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Abstract—This work discusses Clustering with emphasis on

k-center and k-median clustering.

I. INTRODUCTION

C

LUSTERING is one of the most fundamental compu-
tational tasks and is very widely used in many ap-

plications such as, search engines, social networks, map
optimization, software evolution, image processing, anomaly
detection, robotics, chemistry, climatology, geology, etc [1].
This report will discuss k-center and k-median clustering and
will briefly mention k-means clustering. As clustering is a NP-
Hard problem, we will discuss primarily about approximation
methods to find constant factor approximations to the optimal
solution.

II. PRELIMINARIES

A. What is clustering?

Informally, clustering can be described as the process of
finding interesting structure in a set of given data[2]. A
clustering problem is usually defined by a set of items and
a distance function between these items.

B. Metric space

A metric space is a pair (X ,d) where X is a set and d:X ⇥
X ! [0,1) is a metric, satisfying the following axioms:

1) Reflexivity: d(x, y) = 0 () x = y

2) Symmetry: d(x, y) = d(y, x)

3) Triangle inequality: d(x, z)  d(x, y) + d(y, z)

A very common example of a metric space is R2 with regular
Euclidean distance.

C. Voronoi Partitions

A Voronoi diagram is a partitioning of a plane into regions
based on distance to points in a specific subset of the plane.
Formally, a Voronoi partition is:

• Given a set of centers C, every point of P is assigned to
it’s nearest neighbor in C

• All the points of P that are assigned to a
center c̄ form the cluster of c̄, denoted by:
⇧(C, c̄) = {p 2 P|d(p, c̄)  d(p, C)}

An example Voronoi diagram of 20 points is shown in Fig. 1

1Source: https://en.wikipedia.org/wiki/Voronoi diagram

Fig. 1: A Voronoi diagram of 20 points1

III. K-CENTER CLUSTERING

A. Problem Statement

A set P ✓ X , is provided together with a parameter
k. The goal is to find k points C ✓ P such that the
maximum distance of a point in P to the closest point in C is
minimized. The problem can be formally defined as follows:
For a metric space (X ,d),

• Input: a set P ✓ X ,and a parameter k.
• Output: a set C of k points.
• Goal: Minimize the cost rC1(P) = max

p2P

d(p,C)

Formally, the k-center problem is to find a set C of k

points, such that r

C
1(P) is minimized. In other words,

r

opt

1 (P, k) = min

C,|C|=k

r

C
1(P)

• That is, Every point in a cluster is in distance at most
r

C
1(P ) from it’s respective center.

• k-center clustering is NP-HARD.
It’s unlikely that there can ever be efficient polynomial

time exact algorithms solving NP-hard problems. Therefore
we’ll have to resort to approximation algorithms. In this report
a greedy algorithm and a local search algorithm will be
discussed for finding approximate solutions to the clustering
problem.

IV. THE GREEDY CLUSTERING ALGORITHM

A. The Greedy Clustering Algorithm

The greedy clustering algorithm simply chooses the
point farthest away from the current set of centers in each

2Source: https://www.mathworks.com
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Fig. 2: An example of a set of points assigned to 3 clusters2

iteration as the new center. It can be described as follows:

• Pick an arbitrary point c̄1 into C1

• For every point p 2 P compute d1[p] from c̄1

• Pick the point c̄2 with highest distance from c̄1. (This is
the point realizing r1 = max

p2P

d1[p])
• Add it to the set of centers and denote this expanded set

of centers as C2. Continue this till k centers are found
Fig. 3 shows an example of running the greedy algorithm for
three iterations.

Fig. 3: Visualizing the greedy algorithm3

From the above algorithm, it is evident that the radius of
clustering is calculated in each iteration. For calculating the
radius of clustering, the distance from every point to it’s closest
center in the set of centers is calculated in each iteration.
But since this calculation involves repeated calculations of
distances from points to the current set of centers and since
in each iteration the set of centers only changes by one, the
algorithm can be made slightly faster as follows:

• In ith iteration the point c̄

i

realizing, r

i�1 =

max

p2P

d

i�1[p] = max

p2P

d(p, C

i�1) is added to the set of
centers C

i�1 to form C

i

• r

i�1 is the radius of the clustering and is calculated in
every iteration.

