UNIVERSITY

Canada's Capital University

Backpropagation and Gradient Descent

Brian Carignan, Dec 52016

- Notation/background
| Neural networks
| Activation functions
| Vectorization
| Cost functions
- Introduction
- Algorithm Overview
- Four fundamental equations
| Definitions (all 4) and proofs (1 and 2)
- Example from thesis related work

Neural Networks 1

Canada's Capital University

$w_{j k}^{l}$ is the weight from the $k^{\text {th }}$ neuron in the $(l-1)^{\text {th }}$ layer to the $j^{\text {th }}$ neuron in the $l^{\text {th }}$ layer

Neural Networks 2

- a - Activation of a neuron is related to the activations in the previous layer
- b - bias of a neuron

$$
a_{j}^{l}=\sigma\left(\sum_{k} w_{j k}^{l} a_{k}^{l-1}+b_{j}^{l}\right)
$$

Activation Functions

- Similar to an ON/ OFF switch
- Required properties

Nonlinear
| Continuously differentiable

$$
f(x)=\frac{1}{1+e^{-x}}
$$

$$
\frac{d}{d x} f(x)=f(x)(1-f(x))
$$

Vectorization

- Represent each layer as a vector
| Simplifies notation
| Leads to faster computation by exploiting vector math

$$
a^{l}=\sigma\left(w^{l} a^{l-1}+b^{l}\right)
$$

- z - weighted input vector

$$
a^{l}=\sigma\left(z^{l}\right)
$$

- Objective Function . Example:
- Optimization Problem
- Assumptions

$$
C=\frac{1}{2 n} \sum_{x}\left\|y(x)-a^{L}(x)\right\|^{2}
$$

| Can average over $\mathrm{C}_{\mathrm{x}} \quad C=\frac{1}{n} \sum_{x} C_{x}$
Function of the outputs

$$
C=C\left(a^{L}\right)
$$

- x - individual training examples (fixed)

$$
C=\frac{1}{2}\left\|y-a^{L}\right\|^{2}=\frac{1}{2} \sum_{j}\left(y_{j}-a_{j}^{L}\right)^{2}
$$

- Backpropagation
| Backward propagation of errors
| Calculate gradients
| One way to train neural networks
- Gradient Descent
| Optimization method
| Finds a local minimum
| Takes steps proportional to -gradient at current point

Algorithm Overview

Canada's Capital University

1. Input a set of training examples

2. For each training example ar: Set the corresponding inpunt activation $a^{z, 1}$, and perform the following steps:

- Feedforward: For each $l=2,3, \ldots, L$ compute

$$
z^{x, l}-w^{l} a^{x, l} 1+b^{l} \text { and } a^{x, l}-\sigma\left(z^{x, i}\right) .
$$

- Output error $\delta^{x . L}$: Compite the vector

$$
\delta^{x, L}-\nabla_{u} C_{x} \text { () } \sigma^{\prime}\left(z^{x, L}\right)
$$

- Backpropagate the error: For each

$$
\begin{aligned}
& l-L-1, L-2, \ldots, 2 \text { compute } \\
& \delta^{x, l}=\left(\left(w^{l+1}\right)^{I} \delta^{x, l+1}\right) \odot \sigma^{\prime}\left(z^{x, l}\right) .
\end{aligned}
$$

3. Gradient descent: For each $l-L, L-1, \ldots, 2$ update the weights according to the mule $w^{l} \rightarrow w^{l}-\eta_{m}^{\eta} \sum_{x} \delta^{x, l}\left(n^{x, l-1}\right)^{T}$, and the biases according to the rule $b^{l} \rightarrow b^{l}-\frac{\eta}{7 /} \sum_{x} \delta^{z, l}$.

Equation 1

- Definition of error: $\delta_{j}^{l} \equiv \frac{\partial C}{\partial z_{j}^{l}}$

An equation for the error in the output layer, δ^{L} : The components of δ^{L} are given by

$$
\begin{align*}
& \delta_{j}^{L}=\frac{\partial C}{\partial a_{j}^{L}} \sigma^{\prime}\left(z_{j}^{L}\right) . \tag{BP1}\\
& \delta^{L}=\nabla_{a} C \odot \sigma^{\prime}\left(z^{L}\right) . \tag{BP1a}
\end{align*}
$$

Equation 2

An equation for the error δ^{l} in terms of the error in the next layer, δ^{l+1} : In particular

$$
\begin{equation*}
\delta^{l}=\left(\left(w^{l+1}\right)^{T} \delta^{l+1}\right) \odot \sigma^{\prime}\left(z^{l}\right) \tag{BP2}
\end{equation*}
$$

