

Deterministic Rendezvous Problem

COMP 5703 Seminar

Adam Bennett

Deterministic Rendezvous Problem

● Variant of the more general Rendezvous
Problem

● Rendezvous Problem:

– problem in game theory where two robots in a

graph must meet at the same node

● In the Deterministic Rendezvous Problem,

instructions given to the robots are deterministic

Deterministic Rendezvous Problem

● Both robots are given the same sequence of

instructions

– instruction sequence may refer to the robot's label

● Applications include:

– Search and Rescue

– Communications

– Networks / Operating Systems

Deterministic Rendezvous Problem

● Consider two robots in an unknown, finite,

connected, undirected graph

● Each robot knows:

– T, the number of time steps since it has been

activated

– d, the degree of the node it is at

– L, the value of a distinct label that it was assigned

● The robots must be provided a set of

deterministic instructions that will allow them to

find each other

Deterministic Rendezvous Problem

● Many of the parameters of the problem are set

by the adversary:

– The size and layout of the graph

– The initial positions of the two robots

– When each robot is activated

– The value of the unique label assigned to each

robot

Solutions

● A variety of algorithms exist that solve the

problem

● Dessmark et al. [2006] presented an algorithm

that solves the problem in time proportional to:

where:

– n is the size of the graph

– l is the length of the shortest labels

– τ is the difference in activation times

O(n5 √τ l+n10
l)

Solutions

● Kowalski and Malinowski [2008] presented an

algorithm that solves the problem in time

proportional to:

O(n15

+l3)

– Doesn't depend on τ, which may be arbitrarily large

– Uses backtracking:

● the robot remembers the sequence of edges it has

traversed

Solutions

● Ta-Shma and Zwick [2014] presented an

algorithm that solves the problem in time

proportional to:

O(n5l)

– Doesn't use backtracking

– Uses Universal Traversal Sequences

– This is the algorithm that will be explored in detail

for the remainder of this presentation

Universal Traversal Sequences

● Traversal Sequence:

– a set of instructions that define a traversal of every

node in a particular d-regular graph

● Each step in the sequence specifies which

neighbour of the current node to visit next

– Steps are relative to the current node

– For example, if the current node is v
j

, and v
j

 has d

neighbours, then the traversal sequence will specify

the next node to visit, v
j+1

, as the i th neighbour of v
j

,

where 1 ≤ i ≤ d

Universal Traversal Sequences

● Universal Traversal Sequence (UTS):

– traversal sequence that covers any n-vertex graph

no matter which node is the starting node

● What if the graph is not d-regular?

– Let d be the greatest degree of any node. For any

node with degree less than d, add self-loops until

that node's degree is equal to d.

Universal Traversal Sequences

● Aleliunas et al. [1979] presented a proof stating

that for any d-regular n-vertex graph, there

exists a UTS for that graph with Θ(n5

) steps

● The remainder of this presentation assumes

that a UTS for a d-regular n-vertex graph is

known

Ta-Shma and Zwick's Solution

● Basic Idea:

– Robots are guaranteed to meet if one traverses the

entire graph while the other remains idle (rests)

● Size of the graph is unknown, so the robots use

UTSs for increasing values of n while

periodically resting

● Whether the robot rests before or after

completing each traversal sequence depends

on its label

Ta-Shma and Zwick's Solution

● For example:

One robot runs the sequence

while the other robot runs the sequence

where U
i
 is a UTS for a graph of size i, u

i
 is the

number of steps in that UTS, and 0
k
 represents k

steps where the robot rests

● Only works if the robots are activated at the

same time

U 10
u

1U 2 0
u

2U 40
u

4U8 0
u

8 ...U
2
i 0
u

2
i

...

0
u

1U 1 0
u

2U 2 0
u

4U 4 0
u

8U 8... 0
u

2
i

U
2
i ...

Ta-Shma and Zwick's Solution

● What if the robots are activated at different

times?

