Deterministic Rendezvous Problem

COMP 5703 Seminar
Adam Bennett

Deterministic Rendezvous Problem

- Variant of the more general Rendezvous Problem
- Rendezvous Problem:
- problem in game theory where two robots in a graph must meet at the same node
- In the Deterministic Rendezvous Problem, instructions given to the robots are deterministic

Deterministic Rendezvous Problem

- Both robots are given the same sequence of instructions
- instruction sequence may refer to the robot's label
- Applications include:
- Search and Rescue
- Communications
- Networks / Operating Systems

Deterministic Rendezvous Problem

- Consider two robots in an unknown, finite, connected, undirected graph
- Each robot knows:
- T, the number of time steps since it has been activated
- d, the degree of the node it is at
- L, the value of a distinct label that it was assigned
- The robots must be provided a set of deterministic instructions that will allow them to find each other

Deterministic Rendezvous Problem

- Many of the parameters of the problem are set by the adversary:
- The size and layout of the graph
- The initial positions of the two robots
- When each robot is activated
- The value of the unique label assigned to each robot

Solutions

- A variety of algorithms exist that solve the problem
- Dessmark et al. [2006] presented an algorithm that solves the problem in time proportional to:

$$
O\left(n^{5} \sqrt{\tau l}+n^{10} l\right)
$$

where:

- n is the size of the graph
- l is the length of the shortest labels
- τ is the difference in activation times

Solutions

- Kowalski and Malinowski [2008] presented an algorithm that solves the problem in time proportional to:

$$
O\left(n^{15}+\beta\right)
$$

- Doesn't depend on τ, which may be arbitrarily large
- Uses backtracking:
- the robot remembers the sequence of edges it has traversed

Solutions

- Ta-Shma and Zwick [2014] presented an algorithm that solves the problem in time proportional to:
$\mathrm{O}\left(n^{5}\right)$
- Doesn't use backtracking
- Uses Universal Traversal Sequences
- This is the algorithm that will be explored in detail for the remainder of this presentation

Universal Traversal Sequences

- Traversal Sequence:
- a set of instructions that define a traversal of every node in a particular d-regular graph
- Each step in the sequence specifies which neighbour of the current node to visit next
- Steps are relative to the current node
- For example, if the current node is v_{j}, and v_{j} has d neighbours, then the traversal sequence will specify the next node to visit, v_{j+1}, as the $i^{\text {th }}$ neighbour of v_{j}, where $1 \leq i \leq d$

Universal Traversal Sequences

- Universal Traversal Sequence (UTS):
- traversal sequence that covers any n-vertex graph no matter which node is the starting node
- What if the graph is not d-regular?
- Let d be the greatest degree of any node. For any node with degree less than d, add self-loops until that node's degree is equal to d.

Universal Traversal Sequences

- Aleliunas et al. [1979] presented a proof stating that for any d-regular n-vertex graph, there exists a UTS for that graph with $\Theta\left(n^{5}\right)$ steps
- The remainder of this presentation assumes that a UTS for a d-regular n-vertex graph is known

Ta-Shma and Zwick's Solution

- Basic Idea:
- Robots are guaranteed to meet if one traverses the entire graph while the other remains idle (rests)
- Size of the graph is unknown, so the robots use UTSs for increasing values of n while periodically resting
- Whether the robot rests before or after completing each traversal sequence depends on its label

Ta-Shma and Zwick's Solution

- For example:

One robot runs the sequence

$$
U_{1} 0^{u_{1}} U_{2} 0^{u_{2}} U_{4} 0^{u_{4}} U_{8} 0^{u_{8}} \ldots U_{2} 0^{u_{z}} \ldots
$$

while the other robot runs the sequence

$$
0^{u_{1}} U_{1} 0^{u_{2}} U_{2} 0^{u_{4}} U_{4} 0^{u_{s}} U_{8} \ldots 0^{u_{2}} U_{2^{\prime} \ldots}
$$

where U_{i} is a UTS for a graph of size i, u_{i} is the number of steps in that UTS, and 0^{k} represents k steps where the robot rests

