
COMP 5703: ADVANCED ALGORITHMS, FALL 2016 1

Cooley-Tukey FFT Algorithms
Amente Bekele

Abstract—The objective of this work is to discuss a class of
efficient algorithms for computing the Discrete Fourier Trans-
form (DFT). The direct way of computing the DFT problem of
size N takes O(N2) operations, where each operation consists of
multiplication and addition of complex values. When using the
so called Cooley-Tukey FFT Algorithms, the computation time
can be reduced to O(Nlog(N)). In this report a special case of
such algorithm when N is a power of 2 is presented. The case
when N is a highly composite number will also be discussed.

I. INTRODUCTION

FOURIER Transformation is the decomposition of a func-
tion into sums of simpler trigonometric functions. Fourier

Transform is the output of such decomposition. It has wide
applications in science, engineering and mathematics.[1]

When the input to a fourier transform is uniformly-spaced
samples of a continuous function, the transformation is
called Discrete-time Fourier Transform (DTFT). The input
is discrete samples and the output DTFT is a continuous
function. If samples of the DTFT output that are equal in
length are taken, then the transformation is called Discrete
Fourier Transform (DFT).

Definition 1: The DFT of an array of N complex input
values A, is an array of N complex output values Y , such
that:

Y [j] =
N�1X

k=0

A[k]W jk

N

Where, W
N

= e�2⇡i/N is the Nth complex root of unity.
Positive integers j � 0 , are indexes of Y , and positive
integer k � 0 are indexes of A.

II. DIRECT APPROACH FOR CALCULATING THE DFT

Directly calculating the DFT requires computing the sum
from k = 0 to N � 1 for each respective values of j . When
the complete output is computed, there will be a total of N2

operations where each operation is a multiplication followed
by an addition. Therefore, the total time is O(N2).

III. COOLEY-TUKEY FFT ALGORITHM

James W. Cooley and John W. Tukey in their 1965 paper
[4] discussed an algorithm for computing the DFT using a
divide and conquer approach. Prior to them a similar technique
was discussed in various formats. Their work was different
since it focused on the choice of N. They showed how special
advantage is gained when choosing N to be a power of two,
N = 2m.

IV. FFT ALGORITHM WHEN N IS A POWER OF TWO

Theorem 2: The DFT where the input array A has a size
N = 2m for integer m � 0 can be calculated in O(Nlog(N))
time with the following algorithm: [3]

procedure FFT(A)
Input: An array of complex values which has a size of

2m for m � 0.
Output: An array of complex values which is the DFT

of the input
N := A.length
if N = 1 then return A
else

W
N

:= e2⇡i/N

W := 1
A

even

:= (A0, A2,, AN�2)
A

odd

:= (A1, A3,, AN�1)
Y
even

:= FFT(A
even

)
Y
odd

:= FFT(A
odd

)
for j:=0 to N/2� 1 do

Y [j] = Y
even

[j] + W * Y
odd

[j]
Y [j +N/2] = Y

even

[j] - W * Y
odd

[j]
W := W * W

N

return Y

Running time:
The above algorithm divides the input into two parts each

having a size of N/2. The dividing operation and updating
of the result takes O(N). From this the following recurrence
relation can be derived:

T (N) = 2T (N/2) +O(N)

The recurrence shows the total running time is O(Nlog(N)).

In order to show that the above recursive algorithm does
indeed compute the correct DFT, some concepts will be
introduced in the subsequent sections. Most of the proof is
presented based on ideas from CLRS book [3].

Since the DFT computation is a simple formula of
sums and multiplications, one can suspect that the gain in
running time compared to the direct approach comes from
some special properties of the Nth complex root of unity, W

N

.

Lemma 3: (W k

p

)d = (W kd

pd

) = (W k

p

)

Proof:

W
pd

= e�2⇡i/pd by definition. Therefore (W kd

pd

) =
(e�2⇡i/pd)kd = (e�2⇡i/p)k = (W k

p

)

COMP 5703: ADVANCED ALGORITHMS, FALL 2016 2

Lemma 4: Given arrays:

S = [(W 0
N

)2, (W 1
N

)2, (W 2
N

)2...(WN�1
N

)2]

and

H = [(W 0
N/2), (W

1
N/2), (W

2
N/2)...(W

N/2�1
N/2)]

then, S contains H twice. That is for k = 0 to N/2 � 1
S[k] = H[k] and for k = N/2 to N � 1, S[k] = H[k].

