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IN
TRO

DU
CTIO

N

•𝐺
=

𝑉,𝐸
-undirected graph w

ith 𝑉
=
𝑛,𝐸

=
𝑚

, w
here 𝑛,𝑚

are 
num

ber of vertices and edges respectively.
•

M
 is a m

atching in G if it is a subset of E such that no tw
o adjacent 

edges share a vertex.
•

W
e say that the m

atching is m
axim

um
 if w

e cannot find a better M
 

has m
ore edges.

•
M

axim
um

 m
atching is not unique.
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IN
TRO

DU
CTIO

N

•
A vertex is exposed

if its not in any m
atching.
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Augm
enting Paths

•
Alternating Path:

•
Is a path w

hose edges are alternating betw
een being in M

 and not being in M
.

•
Augm

enting Path:
•

Is a path found from
 an exposed vertex that can add a m

atching to M
.
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Berge’s Theorem

•
A m

atched graph (G,M
) has an augm

enting path IFF M
 is not a 

m
axim

um
.

CO
M

P 5703: Advanced Algorithm
s



Bipartite G
raphs

•
A graph G w

ho can be divided into tw
o sets, each one contains set of 

vertices A, B and each edge connects a vertex from
 A to a B.

•
The bipartite graph has no cycles w

ith odd num
ber of edges.

•
Ford-Fulkerson algorithm

 𝑂
(𝑛𝑚

)
•

Hopcroft and Karp Algorithm
 𝑂
(
𝑛𝑚

)
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Algorithm
 for Bipartite

•
Hopcroft and Karp Algorithm

•
Have any m

atching M
•

If there exists an augm
enting path corresponding to M

:
•

Find the path P
•

Add it to the m
atching M

 using sym
m

etric difference 𝑀
’
=

𝑀
⊕

P
•

Then let 𝑀
=

𝑀
’

If no augm
enting paths found then w

e have a m
axim

um
 m

atching in the bipartite 
graph

•
This algorithm

 runs in 𝑂
(
𝑛𝑚

)-best know
n determ

inistic algorithm
 for bipartite. 

•
(
𝑛)𝑝ℎ𝑎𝑠𝑒𝑠

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
𝑡𝑜

𝑓𝑖𝑛𝑑
𝑎𝑙𝑙𝑎𝑢𝑔𝑚

𝑒𝑛𝑡𝑖𝑛𝑔
𝑝𝑎𝑡ℎ𝑠.
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Exam
ple:
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G
eneral G

raphs

•
W

hat if w
e have odd cycles in the graph ?
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G
eneral G

raphs

•
Edm

onds Algorithm
 

•
𝑂
(𝑛

2𝑚
)

•
Gabow

’s Algorithm
 (1976), uses Edm

onds Algorithm
•
𝑂

𝑛
3

•
M

icali&
 Vazirani(1980)  

•
𝑂

𝑛𝑚

•
M

ucha
&

 Sankow
ski

•
Random

ization algorithm
 based on m

atrix m
ultiplication

•
𝑂
(𝑛

2.3)
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Blossom
s

•
It is an odd cycle w

ith tw
o adjacent edges to the stem

 and not in 𝑀
w

ith a unique exposed vertex (base).
•

Stem
 is an even alternating path from

 an exposed vertex
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Edm
onds’ Lem

m
a

•
Let 𝐺’and 𝑀

’be obtained by contracting a blossom
 𝐵

in (𝐺,𝑀
)to a 

single vertex.
•

The m
atching 𝑀

of 𝐺
is m

axim
um

 iff𝑀
’is m

axim
um

 in 𝐺’.
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Edm
onds’ Algorithm

•
If there exists an augm

enting path corresponding to M
 or FLO

W
ER :

•
If a Flow

er found:
•

Shrink the blossom
s

•
Look for augm

enting paths
•

If augm
ented path P found:

•
Add it to the m

atching M
 using sym

m
etric difference 𝑀

’
=

𝑀
⊕

P
•

Then let 𝑀
=

𝑀
’

If no augm
enting paths found then w

e have a m
axim

um
 m

atching in the 
bipartite graph

•
Runs in (𝑛

2𝑚
)
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Detecting a blossom

•
W

e do a traversing for alternating path just like the bipartite graph
•

M
ark exposed vertex and at the even distance from

 it as (e)
•

M
ark vertices at odd distances as (o)

•
W

e have a blossom
 if w

e have tw
o even vertices adjacent.
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