- Only works if the robots are activated at the same time

Ta-Shma and Zwick's Solution

- What if the robots are activated at different times?
- Add idle periods of length $u_{i}-1$ between each step
- Example:
- One of the robots will run the sequence

$$
\begin{aligned}
& \sigma_{1} 0^{u_{1}-1} \sigma_{2} 0^{u_{1}-1} \sigma_{3} 0^{u_{1}-1} \ldots \sigma_{u_{1}} 0^{u_{1}-1} 0^{2 u_{1}^{2}} \pi_{1} 0^{u_{2}-1} \pi_{2} 0^{u_{2}-1} \pi_{3} 0^{u_{2}-1} \ldots \pi_{u_{2}} 0^{u_{2}} 0^{2 u_{2}^{2}} \ldots \\
& \quad \text { where } \sigma=U_{1} \text { and } \pi=U_{2}
\end{aligned}
$$

Ta-Shma and Zwick's Solution

Some notation:

- Let $\sigma^{b}=$

$$
\begin{array}{ll}
0^{|\sigma|} & \text { if } b=0 \\
\sigma & \text { if } b=1
\end{array}
$$

- Let $\bar{L}=1-L$
- Let $\sigma^{m_{1 . .} m_{k}}=\sigma^{m_{1}} \sigma^{m_{2}} \ldots \sigma^{m_{k}}$
- Let $D_{k}\left(\sigma_{1} \ldots \sigma_{m}\right)=\sigma_{1} 0^{k} \sigma_{2} 0^{k} \ldots \sigma_{m} 0^{k}$

Ta-Shma and Zwick's Solution

- For simplicity's sake, assume that 0 and 1 are the labels chosen for the two robots
- The sequence of instructions that a robot runs is:

$$
D_{u_{1-1}}\left(\left(U_{1} U_{1}\right)^{L \bar{L}}\right) D_{u_{2-1}}\left(\left(U_{2} U_{2}\right)^{L L}\right) \ldots D_{u_{2^{-1}}}\left(\left(U_{2^{k}} U_{2^{k}}\right)^{L \bar{L}}\right) \ldots
$$

Ta-Shma and Zwick's Solution

$$
D_{u_{1-1}}\left(\left(U_{1} U_{1}\right)^{L \bar{L}}\right) D_{u_{2-1}}\left(\left(U_{2} U_{2}\right)^{L \bar{L}}\right) \ldots D_{u_{2^{*}}}\left(\left(U_{2^{k}} U_{2^{k}}\right)^{L \bar{L}}\right) \ldots
$$

- Consider the following sub-sequence :

$$
D_{u_{i-1}}\left(\left(U_{i} U_{i}\right)^{L L}\right)
$$

- This sub-sequence is known as a block
- A block can be rewritten like this:

$$
D_{u_{i-1}}\left(\left(U_{i} U_{i}\right)^{L}\left(U_{i} U_{i}\right)^{\bar{L}}\right)
$$

Ta-Shma and Zwick's Solution

$D_{u_{i-1}}\left(\left(U_{i} U_{i}\right)^{L}\left(U_{i} U_{i}\right)^{\bar{L}}\right)$

- If we let $\sigma=U_{i}$ and $m=u_{i}$, then the block can be further simplified to:

$$
\left(\sigma_{1} 0^{m-1} \ldots \sigma_{m} 0^{m-1} \sigma_{1} 0^{m-1} \ldots \sigma_{m} 0^{m-1}\right)^{L}\left(\sigma_{1} 0^{m-1} \ldots \sigma_{m} 0^{m-1} \sigma_{1} 0^{m-1} \ldots \sigma_{m} 0^{m-1}\right)^{\bar{L}}
$$

- A block consists of two parts:

$$
\begin{aligned}
& \left(\sigma_{1} 0^{m-1} \ldots \sigma_{m} 0^{m-1} \sigma_{1} 0^{m-1} \ldots \sigma_{m} 0^{m-1}\right)^{L} \\
& \left(\sigma_{1} 0^{m-1} \ldots \sigma_{m} 0^{m-1} \sigma_{1} 0^{m-1} \ldots \sigma_{m} 0^{m-1}\right)^{L}
\end{aligned}
$$

- These two parts are known as chunks

Ta-Shma and Zwick's Solution

- If the robot's label is 0 , then the block is equal to

$$
0^{2 m^{2}} \sigma_{1} 0^{m-1} \ldots \sigma_{m} 0^{m-1} \sigma_{1} 0^{m-1} \ldots \sigma_{m} 0^{m-1}
$$

