
Deterministic Rendezvous Problem

COMP 5703 Seminar Project

Adam Bennett

Abstract

The purpose of this paper is to describe the

Deterministic Rendezvous Problem and to explore

the basic ideas of the algorithm presented in 2014

by Ta-Shma and Zwick which solves it.

Introduction

The Deterministic Rendezvous Problem is a

variant of the more general Rendezvous Problem.

The Rendezvous Problem is a problem in game

theory where two robots are in a graph and must

find one another. The robots are considered to

have found one another if they both occupy the

same node of the graph at the same time. [5]

One of the original examples of the Rendezvous

Problem is the Astronaut Problem. In it, two

astronauts land in different places on a celestial

body which is much larger than the range of the

equipment they use to detect each other. The

astronauts need some kind of strategy to find each

other. The Rendezvous Problem has applications

which include search and rescue, communications,

and networks and operating systems. [2]

The Deterministic Rendezvous Problem adds the

restriction that the instructions given to the two

robots must be deterministic; they cannot include

any instructions which are executed based on

probabilities.

More formally, in the Deterministic Rendezvous

Problem, a pair of robots are placed in an

unknown, finite, connected, undirected graph.

Each robot knows:

• T, the number of time steps since it has

been activated

• d, the degree of the node it is at

• L, the value of a distinct label that it was

assigned

The robots must be provided with a set of

deterministic instructions that will allow them to

find each other. [5]

Many of the parameters of the problem are set by

the adversary, or user:

• The size and layout of the graph

• The initial positions of the two robots

• When each robot is activated

• The value of the unique label assigned to

each robot

[5]

A variety of algorithms exist which solve the

Deterministic Rendezvous Problem.

Dessmark et. al [2006] presented an algorithm that

solves the problem in time proportional to

O(n
5 √τ l+n

10
l) , where:

• n is the size of the graph

• l is the length of the shorter of the two

labels

• τ is the difference in activation times of the

two robots

[3]

In 2008, Kowalski and Malinowski presented an

algorithm that solves the problem in time

proportional to O(n
15+l

3) . This is a significant

improvement because its runtime is no longer

dependant on τ, which is set by the adversary and

can thus be arbitrarily large. This solution has one

major drawback, though. It makes use of

backtracking, where the robots must keep track of

each edge that they have traversed. This is a

drawback because it places assumptions on the

structure of the graph (namely, how it is labeled),

and the robots' sensory and memory capabilities.

[4]

Recently, Ta-Shma and Zwick [2014] presented an

algorithm that solves the Deterministic

Rendezvous Problem in time proportional to

O(n
5
l) . This solution is notable in that it

doesn't rely on τ and it doesn't make use of

backtracking. Instead, it works by using Universal

Traversal Sequences, which will be explored next.

[5]

Universal Traversal Sequences

A Traversal Sequence is a series of instructions

that define a traversal of every node in a particular

d-regular graph from a given starting node. Each

node in the sequence specifies which neighbour of

the current node to visit next. [1] These steps are

relative to the current node, not absolute. For

example, if the current node is vj, and vj has d

neighbors, then the traversal sequence will specify

the next node to visit, vj+1, as the ith neighbor of vj,

where 1 ≤ i ≤ d.

A Universal Traversal Sequence (UTS) is a

traversal sequence for a particular number of

nodes, n, which covers all nodes of any d-regular,

n-vertex graph; it also doesn't matter which node

is chosen as the starting node. Aleliunas et al

[1979] presented a proof which states that for any

value of n, a UTS exists that covers all graphs of

size n and has size proportional to O(n
5) . [1]

The graph provided by the adversary is not

necessarily d-regular, as is assumed by a UTS. In

such a case, a UTS is used where d corresponds to

the largest degree of any node in the graph

provided. The robots can simply remain idle if a

UTS instructs them to traverse an edge which

doesn't exist; this is essentially equivalent to

adding self loops to any node with less than d

edges until the node has d edges. [5]

The remainder of this paper assumes that for any

d-regular, n-vertex graph, a UTS is known for

those values of d and n.