– Add idle periods of length u
i
 – 1 between each step

● Example:

– One of the robots will run the sequence

where σ = U
1
 and π = U

2

σ10
u1−1σ2 0

u 1−1σ30
u1−1

...σu
1

0
u1−1

0
2u1

2

π1 0
u 2−1 π20

u2−1 π3 0
u 2−1

...πu
2

0
u 20

2u2

2

...

Some notation:

●
Let σ

b

 =

0
|σ|

if b = 0

σ if b = 1

● Let L = 1 – L

● Let

● Let D
k

(σ
1

...σ
m

) = σ
1
0

k
σ

2
0

k
...σ

m
0

k

Ta-Shma and Zwick's Solution

σm1. ..mk=σm1 σm2 ...σmk

Ta-Shma and Zwick's Solution

● For simplicity's sake, assume that 0 and 1 are

the labels chosen for the two robots

● The sequence of instructions that a robot runs

is:

Du 1−1
((U 1U 1)

L L̄)Du2−1
((U 2U 2)

L L̄)...Du
2
k−1((U 2

k U
2
k)L L̄)...

Ta-Shma and Zwick's Solution

● Consider the following sub-sequence :

– This sub-sequence is known as a block

● A block can be rewritten like this:

Dui−1
((UiU i)

L L̄)

Dui−1
((UiU i)

L(U iU i)
L̄)

Du 1−1
((U 1U 1)

L L̄)Du2−1
((U 2U 2)

L L̄)...Du
2
k−1((U 2

k U
2
k)L L̄)...

Ta-Shma and Zwick's Solution

● If we let σ=U
i
 and m=u

i
, then the block can be further

simplified to:

● A block consists of two parts:

● These two parts are known as chunks

Dui−1
((UiU i)

L(U iU i)
L̄)

(σ1 0
m−1

...σm0
m−1 σ1 0

m−1
...σm0

m−1)L (σ10
m−1

...σm0
m−1 σ1 0

m−1
...σm0

m−1)L̄

(σ1 0
m−1

...σm0
m−1 σ1 0

m−1
...σm0

m−1)L

(σ1 0
m−1

...σm0
m−1 σ1 0

m−1
...σm0

m−1)L̄

Ta-Shma and Zwick's Solution

● If the robot's label is 0, then the block is equal to

● If the robot's label is 1, then the block is equal to

0
2m

2

σ10
m−1

...σm0
m−1 σ1 0

m−1
...σm0

m−1

σ10
m−1

...σm0
m−1 σ1 0

m−1
...σm0

m−1
0

2m
2

Correctness Proof

● Let b
i
 = the size of the block

● Let w
i
 = the size of

● A chunk has size 2m
2
 (where m=u

n
), and w

n
 is

equal in size to half a chunk, therefore w
n
 = u

n

2

Dui−1
((UiU i)

L L̄)

Dui−1
((Ui)

L)

Correctness Proof

● From Aleliunas et al. [1979], it is known that

u
n
 = Θ(n

c
), so w

n
 = Θ(n

2c
)

● b
n
 = 4w

n
 = Θ(n

2c
)

● Assume 4u
n
 ≤ u

2n
, for every n = 2

i

(since 4u
n
 = Θ(n

c
) and u

2n
 = u

n

2
 = Θ(n

2c
), for n = 2

i
)

● 16b
n
 ≤ b

2n
, for every n = 2

i

Correctness Proof

● From 16b
n
 ≤ b

2n
, we get for all j ≥ 1:

● If one robot is in block i when the other is

activated, the former robot will be less than 1/4

through the block after i when the latter robot

begins the block after i

∑
i=0

j

b2i<
1

15
b2j

Correctness Proof

● Let K be the index of the block that the first

robot to be activated is in when the second

robot reaches the block with index n

– By index, we mean the value of i in the current

block , which will always be a power

of two

● There are two cases to consider: the case

where u
K
 ≥ b

n
, and the case where u

K
 < b

n

Dui−1
((UiU i)

L L̄)

Correctness Proof

● Case 1: u
K
 ≥ b

n

– The first robot rests for the amount of time it takes

the second robot to complete an entire traversal

 ... 0^u
K
 0^u

K
 ...First Robot:

Second Robot:

(if L = 1)

Second Robot:

(if L = 0)

 ... D
n-1

(U
n
) D

n-1
(U

n
) 0^w

n
 0^w

n
 ...

