Edge Coloring of Graphs
Advanced Algorithms Seminar

Lucas Rioux-Maldague

November 10th 2014
Outline

1. Definitions

2. Misra and Gries’ Edge-Coloring Algorithm
Outline

1 Definitions

2 Misra and Gries’ Edge-Coloring Algorithm
Graph Colorings

- Assignment of labels (colors) to elements of the graph subject to some constraints.
- Most common form: **vertex coloring**: mapping $c : V(G) \rightarrow C$. If for any edge $(u, v) \in E(G)$, $c(u) \neq c(v)$, the coloring is proper.
- Problem: what is the minimum of colors required such that a graph G has a proper vertex coloring? This is a graph parameter denoted $\chi(G)$, the chromatic number of G.
Graph Colorings

Figure: Improper coloring

Figure: Proper coloring
Graph Colorings

- In this talk: **edge coloring**: mapping $c : E(G) \rightarrow C$. An edge (x_1, x_2) is adjacent to an edge (y_1, y_2) if $x_1 = y_1$ or $x_2 = y_2$. If for any edge $e \in E(G)$, $c(e) \neq c(e') \forall e' : e$ is adjacent to e', the coloring is proper.

- Minimum number of colors such that a graph G has a proper edge coloring is denoted $\chi'(G)$, the chromatic index of G.
Graph Colorings

Figure: Improper edge coloring

Figure: Proper coloring
Edge Colorings

- It is easy to see that $\chi'(G) \geq \Delta(G)$. Is that tight?
Edge Colorings

- It is easy to see that $\chi'(G) \geq \Delta(G)$. Is that tight?
- Yes: Vizing’s Theorem states that

$$\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1.$$

Some graphs have $\chi'(G) = \Delta(G)$ (class 1), some others have $\chi'(G) = \Delta(G) + 1$ (class 2).
Edge Colorings

- It is easy to see that $\chi'(G) \geq \Delta(G)$. Is that tight?
- Yes: Vizing's Theorem states that

$$\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1.$$

Some graphs have $\chi'(G) = \Delta(G)$ (class 1), some others have $\chi'(G) = \Delta(G) + 1$ (class 2).

- However, it is NP-complete to decide which is right for a general graph.
It is easy to see that $\chi'(G) \geq \Delta(G)$. Is that tight?

Yes: Vizing’s Theorem states that

$$\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1.$$

Some graphs have $\chi'(G) = \Delta(G)$ (class 1), some others have $\chi'(G) = \Delta(G) + 1$ (class 2).

However, it is NP-complete to decide which is right for a general graph.

Still, there are polynomial time algorithms to find a $\Delta(G) + 1$ edge coloring of any graph.
Some Interesting Results

- **Erdos & Wilson (1977):** Almost all graphs are of class 1. In the random graph model, if $p(n)$ is the probability that a graph on n vertices is of class 1, $p(n)$ tends to 1 as n goes to infinity.

- **Vizing (1965), Sanders & Zhao (2001):** All planar graphs of minimum degree at least 7 are of class 1. Vizing conjectured that this is true for all planar graphs of minimum degree at least six.
Outline

1. Definitions

2. Misra and Gries’ Edge-Coloring Algorithm
Due to Misra and Gries (1992)

- Produces a proper edge coloring of any graph G on $\Delta(G) + 1$ colors
- Runs in $O(|V||E|)$ time.
- For the next slides, let $n = |V|$, $m = |E|$.
Free colors

Definition 1

The color x of an edge (u, v) is free on u if $c(u, z) \neq x$ for all $(u, z) \in E(G) : z \neq v$.

Figure: The color of (u, v), red, is free on u.
Definition 2

A fan of a vertex u is a sequence of vertices $F[1 : k]$ that satisfies the following conditions:

1. $F[1 : k]$ is a non-empty sequence of distinct neighbors of u
2. $(F[1], u) \in E(G)$ is uncolored
3. The color of $F[i + 1]$ is free on $F[i]$ for $1 \leq i < k$

Definition 3

Given a fan F of u, any edge $(F[i], u)$ for $1 \leq i \leq k$ is a fan edge.
Fans

Figure: A fan $F = [x_1, x_2, x_3]$ of v (dashed edges are uncolored), $(v, x_1), (v, x_2), (v, x_3)$ are the fan edges. Note that $F' = [x_1, x_2]$ is also a fan of v, but it is not maximal.
cd_x path

- Let c, d be colors and $c \in V(G)$. A cd_x path is an edge path that goes through x, only contains edges colored c and d, and is maximal.

- Given c, d, x, the cd_x path is unique.

Figure: Examples: ac, cg, gd is a red-green$\ c$ path, bd, dg is a red-orange$\ d$ path, ac is a red-orange$\ a$ path.
Inverting a cd_x path

Given a cd_u path, switch every edge having color c to d and d to c on the path. In this example, inverting the red-green path from the left figure results in the right figure.

