COMP 5703 Seminar Adam Bennett

- Variant of the more general *Rendezvous Problem*
- Rendezvous Problem:
 - problem in game theory where two robots in a graph must meet at the same node
- In the Deterministic Rendezvous Problem, instructions given to the robots are deterministic

- Both robots are given the same sequence of instructions
 - instruction sequence may refer to the robot's label
- Applications include:
 - Search and Rescue
 - Communications
 - Networks / Operating Systems

- Consider two robots in an unknown, finite, connected, undirected graph
- Each robot knows:
 - *T*, the number of time steps since it has been activated
 - *d*, the degree of the node it is at
 - *L*, the value of a distinct label that it was assigned
- The robots must be provided a set of deterministic instructions that will allow them to find each other

- Many of the parameters of the problem are set by the *adversary*:
 - The size and layout of the graph
 - The initial positions of the two robots
 - When each robot is activated
 - The value of the unique label assigned to each robot

Solutions

- A variety of algorithms exist that solve the problem
- Dessmark et al. [2006] presented an algorithm that solves the problem in time proportional to:

$$O(n^5\sqrt{\tau l}+n^{10}l)$$

where:

- *n* is the size of the graph
- *I* is the length of the shortest labels
- τ is the difference in activation times

Solutions

 Kowalski and Malinowski [2008] presented an algorithm that solves the problem in time proportional to:

 $O(n^{15}+l^3)$

- Doesn't depend on τ , which may be arbitrarily large
- Uses backtracking:
 - the robot remembers the sequence of edges it has traversed

Solutions

 Ta-Shma and Zwick [2014] presented an algorithm that solves the problem in time proportional to:

O(*n*⁵*l*)

- Doesn't use backtracking
- Uses Universal Traversal Sequences
- This is the algorithm that will be explored in detail for the remainder of this presentation

Universal Traversal Sequences

- Traversal Sequence:
 - a set of instructions that define a traversal of every node in a particular *d*-regular graph
- Each step in the sequence specifies which neighbour of the current node to visit next
 - Steps are relative to the current node
 - For example, if the current node is v_j , and v_j has dneighbours, then the traversal sequence will specify the next node to visit, v_{j+1} , as the *i*th neighbour of v_j , where $1 \le i \le d$

Universal Traversal Sequences

- Universal Traversal Sequence (UTS):
 - traversal sequence that covers any *n*-vertex graph no matter which node is the starting node
- What if the graph is not *d*-regular?
 - Let *d* be the greatest degree of any node. For any node with degree less than *d*, add self-loops until that node's degree is equal to *d*.

Universal Traversal Sequences

- Aleliunas et al. [1979] presented a proof stating that for any *d*-regular *n*-vertex graph, there exists a UTS for that graph with Θ(n⁵) steps
- The remainder of this presentation assumes that a UTS for a *d*-regular *n*-vertex graph is known

- Basic Idea:
 - Robots are guaranteed to meet if one traverses the entire graph while the other remains idle (*rests*)
- Size of the graph is unknown, so the robots use UTSs for increasing values of *n* while periodically resting
- Whether the robot rests before or after completing each traversal sequence depends on its label

• For example:

One robot runs the sequence

 $U_1 0^{u_1} U_2 0^{u_2} U_4 0^{u_4} U_8 0^{u_8} \dots U_{2^i} 0^{u_{2^i}} \dots$

while the other robot runs the sequence $0^{u_1}U_1 0^{u_2}U_2 0^{u_4}U_4 0^{u_8}U_8 \dots 0^{u_{2^i}}U_{2^i} \dots$

where U_i is a UTS for a graph of size *i*, u_i is the number of steps in that UTS, and 0^k represents k steps where the robot rests

Only works if the robots are activated at the same time

- What if the robots are activated at different times?
 - Add idle periods of length $u_i 1$ between each step
- Example:
 - One of the robots will run the sequence
- $\sigma_1 0^{u_1 1} \sigma_2 0^{u_1 1} \sigma_3 0^{u_1 1} \dots \sigma_{u_1} 0^{u_1 1} 0^{2u_1^2} \pi_1 0^{u_2 1} \pi_2 0^{u_2 1} \pi_3 0^{u_2 1} \dots \pi_{u_2} 0^{u_2} 0^{2u_2^2} \dots$ where $\sigma = U_1$ and $\pi = U_2$

