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Abstract

The  purpose  of  this  paper  is  to  describe  the

Deterministic Rendezvous Problem and to explore

the basic ideas of the algorithm presented in 2014

by Ta-Shma and Zwick which solves it.

Introduction

The  Deterministic  Rendezvous  Problem  is  a

variant of the more general  Rendezvous Problem.

The Rendezvous Problem is  a  problem in game

theory where two robots are in a graph and must

find  one  another.  The  robots  are  considered  to

have found one another  if  they both occupy the

same node of the graph at the same time. [5]

One of the original examples of the Rendezvous

Problem  is  the  Astronaut  Problem.  In  it,  two

astronauts  land in  different  places  on a  celestial

body which is much larger than the range of the

equipment  they  use  to  detect  each  other.  The

astronauts need some kind of strategy to find each

other.  The Rendezvous Problem has applications

which include search and rescue, communications,

and networks and operating systems. [2]

The Deterministic Rendezvous Problem adds the

restriction  that  the  instructions  given to  the  two

robots must be deterministic; they cannot include

any  instructions  which  are  executed  based  on

probabilities.

More  formally,  in  the  Deterministic  Rendezvous

Problem,  a  pair  of  robots  are  placed  in  an

unknown,  finite,  connected,  undirected  graph.

Each robot knows:

• T,  the  number  of  time  steps  since  it  has

been activated

• d, the degree of the node it is at

• L, the value of a distinct label that it was

assigned

The  robots  must  be  provided  with  a  set  of

deterministic instructions that will allow them to

find each other. [5]

Many of the parameters of the problem are set by

the adversary, or user:

• The size and layout of the graph

• The initial positions of the two robots

• When each robot is activated

• The value of the unique label assigned to

each robot

[5]

A variety  of  algorithms  exist  which  solve  the

Deterministic Rendezvous Problem.

Dessmark et. al [2006] presented an algorithm that

solves  the  problem  in  time  proportional  to

O(n
5 √τ l+n

10
l) , where:

• n is the size of the graph

• l is  the  length  of  the  shorter  of  the  two

labels

• τ is the difference in activation times of the

two robots

[3]

In 2008, Kowalski and Malinowski presented an

algorithm  that  solves  the  problem  in  time

proportional to O(n
15+l

3) . This is a significant

improvement  because  its  runtime  is  no  longer

dependant on τ, which is set by the adversary and

can thus be arbitrarily large. This solution has one

major  drawback,  though.  It  makes  use  of

backtracking, where the robots must keep track of

each  edge  that  they  have  traversed.  This  is  a

drawback  because  it  places  assumptions  on  the

structure of the graph (namely, how it is labeled),

and the robots' sensory and memory capabilities.

[4]

Recently, Ta-Shma and Zwick [2014] presented an

algorithm  that  solves  the  Deterministic

Rendezvous  Problem  in  time  proportional  to

O(n
5
l ) .  This  solution  is  notable  in  that  it

doesn't  rely  on   τ  and  it  doesn't  make  use  of

backtracking. Instead, it works by using Universal

Traversal Sequences, which will be explored next.

[5]

Universal Traversal Sequences

A  Traversal  Sequence is  a  series  of  instructions

that define a traversal of every node in a particular



d-regular graph from a given starting node. Each

node in the sequence specifies which neighbour of

the current node to visit next. [1] These steps are

relative  to  the  current  node,  not  absolute.  For

example,  if  the  current  node is  vj,  and  vj has  d

neighbors, then the traversal sequence will specify

the next node to visit, vj+1, as the ith neighbor of vj,

where 1 ≤ i ≤ d.

