ A, X \ A, k− |A|)
problem. We know that the running time for the D-FVS problem is
4k−|A|nO(1). Therefore, the total running time for the i-th iteration is

k

∑
j=0

(
k + 1

j

)
4k−jnO(1) = 5knO(1)

Note that (1 + 4)k =
k
∑

j=0
(k+1

j)1j · 4k−j = 5k. Since i ranges from k + 1 to

n, the total running time for the FVS decision problem is 5knO(1).

approximation algorithms design techniques 359

14.4.7 Color Coding

Consider the longest path problem in an undirected graph.
Input: An undirected simple graph G = (V, E) on n vertices and a

positive integer k ≤ n.
Output: Does there exists a simple path consisting of at least k

vertices in G.
The color coding scheme due to Alon, Yuster and Zwick 4 answers 4 Noga Alon, Raphael Yuster, and

Uri Zwick. Color-coding. J. ACM,
42(4):844–856, 1995

the decision problem as follows.

Color coding for finding long paths

Step 1 Repeat Steps 2 and 3 for O(kk ln n) times.

Step 2 Color the vertices of G uniformly at random independently
from {1, . . . , k}.

Step 3 Check if there exists a path Π = (v1, . . . , vk) such that each
vertex vi is colored i. If such a path exists, output TRUE and
terminate.

Step 4 Output G contains no simple path of length k.

Lemma 14.4.29 If there exists a simple path Π = (v1, . . . , vk) in G, the
probability that for all i ∈ {1, . . . , k}, vi is assigned color i is 1/kk.

Lemma 14.4.30 If a simple path Π = (v1, . . . , vk) exists in G, the probabil-
ity that the above algorithm fails to report such a path is at most 1/n.

Proof. The probability that any particular trial finds the path Π is
p = 1/kk. This is the probability of success in a trial. Therefore,
the probability of failure is (1− p). Let X be the number of trials
till we see the first success. X is a geometric random variable. Now,

Pr(X > 1
p ln n) ≤ (1 − p)

1
p ln n ≤ e−p 1

p ln n
= 1

n . Therefore, the

probability that the algorithm cannot find Π after kk ln n trials is at
most 1/n.

Lemma 14.4.31 If G contains a simple path of length k, the above al-
gorithm finds a path in O(kk poly(n)) time with a probability of at least
1− 1/n. If G contains no simple path of length k, the above algorithm always
correctly reports the non-existence of such paths.

Proof. If G contains a simple path Π of length k, we have seen that
the probability of the success of the algorithm is at least 1 − 1/n.
For the running time, once we color the vertices of G, we need to
determine if there is a simple path such that the first vertex is colored

360 notes on algorithm design

1, the second one is colored 2, and so on. This can be checked in time
proportional to the size of the graph. Observe that if G doesn’t have
a simple path of length k, no coloring can produce an affirmative
answer in Step 3 of the algorithm. Hence the algorithm will always
reach Step 4 and correctly answer the non-existence of such paths.

In [7], it is shown that a slightly modified algorithm can reach a
similar conclusion in O((2e)k poly(n)) time. The above algorithm is
altered as follows.

Faster color coding for finding long paths

Step 1 Repeat Steps 2 and 3 for O(ek ln n) times.

Step 2 Color the vertices of G uniformly at random independently
from {1, . . . , k}.

Step 3 Check if there exists a colorful path Π = (v1, . . . , vk) in G. A
path is colorful if each vertex on the path has a distinct color. If a
colorful path exists, output TRUE and terminate.

Step 4 Output G contains no simple path of length k.

Observe that if there exists a path Π of length k in G, the proba-
bility that it is colorful in a random coloring is k!

kk ≥ 1
ek . (This uses

the standard approximation, k! ≥ k
e

k
.) Observe that the probability

of success is 1/ek as compared to 1/kk previously. Once we color the
vertices of G, we need to find whether G has a colorful path of length
k. We will employ dynamic programming that runs in 2k poly(n) time
for this. The details are left as an exercise. We summarize the result.

Theorem 14.4.32 If G contains a simple path of length k, we can report
one such path in O((2e)k poly(n)) time with probability at least 1− 1/n. If
G contains no simple path of length k, the algorithm always correctly reports
the non-existence of such paths.

14.5 Exercises

14.1 Show that a maximum independent set of a tree can be computed in
linear time. Show that the maximum weight-independent set of a weighted
tree can also be computed in linear time.

14.2 Consider the following problem on Trees.

approximation algorithms design techniques 361

Input: A rooted tree T = G = (V, E) on n vertices and each
edge has a positive weight w : E → <+. A set of k-vertex pairs
(s1, t1), (s2, t2), . . . , (sk, tk), where si 6= ti for all i = 1, . . . , k.
Output: Find a set of edges C ⊆ E of minimum total weight so that the
graph G′ = (V, E \ C) has no path between si and ti for i = 1, . . . , k.

Formulate this problem as a Linear Program. Each edge e ∈ E has a 0− 1
indicator variable xe indicating the membership of e in C.
Consider the following algorithm:

Step 1: C ← ∅. Choose an R ∈ (0, 1/2) uniformly at random.

Step 2: Solve the Relaxed LP to obtain xe values for each edge e ∈ E.

Step 3: Let r be root of T. For each vertex v, compute the shortest path
distance δ(r, v) from r to v, where the weight of an edge e is its xe value.

Step 4: For each edge e = (uv) ∈ E (assume δ(r, u) ≤ δ(r, v)), place e in
the cut C if δ(r, u) ∈ (R + 1

2 i, R + 1
2 (i + 1)) and δ(r, v) > R + 1

2 (i + 1),
for some integer i ≥ 0.

Step 5: Return the set of edges C.

Answer the following:

1. Show that in the graph G− C, there is no path between si and ti for any
i ∈ {1, . . . , k}.

2. For any edge e ∈ E, show that Pr(e ∈ C) ≤ 2xe.

3. Show that E[w(C)] ≤ 2z∗, where z∗ is the value of the objective function
returned by the LP relaxation (z∗ = ∑

e∈E
wexe).

4. Show that in polynomial time, we can find a cut whose total weight is
within a factor of 2 of an optimal cut for a tree that separates each si from
ti.

14.3 Recall that in the k-median problem for a graph G = (V, E), we need
to find a set F of k vertices in G such that the cost(F) = ∑

v∈V
d(v, F) is

minimized. Note that d(v, F) is the shortest path distance from v to the
nearest vertex in F. Using local search, we found a solution that is 5-optimal
(or (3 + 2

t)-optimal if you allow t ≥ 1 swaps) for general graphs. Suppose
the graph G is a tree T on n nodes with non-negative edge lengths. Can we
solve the k-median problem optimally on trees in polynomial time?
Hint: Dynamic programming. Think of what the table will look like - what
the subproblems are - how the solutions of subproblems can help find the
solution to the problem. What approximately is the time complexity?

362 notes on algorithm design

14.4 The multiway cut problem is stated as follows:

Multiway Cut Problem:

Input: An undirected (complete) graph G = (V, E) on n vertices and each
edge has a positive weight w : E → <+. A set T = {s1, . . . , sk} ⊂ V of k
vertices called terminals.
Output: Find a set of edges C ⊆ E of minimum total weight so that the
graph G′ = (V, E \ C) has no path between any pair of terminals in T.

We will present an algorithm for this problem using the min-cost s− t cut
problem. Recall that in the min-cost s− t cut problem:

Min-Cost s− t cut Problem:

Input: Same graph as above, but T = {s, t}.
Output: Find a set of edges C ⊆ E of minimum total weight so that the
graph G′ = (V, E \ C) has no path between s and t. I.e., C forms a cut of
minimum weight that separates s from t.

To solve the multiway cut problem we perform the following steps for
each vertex si ∈ T:

1. Add a new vertex t in V.

2. Add the k− 1 edges to E, s1t, s2t, . . ., si−1t, si+1t, . . ., skt, each of infinite
weight.

3. Let the resulting graph be Gi. Compute a min cost si − t cut in Gi and let
it be Ci.

4. Restore the graph G by removing the added edges and the vertex t.

We report C =
k⋃

i=1
Ci as the solution for the multiway cut problem.

Answer the following:

1. Prove that C is a valid solution for the multiway cut problem, i.e., the
graph (V, E \ C) has no path that connects any pairs of distinct terminals
in T.

2. Let C∗ be an optimal multiway cut in G. For each i = 1, . . . , k, let C∗i ⊂
C∗ be the set of edges in C∗ that separates si from all other terminals in
T \ {si}. Show that wt(Ci) ≤ wt(C∗i) for all i = 1, . . . , k. (Note that
wt(S) represents the sum total of weights of edges in S, i.e. ∑

e∈S
w(e).

3. Show that any edge e = (u, v) ∈ E appears in at most two sets in
{C∗1 , C∗2 , . . . , C∗k }.

4. Show that w(C) ≤ 2w(C∗).

approximation algorithms design techniques 363

5. For any set Cj ∈ {C1, . . . , Ck} show that C \ Cj is a valid solution for the
multiway cut problem.

6. Show that there is a set Cj ∈ {C1, . . . , Ck} such that w(C \ Cj) ≤
(2− 2

k)w(C∗).

7. Conclude that one can find an approximate multiway cut in G in polyno-
mial time that is within a factor of 2(1− 1

k) of an optimal cut.

14.5 Show that a maximum independent set of a maximal outerplanar graph
can be computed in linear time.

14.6 In this exercise, we will design an approximation algorithm for com-
puting an approximation to the maximum independent set in a planar
graph using Baker’s shifting technique 5. Let H be a plane graph (i.e., an 5 Brenda S. Baker. Approximation

algorithms for NP-complete problems
on planar graphs. J. ACM, 41(1):153–180,
1994

embedded planar graph). We assign levels to each vertex of H. All the ver-
tices on the boundary of H are level 1 vertices. Remove all level 1 vertices.
The boundary vertices in the reduced graph are level 2 vertices. Similarly,
define vertices on other levels. We say H is k-outerplanar if no vertex in
H of level > k exists. It is known that a maximum independent set of a
k-outerplanar graph can be computed in O(8kn) time. Let G = (V, E) be an
embedded planar graph on n vertices. Let l(v) denote the level of each vertex
v in G. Answer the following questions.

1. Let Si ⊂ V, where Si = {v ∈ V : l(v) mod k = i}. Consider the graph
obtained by removing the vertices Si (and their incident edges) from G,
i.e., the graph induced by vertices in V − Si. Let Gi be the resulting graph.
Show that Gi is a collection of disjoint k-outerplanar graphs.

2. Show that the maximum independent set of Gi can be computed in
O(8kn) time.

3. Let G0, . . . , Gk−1 be the induced graphs of V − S0, . . . , V − Sk−1, re-
spectively. Let the maximum independent sets of G0, . . . , Gk−1 be
I0, . . . , Ik−1, respectively. Let I∗ be a maximum independent set of G.
Show that max

j∈{0,k−1}
|Ij| ≥ (1− 1

k)|I∗|.

4. Conclude that for a constant k, a factor (1 − 1/k) approximation to
the maximum independent set of a planar graph can be computed in
polynomial time.

14.7 Let G be a simple graph on n vertices where each vertex is colored by
one of the colors from the set {1, . . . , k}. Design a dynamic programming
algorithm that reports whether G contains a colorful path of length k in
O(2k poly(n)) time.

14.8 Let G = (V, E) be a simple undirected graph on n vertices. Design
a (randomized) decision algorithm, running in f (k)nO(1) time that reports

364 notes on algorithm design

whether G has a set of k disjoint triangles. A triangle in G is formed by
three distinct vertices u, v, w ∈ V, such that uv, vw, uw ∈ E. Two triangles
are disjoint if they do not share any vertex.

14.9 You are standing in the middle of a very long horizontal street at the
location M, where houses are on the North side of the road, and the street
is oriented East-West. Houses are equally spaced, say every 100 meters.
Each home has a unique number, but the numbering is chaotic and doesn’t
follow a sequential order. In fact, we can’t make any assumptions about the
distribution of the house numbers. We want to visit house #3801, but we
don’t have any way of knowing whether it is on the East or the West side of
M. We employ the following strategy to find the house #3801.

1. Initialize x := 100 meters.

2. Repeat the following steps till success:

(a) From M, travel distance of x towards East. If we find #3801 on the
way, we stop the search and terminate.

(b) Return to M. Set x := 2x.

(c) From M, travel distance of x towards West. We stop and terminate
the search if we find #3801 on the way.

(d) Return to M. Set x := 2x.

Let D be the distance from M to the house # 3801. Assume that D ≥
100. Show that the total distance that we travel using the above method is
≤ 9D. Note that the algorithm doesn’t know the value of D.

The following exercises are about the maximum k-coverage prob-
lem. The input to the maximum k-covergae problem consists of a
universe U of n elements, and a collection of m sets S = {S1, . . . , Sm}
of U, where each Si ⊂ U, and an integer parameter k > 0. The max
k-coverage problem is to find k sets from S such that their union has
the largest possible cardinality.

14.10 Consider the following greedy algorithm for the maximum k-coverage
problem.

approximation algorithms design techniques 365

Greedy Algorithm for max k-coverage problem

Step 1: Set S ′ := ∅.

Step 2: For i := 1 to k do

- Pick the set from S that covers the maximum number of uncovered
elements of U.

- Without loss of generality, let that set be X.

- S ′ := S ′ ∪ X.

Step 3: Output S ′

Answer the following questions:

1. Construct an example for k = 2, where the competitive ratio of the greedy
algorithm is at most 3/4.
Hint: Consider three sets, S1, S2, and S3, where S2 and S3 are disjoint
and both contain half of the elements of the universe. Choose set S1

so that the greedy algorithm selects S1 and one of S2 or S3 and has a
competitive ratio of at most 3/4.

2. Construct an example for k = 3, where the competitive ratio of the greedy
algorithm is at most 19/27.

3. Construct an example where the competitive ratio of the above greedy
algorithm is at most 1− (1− 1

k)
k, for large values of k.

4. Show that for k = 2, the competitive ratio of the greedy algorithm is
always ≥ 3/4.

14.11 In this exercise, we will show that the approximation ratio of the

greedy algorithm for the max k-coverage problem is 1−
(

1− 1
k

)k
≈ 1− 1

e
for large values of k.

1. Suppose that the greedy algorithm has selected i − 1 sets, and in this
step, we want to select the i-th set. We assume i < k. Without loss
of generality, let the selected i − 1 sets be S1, . . . , Si−1, and Si will
be the set selected in the i-th step. Furthermore, assume that Li−1 =

|⋃i−1
j=1 Sj| is the total number of elements of U that are covered by the

union of S1, . . . , Si−1. Let L∗ be the maximum number of elements in the
union of an optimal choice of k sets from S . Show that Si covers at least
1
k (L∗ − Li−1) new elements, i.e., Li − Li−1 ≥ 1

k (L∗ − Li−1).

2. Show that Lk ≥
(

1−
(

1− 1
k

)k
)

L∗.

3. Conclude that the competitive ratio of the greedy algorithm is

1−
(

1− 1
k

)k
and limk→∞ 1−

(
1− 1

k

)k
= 1− 1

e .

366 notes on algorithm design

14.12 In the minimum set cover problem, the input consists of a universe
U of n elements, and a collection of m sets S = {S1, . . . , Sm} of U, where
each Si ⊂ U, where U =

⋃
X∈S X. The problem is to find the minimum

number of sets from S such that their union covers U. We design an ap-
proximation algorithm for the set cover problem by adapting the greedy
algorithm for the maximum k- coverage problem for the given U and S .
Let L∗ be the optimal number of elements in U that can be covered by k
sets from S . We know that the max coverage greedy algorithm returns k
sets from S that covers at least

(
1− (1− 1

k)
k
)

L∗ elements of U. Since we
want to cover all the elements of U, we keep running the greedy step (pick
the set that covers the maximum number of uncovered elements) till all the
elements of U are covered. After executing the greedy step l times, assume
we cover all the elements.

Show the following.

1. Let Li be the number of covered elements at the end of greedy step i. Let
L∗ be the maximum number of elements that can be covered by choosing

k sets. Show that Li ≥ L∗
k

i−1
∑

j=0

(
1− 1

k

)j
, for all i = 1, . . . , l.

2. Assume that the size of an optimal set cover is k. This implies that the
max-coverage by selecting optimal k sets is n = |U|. Consider the
i = (l − 1)-st iteration. Show that n

(
1− e−

l−1
k

)
≤ Ll−1 ≤ n− 1.

3. Show that l ≤ (1 + ln n)k and conclude that the competitive ratio of
finding an approximate set cover using the greedy algorithm is 1 + ln n.

14.13 Let B be a Boolean matrix of dimensions n× n. We say that a column
j hits a row i if B[i, j] = 1. We say a set of columns C ⊂ {1, . . . , n} hits a
set R ⊆ {1, . . . , n} of rows if for every i ∈ R, there exists a j ∈ C such that
B[i, j] = 1.

For example, let B =

1 0 1 1
0 0 0 1
1 0 0 0
0 1 1 0

For C = {1, 3}, the first and third columns hit the rows R = {1, 3, 4} as

B[1, 1] = B[3, 1] = B[1, 3] = B[4, 3] = 1.
Given a Boolean matrix B and a number c∗, 1 ≤ c∗ < n, let r∗ be the

optimal number of rows that can be hit by c∗ columns. Devise an algorithm,
running in polynomial time in n, that finds c∗ columns of B so that the
number of rows hit by them is as close to r∗ as possible. State the steps of
your algorithm. Establish what is the fraction of rows your solution hits as
compared to r∗ in the worst case. Justify your claim.