• This process is repeated k times

3Source: Sanders/van Stee: Approximations- und Online-Algorithmen

• That is, in every iteration, the distance from all points in
P to the set of current centers is calculated.

• But,

d

i

[p] = d(p, C

i

)

= min(d(p, C

i�1), d(p, c̄i))

= min(d

i�1[p], d(p, c̄i))

• What if for each p 2 P we maintain a single variable
d[p] with it’s current distance to the closest center in the
current center set.

• Then only d(p, c̄

i

) is needed to calculate the radius.
A simple analysis of the algorithm yields the running time

as follows:
• The ith iteration of choosing the ith center takes O(n)

time.
• There are k such iterations.
• Thus, overall the algorithm takes O(nk) time

B. An example of the greedy algorithm

Fig. 4 shows an example Gaussian mixture dataset be-
ing clustered into three clusters using the Greedy k-center
algorithm. Fig. 5 shows what happens when the clustering
algorithm is continued for another iteration on the data shown
in Fig. 4. As it can be seen on Fig. 5, choosing k to be 4
in a dataset that contains only 3 ”visually distinguishable”
clusters gives adverse results. This is an example illustrating
the importance of choosing the correct k for the clustering
algorithm.

C. 2-approximation

The solution obtained using the greedy algorithm is a 2-
approximation to the optimal solution. This section focuses
on proving this approximation factor.

Theorem 1. Given a set of n points P ✓ X ,belonging to a

metric space (X ,d), the greedy K-center algorithm computes

a set K of k centers, such that K is a 2-approximation to the

optimal k-center clustering of P.

r

K
1(P)  2r

opt

1 (P, k)

The algorithm takes O(nk) time.

This theorem can be proven using two cases as follows,
Proof: Case 1: Every cluster of C

opt

contains exactly one
point of K

• Consider a point p 2 P
• Let c̄ be the center it belongs to in C

opt

• Let ¯k be the center of K that is in ⇧(C
opt

, c̄)

• d(p, c̄) = d(p, C
opt

)  r

opt

1 (P, k)

• Similarly, d(¯k, c̄) = d(

¯

k, C
opt

)  r

opt

1
• By the triangle inequality:

d(p,

¯

k)  d(p, c̄) + d(c̄,

¯

k)  2r

opt

1
Case 2: There are two centers ¯

k and ū of K that are both in
⇧(C

opt

, c̄), for some c̄ 2 C
opt

(By pigeon hole principle, this
is the only other possibility)

4Source: https://www.naftaliharris.com/blog/visualizing-k-means-clustering
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(a) Example dataset

(b) First center is chosen arbitrarily

(c) Next farthest point is chosen as the next center

(d) Stop when k centers have been found

Fig. 4: Greedy clustering algorithm in action4

• Assume, without loss of genarality, that ū was added later
to the center set K by the greedy algorithm, say in ith
iteration.

• But since the greedy algorithm always chooses the point
furthest away from the current set of centers, we have
that c̄ 2 C

i�1 and,

r

K
1(P)  r

Ci�1
1 (P) = d(ū, C

i�1)

 d(ū,

¯

k)

 d(ū, c̄) + d(c̄,

¯

k)

 2r

opt

1

Fig. 5: Importance of choosing the correct k

V. THE GREEDY PERMUTATION

In this section some interesting properties of clustered data
sets is discussed.

A. The greedy permutation

What if we run the greedy algorithm till it exhausts all the
points of P? That is, k = n. Then the algorithm generates a
permutation of P. That is, P = C = hc̄1, c̄2, ..., c̄ni Then, C can
be referred to as the greedy permutation of P. This permutation
also has an associated sequence of radiuses = hr1, r2, ...., rni.
And all the points of P are in distance at most r

i

from the
points of C

i

= hc̄1, c̄2, ..., c̄ii.

B. r-net

A r-net can be defined as follows:
Definition: A set S ✓ P is a r-net for P if the following two
properties hold

• Covering property: All the points of P are in distance
at most r from the points of S

• Separation property: For any pair of points p, q 2 S,
d(p, q) � r

C. Clustering and r-nets

The greedy permutation generated by clustering the data
provides an r-net representation of the data as follows;

Theorem 2. Let P be a set of n points in a finite metric

space, and let its greedy permutation be hc̄1, c̄2, ...., c̄ni with

the associated sequence of radiuses hr̄1, r̄2, ...., r̄ni. For any

i, C
i

= hc̄1, c̄2, ...., c̄ii is a r

i

-net of P

Proof: Separation property
• r

k

= d(c̄

k

, C
k�1)8k = 1, .., n

• For j < k  n, d(c̄

j

, c̄

k

) � r

k

Covering property follows by the definition of clustering.

