
Assignment 1

COMP 5703 - Fall 2016

1 Instructions

This assignment consists of 10 problems. This is due at the start of the class on October 17,
2017. Please write clearly and answer questions precisely. As a thumb rule, the answer should
be limited to < 2 written pages, with ample spacing between lines and in margins, per question.
Always start a new question on a new page, starting with Question 1, followed by Question 2,
..., Question n. Please cite all the references (including web-sites, names of friends, etc.) which
you have used/consulted as the source of information for each of the questions. BTW, when a
question asks you to design an algorithm - it requires you to (1) Clearly spell out the steps of
your algorithm in pseudo code (2) Prove that your algorithm is correct and (3) Analyze the
running time. By default a graph G = (V,E) is simple, undirected and connected.

2 Problems

1. Consider the Proposal Algorithm that was discussed in the class (and is on the course-
notes/web-page as well). The input consists of a list of n men M and n women W , where each
man has an ordered list of n women (a permutation) whom he will like to marry. Similarly,
each woman has an ordered list (a permutation) of n men whom she will like to marry. Out-
put is a set of n pairs M forming a stable perfect matching, where each pair in M consists
of a man and a woman. Moreover, each man is present in a unique pair, and each woman
is present in a unique pair in M. Prove that the output of this algorithm is always the
same and is independent of in which order the ‘unmarried men’ are chosen in the while loop.
That is, show that any execution of this algorithm will always result in the stable matching
corresponding to M = 〈m, best(m)〉, ∀m ∈M .

2. Suppose that there are more women than men, i.e. |M | < |W |. As before, each men has
a permutation of women according to his preference list, and similarly each women has a
permutation of men corresponding to her preference list. Define what will be the notion
of stable matching in this case, and design an algorithm for this new definition of stable
matching.

3. We assumed that for each man (or woman), the preference list consists of a permutation
of women (men) where there is a strict order of preferences. The woman appearing 1st on
the list is most preferred and then the next one and then the next one etc. Suppose that
the preference list of man still consists of a permutation, but the ordering is not strict. In
other words, lets say that in a configuration of |M | = |W | = 7, the preference list of m1 =
w3, {w4, w1, w2}, w7, {w5, w6}, meaning that w3 is most preferred, followed by {w4, w1, w2},

1

each having the same preference, followed by w7, followed by {w5, w6} having equal preference.
Think of what will the notion of stability in this case, what will be an algorithm for stable
matching. [I am expecting some ideas here and not a full solution - as this is bit non-trivial
and one of the seminar talks is supposed to address this problem]

4. Running time of many divide-and-conquer algorithms are expressed by a recurrence relation.
Consider the following recurrence relation

T (n) = T (xn) + T ((1− x)n) + cn

expressed in terms of x and n where x is a constant in the range 0 < x < 1 and n is the
size of the problem, typically very large. Note that c > 0 is a fixed constant. (BTW, T (n)
represents the time to solve the problem of size n. It is solved recursively by partitioning
it in two subproblems, one of size xn and other of size (1 − x)n, and the time required to
partition the problem and merging the solution of the subproblems is cn.) Is the asymptotic
complexity the same when x = 0.5, 0.1 and 0.001? What happens to the constants hidden in
the O() notation.

5. Assume all edges in a weighted simple connected graph G = (V,E) have distinct weight.

(a) Show that the edge with the maximum weight in any cycle in G cannot be any minimum
spanning tree of G.

(b) Consider an edge e = (uv) which is not in a spanning tree T of G. (Note that T may
not be a MST.) Consider the unique path, π(u, v), between nodes u and v in T . Prove
the following. If the weight of each edge on π(u, v) is less than the weight of e then e
cannot occur in any minimum spanning tree of G.

6. We have seen examples of weighted undirected graphs which may have multiple minimum
spanning trees. Prove that if all edge weights are distinct (no two edges have the same
weight), there is always a unique minimum spanning tree in a graph.

7. Suppose you are given n-points in the plane. We can define a complete graph on these points,
where the weight of an edge e = (u, v), is Euclidean distance between u and v. We need
to partition these points into k non-empty clusters, for some n > k > 0. The property
that this clustering should satisfy is that the minimum distance between any two clusters
is maximized. (The distance between two clusters A and B is defined to be the minimum
among the distances between pair of points, where one point is from cluster A and the other
from cluster B.) Show that the connected components obtained after running Kruskal’s MST
algorithm till it finds all but the last k−1 (most expensive) edges of MST produces an optimal
clustering. You need to recall how Kruskal’s algorithm work - but do not worry much about
its complexity analysis.

8. Show how you can compute a Bottleneck Spanning Tree of an undirected connected simple
weighted graph G = (V,E) in deterministic O(|V | + |E|) time. Assume that all the edge
weights are distinct. Recall that a Bottleneck Spanning Tree T minimizes the weight of the
largest edge among all possible spanning trees of G. (Hint: Consider the set of all edges,
and let e ∈ E be the edge which has the median weight. Let Es = {e′ ∈ E|wt(e′) < wt(e)}.
What can you say about bottleneck spanning tree of G if the graph induced by edges in Es

is connected? What if it is disconnected?)

2

9. Let A be a square Markov matrix of dimension n × n. Recall that in A, all entries are non-
negative and the entries within a column sum to 1. Show that λ = 1 is an Eigenvalue of
A.

10. Show that in a (possibly unbalanced) binary tree T = (V,E), there exists a vertex v ∈ V
such that its removal (i.e. V \ {v}) partitions T in at most three sub-trees, so that none of
the sub-trees have more than 2

3 |V | vertices. Design an algorithm running in O(|V |) time to
find such a vertex.

3