A  Universal  Traversal  Sequence  (UTS)  is  a

traversal  sequence  for  a  particular  number  of

nodes, n, which covers all nodes of any d-regular,

n-vertex graph; it also doesn't matter which node

is  chosen  as  the  starting  node.  Aleliunas  et  al

[1979] presented a proof which states that for any

value of  n, a UTS exists that covers all graphs of

size n and has size proportional to O(n
5) . [1]

The  graph  provided  by  the  adversary  is  not

necessarily d-regular, as is assumed by a UTS. In

such a case, a UTS is used where d corresponds to

the  largest  degree  of  any  node  in  the  graph

provided. The robots can simply remain idle if a

UTS  instructs  them  to  traverse  an  edge  which

doesn't  exist;  this  is  essentially  equivalent  to

adding  self  loops  to  any  node  with  less  than  d

edges until the node has d edges. [5]

The remainder of this paper assumes that for any

d-regular,  n-vertex  graph,  a  UTS  is  known  for

those values of d and n.

Ta-Shma and Zwick's Solution

The basic idea of Ta-Shma and Zwick's solution is

that  if  one  of  the  robots  completes  a  complete

traversal  of  the  graph  while  the  other  robot

remains  idle,  or  rests,  then  the  two  robots  are

guaranteed to meet. Since the size of the graph is

unknown,  the  robots  run  UTSs  for  increasing

values of  n, while periodically resting. Whether a

robot rests before or after a traversal depends upon

the value of its label.

For  example,  one  of  the  robots  could  run  the

sequence:

U 10
u

1U 2 0
u

2U 4 0
u

4U 8 0
u

8 ...U
2

i 0
u

2
i

...

while the other robot runs the sequence:

0
u

1 U 10
u

2 U 20
u

4 U 40
u

8U 8 ...0
u

2
i

U
2

i ...

where Ui is a UTS for a graph of size  i, ui is the

number of steps in that UTS, and 0k represents  k

steps where the robot rests. Eventually,  the UTS

for the size of the actual graph will be run by one

robot while the other rests for the number of steps

in that traversal. This only works if the two robots

are activated at the same time, however.

To cover the case where the robots are activated at

different times,  the sequence to  run will  include

rest periods of length ui after each step (either in

the traversal or the rest period). For example, one

of the robots would run the sequence:

σ1 0
u1−1 σ20

u1−1σ30
u1−1

...σu1
0

u 1−1
0

2u1

2

π10
u2−1π2 0

u2−1 π3 0
u2−1

...πu2
0

u2 0
2u 2

2

...

where σ = U1 and π = U2.

In order to formally present the sequence that each

robot will run, some additional notation is needed.

Let:

• σb = 

 0 if b = 0

 σ if b = 1

• L̄=1−L

• σm1... mk=σ1

m
...σk

m

• Dk (σ1 ...σm)=σ10
k
...σm 0

k

For  the  purpose  of  this  report,  assume that  one

robot is assigned  L = 0, while the other robot is

assigned  L = 1. In this case, the sequence run by

each robot is:

Du
1−1

((U 1 U 1)
L L̄) Du

2−1
((U 2 U 2)

L L̄)

... Du
2

k−1((U 2
k U

2
k)L L̄)...

[5]

The sub-sequence 

Du
i−1
((U i U i)

L L̄)
is known as a block, and can be rewritten as

Du
i−1
((U i U i)

L (U iU i)
L̄)

If  σ  =  Ui and  m =  ui,  the  block can  be  further

simplified to:

(σ1 0
m−1

...σm 0
m−1σ10

m−1
...σm0

m−1)L

(σ1 0
m−1

...σm 0
m−1σ10

m−1
...σm0

m−1)L̄

Each of the above lines of the block are known as



chunks.  One  chunk  consists  of  a  UTS  (with

interleaved idle periods), while the other chunk is

an idle period of length 2m2.