Some notation:

- Let σ^b =
 - $0^{|\sigma|}$ if b = 0
 - $\sigma \qquad \text{if } b = 1$
- Let $\overline{L} = 1 L$
- Let $\sigma^{m_1...m_k} = \sigma^{m_1} \sigma^{m_2} ... \sigma^{m_k}$
- Let $D_k(\sigma_1...\sigma_m) = \sigma_1 0^k \sigma_2 0^k ... \sigma_m 0^k$

- For simplicity's sake, assume that 0 and 1 are the labels chosen for the two robots
- The sequence of instructions that a robot runs is:

$$D_{u_{1-1}}((U_1U_1)^{L\bar{L}})D_{u_{2-1}}((U_2U_2)^{L\bar{L}})...D_{u_{2^k}-1}((U_{2^k}U_{2^k})^{L\bar{L}})...$$

 $D_{u_{1-1}}((U_1U_1)^{L\bar{L}})D_{u_{2-1}}((U_2U_2)^{L\bar{L}})...D_{u_{2^k}-1}((U_{2^k}U_{2^k})^{L\bar{L}})...$

- Consider the following sub-sequence : $D_{u_{i^{-1}}}((U_i\,U_i)^{L\,\bar{L}})$
 - This sub-sequence is known as a *block*
- A block can be rewritten like this:

 $D_{u_{i-1}}((U_{i}U_{i})^{L}(U_{i}U_{i})^{\bar{L}})$

$D_{u_{i-1}}((U_{i}U_{i})^{L}(U_{i}U_{i})^{\bar{L}})$

- If we let $\sigma = U_i$ and $m = u_i$, then the block can be further simplified to:

 $(\sigma_1 0^{m-1} \dots \sigma_m 0^{m-1} \sigma_1 0^{m-1} \dots \sigma_m 0^{m-1})^L (\sigma_1 0^{m-1} \dots \sigma_m 0^{m-1} \sigma_1 0^{m-1} \dots \sigma_m 0^{m-1})^{\overline{L}}$

• A block consists of two parts:

$$(\sigma_1 0^{m-1} \dots \sigma_m 0^{m-1} \sigma_1 0^{m-1} \dots \sigma_m 0^{m-1})^L$$

$$(\sigma_1 0^{m-1} \dots \sigma_m 0^{m-1} \sigma_1 0^{m-1} \dots \sigma_m 0^{m-1})^{\bar{L}}$$

• These two parts are known as *chunks*

- If the robot's label is 0, then the block is equal to $0^{2m^2}\sigma_1 0^{m-1}...\sigma_m 0^{m-1}\sigma_1 0^{m-1}...\sigma_m 0^{m-1}$
- If the robot's label is 1, then the block is equal to $\sigma_1 0^{m-1} \dots \sigma_m 0^{m-1} \sigma_1 0^{m-1} \dots \sigma_m 0^{m-1} 0^{2m^2}$

- Let \mathbf{b}_{i} = the size of the block $D_{u_{i-1}}((U_{i}U_{i})^{L\bar{L}})$
- Let w_i = the size of $D_{u_{i-1}}((U_i)^L)$
- A chunk has size $2m^2$ (where m=u_n), and w_n is equal in size to half a chunk, therefore w_n = u_n²

• From Aleliunas et al. [1979], it is known that

$$u_n = \Theta(n^c)$$
, so $w_n = \Theta(n^{2c})$

•
$$b_n = 4w_n = \Theta(n^{2c})$$

- Assume $4u_n \le u_{2n}$, for every $n = 2^i$ (since $4u_n = \Theta(n^c)$ and $u_{2n} = u_n^2 = \Theta(n^{2c})$, for $n = 2^i$)
- $16b_n \le b_{2n}$, for every $n = 2^i$

- From $16b_n \le b_{2n}$, we get for all $j \ge 1$:
 - $\sum_{i=0}^{J} b_{2i} < \frac{1}{15} b_{2j}$
- If one robot is in block *i* when the other is activated, the former robot will be less than 1/4 through the block after *i* when the latter robot begins the block after *i*