The following exercises are about finding max-weight independent
set of intervals on a line. Given a collection of n line segments I =

approximation algorithms design techniques 367

{I1, . . . , In} on a horizontal line, where each line segment Ii = [ai, bi]

and has a non-negative weight wi. Note that ai ≤ bi. Further, we
assume that these line segments are given with respect to the sorted
order of the right endpoints, i.e., b1 ≤ b2 ≤ · · · ≤ bn. Our problem
is to find an independent set of I′ ⊆ I, such that no two intervals
in I′ intersect, and among all possible independent sets, it has the
largest weight. We will devise a 4 approximation algorithm by using
a randomized rounding linear programming algorithm. These exercises are based on notes of

Chandra Chekuri on Approximation
Algorithms.

14.14 Show that if the weights of all intervals are the same, the maximum
independent set can be computed in polynomial time.

14.15 Design an integer linear program (ILP) for the maximum weight-
independent set of the intervals. For each interval Ii ∈ I, associate a
0 − 1 variable xi, where xi = 1 if and only if the interval Ii is in the

independent set. The objective function OPTILP = max
n
∑

i=1
wixi. Let

S = {Ij|xj = 1, for j = 1, . . . , n}. Show that S is an independent set and
w(S) = ∑

Ij∈S
w(Ij) equals the weight of a maximum weight independent set.

14.16 Consider the relaxed ILP, where the constraint xi ∈ {0, 1} is replaced
by 0 ≤ xi ≤ 1. Show that the objective value of the relaxed LP, OPTLP ≥
OPTILP.

14.17 We solve the relaxed LP and obtain values for the variables x1, . . . , xn.
Since, these values may be fractions, we round them to integeral values as
follows. For each xi, independently with probability xi/2, we round it to 1,
else it is set to 0. Let the rounded value of xi be x′i . Note that x′i ∈ {0, 1}.
Define the set R = {Ij|x′j = 1, for j = 1, 1 . . . , n}. Show that E[w(R)] =
OPTLP/2.

14.18 Define indicator random variables Y1, . . . , Yn, where

Yj =

1, if Ij ∈ R

0, otherwise

Show that Y1, . . . , Yn are independent random variables. Show that E[Yj] =

xj/2.

14.19 Show that the intervals in R may not be independent. We extract a S
of R by executing the following algorithm:

368 notes on algorithm design

1. S := ∅.

2. For i := n down to 1 do (note that the intervals are sorted with respect to
their right endpoints)

If Ii ∈ R and S ∪ {Ii} is an independent set

S := S ∪ {Ii}.

Show that S returned by the above algorithm is an independent set.

14.20 Define indicator random variables Z1, . . . , Zn, where

Zj =

1, if Ij ∈ S

0, otherwise

Show that the random variables Z1, . . . , Zn may not be independent. For
each interval Ii = (ai, bi), define the set Ai to be all the intervals Ij, where
j > i and bi ∈ Ij. Answer the following.

1. Show that if Ai ∩ S 6= ∅, Zi = 0.

2. Show that Pr(Ai ∩ S 6= ∅) ≤ Pr(Ai ∩ R 6= ∅).

3. Show that Pr(Ai ∩ R 6= ∅) ≤ 1/2.

4. Show that Pr(Ai ∩ S = ∅) ≥ 1/2.

14.21 Given the random variables Yi’s and Zi’s, show the following

1. Pr(Zi = 0/Yi = 1) ≤ 1/2.

2. Pr(Zi = 1/Yi = 1) ≥ 1/2.

14.22 Consider w(S) = ∑
Ij∈S

w(Ij). Answer the following

1. Show that Pr(Zi = 1) = Pr(Yi = 1) · Pr(Zi = 1/Yi = 1).

2. Show that E[w(S)] = ∑
i∈{1,...,n}

wi · Pr(Zi = 1).

3. Show that E[w(S)] ≥ 1
4OPTLP.

4. Conclude that the above method returns an independent set S ⊆ I, whose
weight is at least 1/4-th of the weight of a maximum weight independent
set of I.

The following exercises are about finding a max-weight inde-
pendent set among a collection of n weighted disks in plane. Let
D = {D1, . . . , Dn} be a collection of n disks. Each disk Di has a pos-
itive weight wi. Let ci denotes the center of disk Di, for i = 1, . . . , n.

approximation algorithms design techniques 369

A subset I ⊆ D is independent if no two disks in I have a point in
common. We will design a constant factor approximation algorithm
running in polynomial time. The decision problem, whether there is
an independent set of size at least k, is NP-Hard.

Figure 14.7: Boundary of union of discs
U(D) shown in blue.

14.23 Consider the union of disks in D, i.e., U(D) =
n⋃

i=1
Di. See Figure

14.7. The boundary U(D) is defined by the arcs of the disks and the vertices
introduced by the intersection of a pair of disks. Define the graph G =

(V, E) on disks as follows. Each disk is a vertex in V, and two vertices u
and v are connected if (a) disks corresponding to u and v have a non-empty
intersection, and (b) at least one of the intersections points of these disks is
on the boundary of U(D). For simplicity, we take the centers of the disks as
the vertices in the graph G. Show that the number of vertices (and arcs) on
the boundary of U(D) is O(|D|) by answering the following questions.

1. Show that even if two disks Du and Dv have a non-empty intersection,
there may not be an edge between u and v in G. See Figure 14.8, and
consider the disks centered at c1 and c3. c1

c2
c3

c4

c5

c6

c7

c8

c9

Figure 14.8: The graph G = (V, E).

2. Let cpcq and crcs be two arbitrary distinct edges in G. Note that cpcq

and crcs also correspond to segments in the plane. Since cpcq is an edge
in G, at least one of the intersection points of disks Dp and Dq, say xpq,
is on the boundary of U(D). Similarly, since crcs is an edge in G, at
least one of the intersection points of disks Dr and Ds, say xrs, is on the
boundary of U(D). Let l be the perpendicular bisector of xpq and xrs.
Argue that cpcq and crcs do not intersect l and lie on opposite sides of l.
See Figure 14.9.

cp

cq

cr

cs

xpq

xrs

Dp

Dq

Dr

Ds

l

Figure 14.9: Edges cpcq and crcs of G do
not intersect.

3. Conclude that graph G is planar.

4. Show that the number of vertices in U(D) is O(|D|) by arguing that
each edge of G can introduce at most two vertices on U(D).

14.24 Given the notation of the previous exercise, define k-level in the
arrangement of disks as the collection of all points p ∈ <2 that are in exactly
k disks of D, i.e., they are depth k points. See Figure 14.10. Define ≤ k-level
as the collection of all points whose depth is ≤ k, i.e. it is the union of points
in 0-level, 1-level, . . . , k-level.

0
1

11 2

2 2
3

D1
D2

D3

Figure 14.10: 0, 1, 2, and 3-levels in
an arrangement of disks. ≤ 2-level is
shown in shaded.

Let Vk(D) denote the set of vertices in ≤ k-level. In this exercise, we
will use the probabilistic method to show that ≤ k-level has O(nk) vertices.
Pick a random sample R of disks from D, where each disk in D is chosen
uniformly at random with probability 1/k. Answer the following.

1. Show that the expected number of disks in R is E[|R|] = n/k.

2. Let U(R) denote the union of disks in R and let V(R) be the set of
vertices on the boundary of U(R). Show that E[|V(R)|] ≤ c n

k , for some
constant c.

370 notes on algorithm design

3. Define an indicator random variable Xv for each vertex v ∈ Vk(D) as
follows:

Xv =

1, v is a vertex on the boundary of U(R), i.e., v ∈ V(R)

0, otherwise

For a vertex v ∈ Vk(D), v ∈ V(R) if both the disks that define v in
U(R) are selected, and no disks that contain v are selected. Show that
Pr(Xv = 1) = (1

k)
2(1− 1

k)
α, where α is the number of disks that contain

v in their interior for some k ≥ α ≥ 0.

4. Given that 1− x ≥ e−2x for 0 ≤ x ≤ 1/2. Show that Pr(Xv = 1) ≥
1

e2k2 .

5. Show that E[|V(R)|] ≥ |Vk(D)|
e2k2 .

6. Conclude that |Vk(D)| = O(kn).

14.25 The intersection graph of a collection of disks D = {D1, . . . , Dn}
has a vertex corresponding to each disk, and there is an edge between two
vertices if and only if the corresponding disks intersect. Show that for a
collection of disks D with maximum depth k, the size of their intersection
graph is O(nk), i.e., it has n vertices and O(nk) edges.

14.26 Answer the following.

1. For a graph G = (V, E) on n vertices, if every subgraph has a vertex
with degree ≤ ∆, show that it has an independent set of size ≥ n

∆+1 .

2. For a graph G = (V, E) on n positively weighted vertices, if every
subgraph has a vertex with degree ≤ ∆, show that it has an independent
set of weight ≥ W

∆+1 , where W is the sum total of weights of all vertices.
Hint: Color the graph with ∆ + 1 colors.

14.27 Show that for a collection of n positively weighted disks D =

{D1, . . . , Dn} in the plane with a total weight W and maximum depth
k, we can find an independent set of weight Ω(W/k).

14.28 Construct an example where the set of n disks in the plane have Ω(n)
depth and an independent set of size Ω(n).

14.29 Design an integer linear program ILP for determining the maximum
weight independent set of disks for a given collection of n disks D. For each
disk Di ∈ D, define a 0− 1 indicator variable xi stating the membership of
Di in the independent set. Note that for each region r in the arrangement of
disks in D, ∑

r∈Di

xi ≤ 1. Let OPTILP be the weight of a maximum weight

independent set, i.e., OPTILP =
n
∑

i=1
wixi, where wi ≥ 0 is the weight of the

disk Di.

approximation algorithms design techniques 371

14.30 For the integer linear program of the previous exercise, relax the
constraint that xi ∈ {0, 1} to 0 ≤ xi ≤ 1 to get a linear program LP.
Show that the optimal value of the relaxed linear program OPTLP is at least
OPTILP.

14.31 Using the xi values of LP of the previous exercise, we create a mul-
tiset of disks D̂ as follows. Choose a large positive integer k. For each disk
Di ∈ D, create dkxie copies of Di, each of weight wi. Answer the following.

1. Show that the total weight of disks in D̂ ≥ kOPTILP.

2. Show that for all points p ∈ <2, depth of p in D̂ = ∑
p∈Di

dkxie ≤ k + n.

14.32 Show that for the set of n weighted disks in D, using the relaxed
LP with parameter k and D̂, we can obtain an independent set of weight
Ω
(

k·OPT
k+n

)
. By choosing k >> n, show that we obtain an O(1) factor

approximation for the maximum weight independent set of n weighted disks
D in the plane.

15
Network Flow

Caution: This is a pre-preliminary draft. This chapter was last edited
in early 2000.

We will focus on

1. Flow network

2. Maximum flow problem

3. Ford and Fulkerson’s max flow algorithm

4. Flow augmentation

5. Edmonds-Karp flow algorithm

15.1 What is a Flow Network

A flow network consists of the following:

1. A simple finite directed graph G = (V, E).

2. Two specified vertices, namely source s and target t.

3. For each edge e ∈ E, a non-negative number c(e) called the
capacity. If a pair of vertices u and v are not joined by an edge,
then c(u, v) = 0.

Flow: A flow function f in G is a real-valued function

f : V ×V → <

that satisfies the following three properties.

1. Capacity Constraint: For all u, v ∈ V, f (u, v) ≤ c(u, v).

374 notes on algorithm design

2. Skew Symmetry (A tough constraint to see!): For all u, v ∈ V,
f (u, v) = − f (v, u). This is for notational purposes, and basically
says that flow from a vertex u to vertex v is the negative of the
flow in the reverse direction.

3. Flow conservation: For all u ∈ V − {s, t}, ∑v∈V f (u, v) = 0. This
uses the skew symmetry property, otherwise we have to sum up
the flow values coming into a vertex and that should be equal to
the sum of the outgoing flow values from that vertex. This is same
as the Kirchoff law for current in an electrical circuit, i.e. no node
can hold the current, or no node can hold the flow, or whatever
comes in goes out. There is no reservoir at a node.

The value of the flow is defined to be the flow out of the source s
or the flow into the target t, i.e.

| f | = ∑
v∈V

f (s, v) = ∑
v∈V

f (v, t).

The Maximum Flow Problem to find the flow of maximum value
in a given flow network.

See Figure 15.1 for an example of a network flow.

s t

a

b c

d

3/12 3/5

3/9

2/6

3/3

2/11

0/10

3/3

3/8

0/3 0/3

Figure 15.1: An example of a network
flow with a flow of 8 from s. Each edge
shows the amount of flow on that edge
(numerator term) and the total capacity
(denominator term).

15.2 Ford and Fulkerson’s Algorithm

This is an iterative method for computing the flow.

Ford-Fulkerson-Method (G, s, t)
1. Initialize the flow f to 0.

2. While there exists an augmenting path p, augment the flow f along

p.

3. Return f .

An augmenting path is a path from s to t along which additional
flow can be sent. This path is found using the concept of residual

network flow 375

networks. The residual network consists of those edges which can
admit more flow. The residual capacity c f (u, v) of an edge (u, v) in a
flow network is given by

c f (u, v) = c(u, v)− f (u, v).

In our example c f (s, a) = 12 − 3 = 9, c f (a, s) = 0 − (−3) = 3,
c f (b, a) = c(b, a)− f (b, a) = 3− 0 = 3. Given a flow network G and
the flow function f , the residual network G f = (V, E f) consists of the
same vertex set and the edges E f are defined as follows:

E f = {(u, v) ∈ V ×V : c f (u, v) > 0}.

The residual network of our example is given in Figure 15.2.

s t

a

b c

d

9 2

3

4
9

10

3

5

3 3

3

6
3

3

2

3

2

Figure 15.2: Residual network corre-
sponding to the flow in Figure 15.1. The
red-path from s to t is an augmenting
path, with a residual capacity of 3.

As we can see that there is an augmenting path in this network
(the red path), and the flow can be augmented along this path, by
a value of 3. Hence we get a new flow network with the total flow
value equals to 8 + 3 = 11 given in Figure 15.3. Note that edge dc has
a flow of 0 after the augmentation, whereas it had a flow of 3 units
before the augmentation.

s t

a

b c

d

6/12 3/5

3/9

2/6

3/3

5/11

0/10

0/3

3/8

0/3 3/3

Figure 15.3: Flow network after aug-
menting the flow from Figures 15.1 and
15.2.

The new residual network that we obtain for the flow correspond-
ing to the flow network in Figure 15.3 is given in Figure 15.4. Note
that there exists an augmenting path that can further increases the
flow value by 4.

The new flow graph is shown in Figure 15.5 and the correspond-
ing residual network is shown in Figure 15.6.

376 notes on algorithm design

s t

a

b c

d

6 2

3

4
6

10

3

5

3 3

6

6
3

3

2

3

5

Figure 15.4: Residual network corre-
sponding to the flow in Figure 15.3.

s t

a

b c

d

6/12 3/5

3/9

6/6

3/3

9/11

0/10

0/3

3/8

0/3 3/3

Figure 15.5: Flow network after aug-
menting the flow from Figures 15.3 and
15.4.

s t

a

b c

d

6 2

3

2

10

3

5

3 3

6

6
3

3

6

3

9

Figure 15.6: Residual network corre-
sponding to the flow in Figure 15.5.

network flow 377

This will continue for a few more iterations and after that there is
no path between s and t in the residual network. The corresponding
figures are Figure 15.7 and Figure 15.8.

s t

a

b c

d

8/12 5/5

8/9

6/6

3/3

9/11

5/10

0/3

8/8

0/3 3/3

Figure 15.7: Resulting Flow network.

s t

a

b c

d

4

1

2

5

3

3 3

8

8
8

5

6

3

9

5

Figure 15.8: Residual network corre-
sponding to the flow in Figure 15.7.

Now consider the residual network in Figure 15.8, where there
are no paths joining s and t. As can be seen from the figure, there
is a path from s to every vertex in the set {s, a, b, c}, and there are
paths from vertices {d, t} to t. This automatically partitions the set of
vertices into two, call it a s− t cut {S, T}, where s ∈ S and t ∈ T (in
our example, S = {s, a, b, c} and T = {d, t}). See Figure 15.9. Define
the capacity of a cut as follows

c(S, T) = ∑
u∈S,v∈T

c(u, v).

In other words consider the edges crossing the cut, and sum up the
capacities of the edges which go from a vertex in the set S to a vertex
in the set T. Define the net flow across the cut to be

f (S, T) = ∑
u∈S,v∈T

f (u, v).

In other words the net flow is the sum of the positive flow on edges
going from S to T minus the sum of the positive flows on edges
going from T to S (recall the skew symmetry property). Amazingly
in our example f (S, T) = c(S, T). Is it always true or just a luck!
Before we get to this, a few observations.

378 notes on algorithm design

s t

a

b c

d

8/12 5/5

8/9

6/6

3/3

9/11

5/10

0/3

8/8

0/3 3/3

S

T

Figure 15.9: An illustration of a
s − t cut. Note that f (S, T) =

∑u∈S,v∈T f (u, v) = f (s, d) + f (b, d)−
f (d, c) + f (c, t) + f (a, t) = 22
and c(S, T) = ∑u∈S,v∈T c(u, v) =
c(s, d) + c(b, d) + c(c, t) + c(a, t) = 22.

Observation 15.2.1 For any s− t cut S, T, and flow f

| f | ≤ c(S, T).

This follows from the definition of the flow across the cut. The flow
f (S, T) is defined to be the sum of the positive flows along the edges
in the forward direction, i.e. the ones going from vertices in S to
vertices in T minus the sum of the positive flows along the edges in
the reverse direction. If we ignore the reverse direction, then clearly
the flow along each edge in the forward direction is bounded by the
capacity of the edge. Sum of these capacities is the capacity of the cut
and hence the observation.