Ta-Shma and Zwick's Solution

The basic idea of Ta-Shma and Zwick's solution is

that if one of the robots completes a complete

traversal of the graph while the other robot

remains idle, or rests, then the two robots are

guaranteed to meet. Since the size of the graph is

unknown, the robots run UTSs for increasing

values of n, while periodically resting. Whether a

robot rests before or after a traversal depends upon

the value of its label.

For example, one of the robots could run the

sequence:

U 10
u

1U 2 0
u

2U 4 0
u

4U 8 0
u

8 ...U
2

i 0
u

2
i

...

while the other robot runs the sequence:

0
u

1 U 10
u

2 U 20
u

4 U 40
u

8U 8 ...0
u

2
i

U
2

i ...

where Ui is a UTS for a graph of size i, ui is the

number of steps in that UTS, and 0k represents k

steps where the robot rests. Eventually, the UTS

for the size of the actual graph will be run by one

robot while the other rests for the number of steps

in that traversal. This only works if the two robots

are activated at the same time, however.

To cover the case where the robots are activated at

different times, the sequence to run will include

rest periods of length ui after each step (either in

the traversal or the rest period). For example, one

of the robots would run the sequence:

σ1 0
u1−1 σ20

u1−1σ30
u1−1

...σu1
0

u 1−1
0

2u1

2

π10
u2−1π2 0

u2−1 π3 0
u2−1

...πu2
0

u2 0
2u 2

2

...

where σ = U1 and π = U2.

In order to formally present the sequence that each

robot will run, some additional notation is needed.

Let:

• σb =

 0 if b = 0

 σ if b = 1

• L̄=1−L

• σm1... mk=σ1

m
...σk

m

• Dk (σ1 ...σm)=σ10
k
...σm 0

k

For the purpose of this report, assume that one

robot is assigned L = 0, while the other robot is

assigned L = 1. In this case, the sequence run by

each robot is:

Du
1−1

((U 1 U 1)
L L̄) Du

2−1
((U 2 U 2)

L L̄)

... Du
2

k−1((U 2
k U

2
k)L L̄)...

[5]

The sub-sequence

Du
i−1
((U i U i)

L L̄)
is known as a block, and can be rewritten as

Du
i−1
((U i U i)

L (U iU i)
L̄)

If σ = Ui and m = ui, the block can be further

simplified to:

(σ1 0
m−1

...σm 0
m−1σ10

m−1
...σm0

m−1)L

(σ1 0
m−1

...σm 0
m−1σ10

m−1
...σm0

m−1)L̄

Each of the above lines of the block are known as

chunks. One chunk consists of a UTS (with

interleaved idle periods), while the other chunk is

an idle period of length 2m2.

If the robot's label is 0, then each block that it runs

is equal to:

0
2m

2

σ1 0
m−1

...σm 0
m−1σ10

m−1
...σm0

m−1

If the label is 1, then a block is equal to

σ1 0
m−1

...σm 0
m−1σ10

m−1
...σm0

m−1
0

2m
2

Correctness Proof

Let:

• bi = the number of steps in the block

Du
i−1
((U i U i)

L L̄)

• wi = the number of steps in Du
i−1
((U i)

L) ,

or a quarter of the number of steps in a

block

A chunk of the block n has 2un
2 steps in it, so

wi = un
2

From Aleliunas et al [1979], it is known that

un = O(nc), so wn = O(n2c) [1]

Therefore, bn = 4wn = O(n2c)

Assume that 4un ≤ u2n, for every n = 2i. This

assumption can be made because 4un = O(nc) and

u2n = un
2 for all n = 2i. Squaring both sides gives

16wn ≤ w2n. Multiplying both sides by four gives

16bn ≤ b2n. This results in the important property

that for all j ≥ 1,

∑
i=0

j

b2i<
1

15
b2j

which implies that if one robot is executing block

i when the other robot is activated, then the

former robot will be less than a quarter of the way

through the i+1th block when the latter begins

executing block i+1.

