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Deterministic Rendezvous Problem

● Variant of the more general Rendezvous 
Problem

● Rendezvous Problem: 

– problem in game theory where two robots in a 

graph must meet at the same node

● In the Deterministic Rendezvous Problem, 

instructions given to the robots are deterministic



  

Deterministic Rendezvous Problem

● Both robots are given the same sequence of 

instructions

– instruction sequence may refer to the robot's label

● Applications include:

– Search and Rescue

– Communications

– Networks / Operating Systems



  

Deterministic Rendezvous Problem

● Consider two robots in an unknown, finite, 

connected, undirected graph

● Each robot knows:

– T, the number of time steps since it has been 

activated

– d, the degree of the node it is at

– L, the value of a distinct label that it was assigned

● The robots must be provided a set of 

deterministic instructions that will allow them to 

find each other



  

Deterministic Rendezvous Problem

● Many of the parameters of the problem are set 

by the adversary:

– The size and layout of the graph

– The initial positions of the two robots

– When each robot is activated

– The value of the unique label assigned to each 

robot



  

Solutions

● A variety of algorithms exist that solve the 

problem

● Dessmark et al. [2006] presented an algorithm 

that solves the problem in time proportional to:

where:

– n is the size of the graph

– l is the length of the shortest labels

– τ is the difference in activation times

O(n5 √τ l+n10
l)



  

Solutions

● Kowalski and Malinowski [2008] presented an 

algorithm that solves the problem in time 

proportional to:

O(n15

+l3)

– Doesn't depend on τ, which may be arbitrarily large

– Uses backtracking:

● the robot remembers the sequence of edges it has 

traversed



  

Solutions

● Ta-Shma and Zwick [2014] presented an 

algorithm that solves the problem in time 

proportional to:

O(n5l)

– Doesn't use backtracking

– Uses Universal Traversal Sequences

– This is the algorithm that will be explored in detail 

for the remainder of this presentation



  

Universal Traversal Sequences

● Traversal Sequence:

– a set of instructions that define a traversal of every 

node in a particular d-regular graph

● Each step in the sequence specifies which 

neighbour of the current node to visit next

– Steps are relative to the current node

– For example, if the current node is v
j

, and v
j

 has d 

neighbours, then the traversal sequence will specify 

the next node to visit, v
j+1

, as the i th neighbour of v
j

, 

where 1 ≤ i ≤ d



  

Universal Traversal Sequences

● Universal Traversal Sequence (UTS): 

– traversal sequence that covers any n-vertex graph 

no matter which node is the starting node

● What if the graph is not d-regular?

– Let d be the greatest degree of any node. For any 

node with degree less than d, add self-loops until 

that node's degree is equal to d.



  

Universal Traversal Sequences

● Aleliunas et al. [1979] presented a proof stating 

that for any d-regular n-vertex graph, there 

exists a UTS for that graph with Θ(n5

) steps

● The remainder of this presentation assumes 

that a UTS for a d-regular n-vertex graph is 

known



  

Ta-Shma and Zwick's Solution

● Basic Idea:

– Robots are guaranteed to meet if one traverses the 

entire graph while the other remains idle (rests)

● Size of the graph is unknown, so the robots use 

UTSs for increasing values of n while 

periodically resting

● Whether the robot rests before or after 

completing each traversal sequence depends 

on its label



  

Ta-Shma and Zwick's Solution

● For example:

One robot runs the sequence

while the other robot runs the sequence

where U
i
 is a UTS for a graph of size i, u

i
 is the 

number of steps in that UTS, and 0
k
 represents k 

steps where the robot rests

● Only works if the robots are activated at the 

same time
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Ta-Shma and Zwick's Solution

● What if the robots are activated at different 

times?

– Add idle periods of length u
i
 – 1 between each step

● Example:

– One of the robots will run the sequence

where σ = U
1
 and π = U

2

σ10
u1−1σ2 0

u 1−1σ30
u1−1

...σu
1

0
u1−1

0
2u1

2

π1 0
u 2−1 π20

u2−1 π3 0
u 2−1

...πu
2

0
u 20

2u2

2

...



  

Some notation:

●
Let σ

b

 = 

0
|σ|

if b = 0

σ if b = 1

● Let L = 1 – L

● Let

● Let D
k

(σ
1

...σ
m

) = σ
1
0

k
σ

2
0

k
...σ

m
0

k

Ta-Shma and Zwick's Solution

σm1. ..mk=σm1 σm2 ...σmk



  

Ta-Shma and Zwick's Solution

● For simplicity's sake, assume that 0 and 1 are 

the labels chosen for the two robots

● The sequence of instructions that a robot runs 

is:

Du 1−1
((U 1U 1)

L L̄)Du2−1
((U 2U 2)

L L̄)...Du
2
k−1((U 2

k U
2
k)L L̄)...



  

Ta-Shma and Zwick's Solution

● Consider the following sub-sequence :

– This sub-sequence is known as a block

● A block can be rewritten like this:

Dui−1
((UiU i)

L L̄)

Dui−1
((UiU i)

L(U iU i)
L̄)

Du 1−1
((U 1U 1)

L L̄)Du2−1
((U 2U 2)

L L̄)...Du
2
k−1((U 2

k U
2
k)L L̄)...



