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What is Clustering?

The process of finding interesting structure in a set of

given data [1].

A clustering problem is usually defined by a set of items and a
distance function defined between these items.
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Metric space

Metric space

A metric space is a pair (X ,d) where X is a set and
d:X ⇥X ! [0,1) is a metric, satisfying the following axioms:

1 Reflexivity: d(x , y) = 0 () x = y

2 Symmetry: d(x , y) = d(y , x)

3 Triangle inequality: d(x , z)  d(x , y) + d(y , z)

A very common example of a metric space is R2 with regular
Euclidean distance.
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Voronoi Partitions

Given a set of centers C, every point of P is assigned to
it’s nearest neighbor in C
All the points of P that are assigned to a center c̄ form
the cluster of c̄ , denoted by:
⇧(C, c̄) = {p 2 P|d(p, c̄)  d(p, C)}
This scheme of partitioning is known as Voronoi partitions

1

1
Source: https://en.wikipedia.org/wiki/Voronoi diagram
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Problem Statement

For a metric space (X ,d),

Input: a set P ✓ X ,and a parameter k .

Output: a set C of k points.

Goal: Minimize the cost rC1(P) = max

p2P
d(p,C)

Formally, ropt1 (P, k) = min

C ,|C |=k

r

C
1(P)

That is, Every point in a cluster is in
distance at most rC1(P) from it’s
respective center.

k-center clustering is NP-HARD. a

a

Source: https://www.mathworks.com
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Approximation algorithms

It’s unlikely that there can ever be e�cient polynomial
time exact algorithms solving NP-hard problems.

Therefore we’ll have to resort to approximation algorithms
such as:

Greedy algorithms.
Local search.
· · ·
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The Greedy Clustering Algorithm

Pick an arbitrary point c̄1 into C1

For every point p 2 P compute d1[p] from c̄1

Pick the point c̄2 with highest distance from c̄1. (This is
the point realizing r1 = max

p2P
d1[p])

Add it to the set of centers and denote this expanded set
of centers as C2. Continue this till k centers are found

Figure: Visualizing the greedy algorithm2

2
Source: Sanders/van Stee: Approximations- und Online-Algorithmen
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Making things slightly faster

In ith iteration the point c̄
i

realizing,
r

i�1 = max

p2P
d

i�1[p] = max

p2P
d(p,C

i�1) is added to the set

of centers C
i�1 to form C

i

r

i�1 is the radius of the clustering and is calculated in
every iteration.

This process is repeated k times

That is, in every iteration, the distance from all points in
P to the set of current centers is calculated.
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But,

d

i

[p] = d(p,C
i

)

= min(d(p,C
i�1), d(p, c̄i ))

= min(d
i�1[p], d(p, c̄i ))

What if for each p 2 P we maintain a single variable d [p]
with it’s current distance to the closest center in the
current center set.

Then only d(p, c̄
i

) is needed to calculate the radius.
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Running time

The ith iteration of choosing the ith center takes O(n)
time.

There are k such iterations.

Thus, overall the algorithm takes O(nk) time
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Example

Figure: Example dataset3

3
Source: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
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Example
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Importance of choosing the right k
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2-approximation

Theorem

Given a set of n points P ✓ X ,belonging to a metric space
(X ,d), the greedy K -center algorithm computes a set K of k
centers, such that K is a 2-approximation to the optimal
k-center clustering of P.

r

K

1(P)  2ropt1 (P, k)

The algorithm takes O(nk) time.
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Proof

Case 1: Every cluster of C
opt

contains exactly one point of K

Consider a point p 2 P

Let c̄ be the center it belongs to in C
opt

Let k̄ be the center of K that is in ⇧(C
opt

, c̄)

d(p, c̄) = d(p, C
opt

)  r

opt

1 (P, k)

Similarly, d(k̄ , c̄) = d(k̄ , C
opt

)  r

opt

1

By the triangle inequality:
d(p, k̄)  d(p, c̄) + d(c̄ , k̄)  2ropt1
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Proof, continued...

Case 2: There are two centers k̄ and ū of K that are both in
⇧(C

opt

, c̄), for some c̄ 2 C
opt

(By pigeon hole principle, this is
the only other possibility)

Assume, without loss of genarality, that ū was added later
to the center set K by the greedy algorithm, say in ith

iteration.

But since the greedy algorithm always chooses the point
furthest away from the current set of centers, we have
that c̄ 2 C

i�1 and,

r

K

1(P)  r

C
i�1

1 (P) = d(ū, C
i�1)

 d(ū, k̄)

 d(ū, c̄) + d(c̄ , k̄)

 2ropt1
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The greedy permutation

What if k = n

Then the algorithm generates a permutation of P

That is, P = C = hc̄1, c̄2, ..., c̄ni
C is the greedy permutation of P.