We now have everything we need to prove the

correctness of the algorithm. Let K be the index

(index in this case means the value of i in

Du
i−1
((U i U i)

L L̄)) of the first robot to be

activated when the second robot to be activated

starts running block n, where n is the size of the

graph. There are two cases: the case where uK ≥ bn

and the case where uK < bn.

Case 1: uK ≥ bn

In this case, the first robot rests between each step

for at least as long as it takes the second robot to

run a block, so the robots must meet (as shown in

Figure 1). [5]

Figure 1: The second robot runs a complete

traversal sequence while the first robot is resting

Case 2: uK < bn

uK = O(Kc) and bn = O(n2c), so K < O(n2)

The second robot finishes block K and begins

block 2K after O(K2c) = O(n4c) steps. The first

robot must still be in the first quarter of block 2K

at this time. If the first robot's label is 0, then the

second robot will finish a complete traversal

before the first robot finishes resting. Otherwise,

the first robot will complete the entirety of its

second traversal while the second robot is resting.

These cases are shown in Figure 2. [5]

Figure 2: One of the robots will complete an

entire traversal while the other rests

In both cases, one robot completes a full traversal

sequence while the other robot rests, therefore the

robots must find one another.

Complexity Analysis

As in the correctness proof, two cases will be

considered.

Case 1: uK ≥ bn

It was shown above that the robots will meet by

the time the second robot completes block n.

Block n is the ln(n)th block, and each block has

length bn = O(n2c), so the robots will meet

ln(n)O(n2c) ≤ O(n4c) steps after the second robot is

activated. [5]

Case 2: uK < bn

Recall from earlier:

• uK = O(Kc) and bn = O(n2c), so K < O(n2)

• The second robot finishes block K and

begins block 2K after O(K2c) = O(n4c) steps

It was shown that the robots will meet in the first

half of block 2K, which has length b2K, so the

robots will meet after O(n4c) + b2K steps.

b2K = O(K2c) = O(n4c)

O(n4c) + b2K = 2O(n4c) = O(n4c)

Therefore the robots will meet O(n4c) steps after

the second robot is activated. [5]

Conclusion

It has been proven that the robots will meet, and

that the meeting will take place O(n4c) steps after

the second robot is activated. Ta-Shma and Zwick

also go on to show how the robots can be made to

meet only O(nc) steps after the activation of the

second robot and how to deal with arbitrary labels.

This is beyond the scope of this report, which is

intended to show how Ta-Shma and Zwick's

solution is one which runs in polynomial time not

dependant on τ (which can be arbitrarily large) and

which does not use backtracking (which makes

assumptions on how the graph is labelled and the

sensory/memory capabilities of the robots). [5]

References

(1) R. Aleliunas, R. M. Karp, R. J. Lipton, L.

Lovász, and C. Rackoff. 1979. Random

walks, universal traversal sequences, and

the complexity of maze problems. In

FOCS. 218-223

(2) Alpern, Steve, Shmuel Gal and

MyiLibrary, The Theory of Search Games

and Rendezvous (Kluwer Academic

Publishers, 2003) vol 55

(3) A. Dessmark, P. Fraingnaud, D. Kowalski,

and A. Pelc. 2006. Deterministic

rendezvous in graphs. Algorithmica 46, 1

(2006), 69-96

(4) D. R. Kowalski and A. Malinowski. 2008.

How to meet in anonymous network.

Theoretical Computer Science 399, 1-2

(2008), 141-156

(5) Amnon Ta-Shma and Uri Zwick. 2014.

Deterministic rendezvous, treasure hunts,

and strongly universal traversal sequences,

universal exploration sequences. ACM

Trans. Algor. 10, 3, Article 12 (April

2014), 15 pages.