Proof:

The first half of S can be generated with (W k

N

)2 for k = 0
to N/2� 1.

Note that (W k

N

)2 = (W k

N/2) by Lemma 3 with d = 2 and
p = N/2. Therefore the first half of S is the same as H .

The second half of S can be generated with (W k+N/2
N

)2

for k = 0 to N/2� 1. Note that

(W k+N/2
N

)2 = (W 2k+N

N

) = (W 2k
N

)(WN

N

) = (W 2k
N

)

Let N = 2p, then (W 2k
N

) = (W 2k
2p) = (W k

p

) by Lemma 3 with
d = 2. Therefore:

(W k+N/2
N

)2 = (W 2k
N

) = (W k

p

) = (W k

N/2)

Corollary 5: The DFT of an array A is equivalent to
evaluating the polynomial of degree N � 1 P (x):

P (x) =
N�1X

k=0

A[k]xk

at x = W j

N

for j = 0 to N � 1.

Lemma 6: Given a polynomial:

P (x) =
N�1X

k=0

A[k]xk

it can be separated into polynomials:

P
even

(x) =

N/2�1X

j=0

A[2j]xj

and,

P
odd

(x) =

N/2�1X

j=0

A[2j + 1]xj

then:
P (x) = P

even

(x2) + xP
odd

(x2)

Proof:

P
even

(x2) =

N/2�1X

j=0

A[2j]x2j

and

xP
odd

(x2) = x

N/2�1X

k=0

A[2j + 1]x2j

When the sum is evaluated, the even part becomes:

A[0] +A[2]x2 + ..A[N � 2]xN�2

and the odd part will be similar to the even part, but with both
the coefficients and the powers of x increased by one:

A[1] +A[3]x3 + ..A[N � 1]xN�1

Therefore it can be observed that the sum of the two parts is
equivalent to P (x).

Lemma 7: (W k+N/2
N

) = -(W k

N

)

Proof:

(W k+N/2
N

) = (W k

N

)(WN/2
N

)

by Lemma 3, with p = 1, d = N and k = 1 we have

(W k

N

)(WN/2
N

) = (W k

N

)(W 2N
N

) = (W k

N

)(W 2
1) = �(W k

N

)

Proof for Correctness:

Using the above concepts the proof for the correctness of
the FFT algorithm from Theorem 2 is as follows:

The DFT of an array with a single value is the array itself.
Since both j and k are zero:

Y [0] = A[0]W 0
N

= A[0]

This is the base case for the recursion.

Note that the recursive cases of the algorithm divide the
input in a similar way to what is stated in Corollary 5 and
Lemma 6.

Also note that the algorithm keeps a running value for W j

N

instead of recalculating it for every iteration of j.

The for loop from j = 0 to N/2 � 1 combines the results
as stated in Lemma 6. Note that in each recursive case the
polynomial is evaluated at values W k

N/2 which by Lemma 4
is the same as (W k

N

)2.
The second assignment Y [j+N/2] = Y

even

[j]�WY
odd

[j]
is correct since by Lemma 7, (W j+N/2

N

) = -(W j

N

).

COMP 5703: ADVANCED ALGORITHMS, FALL 2016 3

V. FFT ALGORITHM WHEN N IS HIGHLY COMPOSITE

A highly composite number N is a positive integer which
has more divisors than any other positive integer N 0 < N .
[5]

Theorem 8: The DFT where the input array A has
a size N = r1.r2 can be calculated in running time
T = N(r1 + r2).[4]

Proof:

The goal is to calculate the DFT as per Definition 1. The
index for the output and input arrays can be re-expressed as
follows:

j = j1r1 + j0

for j0 = 0, 1, ..., r1 � 1 , j1 = 0, 1, ..., r2 � 1 and,

k = k1r2 + k0

for k0 = 0, 1, ..., r2 � 1 , k1 = 0, 1, ..., r1 � 1

Now the DFT can be re-defined as:

Y [(j1, j0)] =
r2�1X

k0=0

r1�1X

k1=0

A[(k1, k0)]W
(j1r1+j0).(k1r2+k0)
N

If the multiplication for the powers of W
N

is expanded:

