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What is Clustering?

Clustering

Preliminaries

The process of finding interesting structure in a set of
given data [1].

A clustering problem is usually defined by a set of items and a
distance function defined between these items.



Metric space

Clustering

Preliminaries Metrlc Space

A metric space is a pair (X,d) where X is a set and
d:X x X — [0,00) is a metric, satisfying the following axioms:

Reflexivity: d(x,y) =0 <= x=y
Symmetry: d(x,y) = d(y, x)
Triangle inequality: d(x,z) < d(x,y) + d(y, z)

A very common example of a metric space is R? with regular
Euclidean distance.



Voronoi Partitions

Clustering

m Given a set of centers C, every point of P is assigned to
it's nearest neighbor in C

Preliminaries

m All the points of P that are assigned to a center ¢ form
the cluster of ¢, denoted by:

N(C,c) ={p e Pld(p,c) < d(p,C)}
m This scheme of partitioning is known as Voronoi partitions

1Source: https://en.wikipedia.org/wiki/Voronoi_diagram



Clustering

k-Center

Problem Statement

For a metric space (X',d),
m Input: a set P C X,and a parameter k.
m Output: a set C of k points.

m Goal: Minimize the cost rC (P) = max d(p,C)
pe

Formally, rf*(P, k) = C?Z‘I.\n krgo(P)

m That is, Every point in a cluster is in
distance at most rC (P) from it's
respective center.

m k-center clustering is NP-HARD.

a
Source: https: //www.mathworks.con



Approximation algorithms

Clustering

k-Center

m It's unlikely that there can ever be efficient polynomial
time exact algorithms solving NP-hard problems.

m Therefore we'll have to resort to approximation algorithms
such as:

m Greedy algorithms.
m Local search.
. o o o



The Greedy Clustering Algorithm

clustering m Pick an arbitrary point ¢; into G
m For every point p € P compute di[p] from ¢
m Pick the point ¢, with highest distance from ¢;. (This is
the point realizing n = max di[p])
GreedyKCenter peP

m Add it to the set of centers and denote this expanded set
of centers as (5. Continue this till k centers are found
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Figure: Visualizing the greedy algorithm?
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Source: Sanders/van Stee: Approximations- und Online-Algorithmen



Making things slightly faster

Clustering
m In it" iteration the point G realizing,
GreedyKCenter ri_1 = maxd;_1[p] = maxd(p, C;_1) is added to the set
peP peP

of centers C;_1 to form C;

m r;_1 Is the radius of the clustering and is calculated in
every iteration.

m This process is repeated k times

m That is, in every iteration, the distance from all points in
P to the set of current centers is calculated.



Clustering

m But,

GreedyKCenter di [p] — d(p’ C’)
= min(d(p, Ci—1),d(p, C;))
= min(di—l[p]a d(p7 El))

m What if for each p € P we maintain a single variable d|[p]
with it's current distance to the closest center in the
current center set.

m Then only d(p, C;) is needed to calculate the radius.



Running time

Clustering

GreedyKCenter th - . . th
m The i*™" iteration of choosing the i*" center takes O(n)

time.
m [ here are k such iterations.

m Thus, overall the algorithm takes O(nk) time



Example

Clustering

GreedyKCenter
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Figure: Example dataset?
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Source: https://www.naftaliharris.com/blog/visualizing-k-means-clustering /
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GreedyKCenter
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Clustering

GreedyKCenter




Clustering

GreedyKCenter

Do Q>
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Importance of choosing the right k

GreedyKCenter




2-approximation

Clustering

e Given a set of n points P C X', belonging to a metric space
(X,d), the greedy K-center algorithm computes a set K of k
centers, such that K is a 2-approximation to the optimal
k-center clustering of P.

rK(P) < 2r3 (P, k)

o

The algorithm takes O(nk) time.



Clustering

GreedyKCenter

Case 1: Every cluster of Cop: contains exactly one point of K

Consider a point p € P

Let € be the center it belongs to in Copt

Let k be the center of K that is in M(Copt, €)
d(p, €) = d(p,Copt) < r*(P, k)

Similarly, d(k,¢) = d(k,Copt) < r&"

By the triangle inequality:
d(p, k) < d(p,€) + d(c, k) < 2r"



Proof, continued...

szl Case 2: There are two centers k and 7 of K that are both in
[M(Copt, C), for some € € Copt (By pigeon hole principle, this is
the only other possibility)

m Assume, without loss of genarality, that & was added later
EseyiNCaniy to the center set K by the greedy algorithm, say in it"
iteration.

m But since the greedy algorithm always chooses the point
furthest away from the current set of centers, we have
that ¢ € C;_1 and,

K(P) < rSY(P) = d(&,Ci_1)
< d(i, k)
< d(@, )+ d(c, k)

< 2r§§t



The greedy permutation

Clustering
m What if k=n
m Then the algorithm generates a permutation of P
Panmutation m Thatis, P =C = (&1, &, ..., &)
m C is the greedy permutation of P.
m The associated sequence of radiuses = (r, o, ...., rn)
m All the points of P are in distance at most r; from the

points of C; = (&1, &, ..., Cj)