 ... 0^w
n
 0^w

n
 D

n-1
(U

n
) D

n-1
(U

n
) ...

Correctness Proof

● Case 2: u
K
 < b

n

– u
K
 = Θ(Kc

) and b
n
 = Θ(n2c

), so K < O(n2
)

– The second robot finishes block K and begins block 2K after

O(Kc2
) = O(n4c

) steps

● The first robot must still be on the first quarter of block 2K at this

time.

 ... D
2K-1

(U
2K

) D
2K-1

(U
2K

) 0^w
2K

 0^w
2K

 ...

Second Robot (if second robot's L = 1)

First Robot (if first robot's L = 0)

 ... 0^w
2K

 0^w
2K

 D
2K-1

(U
2K

) D
2K-1

(U
2K

) D
2K-1

(U
2K

) D
2K-1

(U
2K

) 0^w
2K

 0^w
2K

 ...

Second Robot (if second robot's L = 0)

First Robot (if first robot's L = 1)

 ... 0^w
2K

 0^w
2K

 D
2K-1

(U
2K

) D
2K-1

(U
2K

) ...

Time Complexity

● Case 1: u
K
 ≥ b

n

– The robots meet by the time the second robot

finishes block n

– Block n is the ln(n)
th
 block run by the second robot

– Each block has length b
n
 = Θ(n2c

)

– Robots meet ln(n)Θ(n2c
) ≤ O(n*n2c

) ≤ O(n4c
) steps

after the second robot is activated

Time Complexity

● Case 2: u
K
 < b

n

– Recall from earlier:

● u
K
 = Θ(Kc

) and b
n
 = Θ(n2c

), so K < O(n2
)

● The second robot finishes block K and begins block 2K

after O(K2c
) = O(n4c

) steps

– Robots meet in first half of block 2K

– So they will meet after O(n4c
) + b

2K
/ 2 steps

● b
2K

 = Θ(2K2c
) = O(n4c

)

● O(n4c
) + b

K
 / 2 = 2O(n4c

) = O(n4c
)

– The robots meet O(n4c
) steps after the second robot is

activated

Ta-Shma and Zwick's Solution

● Both robots have been proven to meet at most

O(n4c
) steps after the second robot has been

activated

● Ta-Shma and Zwick also show:

– how to reduce the time complexity to O(nc
) steps

after the second robot has been activated

– how to deal with arbitrary labels (ie: labels where

the robots don't have 0 and 1 as labels)

● The time complexity when dealing with arbitrary labels is

O(lnc
) steps after the second robot has been activated,

where l is the length of the shortest label

– these are beyond the scope of this presentation

References

● R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff.

1979. Random walks, universal traversal sequences, and the

complexity of maze problems. In FOCS. 218-223

● Alpern, Steve, Shmuel Gal and MyiLibrary, The Theory of Search

Games and Rendezvous (Kluwer Academic Publishers, 2003) vol 55

● A. Dessmark, P. Fraingnaud, D. Kowalski, and A. Pelc. 2006.

Deterministic rendezvous in graphs. Algorithmica 46, 1 (2006), 69-96

● D. R. Kowalski and A. Malinowski. 2008. How to meet in anonymous

network. Theoretical Computer Science 399, 1-2 (2008), 141-156

● Amnon Ta-Shma and Uri Zwick. 2014. Deterministic rendezvous,

treasure hunts, and strongly universal traversal sequences, universal

exploration sequences. ACN Trans. Algor. 10, 3, Article 12 (April

2014), 15 pages.