The following observation explains why the flow f ′ found using
the augmenting paths in the residual graph G f , can be augmented
with the flow f in G, to obtain a new flow in G of a higher value
| f + f ′| ≥ | f |.

Observation 15.2.2 Let G be the flow network with flow f and G f be the
corresponding residual network and let f ′ be the flow in G f . Then the flow
sum f + f ′ is a flow in G and its value is | f + f ′| = | f |+ | f ′|.

Proof. To prove that f + f ′ is a flow in G, we need to prove that the
three conditions are satisfied. We show the capacity constraint, and
others are left as an exercise. The capacity constraint follows from

(f + f ′)(u, v) = f (u, v)+ f ′(u, v) ≤ f (u, v)+ (c(u, v)− f (u, v)) = c(u, v).

Observe that

| f + f ′| = ∑
v∈V

(f + f ′)(s, v) = ∑
v∈V

f (s, v) + ∑
v∈V

f ′(s, v) = | f |+ | f ′|.

Theorem 15.2.3 Let f be a valid flow in the flow network G = (V, E) from
the source s to the target t, then the following statements are equivalent.

1. Flow f is a maximum flow.

network flow 379

2. Residual network G f does not contain an augmenting path.

3. There exists some cut c(S, T) such that | f | = c(S, T).

This is the famous max-flow min-cut theorem.

Proof. Recall that to prove that the three statements are equivalent
we need to show that 1⇒ 2⇒ 3⇒ 1.
1⇒ 2: Let f be a maximum flow and, for contradiction, assume that
there exists an augmenting path in G f . Then we can increase the flow
along the path using Observation 15.2.2 and contradicting that f is a
maximum flow.
2⇒ 3: Define the set

S = {v ∈ V|there is a path from s to v in G f }

and

T = V \ S.

Also observe that s ∈ S and t ∈ T, so it is a valid s− t cut. Moreover
for all edges (u, v) crossing the cut, where u ∈ S and v ∈ T, f (u, v) =
c(u, v), otherwise (u, v) ∈ E f and v ∈ S, which is not possible. Net
flow across the cut (S, T) is | f |! Why? (Think about this yourself!) So
we have shown a cut where 3 holds.
3 ⇒ 1: We know that the capacity of any cut is an upper bound to
the value of the flow. If for a cut we obtain the equality, then we have
attained the max-flow. (In other words the capacity of minimum cut
is the value of the maximum flow!).

This proves the correctness of the Ford-Fulkerson algorithm. The
algorithm iteratively increases the value of the flow using augment-
ing paths and returns the value of the flow, the maximum flow, when
it is not able to find an augmenting path in the residual graph. How
do we analyze the complexity of this algorithm?

First a special case where all capacities are integers. Observe that
value of all flows computed during the algorithm are integers. In
each iteration of the algorithm, the value of flow increases by at
least 1. If f ∗ is a maximum flow, then the number of iterations in the
algorithm are bounded by | f ∗|. It is easy to see that each iteration
requires O(|E|) time; this involves computing residual graph (i.e.
capacities on at most 2|E| edges), and computing a path between s
and t (directed dfs or bfs). Hence the algorithm runs in O(| f ∗||E|)
time - this is a strange complexity since the running time depends
upon the value of the output! Is there a better way to analyze this
algorithm!

380 notes on algorithm design

15.3 Edmonds-Karp Algorithm

In this algorithm, in the Ford-Fulkerson method, a particular path is
chosen to be an augmenting path in the residual graph. A BFS tree
rooted at s is computed in the residual graph and an unweighted
shortest path from s to t is chosen to be an augmenting path. It turns
out that this variation leads to an algorithm that runs in O(|V||E|2)
time. Here is the main lemma - let δ f (s, v) denote the shortest path
distance between s and v in the unweighted residual graph G f ,
corresponding to the flow network G with flow function f .

Lemma 15.3.1 Shortest path distance for each vertex v ∈ V − {s, t} in G f

is non-decreasing with each flow augmentation.

Proof.

Caution: This is a little bit strange proof, and the proof in generic
terms goes as follows. To prove the statement P, the contradictory
proof assumes that ¬P is true. Inside the proof, we need to establish
a claim C, which is proved using contradiction. Assume ¬C is true.
The contradiction is arrived at by showing that ¬C is valid only if
P is true. Since ¬P is assumed to be true, thus implying that C is
true. Once we show that C is true, the contradiction to the original
assumption is arrived at.

Assume that for a vertex v ∈ V − {s, t}, the shortest path decreases
after a flow augmentation. Let f be the flow before the augmenta-
tion, and f ′ be the flow after the augmentation. Let v be the vertex
with minimum δ f ′(s, v) whose distance was decreased by the aug-
mentation (i.e. δ f ′(s, v) < δ f (s, v)). Let u be the vertex just before
v in the shortest path from s to v in G f ′ , i.e. (u, v) ∈ E f ′ . Then
δ f ′(s, u) = δ f ′(s, v) − 1. Moreover, δ f ′(s, u) ≥ δ f (s, u) (by choice
of v).

Now we will show that (u, v) 6∈ E f , and as a consequence of that,
we will arrive at contradiction (somehow!).

First why (u, v) 6∈ E f ? Assume not, i.e., suppose (u, v) ∈ E f .
Then, by triangle inequality, δ f (s, v) ≤ δ f (s, u) + 1. But, δ f (s, u) +
1 ≤ δ f ′(s, u) + 1 = δ f ′(s, v). This implies that δ f (s, v) ≤ δ f ′(s, v),
contradicts our assumption!

Now consider the scenario that (u, v) 6∈ E f and (u, v) ∈ E f ′ .
The flow from v to u must have been increased in Edmonds - Karp
algorithm and this edge must be on a shortest path. This implies
that δ f (s, v) = δ f (s, u) − 1 ≤ δ f ′(s, u) − 1 = δ f ′(s, v) − 2, and this
contradicts the assumption that δ f ′(s, v) < δ f (s, v).

In each iteration of the augmenting path algorithm, at least one
edge becomes critical, i.e. flow value becomes equal to its capacity.

network flow 381

The critical edge disappears from the residual network. Of course the
flow along this edge may be decreased in the future, and this edge
may reappear again in the residual network, but this cannot happen
more than |V|/2 times. Why?

Say (u, v) became critical, then δ f (s, v) = δ f (s, u) + 1. Flow along
(u, v) is decreased only if (v, u) appears on an augmenting path. Let
this happens when f ′ is the flow and note that δ f ′(u) = δ f ′(v) + 1.
Since the shortest path distances are monotone, this implies that

δ f ′(s, u) = δ f ′(v) + 1 ≥ δ f (s, v) + 1 = δ f (s, u) + 2.

Therefore the distance to u from the source has increased by at
least 2 between two consecutive times that (u, v) became critical. The
maximum distance is at most |V| and hence an edge can become
critical at most |V|/2 times. There are O(|E|) edges in all in the resid-
ual graph, and hence the number of augmentations (or iterations)
are bounded by O(|V||E|) times. Each augmentation can be imple-
mented in O(|E|) time, and hence flow between s and t in the graph
G = (V, E) can be computed in O(|V||E|2) time.

15.4 Applications of Network Flow

We can use the flow networks to compute Maximum Matching in a
Bipartite Graphs. Recall that a Graph G = (V = A ∪ B, E) is bipartite,
if the set of vertex V is partitioned into two sets A and B, such that
all the edges in the graph are between vertices of A to vertices in B. A
matching in a graph is a collection of edges such that no two edges
in the matching are incident to the same vertex. A matching in G is
called a maximum matching if the cardinality of the number of edges
in it is maximum among all matchings in G. Note that there can be
a number of maximum matching in a graph. Using flow networks
we can compute easily maximum matching in G. Here is the simple
method. We add two vertices, namely s and t, to the set of vertices
in G. Vertex s is connected to all the vertices in the set A by directed
edges from s. The capacity of all these edges is set to 1. The capacity
of all the edges in the set E, i.e., the edges joining vertices in the
set A to vertices in the set B, is set to 1 and they are directed from
vertices in A to vertices in B. Lastly vertices in B are joined to t by
directed edges with capacity 1. Let G′ be the resulting flow network.
Compute the maximum s− t flow in G′. Observe that the value of the
flow is the size of the maximum matching. Why ?

Note that value of flow in each of the edge will be an integral
value, since all the capacities are integers (this is one of the exercises
in 1). Since the capacity of all the edges between vertices in A and B 1 T. H. Cormen, C. E. Leiserson, R. L.

Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3rd edition,
2009

is 1, the value of the flow on these edges is either 0 or 1. This implies

382 notes on algorithm design

that no two edges in E are incident on the same vertex will ever have
nonzero flow. In other words the edges in E which have nonzero flow
are the edges in a matching. Also maximum matching corresponds
to a largest set of independent edges in G and each of these edges
can admit a flow of value 1 and at the same time satisfy all the three
conditions required for a flow network. Hence maximum matching
in G corresponds to a valid flow in G′.

15.5 Exercises

15.1 Construct a network flow example with 7 vertices and 11 directed
edges, where each edge has a positive capacity and compute the maximum
flow and minimum cut in this graph. You should show some of the steps in
the algorithm. (Follow Edmonds-Karp shortest path heuristic).

15.2 Assume that we have a network flow graph G = (V, E) with positive
capacities on each of the edges and two specified vertices s and t. Suggest an
efficient algorithm to find an edge in E, such that setting its capacity to zero
(i.e. deleting this edge) will result in the largest decrease in the maximum
flow in the resulting graph.

15.3 Suppose we are given a flow network G, where edges have positive
integer capacities, and C = ∑u,v∈V c(u, v), where c(u, v) is the capacity of
the edge e = (u, v) ∈ E. Show the following

1. The value of the max flow is an integer.

2. There is an assignment of non-negative integer flow values on each edge
of G, satisfying all the flow conservation conditions, so that G achieves
max flow.

3. Show that the number of iterations required in the Ford-Fulkerson’s
algorithm (Residual network, find an augmenting path, augment the flow,
repeat) is O(C).

4. Show that in the worst case, Ford-Fulkerson’s algorithm, as stated in Part
3 runs in exponential time.

5. Construct an example, where one can realize the worst case as stated in
Part 4.

15.4 Let G = (V, E) be the flow network. Let C = max(u,v)∈E c(u, v) be
the maximum capacity. Show the following:

1. Minimum cut of G has a capacity of at most C|E|.

2. For a given number K > 0, show how to find an augmenting path of
capacity at least K in O(|E|) time, provided that such a path exists.

network flow 383

3. Execute the following algorithm:

(a) Initialize the flow f = 0;

(b) K = 2blog Cc;

(c) While K ≥ 1 do

i. While there exists an augmenting path p of capacity at least K then
augment flow f along p.

ii. K := K/2;

(d) Return f .

Show that the above algorithm computes Max-Flow.

4. Show that the loop in Step 3c(i) is executed at most O(|E|) times for each
value of K.

5. Show that the algorithm runs in O(|E|2 log C) time.

15.5 Let G = (V, E) be a flow network. Recall that G is a complete graph,
where some of the edges may have a capacity of zero. Suppose your task
in the max flow problem is to increase the flow of a network as much as
possible, but you are only allowed to increase the capacity of only one
edge, whose capacity is strictly larger than zero. First show that there are
networks where such an edge may not exist, i.e. increasing the capacity of
a single edge (> 0 capacity) will not alter the value of the max-flow. Show
that there are networks, where such an edge may exist. Try to design an
algorithm which can detect whether flow can be increased.

15.6 A simple undirected graph G = (V, E) is called k-edge connected if
removal of any set of k-edges keeps G still connected. (e.g. cycles are 1-edge
connected.) Show how to compute edge connectivity of G by invoking at
most |V| network flow computations.

16
Additional Exercises

This is mainly a dump of questions that have been asked in the
assignments over years in COMP 5703, COMP 5112, COMP 4804,
COMP 3804 and COMP 3801. The relevant subject material may not
be in the notes!

16.1 Problems

1. Let G = (V, E) be a simple undirected graph. Provide an algo-
rithm running in O(|V|+ |E|) time that outputs whether G contains
a cycle or not. If it contains a cycle - then it needs to output at
least one cycle. What graph representation you have used for your
algorithm? Justify and and see how it influences the complexity
analysis.

2. Design an algorithm that determines whether a directed graph
G = (V, E) is an acyclic graph (i.e., it doesn’t contain a directed
cycle). Your algorithm must run in O(|V|+ |E|) time.

3. Typically departments in universities (like Carleton) offer many
courses, but to register in a course, one needs to have completed
all the required prerequisite courses. We can easily model this
relationship as a directed graph, where each course is a vertex, and
a directed edge from course u to v if and only if u is a prerequisite
course for taking w. It should be clear that this graph should not
contain any directed cycles (otherwise we won’t graduate!). (For
example, if COMP 1405 and COMP 1805 are required for taking
COMP 2402, and COMP 2402 is required for taking COMP 3804,
we will have directed edges from vertices corresponding to COMP
1805 and COMP 1405 to COMP 2402, and a directed edge from
COMP 2402 to COMP 3804.) Given a directed graph G = (V, E)
in adjacency list representation, representing the courses and their
prerequisites, your task is to compute minimum number of terms
one needs to spend in the department to complete the degree,

386 notes on algorithm design

where you can assume that you can do any number of courses in
any term, provided that the prerequisite conditions are met. What
if you limit the number of courses within a term that the student
can take to 6?

4. Given a directed graph G = (V, E), where each vertex has a
distinct integer label. For each vertex v, define R(v) to be the set
of all vertices w ∈ V for which there is a directed path from v to
w in G. Furthermore, for each vertex v ∈ V, define MinLabel(v) to
be the vertex with the minimum label in the set R(v). Provide an
algorithm, running in O(|V|+ |E|) time, that computes MinLabel(v)
for all vertices v ∈ V.

5. Let s and t be two specific vertices of an undirected connected
simple graph G = (V, E) on n vertices, where any path between s
and t in G consists of at least n/2 + 2 vertices. Show that there is a
vertex v ∈ V, v 6= s and v 6= t, such that any path from s to t passes
through v. Also, provide an algorithm, running in O(|V| + |E|)
time, for identifying such a vertex v for a given pair of vertices
s, t ∈ V. (Note that by removing v from G, we disconnect s and t.)

6. There are two algorithms for a problem of size n. The recurrence
for the running time of Algorithm I is T(n) = 2T(n/2) + n, and the
recurrence for the running time of Algorithm II is T(n) = T(n/3) +
T(2n/3) + n. Is the running time of Algorithm II asymptotically
smaller than that of Algorithm I for large values of n? You can
assume that T(1) = 1.

7. What does the recurrence T(n) = T(d 7
10 ne) + T(d 1

5 ne) + n, where
T(1) = 1, evaluates to ?

8. Is it true that if the SATISFIABILITY problem can be solved in
polynomial time, then P = NP?

9. Is it true that if a graph G = (V, E) on 9 vertices has a clique
of size 6, than the complement of G has a vertex cover of size 3?
(Recall that a clique is a complete graph. A vertex cover C ⊆ V is
the set of vertices such that for each edge e = (u, v) ∈ E, u ∈ C
or v ∈ C. Complement G′ = (V, E′) of the graph G = (V, E) is a
graph on the same vertex set V and e′ = (u, v) ∈ E′ if and only if
(u, v) 6∈ E.)

10. Given an undirected connected graph G = (V, E), in adjacency list
representation, can it be decided within O(|V|+ |E|) time whether
there is a path between two specific vertices x and y consisting of
at most 50 edges, where x, y ∈ V?

additional exercises 387

11. Is it sufficient to perform 6200 multiplications in order to multiply
four matrices
A× B× C × D, where dimensions of matrix A is 10× 100, Bs is
100× 20, Cs is 20× 2 and Ds is 2× 10? (Note that if we have two
matrices X and Y, with dimensions p× q and q× r, respectively,
then pqr multiplications are sufficient to compute XY.)

12. Let S be a set of n-real numbers. Given a real value t, we need to
find a subset S′ ⊆ S, such that the sum total of the elements of S′

equals to t or report that no such S′ exists. The following two-step
algorithm finds the set S′ (if it exists):

(a) Compute all possible subsets of S.

(b) For each subset S′ of S, check whether the sum of the elements
of S′ equals to t.

The following complexity analysis of the above algorithm is pro-
vided:
Since, in all, there are O(n2) subsets of S, and the sum total of the ele-
ments in any subset can be computed in O(n) time, the above algorithm
runs in O(n3) time.
Is the above analysis correct?

13. What is the length of the longest increasing subsequence of the
following sequence:

〈7, 3, 2, 19, 4, 11, 12, 6, 8, 9, 5, 27, 12, 16, 51, 42, 13〉

14. Suppose in the Minor Hockey League Championship play off
series between Nepean Pirates and Kanata Thunders, there are
three possible playoff games planned. A team that wins two games
is declared the champion. Outcome of each game is either a win
or a loss - there are no ties! The first game is played in the Pirates
Arena, the Second game is played in the Thunder’s arena, and
if required the third game will be played in the Pirates arena. A
team wins with a probability of 2/3rd in its home arena, and
with a probability of 1/3rd in the opposition’s arena. What is the
probability that Nepean Pirates will be declared the Champion?

15. Suppose that 8% of all bicycle racers use steroids, that a bicyclists
who uses steroids tests positive for steroids 96% of the time, and
that a bicyclist who does not use steroids tests positive for steroids
9% of times. What is the probability that a randomly selected
bicyclist who tests positive for steroids actually uses steroids?