If the robot's label is 0, then each block that it runs

is equal to:

0
2m

2

σ1 0
m−1

...σm 0
m−1σ10

m−1
...σm0

m−1

If the label is 1, then a block is equal to

σ1 0
m−1

...σm 0
m−1σ10

m−1
...σm0

m−1
0

2m
2

Correctness Proof

Let:

• bi =  the  number  of  steps  in  the  block

Du
i−1
((U i U i)

L L̄)

• wi = the number of steps in Du
i−1
((U i)

L) ,

or  a  quarter  of  the  number  of  steps  in  a

block

A chunk of the block n has 2un
2 steps in it, so 

wi = un
2

From Aleliunas et al [1979], it is known that 

un = O(nc), so wn = O(n2c) [1]

Therefore, bn = 4wn = O(n2c)

Assume  that  4un ≤ u2n,  for  every  n  =  2i.  This

assumption can be made because 4un = O(nc) and

u2n = un
2 for all  n = 2i. Squaring both sides gives

16wn ≤ w2n. Multiplying both sides by four gives

16bn ≤ b2n. This results in the important property

that for all j ≥ 1,

∑
i=0

j

b2i<
1

15
b2j

which implies that if one robot is executing block

i  when  the  other  robot  is  activated,  then  the

former robot will be less than a quarter of the way

through  the  i+1th block  when  the  latter  begins

executing block i+1.

We  now have  everything  we  need  to  prove  the

correctness of the algorithm. Let  K be the index

(index  in  this  case  means  the  value  of  i in

Du
i−1
((U i U i)

L L̄) )  of  the  first  robot  to  be

activated  when the  second robot  to  be  activated

starts running block  n, where  n is the size of the

graph. There are two cases: the case where uK ≥ bn

and the case where uK < bn.

Case 1:    uK   ≥ bn

In this case, the first robot rests between each step

for at least as long as it takes the second robot to

run a block, so the robots must meet (as shown in

Figure 1). [5]

Figure 1: The second robot runs a complete

traversal sequence while the first robot is resting

Case 2:  uK < bn

uK = O(Kc) and bn = O(n2c), so K < O(n2)

The  second  robot  finishes  block  K and  begins

block  2K after  O(K2c)  =  O(n4c)  steps.  The  first

robot must still be in the first quarter of block 2K

at this time. If the first robot's label is 0, then the

second  robot  will  finish  a  complete  traversal

before the first robot finishes resting. Otherwise,

the  first  robot  will  complete  the  entirety  of  its

second traversal while the second robot is resting.

These cases are shown in Figure 2. [5]

Figure 2: One of the robots will complete an

entire traversal while the other rests

In both cases, one robot completes a full traversal

sequence while the other robot rests, therefore the

robots must find one another.

Complexity Analysis

As  in  the  correctness  proof,  two  cases  will  be

considered.



Case 1:    uK   ≥ bn

It was shown above that the robots will meet by

the  time  the  second  robot  completes  block  n.

Block  n is  the ln(n)th block,  and each block has

length  bn =  O(n2c),  so  the  robots  will  meet

ln(n)O(n2c) ≤ O(n4c) steps after the second robot is

activated. [5]

Case 2:  uK < bn

Recall from earlier:

• uK = O(Kc) and bn = O(n2c), so K < O(n2)

• The  second  robot  finishes  block  K and

begins block 2K after O(K2c) = O(n4c) steps

It was shown that the robots will meet in the first

half  of  block  2K,  which  has  length  b2K,  so  the

robots will meet after O(n4c) + b2K steps. 

b2K = O(K2c) = O(n4c)

O(n4c) + b2K = 2O(n4c) = O(n4c)

Therefore the robots will  meet O(n4c) steps after

the second robot is activated. [5]

Conclusion

It has been proven that the robots will meet, and

that the meeting will take place O(n4c) steps after

the second robot is activated. Ta-Shma and Zwick

also go on to show how the robots can be made to

meet  only O(nc)  steps after  the activation of the

second robot and how to deal with arbitrary labels.

This is beyond the scope of this report, which is

intended  to  show  how  Ta-Shma  and  Zwick's

solution is one which runs in polynomial time not

dependant on τ (which can be arbitrarily large) and

which  does  not  use  backtracking  (which  makes

assumptions on how the graph is labelled and the

sensory/memory capabilities of the robots). [5]
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