- Key difference
| Transpose of weight matrix
- Pushes error backwards

Equation 3

An equation for the rate of change of the cost with respect to any bias in the network: In particular:

$$
\begin{equation*}
\frac{\partial C}{\partial b_{j}^{l}}=\delta_{j}^{l} \tag{BP3}
\end{equation*}
$$

- Note that previous equations computed error

Equation 4

An equation for the rate of change of the cost with respect to any weight in the network: In particular:

- Describes learning rate
- General insights
| Slow learning when:
| Input activation approaches 0
| Output activation approaches 0 or 1 (from derivative of sigmoid)

Proof - Equation 1

- Steps

1. Definition of error
2. Chain rule
3. $k=j$
4. BP1 (components)

$$
\delta_{j}^{L}=\frac{\partial C}{\partial z_{j}^{L}}
$$

$$
=\sum_{k} \frac{\partial C}{\partial a_{k}^{L}} \frac{\partial a_{k}^{L}}{\partial z_{j}^{L}}
$$

$$
=\frac{\partial C}{\partial a_{j}^{L}} \frac{\partial a_{j}^{L}}{\partial z_{j}^{L}}
$$

$$
=\frac{\partial C}{\partial a_{j}^{L}} \sigma^{\prime}\left(z_{j}^{L}\right)
$$

Proof - Equation 2

- Steps

1. Definition of error
2. Chain rule
3. Substitute definition of error
4. Derivative of

$$
\begin{aligned}
\delta_{j}^{l} & =\frac{\partial C}{\partial z_{j}^{l}} \\
& =\sum_{k} \frac{\partial C}{\partial z_{k}^{l+1}} \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}} \\
& =\sum_{k} \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}} \delta_{k}^{l+1},
\end{aligned}
$$

weighted input vector $\frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}}=w_{k j}^{l+1} \sigma^{\prime}\left(z_{j}^{l}\right)$

- Recall:

$$
\delta_{j}^{l}=\sum_{k} w_{k j}^{l+1} \delta_{k}^{l+1} \sigma^{\prime}\left(z_{j}^{l}\right)
$$

$z_{k}^{l+1}=\sum_{j} w_{k j}^{l+1} a_{j}^{l}+b_{k}^{l+1}=\sum_{j} w_{k j}^{l+1} \sigma\left(z_{j}^{l}\right)+b_{k}^{l+1}$

Bxample - Thesis Related Work

Algorithm 1 Lcarning TransE

input Training set $S=\{(h, \ell, t)\}$, entities and rel. sets E and L, margin γ, embeddings dim. k.
1: initialize $\ell \leftarrow$ uniform $\left(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}\right)$ for cach $\ell \in L$
2: $\quad \ell \leftarrow \ell /\|\boldsymbol{\ell}\|$ for each $\ell \in T$
3: $\quad e<\operatorname{uniform}\left(\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}\right)$ for each entity $\in \subset E$
: loop
5: $\quad \mathbf{e} \leftarrow \mathbf{e} /\|\mathbf{e}\|$ for cach entity $e \in E$
6: $\quad S_{\text {butch }} \leftarrow \operatorname{samplc}(S, b) / /$ samplc a minibatch of sizc b
7: $T_{\text {baich }} \leftarrow(/ / /$ initialize the set of pairs of triplets
8: for $(h, \ell, t) \in S_{\text {butch }}$ do
$\left(h^{\prime}, \ell, t^{\prime}\right) \leftarrow \operatorname{sample}\left(S_{(h, \ell, l)}^{\prime}\right) / /$ sample a corrupted triplet
$T_{\text {butch }} \leftarrow T_{\text {batch }} \cup\left\{\left((h, \ell, t),\left(h^{\prime}, \ell, t^{\prime}\right)\right)\right\}$
end for
Update embeddings w.r.t. $\quad \sum \quad \nabla\left[\gamma+d(\boldsymbol{h}+\boldsymbol{\ell}, \boldsymbol{t})-d\left(\boldsymbol{h}^{\prime}+\boldsymbol{\ell}, \boldsymbol{t}^{\prime}\right)\right]_{+}$

$$
\left((h, \ell, l),\left(h^{\prime}, \ell, l^{\prime}\right)\right) \in T_{\text {batch }}
$$

13: end loop

- Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, (2015)
- Bordes et al. "Translating embeddings for modeling multi-relational data", NIPS'13, (2013)