16. Let F(x) and G(x) be two polynomials of degree d, where d is
a positive integer. The polynomial F is given as a product of
d monomials, and the polynomial G is given in the standard

388 notes on algorithm design

form. For example, F(x) = (2x + 1)(x − 1)(x + 2)(3x − 1) and

G(x) = 6x4 + 7x3 − 12x2 − 3x + 2. To check whether F(x) ?
= G(x),

we can convert F(x) to the standard form, and then verify whether
F(x) and G(x) are identical. Unfortunately, converting F(x) to
standard form is cumbersome and an expensive operation.

A simple randomized algorithm to check whether F(x) = G(x)
is as follows. Choose an integer r uniformly at random from the
range [1, ..., 100d]. Evaluate F(r) and G(r). If F(r) 6= G(r) report
F(x) 6= G(x), otherwise report F(x) = G(x).

Since evaluating a degree d polynomial takes time proportional
to O(d), the above algorithm is very fast and simple. Observe the
following. If F(r) 6= G(r), then clearly F(x) 6= G(x) and algorithm
reports the correct answer. If F(x) = G(x), then no matter what
values of r we choose, F(r) = G(r) and the algorithm reports the
correct answer. But, if F(r) = G(r), we cannot conclusively say that
F(x) = G(x), as we may land up choosing r to be the root of the
equation F(x) − G(x) = 0. First show that the above algorithm
reports the wrong answer with probability at most 1/100. Suggest
some method(s) so that the probability of error can be further
reduced, say for example to 1/10000.

17. As a promotion, the NewAge Cereal has placed a toy car in each
of its cereal boxes. You can determine the color of the toy car,
only by buying and then opening the cereal box. Each toy car is
of a monochromatic color among possible n ≥ 1 colors. Once
you collect cars of all possible colors, then you win a real car.
The company officials have ensured that a cereal box is equally
likely to contain a car of any of the possible n-colors. Let X be
the random variable equal to the number of cereal boxes that
need to be purchased to obtain at least one toy car of each of
the colors. Let Xj be the random variable equal to the number
of additional cereal boxes that must be purchased after cars of
j different colors have been collected until a car of new color is
obtained, for j = 0, 1, 2, . . . , n− 1. Answer the following questions:

(a) Show that X = ∑n−1
j=0 Xj.

(b) Show that after cars of j distinct colors have been obtained, the
probability that the color of the car in the next cereal box that is
purchased is new (i.e. different from any of the j colors) is n−j

n .

(c) Show that Xj has a geometric distribution with parameter n−j
n .

(d) Show that E(X) = n ∑n
j=1

1
j .

(e) Suppose that n = 100. Use the approximation ∑n
j=1

1
j ≈ ln n +

0.5772 to determine the expected number of cereal boxes that
needs to be bought to collect cars of all different colors.

additional exercises 389

18. Let S be a set of n > 0 distinct real numbers. Is it possible to report
the k largest elements of S in sorted (increasing) order in O(n)
time, where k = d n

log n e?

19. Let G = (V, E) be a connected simple undirected graph where
each edge has a positive weight. Consider the following problem.
Find a connected spanning subgraph G′ = (V, E′) of G , where
E′ ⊆ E, that minimizes the sum total of the weights of edges in G′.
Is this problem NP-Complete?

20. Recall that the 3CNF-SATISFIABILITY formula on n-boolean
variables consists of AND of k clauses, where each clause consists
of ORs of three literals. (For example, (p̄ ∨ q ∨ r) ∧ (p ∨ r̄ ∨ s) is a
3CNF formula with two clauses on four variables.) Determining
whether there exists a satisfying assignment for a 3CNF formula is
an NP-Complete problem. Suppose, all the ANDs are replaced by
ORs, and all the ORs are replaced by ANDs in the 3CNF-Forumala
- that is now we have OR of k clauses, where each clause consists
of ANDs of three literals. (For our example, the new formula will
be (p̄ ∧ q ∧ r) ∨ (p ∧ r̄ ∧ s).) Is the problem of determining the
satisfying assignment of the new formula is still an NP-Complete
problem?

21. If a depth-first search traversal of a directed graph G = (V, E) has
no back edges, then is it true that the vertices of G can be assigned
integer labels, so that for each directed edge e = (uv) ∈ E (i.e., an
edge e directed from vertex u to vertex v) the label assigned to u is
strictly smaller than the label assigned to v?

22. Does the following algorithm computes a Minimum Spanning Tree
(MST) of a weighted undirected connected graph G = (V, E)?

Step 1: Sort edges in E in order of decreasing weight.

Step 2: T := E

Step 3: For each edge e taken in the order of decreasing weight
do:
if T − {e} is connected, then discard e from T.

Step 4: Return T as MST of G.

23. Does the following algorithm computes a Minimum Spanning Tree
(MST) of a weighted undirected connected graph G = (V, E)?

Step 1: T := ∅.

Step 2: For each edge e, taken in an arbitrary order perform (i)
and (ii):

i: T := T ∪ {e}.

390 notes on algorithm design

ii: If T has a cycle c and let e′ be a maximum weight edge in c,
then T := T − {e′} (i.e., remove e′ from T).

Step 3: Return T as MST of G

24. Consider a simple undirected connected graph G = (V, E), where
weight of each edge is a positive real number. Let e be the edge
with the largest weight in any minimum spanning tree of G. Con-
sider the graph G′ obtained from G by removing all edges in G
whose weight is equal or larger than the weight of e. Is G′ always
disconnected?

25. Suppose you have an array A of n real numbers. You want to
determine whether there are two indices 1 ≤ i ≤ j ≤ n such that

j
∑

k=i
A[k] is an integer. Design an O(n log n) time algorithm to solve

the decision problem. We can assume that for a real number x, bxc
results in returning the integer part of x in O(1) time, e.g. bπc = 3.

26. This question is based on the cut lemma for minimum spanning
trees. Let G = (V, E) be a connected graph where each edge has
a positive weight. If for any cut of G, there is a unique edge in the
cut of minimum weight then show that minimum spanning tree
of G is unique. Show that the converse may not be true using an
example. I.e., construct a graph G that has a unique minimum
spanning tree, but there are cut(s) in G containing multiple edges
having the minimum weight.

27. Let G = (V, E) be a weighted simple connected graph, and assume
that all edge weights are distinct and positive. A bottleneck span-
ning tree T of G is a spanning tree of G whose largest edge weight
is minimum over all spanning trees of G. Construct an example
of a weighted graph G and a spanning tree T of G such that T is
a bottleneck spanning tree but not a minimum spanning tree of
G. Show that any minimum spanning tree of G is a bottleneck
spanning tree.

28. Consider a connected graph G = (V, E) where each edge has
a non-zero positive weight. Furthermore, assume that all edge
weights are distinct. Using the cut property, first show that that for
each vertex v ∈ V, the edge incident to v with minimum weight
belongs to a Minimum Spanning Tree (MST). Can you use this to
devise an algorithm for MST - the above step identifies at least
|V|/2 edges in MST - you can collapse these edges, by identify-
ing the vertices and then recursively apply the same technique
- the graph in the next step has at most half of the vertices that
you started with - and so on. What is the running time of your
algorithm?

additional exercises 391

Note that for an edge e = uv in the graph G = (V, E), identifying
vertex u with v or collapsing e is the following operation: Replace
the vertices u and v by a new vertex, say u′. Remove the edge
between u and v. If there was an edge from u (respectively, v) to
any vertex w (w 6= u and w 6= v), then we add an edge (with the
same weight as of edge uw (respectively, vw)), between the vertices
u′ and w. This transforms graph G to a new graph G′ = (V′, E′),
where |V′| < |V| and |E′| < |E|. Note that G′ may be a multigraph
(i.e., between a pair of vertices, there may be more than one edge).
For example, if uv, uw, and vw are edges in G, then G′ will have
two edges between u′ and w when we identify u with v. We can
transform G′ to a simple graph by keeping the edge with the lower
weight among uw and vw as the representative for u′w for the
computation of MST.

29. Let G = (V, E) be a connected simple graph, where each edge has
a weight of 3. Devise an algorithm, running in O(|V|+ |E|) time,
for computing shortest path distances from a specific vertex s ∈ V
to all other vertices of G.

30. Prove that the distance values extracted from the heap (priority
queue) over the entire execution of Dijkstra’s single source shortest
path algorithm, in a directed connected graph with positive edge
weights, is a NON-Decreasing sequence. Where is this fact used in
the correctness of the algorithm?

31. In the summer vacation, you decided to travel to various communi-
ties in Northern Canada by your favorite ATV (All-Terrain Vehicle).
Each of the communities you want to visit is represented as a ver-
tex in your travel graph (a total of |V| communities). Moreover,
you are provided with distances between all pairs of communities.
Think of your input graph as a complete graph (i.e. every pair
of vertices are joined by an edge), and the weight of an edge, say
e = (uv) is the distance between the communities u and v. Since
this is in far North, and the routes between communities are not
used that often, the gas stations are only located in communities
(there are absolutely no gas stations which are outside a commu-
nity). Furthermore, we can assume that each community has at
least one gas station. Once you completely fill up the tank of your
ATV, it has an upper limit, say of ∆ kilometers, which it can travel,
and to travel any further it needs to fill up (which means at that
point it needs to be in a community!). You need to answer the
following two questions

(a) First design a method, running in O(|V| + |E|) time, which
can answer whether is there some path which your ATV can

392 notes on algorithm design

take, so that you can travel between two particular communities,
say s and t. It is obvious that if the distance between s and t
is at most ∆, then you can travel directly without refuelling.
Otherwise, you can travel between s and t, provided there are
communities where we can refuel and proceed. [For fun you
may like to see whether you can travel from La Loche (in Sask.)
to Mandorah (in Northen Territories), when your ATV with full
tank can travel at most 100 Kms.]

(b) Design an algorithm running in O(|E| log |V|) time to determine
the smallest value of ∆, which will enable you to travel from s
to t.

32. Design dynamic programming algorithms for the following prob-
lems:

(a) Given a word w made of n alphabets, determine the longest
palindrome in w. For example, afternoon has a palindrome of
size 4 ("noon").

(b) Given a word w made of n alphabets, determine the longest
subsequence of alphabets in w that make a palindrome. For
example, in Alabama the longest palindromic subsequence is
"Aaaa".

33. Given an unlimited supply of coins of denominations x1, · · · , xn,
we wish to make change for a certain value X. (We are not worried
about finding the minimum set of coins that adds to X; we just
want to make change; and also note that sometimes we may not be
able to make an exact change). Design a dynamic programming
algorithm running in O(nX) time, that can decide whether the
change for the amount X can be made or not? (Note that all the
quantities (X, x1, · · · , xn) are integers.)

34. Consider the following variation of the above problem. Given
coins of denominations x1, · · · , xn, we wish to make change for a
certain value X. But for any denomination, we can use at most one
coin (absolutely no repetitions). (We are not worried about finding
the minimum set of coins which adds up to X; we just want to
make change; and also note that sometimes we may not be able to
make an exact change). Design a dynamic programming algorithm
running in O(nX) time, that can decide whether the change for the
amount X can be made or not?

35. Assume that you have a chocolate bar of length n inches. You have
a satisfaction chart, that indicates that if you eat a piece of length
i inches, for 1 ≤ i ≤ n, then you get a satisfaction of si. We can

additional exercises 393

assume that all the quantities involved (n, i, s1, s2, . . . , sn, ...) are pos-
itive integers. You want to decide, using dynamic programming,
what is the best way to make pieces of your chocolate bar so that
you get a maximum satisfaction when you consume the whole
bar. What is the time complexity of your dynamic programming
algorithm?
For an example, suppose that the bar is 5-inches long, and if your
satisfaction chart says:

Length of Piece in inches (i) 1 2 3 4 5

Satisfaction(si) 2 7 9 6 12

Then various ways to partition the 5-inch bar with its satisfaction
values are as follows:
5 = 2 + 3, with satisfaction 7 + 9 = 16.
5 = 1 + 1 + 3, with satisfaction 2 + 2 + 9 = 13.
5 = 2 + 2 + 1, with satisfaction 7 + 7 + 2 = 16.
No split, 5 = 5, with satisfaction 12 = 12.
.....

36. Let T = (V, E) be a binary tree on n nodes. Note that T may not
be a balanced tree. You want to find a subset of vertices S ⊂ V,
such that for each edge e = (uv) ∈ E, atleast one of u or v is in S.
Design an algorithm, running in polynomial time in n, that finds
smallest such set S (i.e. |S| is minimized among all such subsets
S ⊂ V).

37. State in your own words what are the complexity classes P , NP ,
NP-Hard, and NP-Complete. Give an example of a problem in
each of these classes. Are all problems in P in NP?

38. Define what is a Vertex Cover and what is an Independent Set in a
simple undirected graph G = (V, E). Define the decision versions
of the problems of computing (a) a minimum vertex cover and
(b) a largest Independent Set in G. Provide a polynomial time
reduction of the Vertex Cover problem to the Independent Set
problem. Show that the algorithm that transforms one problem
to the other problem runs in polynomial time, and it is a valid
reduction (i.e. solution of one problem can be obtained from the
solution of other problem).

39. Recall the SATISFIABILITY problem. Given n-Boolean variables,
x1, . . . , xn, a Boolean formula φ in the Conjunctive-Normal Form
(CNF) is made of AND of k > 0 clauses φ = C1 ∧ C2 ∧ C3 · · · ∧ Ck,
where each clause Ci is made of OR’s of one or more literals.
Each literal is either a Boolean variable or its complement. For
example, C3 = (x1 ∨ x4 ∨ x7) is a clause made of three literals.
The SATISFIABILITY problem is whether we can find a satisfying

394 notes on algorithm design

assignment for φ, i.e. finding an assignment of Boolean values to
x1, . . . , xn that makes φ true.

Given an undirected graph G = (V, E), we say that G can be 3-
colored if we can assign one of the colors from {Red, Blue, Green}
to each vertex so that for any edge e = (u, v) ∈ E, u and v should
get different colors. The decision version of the 3-coloring problem
is to know whether there is an assignment of colors to vertices so
that G is 3-colored.

Recall the definition of polynomial time reducibility and show
that the 3-coloring problem is polynomial time reducible to the
SATSIFIABILITY problem.
Hint: Note that for each vertex vi, you need to assign it one of
the colors from {Red, Blue, Green}. If vi is assigned Red (Blue or
Green) color, then we can say it’s corresponding Boolean variable
is Ri (Bi or Gi, respectively). Express the coloring constraints
in terms of clauses. For example vi needs to get at least one of
the colors, therefore we can say that the corresponding clause is
(Ri ∪ Bi ∪ Gi). Come up with expressions for no vertex receiving
more than one color, no two neighboring vertices receiving the
same color, etc.

40. Assume that the decision version of the 3-SAT, Vertex Cover, and
Clique problems are NP-complete. An independent set of an
undirected graph G = (V, E) is a subset I of V such that no two
vertices in I are connected by an edge in E. The decision version
of the independent set problem 〈G, k〉, k ≥ 0, is to determine
whether G has an independent set of size at least k. Prove that the
Independent Set problem is NP-Complete.

41. Let G = (V, E) be an undirected connected simple graph. A
matching is a set of edges of G such that no two edges in the set
are incident on the same vertex. A matching is maximal if it is not
a proper subset of any other matching. A matching is maximum if
the number of edges in the matching is largest. A vertex cover of
G = (V, E) is a set of vertices V′ ⊆ C such that if (u, v) ∈ E, then
either u ∈ V′ or v ∈ V′ or both in V′. The size of the vertex cover is
the cardinality of the set V′.

(a) Show that the size of a maximum matching in G is a lower
bound on the size of any vertex cover of G.

(b) Consider a maximal matching M in G = (V, E). Let

T = {v ∈ V : some edge in M is incident on v}.

What can you say about the subgraph of G induced by the

additional exercises 395

vertices of G that are not in T. Conclude that 2|M| is the size of
a vertex cover for G.

(c) Present an O(|E|) time algorithm to compute maximal match-
ing.

(d) Conclude that the above algorithm for computing maximal
matching is a 2-approximation algorithm for maximum match-
ing.

42. We know that there are graphs that have more than one MST’s. Let
T be a Minimum Spanning Tree of G = (V, E), and let L be the
sorted list of edge weights of T (in non-decreasing order). Show
that for any other MST T′ of G, the list L is also the sorted list of
edge weights of T′.

43. There is a road network between cities which is given to you as
an undirected graph, and the vertices are the cities and there is
an edge between two vertices, if and only if there is a direct road
(not going through any other city) between the corresponding
two cities. The weight of an edge is the distance between the two
cities. There is a proposal to add one new road to this network,
and there is a list E′ of pairs of cities between which the new
road can be built. Each such potential road has an associated
length (the distance between the cities). As a politician, you need
to decide which new road should be built, so that the new road
leads to the maximum decrease in the distance between two
specific (favorite) cities, say s and t. Give an efficient algorithm for
determining which edge e ∈ E′ should be chosen so that it leads to
the maximum decrease in the shortest path distance between s and
t.

44. Given a binary tree with all the relevant pointers (child/parent),
describe a simple algorithm, running in linear time, that can
compute and store the size of the subtrees at each node in the
tree. (Size of a subtree at a node v is the total number of nodes,
including itself, in the subtree rooted at v.) Justify the correctness
and prove that that the algorithm runs in linear time.

45. Outline a search algorithm, running in O(log n) time, to report the
i-th smallest number in a set consisting of n elements. The set is
represented as a red-black tree where in addition to the usual in-
formation that we store at a node (pointer to left child, right child,
parent, key, colour) we also store the size of the subtree at that
node. The parameter i is supplied to the search algorithm at the
run-time and assume that the red-black tree with the additional
information about the size of the subtrees has been precomputed.