VI. K-MEDIAN CLUSTERING

This section will introduce k-median clustering and a local
search algorithm for finding an approximate solution to the
k-median clustering problem.
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A. k-median clustering

k-median clustering is very similar to the k-center clustering
problem introduced in the previous section. But instead of
minimizing the maximum radius of the clusters, k-median
clustering focuses on minimizing the sum of distances between
all the points and their corresponding cluster center. It can be
summarized as follows:

• Input: A set P ✓ X and a parameter k.
• Output: Find k points C s.t. the sum of distances of points

of P to their closest point in C is minimized.

B. Notations

This section introduces some notations as follows to prop-
erly describe the k-median clustering problem

• Consider the set U of all k-tuples of points of P

• Let p
i

denote the i

th point of P, for i = 1, 2, ..., n, where
n = |P|

• For C 2 U, consider the n dimensional point

�(C) = (d(p1, C), d(p2, C), ...., d(pn, C))
• r

C
1(P) = ||�(C)||1 = max

i

d(p

i

, C) (by Weierstrass
extreme value theorem) and r

opt

1 (P, k) = min

C2U
||�(C)||1

• Similarly, r

C
1 (P) = ||�(C)||1 = ⌃

i

d(p

i

, C) and

r

opt

1 (P, k) = min

C2U
||�(C)||1

• k-center clustering under this interpretation is just finding
the point minimizing the l1 norm in a set of points in n

dimensions.
• k-median clustering is to find the point minimizing the

norm under the l1 norm.
• Similarly, k-means clustering is to find the point mini-

mizing the norm under the l2 norm.

C. Relations between p-norms

This section is a review about p-norms. The relations
described below will be used in the next subsection.

• The p-norm is given by, ||x||
p

= (

n

⌃

i=1
|x

i

|p)1/p
• For 0 < p < q, ||x||

p

� ||x||
q

• ||x||1 
p
n||x||2 and ||x||2 

p
n||x||1

D. 2n-approximation

If we compute a set of centers using the greedy k-center
algorithm described above, it will provide a 2n approximation
to the k-median clustering problem. This can be proven as
follows;

• For any point set P of n points and a parameter k,

r

opt

1 (P, k)  r

opt

1 (P, k)  n · ropt1 (P, k)

• From above, if we compute a set of centers C,

r

C
1 (P)/2n  r

C

1(P)/2  r

opt

1 (P, k)

 r

opt

1 (P, k)

( r

C
1 (P))

• This gives, rC1 (P)  2n r

opt

1 (P, k)

• Namely, C is a 2n-approximation to the optimal solution.

E. Local Search for k-median

As it was seen in the previous section, the greedy k-
center algorithm provides a 2n approximation to the k-median
clustering problem. But since the approximation factor dete-
riorates with increasing n, we will look into a local search
algorithm to improve the result obtained using the greedy k-
center algorithm. The local search algorithm is as follows;

• Let 0 < ⌧ < 1

• Initially set the current set of centers C
curr

to be C
• At each iteration, check if C

curr

can be improved by
replacing one of the centers.

• There are at most |P| · |C
curr

| = nk choices to consider.
• Pick c̄ 2 C

curr

to throw away and replace it by ē 2
(P \ C

curr

)

• New candidate set of centers K (C
curr

\ {c̄}) [ {ē}
• If r

K
1 (P)  (1 � ⌧)r

Ccurr
1 (P) then set C

curr

 K and
repeat.

• Stop when there is no exchange that would improve the
current solution by a factor of at least (1� ⌧)

• The final content of C
curr

is the required constant factor
approximation

The running time of the above local search algorithm is as
follows;

O
 
(nk)

2
log1/(1�⌧)

r

C
1 (P)

r

opt

1 (P, k)

!
= O�(nk)2 log1+⌧

(2n)

�

= O
 
(nk)

2 log n

ln(1 + ⌧)

!

= O
 
(nk)

2 log n

⌧

!
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