Y [(j1, j0)] =

r2�1X

k0=0

r1�1X

k1=0

A[(k1, k0)]W
(j1r1+j0).(k1r2)
N

W (j1r1+j0)(k0)
N

From the inner sum over k1:

W (j1r1+j0).(k1r2)
N

= W r1r2j1k1

N

W j0.k1r2

N

= WNj1k1

N

W j0.k1r2

N

= W j0.k1r2

N

Since the sum over k1 is dependent only on j0, a new array
A1 can be defined as follows:

A1[(j0, k0)] =
r1�1X

k1=0

A[(k1, k0)]W
j0.k1r2

N

Therefore:

Y [(j1, j0)] =
r2�1X

k0=0

A1[(j0, k0)]W
(j1r1+j0)(k0)
N

It can be observed that there are N elements in A1 each
requiring r1 operations to calculate, and given A1, Y can be
calculated in r2 operations, resulting in a total time:

T = N(r1 + r2)

If Theorem 8 is recursively applied to N = r1.r2.rm
the following can be stated:

Corollary 9: The DFT where the input array A has a
size N = r1.r2.rm can be calculated in running time
T = N(r1 + r2 + ...+ r

m

). [4]

Note that Corollary 9 shows any gain obtained in computing
the DFT using the Cooley-Tuckey type FFT algorithms instead
of direct approach comes from the bound for r1+r2+...+r

m

.

If r1 = r2 = ... = r
m

= 2, i.e N = 2m, then this
is similar to the special case that is discussed in IV, where
r1 + r2 + ... + r

m

= 2m and m = log2(N) . The running
time becomes:

T = N(2log2(N)) = O(Nlog(N))

If N = rm.sn.tp ... , then it follows:

T = N(m.r + n.s+ p.t+ ...)

,and we have:

T

N
= m.r + n.s+ p.t+ ...

Since:

log(N) = mlog(r) + nlog(s) + tlog(p) + ...

, the following can be drived:

T

Nlog(N)
=

m.r + n.s+ p.t+ ...

mlog(r) + nlog(s) + tlog(p) + ...

When N is highly composite, the term on the right side will
be bounded by some ’constant’.

VI. APPLICATIONS OF FFT ALGORITHMS

FFT algorithms are widely used is several applications.
The IEEE journal of Computing in Science and Engineering
named FFT as one of the Top 10 Algorithms with the greatest
influence on the development and practice of science and
engineering in the 20th century. [6]

A numeric application of FFT for polynomial multiplication
has been discussed in [3]. To calculate P3 = P1.P2 . Where
P1 and P2 are polynomials of degree bound N with array of
coefficients A1 and A2 respectively. First the FFT for A1 and
A2 is computed to obtain FFT(A1) and FFT(A2). Then:

FFT (A3) = FFT (A1) + FFT (A2)

Therefore A3 is obtained by computing the inverse FFT. The
total time taken for the computation is O(Nlog(N)).

VII. CONCLUSION

FFT algorithms compute the DFT of an array of size N in
O(Nlog(N)) time. This is a significant gain compared to direct
computation which is O(N2). A recursive implementation of
the FFT algorithm for the special case when N is a power of
2 was discussed. For the case where N is a highly composite
number, it was shown that the running time depends on the
weighted sum for the factors of N.

COMP 5703: ADVANCED ALGORITHMS, FALL 2016 4

REFERENCES

[1] Oppenheim, Alan V.; Schafer, Ronald W. (1999). Discrete-Time Signal
Processing (2nd ed.). Prentice Hall Signal Processing Series

[2] Anil Maheshwari Topics in Algorithm Design - COMP5703 Course notes,
School of Computer Science, Carleton University, December 2015

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliord
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd
edition, 2009.

[4] Cooley, James W.; Tukey, John W. (1965) An algorithm for the machine
calculation of complex Fourier series Mathematics of Computation. 19
(90): 297301.

[5] Ramanujan, S. (1915) Highly composite numbers Proc. London Math.
Soc. (2). 14: 347–409.

[6] Dongarra, J. Sullivan, F. (January 2000). Guest Editors Introduction to
the top 10 algorithms Computing in Science Engineering. 2 (1): 22–23.