396 notes on algorithm design

46. Assume that we have n-integers in the range 1000 to 9999. In the
radix-sort method, we sort them by first sorting them using the
(stable) counting sort by the Least-Significant digit and then the
next least significant digit and so on.
Why does this algorithm work? Sketch the main idea in the proof.
Why does the algorithm fail when we first sort them using the
most-significant bit, the second most significant bit, and so on?

47. Assume that we are given n intervals (possibly overlapping) on
a line. Each interval is specified by its left and right end points.
Devise an efficient algorithm that can find a point on the line
which is contained in the maximum number of intervals. Your al-
gorithm should run in in O(n log n) time. Show that this problem
has Ω(n log n) lower bound. What is the model of computation
you want to use for showing the lower bound?

48. Devise an O(n log k) time algorithm to merge k-sorted lists into a
single sorted list, where n is the total number of elements in all
input lists.

49. Suppose all edge weights are positive integers in the range 1..|V|
in a connected graph G = (V, E). Devise an algorithm for comput-
ing Minimum Spanning Tree of G whose running time is better
than that of Kruskal’s or Prim’s algorithm.

50. Consider a connected graph G = (V, E) where each edge has a
non-zero weight. Furthermore, assume that all edge weights are
distinct. Show that for each vertex v ∈ V, the edge incident to
v with minimum weight belongs to a Minimum Spanning Tree.
Can you use this to devise an algorithm for MST - the above step
identifies at least |V|/2 edges in MST - you can collapse these
edges, by identifying the vertices and then recursively apply the
same technique - the graph in the next step has at most half of the
vertices that you started with - and so on. What is the running
time of your algorithm?

51. Suppose you are given n-points in the plane. We can define a
complete graph on these points, where the weight of an edge
e = (u, v) is the Euclidean distance between u and v. We need
to partition these points into k non-empty clusters, for some
n > k > 0. The property that this clustering should satisfy is
that the minimum distance between any two clusters is maximized.
(The distance between two clusters A and B is defined to be the
minimum among the distances between pair of points, where
one point is from cluster A and the other from cluster B.) Show
that the connected components obtained after running Kruskal’s

additional exercises 397

algorithm till it finds all but the last k− 1 (most expensive) edges of
MST produce an optimal clustering.

52. Although the 3CNF-SAT is NP-Complete, show that in polynomial
time we can determine whether a boolean formula given in the
disjunctive normal form is satisfiable; the formula consists of n
variables and k clauses. A formula is in Disjunctive normal form
if clauses are joined by ORs and literals within a clause are joined
by ANDs (DNF is OR of ANDs and CNF is AND of ORs). You
need to provide an algorithm and show that it is correct and runs
in polynomial time with respect to n and k.

53. Given an integer m × n matrix A and an integer m-vector b, the
0 − 1 integer programming problem asks whether there is an
integer n-vector x with elements in the set {0,1} such that Ax ≤ b.
Prove that 0-1 integer programming problem is NP-Complete by
providing a reduction from 3CNF-SAT or Subset-Sum problem.

54. Construct an instance of the subset-sum problem corresponding to
the following 3CNF-SAT:

(x1∨¬x2∨¬x3)∧ (¬x1∨¬x2∨¬x3)∧ (¬x1∨¬x2∨ x3)∧ (x1∨ x2∨ x3)

Provide a satisfying assignment to 3CNF-SAT and show that it
provides a valid solution for the subset-sum problem.

55. For the same 3CNF-SAT, illustrate the reduction to the clique prob-
lem. Construct an equivalent graph and show that you have an
appropriate size clique and vice verse for a satisfying assignment.

56. Consider the problem of CNF-Satisfiability (we are not restricting
the number of literals in each clause), where each variable only
occurs at most twice (positive and negative forms of a variable are
not counted separately). Show that satisfiability can be determined
in polynomial time in this case.

Hint: If a variable only occurs in its positive (or negative) form,
then we can satisfy those clauses and remove them from consid-
eration. The problem starts when we have both versions of the
variable (one clause containing it in positive form and the other in
the negative form - but then the following resolution rule applies:
if we have two clauses of the form (x ∨ w ∨ y ∨ z) ∧ (¬x ∨ u ∨ y ∨ z),
then this is satisfiable if and only if the clause (y ∨ z ∨ u ∨ w) is
satisfiable. In other words, we can remove the variable x from
consideration!)

57. You have invited 500 guests for your graduation party in a huge
hall in Chateau Laurier. The guests need to be seated where each

398 notes on algorithm design

table has 20 seats. Unfortunately, the guests are not all friendly
with each other; for sure, you want to avoid two of your guests
sitting at the same table if they are not friendly. Suppose you
know the complete friendship matrix F (a 0-1 matrix indicating
whether a pair of guests (i, j) are friendly or not). Can you devise
a decision algorithm to decide whether it is possible to hold this
party with the restriction of 20 per table and no two enemies land
on the same table? What about, in general, where n is the number
of guests, and k is the number of guests per table, and we can
assume k divides n? Is this problem NP-Complete?

58. Suppose you are given a sorted array A[1...∞], in ascending order,
of infinitely many real numbers and a real number x. Show how
you will perform the following operations:

(a) How to find an index i, such that A[i] ≥ x in O(log i) time.

(b) How to find an index i such that A[i] ≥ x in O(log log i) time.

59. Consider two sets A and B, each having n integers in the range
from 0 to cn, where c > 1 is a constant. Define the Cartesian sum
of A and B as the set C given by C = {x + y : x ∈ A and y ∈ B}.
Note that the integers in C are in the range 0 to 2cn. We want to
find all the elements of C and the number of times each element
of C is realized as a sum of elements in A and B. Provide an
O(n log n) algorithm for this problem.

60. Given an undirected graph G = (V, E), each vertex v ∈ V has
an associated positive weight w(v). For any vertex cover V′ ⊆ V,
define the weight of the vertex cover w(V′) = ∑v∈V′ w(v). The goal
is to find a vertex cover of minimum weight. Provide an Integer
Linear Programming formulation for this problem. Then provide
a relaxation of the integer program. Show that we can obtain a
2-approximation algorithm for vertex cover using the rounding
technique. Provide a formal proof to show that your solution
results in a 2-approximation.

61. Given a simple graph G = (V, E), we define a cut to be a partition
of the vertex set V into two non-empty sets A and B, where A ∪
B = V and A ∩ B = ∅. An edge (a, b) ∈ E is said to cross the
cut if a ∈ A and b ∈ B. The size of the cut corresponding to the
partition (A, B) is defined as the number of edges crossing the cut.
The maximum cut problem is to find a partition of V such that the
size of the cut is maximized. Consider the following algorithm:
Step 1: Find any partition of V.
Step 2: For every vertex v ∈ V, if v would have more edges
crossing the cut if placed in the opposite partition, then move v to
the opposite partition.

additional exercises 399

Prove the following

(a) Prove that the above algorithm runs in polynomial time. What
is the running time?

(b) Prove that the size of the cut produced by the above algorithm
is at least half of the size of the maximum cut. (In other words,
it’s a 1/2-approximation algorithm.)

62. Although the 3CNF-SAT is NP-Complete, show that in polyno-
mial time we can determine whether a boolean formula given in
disjunctive normal form is satisfiable. The formula consists of n
variables and k clauses. (A formula is in Disjunctive normal form,
if clauses are joined by ORs and literals within a clause are joined
by ANDs). You need to provide an algorithm whose running time
is polynomial in n and k.
Show what is wrong with the following argument: Given a 3CNF-
SAT, we can use distributive law to construct an equivalent for-
mula in Disjunctive Normal Form. Here is an example:
(x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2) = (x1 ∧ x̄1) ∨ (x1 ∧ x̄2) ∨ (x2 ∧ x̄1) ∨ (x2 ∧
x̄2) ∨ (x̄3 ∧ x̄1) ∨ (x̄3 ∧ x̄2).
We have just now shown that DNF is in P . Does this imply that
the 3CNF-SAT is in P?

63. Given a sequence of n positive integers X = (x1, · · · , xn), and a
positive integer t. Provide an algorithm that answers the following
question in O(nt) time: Does a subset of X′ ⊆ X exist, such that
the sum of the elements in X′ equals t?

64. Let G = (V, E) be an undirected simple graph. A set of vertices
S ⊆ V is said to be an independent set, if there is no edge between
any pair of vertices in S (i.e., if e = (uv) ∈ E then the proposition
(u ∈ S and v ∈ S) is false). If G is a tree, design an algorithm,
running in polynomial time, that outputs the size of the largest
independent set in G. Next, let us assume that each vertex of the
tree is associated with a positive weight. Now, design an algorithm
running in polynomial time, which finds a naximum weight
independent set of the tree. Weight of a set of vertices is the sum
total of the weights of the vertices forming this set.

65. Prove that the solution of the following Linear Program will
result in evaluating a Minimum Spanning Tree T of a connected,
weighted, undirected graph G = (V, E). Let wuv denote the weight
of an edge e = (uv) ∈ E, and an indicator variable Xuv denote
the presence or absence of an edge e = (uv) ∈ E in T. If Xuv = 1
then (uv) ∈ T, and if Xuv = 0 then (uv) 6∈ T. Here is the Linear
Program:

400 notes on algorithm design

Minimize ∑
uv∈E

wuvXuv

where, ∀uv ∈ E, 0 ≤ Xuv ≤ 1

∑
uv∈E

Xuv ≥ |V| − 1

∀S ⊆ V, ∑
uv∈E,u∈S,v∈S

Xuv ≤ |S| − 1.

Think in terms of what is meaning of each of these constraints.
What conditions force Xe to take only 0-1 values and not the
fractional ones?

66. In the above formulation of the Minimum Spanning Tree, can
you estimate how many constraints will be required? Should one
use linear programming formulation to compute a Minimum
Spanning Tree of a graph consisting of 1000 vertices?

67. Given an undirected connected unweighted graph G = (V, E),
with two specified vertices s and t, where s, t ∈ V. Write a linear
program that computes the length of the shortest path (i.e., with
respect to the number of segments in the path) between s and t.
Give some reasoning why your Linear Program finds the shortest
distance. Also, estimate how many constraints you need.

68. Look at the A.M. Turing Award winners list - this is like the No-
bel prize in CS. Identify at least three award winners who have
worked in the field of Algorithms and/or Data Structures. Give
some reasoning for your choice. List two of their main contribu-
tions (i.e., publications) for each. State in your own words what is
their main contribution.

69. Prove that the expected running time of finding the closest pair
among a set of n-ponts in the plane using the randomized incre-
mental construction is O(n).

70. Given a well-separated pair decomposition for a set of n-points in
plane,

(a) : How to determine the closest pair of points in O(n) time.

(b) Show how you can find an approximation to the diameter of
the point set in O(n) time. What kind of approximation factor it
will be in terms of the separation parameter s. (Diameter is the
largest distance among the pairs.)

71. Let P be a set of n-points in the plane. Define the complete graph
G = (V, E) as the graph where V = P and an edge e = (uv)

additional exercises 401

between each pair of points u, v ∈ P. The weight of e is the Eu-
clidean distance between u and v. Euclidean minimum spanning
tree (EMST) of P is defined as the minimum spanning tree of G.
Show that EMST can be approximated in O(n log n) time using the
well-separated pair decomposition. Note that G has Ω(n2) edges;
hence, we cannot directly apply any of the minimum spanning
tree algorithms.

72. Show that the Jaccard Distance which is defined as 1− the Jaccard
Similarity between the two sets is a metric.

73. (a) Prove that a matching is maximum if and only if there are no
augmenting paths with respect to that matching.
(b) Prove that a bipartite graph G = (V = A ∪ B, E) has a perfect
matching if and only if for any subset S ⊆ A the number of
vertices adjacent to S in B (denote it by N(S)) must be as large as
|S| (i.e. |N(S)| ≥ |S|, ∀S ∈ A).

74. Present a proof, in your own words, of the Isolating Lemma that
is used in the PRAM parallel algorithm for maximum match-
ing. Where is it required in the parallel algorithm for maximum
matching?

75. When applying amplification constructions to a locality-sensitive
family of functions, we can apply an AND composition followed
by ORs or vice-versa. Which order of the composition is ‘better’,
and why? Explain when you would apply AND followed by ORs,
and when will you like to use ORs followed by ANDs.

76. Let C be a circle and V be a set of n distinct vertices on its bound-
ary. Form a maximal plane graph on V (i.e., we connect as many
pairs of vertices as possible by straight line segments so that no
two edges cross each other in their interior). Notice that we obtain
a plane triangulation of V. Call this triangulation X. Show that X
has a treewidth of 2, and its tree decomposition can be computed
in polynomial time.

77. Let X = {x1, x2, · · · , xn} be a set of n-elements. Each element of
xi has a positive weight wi > 0. Let Y = {Y1, Y2, · · · , Ym} be a
set of subsets of X (i.e. each Yi ⊂ X). A subset H ⊆ X is called
nice if H ∩ Yi 6= ∅, for i = 1, · · · , m. The decision problem of
finding a nice set H of weight at most W is NP-Hard. Let W∗ be
the weight of the nice set with the smallest possible weight. Let
γ = max{|Yi|, i = 1, · · · , m}. Provide an approximation algorithm,
running in polynomial time, that computes a nice set whose
weight is at most γW∗.

402 notes on algorithm design

78. Given a set P of points the plane. For each point p ∈ P we denote
by b(p) the maximum Euclidean distance between p and any point
in P, i.e., b(p) = max{|pq| : q ∈ P}. We denote a point p ∈ P
with minimum b(p) as the center of P. Let p be the center of P.
Present a constant time algorithm that finds a point p′ in P such
that b(p′) ≤ 2 · b(p). Analyze the running time and prove the
correctness of your algorithm.

79. Suppose you have a set S of n-points in the plane. The task is to
construct an approximate traveling salesperson tour TSP(S) of
S. All distances are measured with respect to Euclidean distance.
We follow the following strategy. Choose any point s ∈ S, and
initialize a trivial tour T = 〈ss〉. Now we will grow this tour. Find
a point v ∈ S \ {s} closest to s, and update the tour to include v and
the current tour becomes T = 〈svs〉. Suppose the tour currently
consists of k + 1 vertices T = 〈su1u2...uks〉. Now find a vertex in
v ∈ S that is closest to (but distinct from) s, u1, u2, ..., uk. Let v be
the closest vertex to u ∈ {s, u1, u2, ..., uk}. The tour is updated
by inserting v after u in T. (For example, if v was closest to u3,
than the new tour will be T = 〈su1u2u3vu4...uks〉.) We repeat this
process till all the points in S are added to T. Show that the cost of
T is at most twice the cost of an optimal tour. (Note that the cost
of a tour is the sum total of the costs of all the edges in the tour.)

80. Consider a utility matrix M where the rows represent users and
the columns represent items. The singular value decomposition
of M = UΣVT (approximated to two decimal places) is given as
follows.

M =

2 0 2
1 1 0
1 2 3
2 4 4
2 5 5

 ≈

.19 .95 −.06

.09 −.01 −.87

.35 .11 .44

.57 −.08 −.18

.70 −.25 .05

10.41 0 0

0 2.04 0
0 0 1.18

 .32 .63 .69

.65 −.68 .31
−.68 −.35 .64

Answer the following:

(a) What is the rank of matrix M?

(b) How many concepts are there among the items of M?

(c) For a query user u = [0, 1, 0], what will be its representation in
the concept space?

(d) What will be the best rank one approximation of M (note that
the resulting U will have one column, and VT will have one
row).

(e) How much energy will be lost in the approximation of M of
part (d).

additional exercises 403

81. Consider the k − means clustering using Lloyd’s algorithm for a
particular set P of 5000 points in the plane. The points are parti-
tioned into three groups, A, B, and C. Group B consists of 3000
points uniformly distributed in a circle of radius 1 centered around
the origin. Group A consists of 1000 points, uniformly distributed
in a circle of radius 1 centered at (−10, 0). Group C consists of
1000 points uniformly distributed in a circle of radius 1 centered at
(10, 0). Suppose we want to compute a clustering of this point set
into three clusters using Lloyd’s algorithm. In this algorithm, we
choose three initial centers, x, y, and z, and cluster all the points
according to which of x, y, or z they are closest to. The result will
be three clusters, which may or may not coincide with the groups
A, B, and C. A cluster reported by the algorithm is correct if it
consists of all and only the points from a particular group. As-
sume the initial centers x, y, and z are chosen independently and
uniformly at random (with replacement) from the set P. What is
the probability that A is correct? What is the probability that C is
correct? What is the probability that both are correct?

82. Suppose you have three advertisers, A1, A2, and A3, each with a
budget of B dollars. Advertiser A1 bids only for items of type a,
A2 bids for items of types a and b, and A3 bids for items of types
a, b, and c. Assume that the click-through rate is $1 for each of
the advertisers. Assume that the online sequence of 3B queries
consists of a random permutation of B queries for a, B queries for
b, and B queries for c. Is it true that the competitive ratio of the
Balance algorithm is at least 2/3? (Note that an optimal offline
algorithm earns a revenue of 3B). For example, if B = 4, a possible
query sequence may be baccacbabbca.

83. Consider a web graph corresponding to a directed cycle of length
3. For example, let a, b, c be the set of three vertices, and then the
directed edges are (a, b), (b, c), and (c, a). What will each page
rank be when we use the teleportation probability β = 0.2?

84. Suppose you want to rent an apartment in Old Ottawa South and
have hired an agent to show all the possible apartments within
your budget over the following weekend. Suppose the agent wants
to show you n apartments and tells you that as soon as you make
an offer to any of them, it will be accepted. As a computer scien-
tist, you compute a random permutation of the order in which
you want to see these apartments and let the permuted order be
π1, π2, π3, . . . , πn. You tell the agent that on Saturday, you will
see the first n

e of these, i.e., the apartments labeled π1, π2, . . . , π n
e
.