- If the robot's label is 1 , then the block is equal to

$$
\sigma_{1} 0^{m-1} \ldots \sigma_{m} 0^{m-1} \sigma_{1} 0^{m-1} \ldots \sigma_{m} 0^{m-1} 0^{2 m^{2}}
$$

Correctness Proof

- Let $\mathrm{b}_{\mathrm{i}}=$ the size of the block $D_{u_{i-1}}\left(\left(U_{i} U_{i}\right)^{L L}\right)$
- Let $\mathrm{w}_{\mathrm{i}}=$ the size of $D_{u_{i-1}}\left(\left(U_{i}\right)^{L}\right)$
- A chunk has size $2 m^{2}$ (where $m=u_{n}$), and w_{n} is equal in size to half a chunk, therefore $w_{n}=u_{n}{ }^{2}$

Correctness Proof

- From Aleliunas et al. [1979], it is known that

$$
u_{n}=\Theta\left(n^{c}\right), \text { so } w_{n}=\Theta\left(n^{2 c}\right)
$$

- $\mathrm{b}_{\mathrm{n}}=4 \mathrm{w}_{\mathrm{n}}=\Theta\left(\mathrm{n}^{2 \mathrm{c}}\right)$
- Assume $4 u_{n} \leq u_{2 n}$, for every $n=2^{i}$
(since $4 u_{n}=\Theta\left(n^{c}\right)$ and $u_{2 n}=u_{n}^{2}=\Theta\left(n^{2 c}\right)$, for $n=2^{i}$)
- $16 b_{n} \leq b_{2 n}$, for every $n=2^{i}$

Correctness Proof

- From $16 b_{n} \leq b_{2 n}$, we get for all $j \geq 1$:

$$
\sum_{i=0}^{j} b_{2 \mathrm{i}}<\frac{1}{15} b_{2 \mathrm{j}}
$$

- If one robot is in block i when the other is activated, the former robot will be less than 1/4 through the block after i when the latter robot begins the block after i

Correctness Proof

- Let K be the index of the block that the first robot to be activated is in when the second robot reaches the block with index n
- By index, we mean the value of i in the current block $\left.D_{u_{i-1}}\left(U_{i} U_{i}\right)^{L L}\right)$, which will always be a power of two
- There are two cases to consider: the case where $\mathrm{u}_{k} \geq \mathrm{b}_{n}$, and the case where $\mathrm{u}_{k}<\mathrm{b}_{n}$

Correctness Proof

- Case 1: $\mathrm{u}_{k} \geq \mathrm{b}_{n}$
- The first robot rests for the amount of time it takes the second robot to complete an entire traversal
First Robot:

Second Robot:
$($ (if $L=1$)

$$
\ldots \quad D_{n-1}\left(U_{n}\right) D_{n-1}\left(U_{n}\right) \quad 0^{\wedge} w_{n} \quad 0^{\wedge} w_{n}
$$

Correctness proof

- Case 2: $\mathrm{u}_{k}<\mathrm{b}_{n}$
- $\mathrm{u}_{K}=\Theta\left(K^{c}\right)$ and $\mathrm{b}_{n}=\Theta\left(n^{2 c}\right)$, so $K<O\left(n^{2}\right)$
- The second robot finishes block K and begins block $2 K$ after $\mathrm{O}\left(K^{\mathrm{c}}\right)=\mathrm{O}\left(n^{4 c}\right)$ steps
- The first robot must still be on the first quarter of block $2 K$ at this time.

First Robot (if first robot's L=0)

$$
\begin{array}{l|l|l}
0^{\wedge} w_{2 K} & 0^{\wedge} w_{2 K} & D_{2 K-1}\left(U_{2 K}\right) \\
D_{2 K-1} & \left(U_{2 K}\right)
\end{array}
$$

Second Robot (if second robot's L=1)

$$
\begin{array}{|l|l|l|l|}
\hline \ldots & D_{2 K-1}\left(U_{2 K}\right) & D_{2 K-1}\left(U_{2 K}\right) & 0^{\wedge} w_{2 K}
\end{array} 0^{\wedge} \mathrm{w}_{2 \mathrm{~K}}
$$