- Let K be the index of the block that the first robot to be activated is in when the second robot reaches the block with index n
 - By index, we mean the value of i in the current block $D_{u_{i-1}}((U_iU_i)^{L\bar{L}})$, which will always be a power of two
- There are two cases to consider: the case where $u_{\kappa} \ge b_n$, and the case where $u_{\kappa} < b_n$

- Case 1: $u_{\kappa} \ge b_n$
 - The first robot rests for the amount of time it takes the second robot to complete an entire traversal

Case 2: u_K < b_n

-
$$u_{\kappa} = \Theta(K^c)$$
 and $b_n = \Theta(n^{2c})$, so $K < O(n^2)$

- The second robot finishes block *K* and begins block 2*K* after $O(K^{c^2}) = O(n^{4c})$ steps
 - The first robot must still be on the first quarter of block 2K at this time.

First Robot (if first robot's L = 0)

...
$$0^{k} W_{2K}$$
 $0^{k} W_{2K}$ $D_{2K-1}(U_{2K})$ $D_{2K-1}(U_{2K})$...

Second Robot (if second robot's L = 1)

...
$$D_{2K-1}(U_{2K})$$
 $D_{2K-1}(U_{2K})$ $0^{A}W_{2K}$ $0^{A}W_{2K}$...

First Robot (if first robot's L = 1)

... $D_{2K-1}(U_{2K})$ $D_{2K-1}(U_{2K})$ $0^{A}w_{2K}$ $0^{A}w_{2K}$...

Second Robot (if second robot's L = 0)

. $0^{h}w_{2K}$ $0^{h}w_{2K}$ $D_{2K-1}(U_{2K})$ $D_{2K-1}(U_{2K})$.

Time Complexity

- Case 1: $u_{\kappa} \ge b_{n}$
 - The robots meet by the time the second robot finishes block *n*
 - Block *n* is the ln(n)th block run by the second robot
 - Each block has length $b_n = \Theta(n^{2c})$
 - Robots meet $ln(n)Θ(n^{2c}) ≤ O(n^*n^{2c}) ≤ O(n^{4c})$ steps after the second robot is activated

Time Complexity

- Case 2: u_κ < b_n
 - Recall from earlier:
 - $u_{\kappa} = \Theta(K^c)$ and $b_n = \Theta(n^{2c})$, so $K < O(n^2)$
 - The second robot finishes block *K* and begins block 2K after $O(K^{2c}) = O(n^{4c})$ steps
 - Robots meet in first half of block 2K
 - So they will meet after $O(n^{4c}) + b_{2K}/2$ steps
 - $b_{2K} = \Theta(2K^{2c}) = O(n^{4c})$
 - $O(n^{4c}) + b_{\kappa}/2 = 2O(n^{4c}) = O(n^{4c})$
 - The robots meet O(n^{4c}) steps after the second robot is activated

- Both robots have been proven to meet at most O(n^{4c}) steps after the second robot has been activated
- Ta-Shma and Zwick also show:
 - how to reduce the time complexity to O(n^c) steps after the second robot has been activated
 - how to deal with arbitrary labels (ie: labels where the robots don't have 0 and 1 as labels)
 - The time complexity when dealing with arbitrary labels is O(*In*^c) steps after the second robot has been activated, where *I* is the length of the shortest label
 - these are beyond the scope of this presentation

References

- R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff. 1979. Random walks, universal traversal sequences, and the complexity of maze problems. In FOCS. 218-223
- Alpern, Steve, Shmuel Gal and MyiLibrary, The Theory of Search Games and Rendezvous (Kluwer Academic Publishers, 2003) vol 55
- A. Dessmark, P. Fraingnaud, D. Kowalski, and A. Pelc. 2006. Deterministic rendezvous in graphs. *Algorithmica* 46, 1 (2006), 69-96
- D. R. Kowalski and A. Malinowski. 2008. How to meet in anonymous network. *Theoretical Computer Science* 399, 1-2 (2008), 141-156
- Amnon Ta-Shma and Uri Zwick. 2014. Deterministic rendezvous, treasure hunts, and strongly universal traversal sequences, universal exploration sequences. ACN Trans. Algor. 10, 3, Article 12 (April 2014), 15 pages.