(We assume here that e divides n.) After viewing each of these

404 notes on algorithm design

apartments, you make some mental notes, but at the end of the
day Saturday, you tell the agent that you would like to see the
remaining ones in the order of the permutation π n

e +1, . . . , πn, on
Sunday. The strategy you have decided to employ on Sunday is to
make an offer to rent the first apartment you see, which you think
is better than what you have seen so far (including what you saw
on Saturday), and then terminate your visit to any remaining un-
visited apartments. On your Sunday’s apartment hunting venture
with the agent, you make an offer for apartment πα. (We may not
find any better apartment on Sunday and hence may not make
any offer - to keep the arguments simple, if you prefer, you may
assume that you make an offer.) Answer the following questions:

(a) Suppose you would have seen all the apartments, then your
ranking of the apartments to rent (from highest to lowest),
without loss of generality, be 1, 2, 3, . . . , n (i.e., 1 is best, 2 is
second best,, n is the worst). Note that the order you visit the
apartments is a random permutation of {1, 2, . . . , n}. Suppose
the smallest apartment number, i.e., the most preferred, among
π1, π2, . . . , π n

e
be x. Show that πα < x.

(b) Show that the probability of making the optimal choice in the
above strategy is given by

n
∑

i= n
e +1

Pr[We see the apartment πi and πi = 1].

(c) Show that the probability of making the optimal choice can also
be expressed as

n
∑

i= n
e +1

Pr[πi = 1 and minimum of {π1, π2, . . . , πi−1} is in {π1, π2, . . . , π n
e
}].

(d) Show that the probability of making an optimal choice simpli-

fies to
n
∑

i= n
e +1

1
n ×

n
e

i−1 . Conclude by showing that the probability

that the above strategy selects the best apartment is approx-
imately 1/e = 37%. (Recall that the n-th Harmonic number

n
∑

i=1

1
i ≈ ln n.)

85. Suppose a service company dispatches people to service the
equipment at various sites. The company has its base in Vancouver
with two employees, but it can get service requests from Ottawa,
Toronto, or Vancouver. Each of its employees is paid an allowance
proportional to their travel distance, which is extra to their salary.
Each evening the company receives a maximum of two service
requests for the next day, and it needs to decide which employee
should serve which requests. The company wants to minimize
the total allowance paid to its employees. (For example, if one

additional exercises 405

of the employees is already in Ottawa, and is assigned to serve
a call from Ottawa for the next day, then there is no additional
allowance that needs to be paid to this employee for the next day.)
We can make some (unrealistic) assumptions like the travel time
is zero, each employee can only handle one service call in a day, a
service request can be finished within the same day by either of
the employees, both employees are equally capable, and employee
can be made to stay overnight in any of the locations for free.) The
distance between Ottawa-Vancouver is 3540 km, Ottawa-Toronto
is 350 km, and Toronto-Vancouver is 3400 km. (If you need to,
you can make more assumptions, but please state them.) Design
an online scheduling strategy. Compare your strategy against
an optimal offline schedule and figure out what may be your
worst-case competitive ratio. For example, you may try to see your
competitive ratio for 10 days, 20 days,...

86. Let G = (V, E) be an undirected connected graph without any
cycles, where V is the set of vertices and E is the set of edges.
Show that, in polynomial time, you can find a set of vertices V′ ⊆
V of minimum cardinality, such that for each edge e = (uv) ∈ E, at
least one of u or v is in V′.

87. Let G = (V, E) be an undirected connected graph. Let S ⊆ V
be the largest subset of vertices such that there is no edge e =

(u, v) ∈ E such that u, v ∈ S. Given S, show that we can construct a
minimum vertex cover of G in polynomial time. What can you say
about the complexity of finding such a subset S?

88. Suppose a warehouse in Mississauga packages all the items in
boxes that must be shipped to a distributor in Ottawa. For ship-
ping, each box needs to weigh ≤ W, where W is a positive integer.
We can fit as many items as we want in a box provided that the
sum total of their weights is at most W. Moreover, each item Ik,
k ∈ {1, . . . , n}, has weight wk, where 0 < wk ≤W. The cost of ship-
ping is proportional to the number of boxes used. The strategy the
warehouse employs to package these items in boxes is as follows:

(a) Set k = 1.

(b) Open a new box.

(c) While Ik can be placed in the open box without exceeding its
weight capacity and k ≤ n,

i. Place Ik in the open box.

ii. Set k := k + 1.

(d) Close, Tape, and Ship the box.

406 notes on algorithm design

(e) If k ≤ n, GOTO Step b.

Show that the warehouse’s number of boxes is at most two times
the minimum number of boxes required to package all the n items.

89. Suppose you have a collection |S|+ |F| parallel machines, where S
is the set of (identical) slow machines and F is the set of (identical)
fast machines. Assume that the fast machines can undertake
twice as much work as the slow machines per unit of time. We
have a set of n independent jobs, each with its processing time
requirement, that needs to be assigned to these machines. Note
that if a job requires t time units for completion, it takes t time
units on a slow machine and t

2 time units on a fast machine. Any
job can be performed on any machine, but a job cannot be split
into smaller jobs, and once a job is assigned to a machine, it cannot
be moved to another machine. You need to design an algorithm,
running in polynomial time, to assign these jobs to these parallel
machines so that the makespan is within three times the optimal
makespan. Recall that the makespan of a set of parallel machines
is the maximum total processing time over all the machines of all
the jobs assigned to a machine.

90. Consider the following approximation algorithm for the metric-
TSP problem on G = (V, E). Let n = |V|.

(a) Start from any vertex v ∈ V and initialize H = 〈v〉.
(b) While |H| < n do

i. Find a vertex u ∈ V \ H whose distance to any vertex in H is
minimum. Let the nearest vertex to u in H be w.

ii. Modify H by inserting u immediately after w in H. (For
example, if before the execution of this step H = 〈vabcwxyz〉,
then at the conclusion of this step H = 〈vabcwuxyz >.)

(c) Without loss of generality, let H = 〈v1 = v, v2, . . . , vn〉.
Construct T = {v1v2, v2v3, . . . , vn−1vn, vnv1}.

(d) Report T.

Show that T is a TSP-tour in G. Show that its cost is at most twice
the cost of an optimal TSP tour.

91. Formulate the set cover problem as an integer linear program.

92. Consider the following instance of the set cover problem. We have
a universe B consisting of elements and a collection S of subsets of
B with the property that each element of B is contained in exactly
three sets in S . Consider the following algorithm:

(a) C := ∅, U := B.

additional exercises 407

(b) While U 6= ∅ do

i. Pick any element u ∈ U and find the three sets in S that con-
tain u. Without loss of generality, let these sets be S1, S2, S3.

ii. C := C ∪ {S1} ∪ {S2} ∪ {S3}.
iii. U := U \ {S1 ∪ S2 ∪ S3}.

(c) Report C.

Note that C is the set of subsets in the cover reported by the algo-
rithm. Show that C is a cover and the number of subsets reported
by the algorithm (i.e., |C|) is within three times the size of an
optimal cover.

93. Let us look at the following variant of the independent set of
squares problem. Let S be a collection of n axis-aligned squares.
We are interested in finding an independent set of S that maxi-
mizes the total area of the squares in it. (Recall that two squares
are independent if they do not share a point in their interior.)
Consider the following algorithm:

(a) Initialize I := ∅.

(b) Take the largest square s from S and add it to I.

(c) Remove all squares from S that overlap s.

(d) Iterate Steps b-c until S is empty.

(e) Report I.

Show that the total areas of the squares in I is at least 1
9 th of the

area of an optimal solution (i.e. 1 ≤ area(OPT)
area(I) ≤ 9).

94. Let G = (V, E) be a simple undirected graph where the degree
of each vertex is at most 15. We say that a set V′ ⊆ V is an in-
dependent set in G if for any pair of vertices u, v ∈ V′, uv 6∈ E.
Design an algorithm, running in polynomial time, that computes
an independent set of G whose size is at least 1

15 th of the size of
the largest independent set.

95. Suppose we have a set X = S ∪ R of n-points in the plane, where set
S is called the set of Steiner points and the set R is called the set
of terminals. Our task is to design the least cost network LCN(X, R)
(e.g., a tree), which connects all points in R, and it may or may
not use any points from S. Note that points in R (and whatever
points in S that are used) are the vertices of LCN(X, R). The cost
of a network is the sum total of the lengths of all the segments
in that network. Construct an example to show that points in S
may not be required to form LCN(X, R). Construct an example
to show that at least one or more points in S are required to form

408 notes on algorithm design

LCN(X, R). In general, the decision version of this problem is
NP-Hard. Show that the minimum-spanning tree of points in R
is a 2-approximation to the LCN(X, R) problem, i.e., the cost of
MST(R) is at most twice the cost of LCN(X, R).

96. You are given n-processes P1, ..., Pn, where n is a large integer.
These processes are trying to access a single shared database. We
assume that time is divided into discrete rounds. In a single round,
the database can only be accessed by exactly one process. If two or
more try to access the database simultaneously in a round, all the
processes are locked out for that round. Here is an algorithm that
is employed to access the database.
In each round t, t = 1, ..., T, where T is a large integer, do the
following

(a) Each process Pi, 1 ≤ i ≤ n, flips a coin, where probability
of obtaining heads is 1/n and probability of obtaining tails is
1− 1/n.

(b) If there is exactly one process (say Pi) whose coin flip is ‘heads’,
then Pi is allowed to access the database in this round.

Answer the following:

(a) Let Ait be the event that the process Pi accesses the database in
round t. What is Pr(Ait)?

(b) Show that the probability that the process Pi does not get access
to the database in any of the rounds is at most e−

T
en .

(c) Let T = 2en ln n and let E be the event that each process Pi

accesses the database at least once during the rounds 1, 2, ..., T.
Show that Pr(E) ≥ 1− 1/n.

Recall that e−x ≥ 1− x and for large n, (1− 1/n)n−1 ≥ 1/e.

97. This exercise will look at Gabow’s Scaling Algorithm for Shortest
Paths. Let G = (V, E) be an undirected connected graph where
each edge e ∈ E has an integer positive weight w(e), where
w : E → [1, . . . , W]. Let k = dlog(W + 1)e be the number of bits
in the binary representation of W. For an edge e, for all 1 ≤ i ≤ k,

define wi(e) =
⌊

w(e)
2k−i

⌋
. It is the weight of the edge defined by the

most-significant i bits. For example, if w(e) = 11 = (01011)2, than
w4(e) =

⌊
w(e)
2k−i

⌋
=
⌊

11
25−4

⌋
= 5 = (0101)2. Similarly, w3(e) =⌊

11
25−3

⌋
= 2 = (010)2, and w2(e) =

⌊
11

25−2

⌋
= 1 = (01)2. Let

δ(s, v) denote the length of shortest path in G between s and v,
where s, v ∈ V. Define δi(s, v) as the shortest path length between
s and v when the weight of each edge e is restricted to be wi(e).

additional exercises 409

Note that δ(s, v) = δk(s, v). This exercise asks you to design an
algorithm running in O(|E| log W) time that computes shortest
path distance δ(s, v) from a vertex s ∈ V to every other vertex
v ∈ V by answering the following:

(a) Show that if the keys in the priority queue are integers in the
range 1, . . . , |E|, then after initializing the queue in O(|E|) time,
each decrease-key operation can be implemented in O(1) time.
Moreover, show that an intermix of O(|V|) extract-min opera-
tions and O(|E|) decrease-key operations can be implemented
in a total of O(|E|) time.

(b) Show that if δ(s, v) ≤ |E| for each vertex v ∈ V, we can deter-
mine all the δ(s, v)’s in O(|E|) time.

(c) Show that for each e, w1(e) =
⌊

w(e)
2k−1

⌋
∈ {0, 1}. Moreover, show

that δ1(s, v) for each vertex v can be computed in O(|E|) time.

(d) For i = 2, . . . , k, show that for any edge e, wi(e) ∈ {2wi−1(e), 2wi−1(e)+
1}.

(e) For i = 2, . . . , k, show that δi(s, v) ≥ 2δi−1(s, v). Furthermore,
show that δi(s, v) ≤ 2δi−1(s, v) + |V| − 1.

(f) For i = 2, . . . , k, and for any edge e = (u, v) ∈ E, define the
i-th scaled weight ŵi(uv) = wi(u, v) + 2δi−1(s, u)− 2δi−1(s, v).
Show, using the triangle inequality and the fact that wi(u, v) ≥
2wi−1(u, v), ŵi(uv) ≥ 0.

(g) For i = 2, . . . , k, for any vertex v ∈ V, define i-th scaled shortest
path δ̂i(s, v) to be the shortest path from s to v with respect to
the weights ŵi(uv). Using the definition of ŵi(uv), show that
δi(s, v) = δ̂i(s, v) + 2δi−1(s, v).

(h) Show that δ̂i(s, v) ≤ |E| for each vertex v ∈ V.

(i) For all vertices v ∈ V, show that given δi−1(s, v), δi(s, v) can be
computed in O(|E|) time.

(j) Conclude that shortest path δ(s, v) = δk(s, v) for all vertices
v ∈ V can be computed in O(|E| log W) time.

98. (Lovasz 1) Let G = (V, E) be a simple undirected graph such that 1 László Lovász. On decomposition
of graphs. In Studia Scientiarum
Mathematicarum Hungarica 1, pages
237–238, 1966

the maximum degree of any vertex is at most k. By a partition of
vertex set V into two subsets V1 and V2, we mean that V = V1 ∪V2

and V1 ∩V2 = ∅. We refer to the induced graph on the vertices of
V1 by G1 = (V1, E1). Note that E1 = {e = uv ∈ E|u, v ∈ V1}.

(a) Show that if k = 1, then V can be partitioned in two disjoint sets
of vertices V1 and V2 such that the degree of each vertex in the
induced graph on V1 is 0 and the degree of each vertex on the
induced graph on V2 is 0.

410 notes on algorithm design

(b) Assume k ≥ 2. Let k1 and k2 be two positive integers such that
k1 + k2 = k− 1. We will show that there is a partition of vertex
set V into two disjoint sets V1 and V2 such that vertices in the
induced graph G1 = (V1, E1) has degree at most k1 and the
vertices in the induced graph G2 = (V2, E2) has degree at most
k2. Consider the partition of V = V1 ∪ V2 that minimizes the
quantity Γ = k1(2|E2| − |V2|) + k2(2|E1| − |V1|). Answer the
following.

i. Consider an arbitrary vertex v ∈ V1. Assume it has a neigh-
bors in G1 and b neighbors in G2 with respect to G. Show
that a + b ≤ k.

ii. Show that if we move v from V1 to V2, the value of Γ changes
by k1(2b− 1)− k2(2a− 1).

iii. Show that k1(2b− 1)− k2(2a− 1) ≥ 0.

iv. Using a + b ≤ k, k1 + k2 + 1 = k, and k1(2b− 1)− k2(2a− 1) ≥
0, show that a ≤ k1 + 1/2.

v. Conclude that degree of each vertex v ∈ V1 is at most k1.

vi. Consider an arbitrary vertex w ∈ V2 and let it has x neigh-
bors in G2. Using a similar argument show that x ≤ k2 + 1/2.
Conclude that degree of each vertex w ∈ V2 is at most k2.

(c) Let α be a positive integer. Let k1, k2, . . . , kα be non-negative
numbers such that k1 + k2 + · · ·+ kα = k− α + 1. We will show
that V can be partitioned into disjoint subsets V = V1 ∪ · · · ∪Vα

such that the induced graphs on V1, . . . , Vα have degrees at most
k1, . . . , kα, respectively. Let us denote the induced graphs on
V1, . . . , Vα by G1, . . . , Gα, respectively. The proof is by induction
on α and can be derived by solving the following exercises:

i. (Base Case) When α = 1, show that the result holds trivially.
Assume α = 2, and given any choice of positive integers k1

and k2, such that k1 + k2 = k− 1. Using the previous exercise,
show that we can always partition V into two parts V1 and V2

such that the induced graph on V1 has degree at most k1 and
the induced graph on V2 has degree at most k2.

ii. Formulate an induction hypothesis.

iii. Inductive Step. Answer the following.

• Assume α ≥ 3. Let us define k′1 = k1 and k′2 = k2 +

· · · + kα + α − 2. Show that k′1 + k′2 = k − 1 and V can
be partitioned in two sets V′1 and V′2 such that degree of
each vertex in the induced graph on V′1 is at most k′1 and
the degree of each vertex in the induced graph on V′2 is at
most k′2.

• Show that k2 + · · ·+ kα = k′2 − (α− 1) + 1.

additional exercises 411

• Show that by induction hypothesis V′2 can be partitioned
into V2, V3, . . . , Vα such that the induced graph on Vi has
degree ki, where 2 ≤ i ≤ α.

• Conclude that Lovasz result on partitioning the graph of
degree at most k into subgraphs of desired degrees holds.

99. (Hochanbaum 2) In this exercise we will find an approximation 2 Dorit Hochbaum. Approximation
Algorithms for NP-Hard Problems. PWS,
1997

to the maximum weight independent set in a simple undirected
graph G = (V, E), where each vertex has degree at most k and it is
assigned a positive weight. Answer the following questions.

(a) Show that the maximum weight independent set of an undi-
rected graph where degree of each vertex is at most 2 can be
computed in polynomial time.

(b) Let G = (V, E) be a simple graph on n vertices and assume that
the degree of each vertex is ≤ k. Let α = k/3. Show that V can
be partitioned into V = V1 ∪V2 ∪ · · · ∪Vα such the vertices in the
induced graph Gi = (Vi, Ei) for 1 ≤ i ≤ α have degree ≤ 2.