The associated sequence of radiuses = hr1, r2, ...., rni
All the points of P are in distance at most r

i

from the
points of C

i

= hc̄1, c̄2, ..., c̄
i

i
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r-net

Definition

A set S ✓ P is a r-net for P if the following two properties hold

Covering property: All the points of P are in distance at
most r from the points of S

Separation property: For any pair of points p, q 2 S ,
d(p, q) � r
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Clustering and r-nets

Theorem

Let P be a set of n points in a finite metric space, and let its

greedy permutation be hc̄1, c̄2, ...., c̄ni with the associated

sequence of radiuses hr̄1, r̄2, ...., r̄ni. For any i,

C
i

= hc̄1, c̄2, ...., c̄
i

i is a r

i

-net of P

Proof.

Separation property

r

k

= d(c̄
k

, C
k�1)8k = 1, .., n

For j < k  n, d(c̄
j

, c̄
k

) � r

k

Covering property follows by the definition of clustering.
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k-median clustering

Input: A set P ✓ X and a parameter k.

Output: Find k points C s.t. the sum of distances of
points of P to their closest point in C is minimized.



Clustering

Preliminaries

k-Center

GreedyKCenter

Greedy
Permutation

k-median
clustering

Local Search

Notations

Consider the set U of all k-tuples of points of P

Let p
i

denote the i

th point of P, for i = 1, 2, ..., n, where
n = |P|
For C 2 U, consider the n dimensional point

�(C) = (d(p1, C), d(p2, C), ...., d(pn, C))

r

C
1(P) = ||�(C)||1 = max

i

d(p
i

, C) (by 4) and
r

opt

1 (P, k) = min

C2U
||�(C)||1

Similarly, rC1 (P) = ||�(C)||1 = ⌃
i

d(p
i

, C) and
r

opt

1 (P, k) = min

C2U
||�(C)||1

4Weierstrass extreme value theorem
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k-center clustering under this interpretation is just finding
the point minimizing the l1 norm in a set of points in n

dimensions.

k-median clustering is to find the point minimizing the
norm under the l1 norm.
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Relations between p-norms

The p-norm is given by, ||x ||
p

= (
n

⌃
i=1

|x
i

|p)1/p

For 0 < p < q, ||x ||
p

� ||x ||
q

||x ||1 
p
n||x ||2 and ||x ||2 

p
n||x ||1
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2n-approximation

For any point set P of n points and a parameter k ,

r

opt

1 (P, k)  r

opt

1 (P, k)  n · ropt1 (P, k)

From above, if we compute a set of centers C,

r

C
1 (P)/2n  r

C

1(P)/2  r

opt

1 (P, k)

 r

opt

1 (P, k)

( r

C
1 (P))

This gives, rC1 (P)  2n ropt1 (P, k)

Namely, C is a 2n-approximation to the optimal solution.
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Local Search

Let 0 < ⌧ < 1

Initially set the current set of centers C
curr

to be C
At each iteration, check if C

curr

can be improved by
replacing one of the centers.

There are at most |P| · |C
curr

| = nk choices to consider.

Pick c̄ 2 C
curr

to throw away and replace it by
ē 2 (P \ C

curr

)
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New candidate set of centers K (C
curr

\ {c̄}) [ {ē}
If rK1 (P)  (1� ⌧)rCcurr1 (P) then set C

curr

 K and repeat.

Stop when there is no exchange that would improve the
current solution by a factor of at least (1� ⌧)

The final content of C
curr

is the required constant factor

approximation
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Example (k-means)

Figure: Dataset initialized with k-center5

5
Source: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
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Assign Points
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Update Centroids
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Re-assign Points
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Update Centroids (Nothing changes!)
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Example 2 (k-means)

Figure: Example dataset6

6
Source: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
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Initialize with k-centers...
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Initialize with k-centers...
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Initialize with k-centers...
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Initialize with k-centers... (Cheating when
choosing k!!)
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Assign points
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Update Centroids
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Assign points
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Update Centroids
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Assign points
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Update Centroids



Clustering

Preliminaries

k-Center

GreedyKCenter

Greedy
Permutation

k-median
clustering

Local Search

Assign points
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Update Centroids
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Assign points (No change)
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Update Centroids (No change)
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Running time

The running time of the algorithm:

O
 
(nk)2 log1/(1�⌧)

r

C
1 (P)

r

opt

1 (P, k)

!
= O�(nk)2 log1+⌧ (2n)

�

= O
 
(nk)2

log n

ln(1 + ⌧)

!

= O
 
(nk)2

log n

⌧

!
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The End
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Max diameter clustering

This is very similar to k-center clustering [5].

Input: A finite set of points P in some metric space,
(X , d) and an integer k

Output: A partition of P into k clusters.

Goal: Minimize the maximum diameter of the clusters.
That is, the cost of a partition P = C1 [ C2 [ .. [ C

k

is,

max

j

max

x ,x 02C
j

d(x , x 0)