![Diagram showing inverting a path](image)

The coloring is still valid, as no other edges with a color in \{c, d\} is adjacent to the path by definition.
Given a fan $F[1 : k]$ of a vertex X, the “rotate fan” operation does the following (in parallel):

1. $c(F[i], X) = c(F[i + 1], X)$ for $1 \leq i < k$
2. Uncolor $F[k]$

This operation leaves the coloring valid as the color of $F[i + 1]$ was free on $F[i]$ for each $1 \leq i < k$ (definition of a fan), and we uncolor $F[k]$.
We rotate the fan $F = [x_1, x_2, x_3]$ in the left figure, and get the coloring in the right figure.
Algorithm

Input: A graph G

Output: A proper edge-coloring c of G

1. Let $U \leftarrow E(G)$
2. While $U \neq \emptyset$, do:
 1. Let (u, v) be any edge in U.
 3. Let c be a color that is free on u and d be a color that is free on $F[k]$.
 4. Invert the cd_u path
 5. Let $w \in V(G)$ be such that $w \in F$, $F' = [F[1]...w]$ is a fan and d is free on w.
 6. Rotate F' and set $c(u, w) = d$.
 7. $U \leftarrow U - \{(u, v)\}$
Proof of correctness

Claim 1

The inversion of the cd path guarantees a vertex \(w \) such that \(w \in F, F' = [F[1]...w] \) is a fan and \(d \) is free on \(w \).

- There are two cases.
First case: The fan has no edge colored d.

- F is a maximal fan and d is free on $F[k]$.
- This implies there is no edge with color d adjacent to u, otherwise it would follow $F[k]$, as d is free on $f[k]$, but F was maximal.
- Thus, d is free on u.
- Since c is also free on u, the cd_u path is empty and the inversion has no effect.
- We can set $w = F[k]$.
Second case

Second case: The fan has one edge colored d.

- Let $F[x + 1]$ be this edge.
- $x + 1 \neq 1$ since $F[1]$ is uncolored, and $x \neq k$ since the fan has length k but there exists a $F[x + 1]$.
- Thus, d is free on $F[x]$.
- Claim (1): after the inversion, for each $y \in \{1, \cdots, x - 1, x + 1, \cdots, k\}$, the color of $(F[y + 1], u)$ is free on y
 - Prior to the inversion, the color of $(u, F[y + 1])$ is not c or d since c is free on u and $(u, F[x + 1])$ has color d and the coloring is valid.
 - The inversion only affects edges that are colored c or d, so (1) holds.
Second case cont.

- $F[x]$ can either be in the cd_u path or not.
- If it is not, then the inversion will not affect the set of free colors on $F[x]$, and d will remain free on it. We can set $w = F[x]$.
- Otherwise, we can show that F is still a fan and d remains free on $F[k]$.
- d was free on $F[x]$ before the inversion and $F[x]$ is on the path.
- Thus, $F[x]$ is an endpoint of the cd_u path and c will be free on $F[x]$ after the inversion.
The inversion will change the color of $(u, F[x+1])$ from d to c

- As c is now free on $F[x]$ and (1) holds, F remains a fan.
- Also, d remains free on $F[k]$, since $F[k]$ is not on the cd_u path (suppose that it is; since d is free on $F[k]$, then it would have to be an endpoint of the path, but u and $F[x]$ are the endpoints).
- Select $w = F[k]$.

In any case, $F' = [F[1] \cdots , w]$ is a prefix of F, so it is a valid fan and d us free on w.

\[
\framebox{}\]
Proof, cont.

Claim 2

The edge coloring produces by the algorithm is proper.

Proof: (by induction on the number of colored edges)

- Base case: no edge is colored, this is valid.
- Induction step: suppose this was true at the end of the previous iteration.
- In the current iteration, after inverting the path, d will be free on u.
- By Claim 1, it will also be free on w.
- Rotating F' does not compromises the validity of the coloring.
- Thus, after setting $c(u, w) = d$, the coloring is still valid. □
Proof, cont.

Claim 3

The algorithm requires at most \(\Delta + 1 \) colors.

- In a given step, we need to find colors \(c \) and \(d \).
- \(u \) is adjacent to at least one uncolored edge and its degree is bounded by \(\Delta \).
- This implies that at least one color in \(\{1, \ldots, \Delta\} \) is available for \(c \).
- For \(d \), \(F[k] \) may have degree \(\Delta \) and no uncolored adjacent edge.
- Thus, a color \(\Delta + 1 \) may be required.
Proof, cont.

Theorem 1

The algorithm computes a proper edge coloring on $\Delta + 1$ in $O(|E||V|)$ time.

- At each step, the rotation uncolors (u, w) and colors (u, v), which was previously uncolored.
- Thus, one additional edge gets colored.
- Hence, the loop will run $O(|E|)$ times.
- Finding the maximal fan, the colors c and d and invert the cd_u path can be done in $O(|V|)$ time, finding and removing the edge can be done using a stack in $O(1)$.
- Thus, each iteration of the loop takes $O(|V|)$ time.
- The total running time is $O(|E| + |E||V|) = O(|E||V|)$.
- The rest follows by Claims 2 and 3.
Questions?