(c) For each of the induced graph Gi = (Vi, Ei) in the above parti-
tioning compute the maximum weight independent set and let
it be Ii ⊆ Vi. Among {I1, . . . , Iα} let I be the set of maximum
weight. Let I∗ be the maximum weight independent set of G.
Show that weight of I is at least 3

k times the weight of I∗.

(d) Show that V can be partitioned into V = V1 ∪V2 ∪ · · · ∪Vα such
the vertices in the induced graph Gi = (Vi, Ei) for 1 ≤ i ≤ α

have degree ≤ 2 in polynomial time. See how to implement
the inductive proof of the previous exercise in a constructive
manner in polynomial time.

(e) Conclude that we can obtain a 3
k -approximation of maximum

weight independent set in a graph whose degree is bounded by
k in polynomial time.

100. (Lovasz 3) Let G = (V, E) be a simple undirected graph such that 3 László Lovász. On decomposition
of graphs. In Studia Scientiarum
Mathematicarum Hungarica 1, pages
237–238, 1966

n = |V| and degree of each vertex is ≤ k. Let n1 and n2 be two
positive numbers such that n1 + n2 = n. In this exercise we will
show that there exists a partition of set V into subsets V1 and V2

such that n1 = |V1| and n2 = |V2| that satisfies the following
property. Let k1 be the maximum degree among the vertices in the
induced graph G1 = (V1, E1) and let k2 be the maximum degree
among the vertices in G2 = (V2, E2). We will show that k1 + k2 ≤ k
by the following exercises.

(a) Consider that partition of V = V1 ∪ V2, where n1 = |V1| and
n2 = |V2|, and it minimizes the number of edges in E1. Let
v ∈ V1 and w ∈ V2 be the vertices of maximum degree in V1

412 notes on algorithm design

and V2, respectively. Assume that w has k′2 neighbors in V1 in G.
Show that k ≥ k2 + k′2.

(b) Assume we construct V′1 = V1 ∪ {w} \ {v} and V′2 = V2 ∪ {v} \
{w}. Show that |V′1| = |V1| and |V′2| = |V2|. Show that the edge
set E′1 of the induced graph of V′1 satisfies |E′1| = |E1|+ k′2 − k1.

(c) Show that k′2 − k1 ≥ 0 and conclude that k1 + k2 ≤ k.

101. Let G = (V, E) be a simple undirected bipartite graph. Let A be its
node-edge incidence matrix of dimension |V| × |E|, defined as

Ave =

1, if v is an endpoint of an edge e

0, otherwise

Show that every square submatrix of A has determinant 0 or ±1.
Note that the rows (respectively, columns) of A corresponds to

the vertices (resp., edges) of G. Consider the column correspond-
ing to the edge e = (uv) ∈ E. That column consists of exactly two
1s, one corresponding to the row of u and the other to the row of v,
and all the remaining entries are 0.

102.(a) State and prove Euler’s relation for planar graphs that relates
the number of edges, faces, and vertices.

(b) Consider any planar graph G on n vertices. Are there at least cn
vertices in G that have a degree at most 20? Note that 0 < c < 1
is a constant independent of n.

(c) Consider any planar graph G on n vertices. Let I be a largest
independent set in G where each vertex v ∈ I has degree at
most 20 in G. Is it true that |I| ≥ n/1000?

103.(a) Show that every simple undirected graph on n ≥ 2 vertices has
at least two vertices of equal degree.

(b) Show that a tree with n ≥ 2 vertices have at least two vertices of
degree 1.

104. Let G = (V, E) be a simple, connected, and undirected graph on
n ≥ 3 vertices. Answer the following:

(a) Suppose we are also given that G is not a complete graph.
Show that three vertices always exist u, v, and w ∈ V such that
uv, vw ∈ E and uw 6∈ E.

(b) Show that any two longest paths in G have a vertex in common.

105. Let H be a graph, possibly disconnected. A connected component
C of H is odd if C has an odd number of vertices. Let o(H) denote
the number of odd components in H. Tutte’s theorem states that
a graph G = (V, E) has a perfect matching if and only if for every
subset S ⊂ V, o(G− S) ≤ |S|. Prove one of the directions of Tutte’s

additional exercises 413

theorem. Apply this theorem to show that every 3-regular graph
without cut edges has a perfect matching.

106. Show that every 3-regular bipartite graph has a perfect matching.

107. Show that every k-chromatic graph has at least k vertices of degree
at least k− 1.

108. Suppose we have a flow network N. It is specified as a directed
graph N = (V, E) with (integer) capacities on edges, and two spe-
cific vertices s, t ∈ V, called the source and the target, respectively.
The flow problem is to find the maximum amount of flow that can
be sent from s to t, respecting the capacities on the edges and satis-
fying the flow conservation properties. Suppose, in addition to the
capacities on the edges of N, we also have (non-negative) integer
capacities on the vertices V. For example, if a vertex v ∈ V has a
capacity of 5, the maximum amount of flow that can pass through
v is 5. Given a flow network N with vertex and edge capacities,
can you find a way to transform it to another flow network N′ that
only has edge capacities, such that the maximum flow between
s and t in N is the same as the flow between the corresponding
source and target vertices in N′.

109. Let G = (V, E) be a simple undirected graph. A set S ⊆ V is
a vertex cover of G, if for each edge e = (uv), u ∈ S or v ∈ S.
Deciding whether a graph has a vertex cover of size k is an NP-
Complete problem. Consider the following greedy algorithm:

Step 1: S := ∅.

Step 2: If G has no edges, return S and STOP.

Step 3: Let v be the vertex with maximum degree in G.
S := S ∪ {v}.
Remove v and all its incident edges from G.

Step 4: Return to Step 2.

Show that the greedy algorithm is not a constant factor approxima-
tion algorithm for the vertex cover problem.

Consider a bipartite graph G = (A ∪ B, E), where |A| = k!,
|B| = k!Hk, where Hk is the k-th Harmonic number. Vertices in B
are grouped in k groups. The 1st group consists of k!/k vertices,
2nd group consists of k!/(k− 1) vertices,. . ., k-th groups consists
of k!/1! vertices. Form the edge set of G so that an execution of
the greedy algorithm possibly lands up picking all the vertices
in the set B, whereas the optimal solution consists of picking
only the vertices of A. This will result in an Hk-approximation, as
|B|/|A| = Hk.

110. Let M be a maximal matching in G. Show that the vertex cover
size in G is at least the number of edges in M. Let S be the set

414 notes on algorithm design

of vertices incident on the edges corresponding to a maximal
matching M in G. Show that S forms a vertex cover of G. Show
that S is a 2-approximation to the minimum vertex cover in G.

111. In this exercise, we will design a (1 + ε)-approximation algorithm
running in O(2

1
ε n) time for the partition problem, where ε > 0

is a constant. In the partition problem, we are given a set S of n
numbers, where s1 ≥ s2 ≥ · · · ≥ sn, and the problem is to partition
S into sets A and B, such that max(w(A), w(B)) is minimized,
where w(A) = ∑

si∈A
si. The algorithm is as follows:

Step 1: Set m = d 1
ε e − 1.

Step 2: Partition {s1, s2, · · · , sm} optimally by looking at 2m sub-
sets. Let the optimal solution be A and B.

Step 3: For i := m + 1 to n do
if w(A) ≤ w(B), A = A ∪ {si},
else B = B ∪ {si}.

Step 4: Return A and B as the partition of S.

Assume that when the algorithm terminates, without loss of
generality, w(A) ≥ w(B), and let sk be the last element assigned to
A. Answer the following:

(a) Show that if m ≥ n, we have an optimal solution.

(b) Show that if sk was assgined to A in Step 2, the sets A and B
returned by the algorithm forms an optimal solution.

(c) Assume that sk was assigned to A in Step 3. Show that in the
step when sk was assigned to A, w(A)− sk ≤ w(B).

(d) Assume that 2z = ∑
si∈S

si. By our assumption, we know that

when the algorithm terminated, w(A) ≥ z, and we are inter-
ested in estimating w(A)/z. Answer the following:

i. Given that w(A)− sk ≤ w(B). Conclude that w(A)− sk ≤
2z− w(A), equivalently 2w(A) ≤ 2z− sk.

ii. Given that s1 ≥ · · · ≥ sm ≥ · · · ≥ sk, show that sk ≤ 2z
m+1 .

iii. Show that w(A)
z ≤ 1 + 1

m+1 ≈ 1 + ε.

(e) Show that the algorithm’s running time is O(2mn).

(f) Conclude that the above algorithm is a PTAS, i.e. polynomial
time approximation scheme.
Note: For a FPTAS, fully polynomial time approximation
scheme, see 4. 4 T. H. Cormen, C. E. Leiserson, R. L.

Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3rd edition,
2009

112. The following scheduling problem is based on a result of Tsitsiklis
5. Assume that we have n customers 1, . . . , n located at positions

5 John N. Tsitsiklis. Special cases of
traveling salesman and repairman
problems with time windows. Networks,
22(3):263–282, 1992

x1 < · · · < xn on a horizontal line l, respectively. Each customer

additional exercises 415

i has a deadline di, a positive real number, by which it needs
to be served. The server is initially located at the position x∗

corresponding to the customer i∗ on l, where i∗ ∈ {1, . . . , n}. We
assume that the server can travel to the customers with uniform
speed (= 1 unit/min), and the time it takes to serve a customer
is negligible. We must determine if the server can serve all the
customers respecting their deadlines. The following exercises will
help us devise a dynamic programming algorithm running in
O(n2) time for the decision problem.

(a) Show that a necessary condition for any customer i ∈ {1, . . . , n}
to be served is |xi − x∗| ≤ di.

(b) Construct an example where i ∈ {1, . . . , n}, |xi − x∗| ≤ di holds
for each customer, but the server can’t serve all the customers.

(c) For the rest of the problem, we will assume that |xi − x∗| ≤ di for
all i ∈ {1, . . . , n}. Let i, j be such that 1 ≤ i ≤ i∗ ≤ j ≤ n. Please
assume that the server visits the i-th customer at the location
xi for the first time at time t after it has already visited all the
customers i + 1, . . . , j respecting their deadlines. If there is a
feasible schedule, we define V−(i, j) as the smallest value of t;
otherwise, V−(i, j) = +∞. Similarly, define V+(i, j) to be the
smallest value of t for which there is a feasible schedule to visit
xj for the first time at time t, given that the customers i, . . . , j− 1
have been already visited respecting the deadlines. Show that
for any i < i∗, V−(i, i∗) = x∗ − xi. Similarly, show that for any
i > i∗, V+(i∗, i) = xi − x∗.

(d) For any i, j such that 1 ≤ i ≤ i∗ ≤ j ≤ n, let
U+(i, j) = min(V+(i, j− 1) + xj − xj−1, V−(i, j− 1) + xj − xi).

Show that V+(i, j) =

U+(i, j), if U+(i, j) ≤ dj

+∞, otherwise

(e) Similarly, for any i, j such that 1 ≤ i ≤ i∗ ≤ j ≤ n, let
U−(i, j) = min(V−(i + 1, j) + xi+1 − xi, V+(i + 1, j) + xj − xi).

Show that V−(i, j) =

U−(i, j), if U−(i, j) ≤ di

+∞, otherwise

(f) Show that if min(V−(i, j), V+(i, j)) < ∞, we have a feasible
schedule where the server can serve all the customers.

(g) Show that in O(n2) time, we can determine if there is a feasible
schedule.

Bibliography

[1] Dimitris Achlioptas. Database-friendly random projections:
Johnson-lindenstrauss with binary coins. Journal of Computer and
System Sciences, 66(4):671–687, 2003. Special Issue on PODS 2001.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley Publishing
Company, 1974.

[3] L. Aleksandrov and H. Djidjev. Linear algorithms for partition-
ing embedded graphs of bounded genus. SIAM J. Discret. Math.,
9(1):129–150, February 1996.

[4] Lyudmil Aleksandrov, Hristo Djidjev, Hua Guo, and Anil
Maheshwari. Partitioning planar graphs with costs and weights.
J. Exp. Algorithmics, 11, February 2007.

[5] N. Alon and J. H. Spencer. The probabilistic method. John Wiley &
Sons, 3rd edition, 2007.

[6] Noga Alon, Yossi Matias, and Mario Szegedy. The space
complexity of approximating the frequency moments. J. Comput.
Syst. Sci., 58(1):137–147, 1999.

[7] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J.
ACM, 42(4):844–856, 1995.

[8] A. Andoni and P. Indyk. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. In
Foundations of Computer Science, 2006. FOCS ’06. 47th Annual
IEEE Symposium on, pages 459–468, 2006.

[9] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative
weights update method: a meta-algorithm and applications.
Theory of Computing, 8(1):121–164, 2012.

[10] Brenda S. Baker. Approximation algorithms for NP-complete
problems on planar graphs. J. ACM, 41(1):153–180, 1994.

418 notes on algorithm design

[11] P. Balister, A. Sarkar, and B. Bollobás. Percolation, connectivity,
coverage and colouring of random geometric graphs. In Hand-
book of Large-Scale Random Networks, pages 117–142. Springer,
2008.

[12] Ahmad Biniaz, Evangelos Kranakis, Anil Maheshwari, and
Michiel Smid. Plane and planarity thresholds for random
geometric graphs. In Proc. ALGOSENSORS 2015 (Patras, Greece),
Lecture Notes in Computer Science, Berlin, Germany, 2015.
Springer.

[13] J.K. Blitzstein and J. Hwang. Introduction to Probability. Chapman
& Hall/CRC Texts in Statistical Science. CRC Press, 2014.

[14] Burton H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7):422–426, 1970.

[15] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L.
Rivest, and Robert E. Tarjan. Time bounds for selection. Journal
of Computer and System Sciences, 7(4):448–461, 1973.

[16] B. Bollobás. Random graphs. Cambridge University Press, 2001.

[17] Béla Bollobás and Andrew Thomason. Threshold functions.
Combinatorica, 7(1):35–38, 1987.

[18] Béla Bollobás. Modern Graph Theory. Graduate texts in mathe-
matics. Springer, Heidelberg, corrected edition, 1998.

[19] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.
Elsevier, New York, 1976.

[20] Otakar Borůvka. O jistém problému minimálním. Práce mor.
přírodověd. spol. v Brně III, 3:37–58, 1926.

[21] Otakar Borůvka. Příspěvek k řešení otázky ekonomické stavby
elektrovodních sítí. Elektrotechnickỳ obzor, 15:153–154, 1926.

[22] Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Mahesh-
wari, Pat Morin, Jason Morrison, Michiel H. M. Smid, and
Yihui Tang. On the false-positive rate of bloom filters. Inf.
Process. Lett., 108(4):210–213, 2008.

[23] J. Bourgain. On lipschitz embedding of finite metric spaces in
hilbert space. Israel Journal of Mathematics, 52(1-2):46–52, 1985.

[24] Jean Bourgain and Gil Kalai. Threshold intervals under group
symmetries. Convex Geometric Analysis MSRI Publications Volume
34, pages 59–63, 1998.

bibliography 419

[25] Milan Bradonjić and Will Perkins. On sharp thresholds in
random geometric graphs. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM, pages 500–514, 2014.

[26] Sergey Brin, Rajeev Motwani, Lawrence Page, and Terry Wino-
grad. What can you do with a web in your pocket? IEEE Data
Eng. Bull., 21(2):37–47, 1998.

[27] Sergey Brin and Lawrence Page. Reprint of: The anatomy of a
large-scale hypertextual web search engine. Computer Networks,
56(18):3825–3833, 2012.

[28] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael
Mitzenmacher. Min-wise independent permutations. Journal of
Computer and System Sciences, 60:327–336, 1998.

[29] A.Z. Broder. On the resemblance and containment of documents.
In Compression and Complexity of Sequences 1997. Proceedings,
pages 21–29, 1997.

[30] Gruia Călinescu, Howard J. Karloff, and Yuval Rabani. Approxi-
mation algorithms for the 0-extension problem. SIAM J. Comput.,
34(2):358–372, 2004.

[31] James Carrel. Fundamentals of Linear Algebra. https://

www.math.ubc.ca/~carrell/NB.pdf, 2005. [Online; accessed
2-May-2019].

[32] Timothy M. Chan. Backwards analysis of the Karger-Klein-
Tarjan algorithm for minimum spanning. Inf. Process. Lett.,
67(6):303–304, 1998.

[33] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton.
Finding frequent items in data streams. Theor. Comput. Sci.,
312(1):3–15, 2004.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-
duction to Algorithms. The MIT Press, 3rd edition, 2009.

[35] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms, Third Edition. The
MIT Press, 3rd edition, 2009.

[36] Graham Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications. J.
Algorithms, 55(1):58–75, 2005.

https://www.math.ubc.ca/~carrell/NB.pdf
https://www.math.ubc.ca/~carrell/NB.pdf

420 notes on algorithm design

[37] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Loksh-
tanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and
Saket Saurabh. Parameterized Algorithms. Springer Publishing
Company, Incorporated, 1st edition, 2015.

[38] Sanjoy Dasgupta and Anupam Gupta. An elementary proof
of a theorem of Johnson and Lindenstrauss. Random Struct.
Algorithms, 22(1):60–65, 2003.

[39] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Mot-
wani. Maintaining stream statistics over sliding windows. SIAM
J. Comput., 31(6):1794–1813, 2002.

[40] Mayur Datar and Piotr Indyk. Locality-sensitive hashing scheme
based on p-stable distributions. In In SCG ’04: Proceedings of
the twentieth annual symposium on Computational geometry, pages
253–262. ACM Press, 2004.

[41] L.B. de Paula, R.S. Villaca, and M.F. Magalhaes. A locality
sensitive hashing approach for conceptual classification. In
Semantic Computing (ICSC), 2010 IEEE Fourth International
Conference on, pages 408–413, 2010.