First Robot (if first robot's L=1)

$$
\begin{array}{lllll}
\ldots & \mathrm{D}_{2 \mathrm{~K}-1}\left(\mathrm{U}_{2 \mathrm{~K}}\right) & \mathrm{D}_{2 \mathrm{~K}-1}\left(\mathrm{U}_{2 \mathrm{~K}}\right) & 0^{\wedge} \mathrm{w}_{2 \mathrm{~K}} & 0^{\wedge} \mathrm{w}_{2 \mathrm{~K}}
\end{array}
$$

Second Robot (if second robot's L=0)

$$
\begin{array}{lllll}
0^{\wedge} \mathrm{w}_{2 \mathrm{~K}} & 0^{\wedge} \mathrm{w}_{2 \mathrm{~K}} & \mathrm{D}_{2 \mathrm{~K}-1}\left(\mathrm{U}_{2 \mathrm{~K}}\right) & \mathrm{D}_{2 \mathrm{~K}-1}\left(\mathrm{U}_{2 \mathrm{~K}}\right)
\end{array}
$$

Time Complexity

- Case 1: $\mathrm{u}_{k} \geq \mathrm{b}_{n}$
- The robots meet by the time the second robot finishes block n
- Block n is the $\ln (n)^{\text {th }}$ block run by the second robot
- Each block has length $b_{n}=\Theta\left(n^{2 c}\right)$
- Robots meet $\ln (n) \Theta\left(n^{2 c}\right) \leq \mathrm{O}\left(n^{*} n^{2 c}\right) \leq \mathrm{O}\left(n^{4 \mathrm{c}}\right)$ steps after the second robot is activated

Time Complexity

- Case 2: $\mathrm{u}_{k}<\mathrm{b}_{n}$
- Recall from earlier:
- $\mathrm{u}_{K}=\Theta\left(K^{\mathrm{c}}\right)$ and $\mathrm{b}_{n}=\Theta\left(n^{2 \mathrm{c}}\right)$, so $K<\mathrm{O}\left(n^{2}\right)$
- The second robot finishes block K and begins block $2 K$ after $\mathrm{O}\left(K^{2 \mathrm{c}}\right)=\mathrm{O}\left(n^{4 \mathrm{c}}\right)$ steps
- Robots meet in first half of block $2 K$
- So they will meet after $O\left(n^{4 c}\right)+b_{2 K} / 2$ steps
- $\mathrm{b}_{2 \mathrm{~K}}=\Theta\left(2 K^{2 \mathrm{c}}\right)=\mathrm{O}\left(n^{4 \mathrm{c}}\right)$
- $\mathrm{O}\left(n^{4 \mathrm{c}}\right)+\mathrm{b}_{K} / 2=2 \mathrm{O}\left(n^{4 \mathrm{c}}\right)=\mathrm{O}\left(n^{4 \mathrm{c}}\right)$
- The robots meet $\mathrm{O}\left(n^{4 c}\right)$ steps after the second robot is activated

Ta-Shma and Zwick's Solution

- Both robots have been proven to meet at most $\mathrm{O}\left(n^{4 c}\right)$ steps after the second robot has been activated
- Ta-Shma and Zwick also show:
- how to reduce the time complexity to $\mathrm{O}\left(n^{c}\right)$ steps after the second robot has been activated
- how to deal with arbitrary labels (ie: labels where the robots don't have 0 and 1 as labels)
- The time complexity when dealing with arbitrary labels is $\mathrm{O}\left(I n^{c}\right)$ steps after the second robot has been activated, where I is the length of the shortest label
- these are beyond the scope of this presentation

References

- R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff. 1979. Random walks, universal traversal sequences, and the complexity of maze problems. In FOCS. 218-223
- Alpern, Steve, Shmuel Gal and MyiLibrary, The Theory of Search Games and Rendezvous (Kluwer Academic Publishers, 2003) vol 55
- A. Dessmark, P. Fraingnaud, D. Kowalski, and A. Pelc. 2006. Deterministic rendezvous in graphs. Algorithmica 46, 1 (2006), 69-96
- D. R. Kowalski and A. Malinowski. 2008. How to meet in anonymous network. Theoretical Computer Science 399, 1-2 (2008), 141-156
- Amnon Ta-Shma and Uri Zwick. 2014. Deterministic rendezvous, treasure hunts, and strongly universal traversal sequences, universal exploration sequences. ACN Trans. Algor. 10, 3, Article 12 (April 2014), 15 pages.