  

Ta-Shma and Zwick's Solution

● If we let σ=U
i
 and m=u

i
, then the block can be further 

simplified to:

● A block consists of two parts:

● These two parts are known as chunks

Dui−1
((UiU i)

L(U iU i)
L̄)

(σ1 0
m−1

...σm0
m−1 σ1 0

m−1
...σm0

m−1)L (σ10
m−1

...σm0
m−1 σ1 0

m−1
...σm0

m−1)L̄

(σ1 0
m−1

...σm0
m−1 σ1 0

m−1
...σm0

m−1)L

(σ1 0
m−1

...σm0
m−1 σ1 0

m−1
...σm0

m−1)L̄



  

Ta-Shma and Zwick's Solution

● If the robot's label is 0, then the block is equal to

● If the robot's label is 1, then the block is equal to

0
2m

2

σ10
m−1

...σm0
m−1 σ1 0

m−1
...σm0

m−1

σ10
m−1

...σm0
m−1 σ1 0

m−1
...σm0

m−1
0

2m
2



  

Correctness Proof

● Let b
i
 = the size of the block 

● Let w
i
 = the size of 

● A chunk has size 2m
2
 (where m=u

n
), and w

n
 is 

equal in size to half a chunk, therefore w
n
 = u

n

2

Dui−1
((UiU i)

L L̄)

Dui−1
((Ui)

L)



  

Correctness Proof

● From Aleliunas et al. [1979], it is known that 

u
n
 = Θ(n

c
), so w

n
 = Θ(n

2c
)

● b
n
 = 4w

n
 = Θ(n

2c
)

● Assume 4u
n
 ≤ u

2n
, for every n = 2

i
 

(since 4u
n
 = Θ(n

c
) and u

2n
 = u

n

2
 = Θ(n

2c
), for n = 2

i
)

● 16b
n
 ≤ b

2n
, for every n = 2

i



  

Correctness Proof

● From 16b
n
 ≤ b

2n
, we get for all j ≥ 1:

● If one robot is in block i when the other is 

activated, the former robot will be less than 1/4 

through the block after i when the latter robot 

begins the block after i

∑
i=0

j

b2i<
1

15
b2j



  

Correctness Proof

● Let K be the index of the block that the first 

robot to be activated is in when the second 

robot reaches the block with index n 

– By index, we mean the value of i in the current 

block                         , which will always be a power 

of two

● There are two cases to consider: the case 

where u
K
 ≥ b

n
, and the case where u

K
 < b

n

Dui−1
((UiU i)

L L̄)



  

Correctness Proof

● Case 1: u
K
 ≥ b

n

– The first robot rests for the amount of time it takes 

the second robot to complete an entire traversal

    ...                         0^u
K
                                                   0^u

K
                          ...First Robot:

Second Robot:

(if L = 1)

Second Robot:

(if L = 0)

      ...    D
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(U
n
)  D

n-1
(U

n
)    0^w

n
     0^w

n
       ...

     ...      0^w
n
     0^w

n
    D

n-1
(U

n
)  D

n-1
(U

n
)    ...



  

Correctness Proof

● Case 2: u
K
 < b

n

– u
K
 = Θ(Kc

) and b
n
 = Θ(n2c

), so K < O(n2
)

– The second robot finishes block K and begins block 2K after 

O(Kc2
) = O(n4c

) steps

● The first robot must still be on the first quarter of block 2K at this 

time. 
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Time Complexity

● Case 1: u
K
 ≥ b

n

– The robots meet by the time the second robot 

finishes block n

– Block n is the ln(n)
th
 block run by the second robot

– Each block has length b
n
 = Θ(n2c

)

– Robots meet ln(n)Θ(n2c
) ≤ O(n*n2c

) ≤ O(n4c
) steps 

after the second robot is activated



  

Time Complexity

● Case 2: u
K
 < b

n

– Recall from earlier:

●  u
K
 = Θ(Kc

) and b
n
 = Θ(n2c

), so K < O(n2
)

● The second robot finishes block K and begins block 2K 

after O(K2c
) = O(n4c

) steps

– Robots meet in first half of block 2K

– So they will meet after O(n4c
) + b

2K 
/ 2 steps

● b
2K

 = Θ(2K2c
) = O(n4c

)

● O(n4c
) + b

K
 / 2 = 2O(n4c

) = O(n4c
)

– The robots meet O(n4c
) steps after the second robot is 

activated



  

Ta-Shma and Zwick's Solution

● Both robots have been proven to meet at most 

O(n4c
) steps after the second robot has been 

activated

● Ta-Shma and Zwick also show:

– how to reduce the time complexity to O(nc
) steps 

after the second robot has been activated

– how to deal with arbitrary labels (ie: labels where 

the robots don't have 0 and 1 as labels)

● The time complexity when dealing with arbitrary labels is 

O(lnc
) steps after the second robot has been activated, 

where l is the length of the shortest label

– these are beyond the scope of this presentation
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