[42] Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Ran-
domized primal-dual analysis of RANKING for online bipar-
tite matching. In Sanjeev Khanna, editor, Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,
2013, pages 101–107. SIAM, 2013.

[43] E.W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, 1959.

[44] B. Dixon, M. Rauch, and R. Tarjan. Verification and sensitivity
analysis of minimum spanning trees in linear time. SIAM Journal
on Computing, 21(6):1184–1192, 1992.

[45] Rodney G. Downey and M. R. Fellows. Parameterized Complexity.
Springer Publishing Company, Incorporated, 2012.

[46] Petros Drineas and Michael W. Mahoney. Lectures on ran-
domized numerical linear algebra. CoRR, abs/1712.08880,
2017.

[47] D.P. Dubhashi and A. Panconesi. Concentration of measure for the
analysis of randomized algorithms. Cambridge University Press,
2009.

bibliography 421

[48] P. Erdös and A. Rényi. On the evolution of random graphs. Publ.
Math. Inst. Hungar. Acad. Sci, 5:17–61, 1960.

[49] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight
bound on approximating arbitrary metrics by tree metrics. J.
Comput. Syst. Sci., 69(3):485–497, 2004.

[50] U. Feige and D. Reichman. Recoverable values for independent
sets. Random Structures & Algorithms, 46(1):142–159, 2013.

[51] William Feller. An Introduction to Probability Theory and Its
Applications, volume 1. Wiley, January 1968.

[52] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak
Mathematical Journal, 23(2):298–305, 1973.

[53] Philippe Flajolet and G. Nigel Martin. Probabilistic counting.
In 24th Annual Symposium on Foundations of Computer Science,
Tucson, Arizona, USA, 7-9 November 1983, pages 76–82. IEEE
Computer Society, 1983.

[54] Greg N. Frederickson. Fast algorithms for shortest paths in
planar graphs, with applications. SIAM J. Comput., 16(6):1004–
1022, 1987.

[55] Greg N. Frederickson. Optimal algorithms for tree partitioning.
In Proceedings of the Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’91, pages 168–177, Philadelphia, PA,
USA, 1991. Society for Industrial and Applied Mathematics.

[56] E. Friedgut and G. Kalai. Every monotone graph property has a
sharp threshold. Proceedings of the American Mathematical Society,
124(10):2993–3002, 1996.

[57] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-
dual approximation algorithms for integral flow and multicut
in trees. Algorithmica, 18(1):3–20, 1997.

[58] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Mul-
tiway cuts in node weighted graphs. J. Algorithms, 50(1):49–61,
2004.

[59] E. Gilbert. Random graphs. The Annals of Mathematical Statistics,
pages 1141–1144, 1959.

[60] E. Gilbert. Random plane networks. Journal of the Society for
Industrial & Applied Mathematics, 9(4):533–543, 1961.

[61] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity
search in high dimensions via hashing. pages 518–529, 1997.

422 notes on algorithm design

[62] Erhard Godehardt and Jerzy Jaworski. On the connectivity of a
random interval graph. Random Struct. Algorithms, 9(1-2):137–
161, 1996.

[63] A. Goel, S. Rai, and B. Krishnamachari. Sharp thresholds for
monotone properties in random geometric graphs. In Proceedings
of STOC, pages 580–586. ACM, 2004.

[64] D. Gorisse, M. Cord, and F. Precioso. Locality-sensitive hashing
for chi2 distance. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 34(2):402–409, 2012.

[65] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik.
Concrete Mathematics: A Foundation for Computer Science. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd
edition, 1994.

[66] Piyush Gupta and P. R. Kumar. Critical power for asymptotic
connectivity in wireless networks. In Stochastic Analysis, Control,
Optimization and Applications, pages 547–566, 1998.

[67] Torben Hagerup. An even simpler linear-time algorithm for
verifying minimum spanning trees. In Christophe Paul and
Michel Habib, editors, Graph-Theoretic Concepts in Computer
Science, volume 5911 of Lecture Notes in Computer Science, pages
178–189. Springer Berlin Heidelberg, 2010.

[68] Torben Hagerup and Christine Rüb. A guided tour of Chernoff
bounds. Inf. Process. Lett., 33(6):305–308, 1990.

[69] P. Hall. On the coverage of k-dimensional space by k-
dimensional spheres. The Annals of Probability, 13(3):991–1002,
1985.

[70] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approxi-
mate nearest neighbor: Towards removing the curse of dimen-
sionality. Theory of Computing, 8(1):321–350, 2012.

[71] Frank Harary. Graph theory. Addison-Wesley, 1991.

[72] Dorit Hochbaum. Approximation Algorithms for NP-Hard Problems.
PWS, 1997.

[73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM J. Comput.,
2(4):225–231, 1973.

[74] J. Håstad. Some optimal inapproximability results. Journal of the
ACM, 48(4):798–859, 2001.

bibliography 423

[75] S. Hu. Efficient video retrieval by locality sensitive hashing.
In Acoustics, Speech, and Signal Processing, 2005. Proceedings.
(ICASSP ’05). IEEE International Conference on, volume 2, pages
449–452, 2005.

[76] Piotr Indyk and Rajeev Motwani. Approximate nearest neigh-
bors: Towards removing the curse of dimensionality. In Pro-
ceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, STOC ’98, pages 604–613, New York, NY, USA, 1998.
ACM.

[77] S. Janson. Random coverings in several dimensions. Acta
Mathematica, 156(1):83–118, 1986.

[78] Woojay Jeon and Yan-Ming Cheng. Efficient speaker search over
large populations using kernelized locality-sensitive hashing.
In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference on, pages 4261–4264, 2012.

[79] Yushi Jing and S. Baluja. Visualrank: Applying pagerank to
large-scale image search. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 30(11):1877–1890, 2008.

[80] William B. Johnson and Joram Lindenstrauss. Extensions of
Lipschitz mappings into a Hilbert space. In Conference in modern
analysis and probability (in honor of Professor Shizuo Kakutani, held
on June 8-11, 1982, at Yale University, New Haven, Connecticut),
pages 189–206. 1984.

[81] K.A. Kala and K. Chitharanjan. Locality sensitive hashing
based incremental clustering for creating affinity groups in
hadoop; hdfs - an infrastructure extension. In Circuits, Power and
Computing Technologies (ICCPCT), 2013 International Conference
on, pages 1243–1249, 2013.

[82] Bala Kalyanasundaram and Kirk Pruhs. An optimal deter-
ministic algorithm for online b-matching. Theor. Comput. Sci.,
233(1-2):319–325, 2000.

[83] Zixiang Kang, Wei Tsang Ooi, and Qibin Sun. Hierarchical,
non-uniform locality sensitive hashing and its application to
video identification. In Multimedia and Expo, 2004. ICME ’04.
2004 IEEE International Conference on, volume 1, pages 743–746

Vol.1, 2004.

[84] David R. Karger, Philip N. Klein, and Robert E. Tarjan. A
randomized linear-time algorithm to find minimum spanning
trees. J. ACM, 42(2):321–328, March 1995.

424 notes on algorithm design

[85] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An
optimal algorithm for on-line bipartite matching. In Harriet
Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA,
pages 352–358. ACM, 1990.

[86] G.O.H Katona. Solution of a problem of A. Ehrenfeucht and J.
Mycielski. Journal of Combinatorial Theory, Series A, 17(2):265–266,
1974.

[87] V. King. A simpler minimum spanning tree verification algo-
rithm. Algorithmica, 18(2):263–270, 1997.

[88] Valerie King. A simpler minimum spanning tree verification
algorithm. In SelimG. Akl, Frank Dehne, Jörg-Rüdiger Sack,
and Nicola Santoro, editors, Algorithms and Data Structures,
volume 955 of Lecture Notes in Computer Science, pages 440–448.
Springer Berlin Heidelberg, 1995.

[89] Philip N. Klein and Robert E. Tarjan. A randomized linear-time
algorithm for finding minimum spanning trees. In Proceedings
of the twenty-sixth annual ACM symposium on Theory of computing,
STOC ’94, pages 9–15, New York, NY, USA, 1994. ACM.

[90] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[91] Robert Kleinberg. Cs8820: Analysis of algorithms, 2012.

[92] Donald E. Knuth. The art of computer programming, volume 1-3.
Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1998.

[93] J. Komlos. Linear verification for spanning trees. In Foundations
of Computer Science, 1984. 25th Annual Symposium on, pages
201–206, 1984.

[94] J. Komlós. Linear verification for spanning trees. Combinatorica,
5(1):57–65, 1985.

[95] D. Kozen. The design and analysis of algorithms. Springer, 1992.

[96] Bhaskar Krishnamachari, Stephen B. Wicker, Rámon Béjar,
and Marc Pearlman. Critical density thresholds in distributed
wireless networks. In Communications, information and network
security, 2002.

[97] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing.
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
34(6):1092–1104, 2012.

bibliography 425

[98] Richard J. Lipton and Robert E. Tarjan. A separator theorem for
planar graphs. SIAM Journal on Applied Mathematics, 36(2):177–
189, 1979.

[99] L. Lovász and M.D. Plummer. Matching Theory. Akadémiai
Kiadó, Budapest, 1986. Also published as Vol. 121 of the North-
Holland Mathematics Studies, North-Holland Publishing,
Amsterdam.

[100] László Lovász. On decomposition of graphs. In Studia Scien-
tiarum Mathematicarum Hungarica 1, pages 237–238, 1966.

[101] A. Maheshwari and M. Smid. Introduction to Theory of Computa-
tion. Free Online, 2012.

[102] Udi Manber. Finding similar files in a large file system. In
in Proceedings of the USENIX Winter 1994 Technical Conference,
pages 1–10, 1994.

[103] Claire Mathieu. A primal-dual analysis of the ranking algorithm,
2011.

[104] Jiri Matousek. Lectures on Discrete Geometry. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2002.

[105] Jiří Matoušek. On the distortion required for embedding finite
metric spaces into normed spaces. Israel Journal of Mathematics,
93(1):333–344, 1996.

[106] Gregory L. Mccolm. Threshold functions for random graphs
on a line segment. Combinatorics, Probability and Computing,
13:373–387, 2001.

[107] Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V.
Vazirani. Adwords and generalized online matching. J. ACM,
54(5):22, 2007.

[108] P.L. Meyer. Introductory probability and statistical applications.
Addison-Wesley, Boston, MA, USA, 1970.

[109] Gary L. Miller, Shang-Hua Teng, William Thurston, and
Stephen A. Vavasis. Separators for sphere-packings and nearest
neighbor graphs. J. ACM, 44(1):1–29, January 1997.

[110] Jayadev Misra and David Gries. Finding repeated elements. Sci.
Comput. Program., 2(2):143–152, 1982.

[111] Michael Mitzenmacher and Eli Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge
University Press, New York, NY, USA, 2005.

426 notes on algorithm design

[112] Tanmoy Mondal, Nicolas Ragot, Jean-Yves Ramel, and Uma-
pada Pal. A fast word retrieval technique based on kernelized
locality sensitive hashing. In Document Analysis and Recognition
(ICDAR), 2013 12th International Conference on, pages 1195–1199,
2013.

[113] Rajeev Motwani and Prabhakar Raghavan. Randomized al-
gorithms. Cambridge University Press, New York, NY, USA,
1995.

[114] Rajeev Motwani and Prabhakar Raghavan. Randomized al-
gorithms. Cambridge University Press, New York, NY, USA,
1995.

[115] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar
borůvka on minimum spanning tree problem translation of
both the 1926 papers, comments, history. Discrete Mathematics,
233(1–3):3 – 36, 2001. <ce:title>Czech and Slovak 2</ce:title>.

[116] Padma Panchapakesan and D Manjunath. On the transmission
range in dense ad hoc radio networks. In Proceedings of IEEE
Signal Processing Communication (SPCOM), 2001.

[117] Mathew D. Penrose. The longest edge of the random minimal
spanning tree. The annals of applied probability, pages 340–361,
1997.

[118] Mathew D. Penrose. On k-connectivity for a geometric random
graph. Random Struct. Algorithms, 15(2):145–164, 1999.

[119] Mathew D. Penrose. Random geometric graphs, volume 5. Oxford
University Press Oxford, 2003.

[120] Anand Rajaraman and Jeffrey David Ullman. Mining of Massive
Datasets. Cambridge University Press, New York, NY, USA,
2011.

[121] Vittal Rao. Advanced Matrix Theory and Linear Algebra for
Engineers. https://nptel.ac.in/syllabus/111108066/, 2019.
[Online; accessed 2-May-2019].

[122] Z. Rasheed, H. Rangwala, and D. Barbara. Lsh-div: Species
diversity estimation using locality sensitive hashing. In Bioinfor-
matics and Biomedicine (BIBM), 2012 IEEE International Conference
on, pages 1–6, 2012.

[123] Kenneth H. Rosen. Discrete Mathematics and Its Applications.
McGraw-Hill Higher Education, 5th edition, 2002.

https://nptel.ac.in/syllabus/111108066/

bibliography 427

[124] Tim Roughgarden. Cs261: A second course in algorithms, 2016.
Stanford University.

[125] Michiel Smid. Carleton University, Ottawa, Canada, 2014.

[126] J. H. Spencer. Ten lectures on the probabilistic method, volume 52.
SIAM, 1987.

[127] Daniel A. Spielman. Spectral and Algebraic Graph Theory. Yale
University, USA, 2019.

[128] G. Strang. Linear Algebra and Learning from Data. Wellesley-
Cambridge Press, 2019.

[129] Gilbert Strang. Introduction to Linear Algebra. Wellesley-
Cambridge Press, Wellesley, MA, fifth edition, 2016.

[130] V. Strassen. Gaussian elimination is not optimal. Numerische
Mathematik, 13:354–356, 1969.

[131] Robert Tarjan. Data Structures and Network Algorithms, volume 44,
chapter 6. Minimum Spanning Trees, pages 71–83. SIAM, 1983.

[132] Robert Endre Tarjan. Efficiency of a good but not linear set
union algorithm. J. ACM, 22(2):215–225, April 1975.

[133] Robert Endre Tarjan. Applications of path compression on
balanced trees. J. ACM, 26(4):690–715, October 1979.

[134] John N. Tsitsiklis. Special cases of traveling salesman and
repairman problems with time windows. Networks, 22(3):263–
282, 1992.

[135] A. Tucker. Linear algebra: an introduction to the theory and use of
vectors and matrices. Macmillan Publishing Company, 1993.

[136] Leslie G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, August 1990.

[137] Qiang Wang, Zhiyuan Guo, Gang Liu, and Jun Guo. Entropy
based locality sensitive hashing. In Acoustics, Speech and Signal
Processing (ICASSP), 2012 IEEE International Conference on, pages
1045–1048, 2012.

[138] David P. Williamson and David B. Shmoys. The Design of
Approximation Algorithms. Cambridge University Press, 2011.

	Preliminaries
	Introduction
	Model of Computation
	Asymptotic Analysis
	How to Analyze Recurrence Relations
	Algorithms for Matrix Multiplication
	Exercises

	Probability for CS
	Basics
	Chebyshev's Inequality and Law of Large Numbers
	Normal Distribution, mgf, and the Central Limit Theorem
	More Distributions
	Chernoff Bounds
	Bibliography
	Exercises

	Introduction to Graphs
	Introduction and Definitions
	How to represent graphs in a computer?
	Graph Traversal
	Topological sort and DFS
	Biconnectivity
	Exercises

	Matrices with Applications to CS
	Basics
	Introduction to Eigenvalues
	Diagonalizing Square Matrices
	Symmetric and Positive Definite Matrices
	Singular Value Decomposition
	Low Rank Approximation Using SVDs
	Markov Matrices
	Bibliography
	Exercises

	Minimum Spanning Trees
	Minimum Spanning Trees
	Kruskal's Algorithm for MST
	Prim's MST algorithm
	Randomized Algorithms for Minimum Spanning Trees
	MST Verification
	Bibliographic Notes
	Exercises

	Lowest Common Ancestor
	LCA RMQ
	Range Minima Queries
	RMQ LCA
	Summary
	Exercises

	Graph Partitioning
	Preliminaries
	Proof of the Planar Separator Theorem
	Generalizations of the Planar Separator Theorem
	Graph Laplacian
	Exercises

	Locality-Sensitive Hashing
	Similarity of Documents
	Similarity-Preserving Summaries of Sets
	LSH for Minhash Signatures
	Metric Space
	Theory of Locality Sensitive Functions
	LSH Families
	Bibliographic Notes
	Exercises

	Data Streams
	Heavy Hitters
	Bloom Filters
	Flajolet-Martin Algorithm
	Counting in Sliding Windows
	Bibliographic Notes
	Exercises

	Online Algorithms
	Online Bipartite Matching
	Fractional Online Bipartite Matching - WATERLEVEL
	Randomized Online Bipartite Matching - RANKING
	BALANCE Algorithm
	Exercises

	Multiplicative-Weight Update Method
	Multiplicative Weight Update Algorithm
	Randomized Multiplicative Weight Update Algorithm
	An Application of Multiplicative Weight Update Algorithm
	Exercises

	Dimensionality Reduction
	Preliminaries: Metric spaces and embeddings
	A Motivating Example
	Universal Space L
	Embeddings into L-normed spaces
	Johnson and Lindenstrauss Theorem
	Exercises

	Second moment method with applications
	Preliminaries
	Cliques in a random graph
	Thresholds for Random Geometric Graphs
	Exercises

	Approximation Algorithms Design Techniques
	Greedy Algorithms
	Local Search
	Approximation using Metric LPs
	Fixed-Parameter Tractability
	Exercises

	Network Flow
	What is a Flow Network
	Ford and Fulkerson's Algorithm
	Edmonds-Karp Algorithm
	Applications of Network Flow
	Exercises

	Additional Exercises
	Problems

	Bibliography