Clustering

Greedy
Permutation

A set S C P is a r-net for P if the following two properties hold

m Covering property: All the points of P are in distance at
most r from the points of S

m Separation property: For any pair of points p,qg € S,
d(p.q) > r



Clustering and r-nets

Clustering
Theorem
Let P be a set of n points in a finite metric space, and let its
greedy permutation be (Ci, Cp, ...., Cn) With the associated
i sequence of radiuses (F, r, ...., fp). For any i,
Permutation C; = (¢, C,....,Cj) is a ri-net of P

Separation property
mry =d(Ck,Ck_1)Vk=1,..,n
m For j < k <n,d(G,cCk) > r«
Covering property follows by the definition of clustering. ]




k-median clustering

Clustering

m Input: A set P C X and a parameter k.

k-median m Output: Find k points C s.t. the sum of distances of
clusterin . . . . . . e .
e points of P to their closest point in C is minimized.



Notations

Clustering
m Consider the set U of all k-tuples of points of P
m Let p; denote the it point of P, for i = 1,2, ..., n, where
n=|P|
m For C € U, consider the n dimensional point
k-median
clustering ¢(C) = (d(p]_7 C)’ d(p2, C), ceeey d(pn, C))

L] rgo(tP) = ||#(C)||oo = max;d(pi,C) (by *) and
r& (P, k) = min||¢(C)llo

m Similarly, r{(P) = [|¢(C)||1 = Xd(p;,C) and
7 (P, k) = min||$(C)I|x

*Weierstrass extreme value theorem



Clustering

k-median
clustering

m k-center clustering under this interpretation is just finding
the point minimizing the /5, norm in a set of points in n
dimensions.

m k-median clustering is to find the point minimizing the
norm under the /; norm.



Relations between p-norms

Clustering

n
m The p-norm is given by, ||x||, = ( X |x;|P)}/P
PNis

Clsering m For0<p<g,
m [[x][1 < V/n[lx

X|lp = [Ixllq
|2 and [|x|]2 < v/nl|x]|o




Clustering

Local Search

2n-approximation

m For any point set P of n points and a parameter k,
rPH (P, k) < P (Pk) < n-rP(P, k)
m From above, if we compute a set of centers C,

it (P)/2n < r5,(P)/2 < rZ'(P, k)
< P (P, k)
(< (P))

m This gives, r{(P) < 2nrP*(P, k)

m Namely, C is a 2n-approximation to the optimal solution.



Local Search

Clustering
mletO<7<1
m Initially set the current set of centers Cc,r to be C
m At each iteration, check if Ccyr can be improved by
replacing one of the centers.
Local Search m There are at most |P| - |Ccyurr| = nk choices to consider.

m Pick ¢ € Ccypr to throw away and replace it by
é E (P \ Ccurr)



Clustering

Local Search

m New candidate set of centers K <— (Ccurr \ {C}) U {€}
m If i{(P) < (1—7)r7"(P) then set Ceurr < K and repeat.

m Stop when there is no exchange that would improve the
current solution by a factor of at least (1 — 7)

m [he final content of C., is the required constant factor
approximation



Example (k-means)

Clustering

Local Search

Source:

Figure: Dataset initialized with k-center®

https://www.naftaliharris.com /blog/visualizing-k-means-clustering/
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Assign Points

Clustering

Local Search




Update Centroids

Clustering

Local Search




Re-assign Points

Clustering

Local Search




Update Centroids (Nothing changes!)

Local Search




Clustering

Local Search

Example 2 (k-means)
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Figure: Example dataset®

Source: https://www.naftaliharris.com/blog/visualizing-k-means-clustering /
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Initialize with k-centers...

Local Search

A



Clustering

Initialize with k-centers...

Local Search
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Clustering

Initialize with k-centers...

Local Search




Clustering

Initialize with k-centers... (Cheating when
choosing k!!)

Local Search




Assign points

Clustering

Local Search




Update Centroids

Clustering

Local Search




Assign points

Clustering

Local Search




Update Centroids

Clustering

Local Search




Assign points

Clustering

Local Search




Update Centroids

Clustering

Local Search




Assign points

Clustering

Local Search




Update Centroids

Clustering

Local Search




Clustering

Assign points (No change)

Local Search




Clustering

Update Centroids (No change)

Local Search




Running time

Clustering
The running time of the algorithm:
O (nk)?log 1(P) ) _ O((nk)? log,.,(2n))
1/(1-7) I’fpt(P, k) 1+
log n
= k)?——=——
Local Search O <(n ) ln(]' + T)>
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Local Search
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The End

Local Search



Max diameter clustering

Clustering
This is very similar to k-center clustering [5].
m Input: A finite set of points P in some metric space,
(X,d) and an integer k
m Output: A partition of P into k clusters.
m Goal: Minimize the maximum diameter of the clusters.
el S That is, the cost of a partition P =C; UCy U .. UCk s,

max max d(x, x")
J xx'eC;



