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A Brief Introduction to Quadtrees and Their Applications

Anthony D’Angelo⇤

Abstract

We briefly introduce the quadtree data structure, some
of its variants (region, point, point-region, edge, polyg-
onal map, and compressed), as well as some applica-
tions to problems in computer science including image
processing, spatial queries, and mesh generation. This
presentation is mainly a collection of selected materials
from surveys by Aluru [1] and Samet [13, 14], as well as
a textbook by Har-Peled [5].

1 Introduction

The quadtree is a hierarchical spatial data structure. It
is a tree in which each level corresponds to a further
refinement of the space under consideration. Though
there are many types of quadtrees and quadtrees can
be generalized to any dimension1, the idea is always
a recursive decomposition of space that helps us store
only the important or interesting information about the
space.
In this discussion we will focus on 2-Dimensional

quadtrees. Typically, the space under consideration is
a square normalized to be the unit square and it lies in
the 2-Dimensional Euclidean plane. We start by creat-
ing a root node for the tree. The root represents the
unit square. Like the root node, each node in the tree
corresponds to an area of the plane. We say that a node
in the tree represents a cell. Each internal node is fur-
ther subdivided into four quadrants (usually squares)
as long as there is interesting data in the cell for which
more refinement is desired, but potentially limited to a
pre-defined resolution size. Each leaf node in the tree
corresponds to a cell that is not subdivided further. The
data associated with a leaf cell varies by application,
but the leaf cell represents a “unit of interesting spatial
information”. The height of quadtrees that follow this
decomposition strategy is sensitive to and dependent on
the spatial distribution of interesting cells.

1.1 Space-Filling Curves

Informally, a space-filling curve is one whose range is
every point in the space being considered. For exam-
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1
A 3-D quadtree is an octree and higher dimensional versions

are called hyperoctrees [1].

Figure 1: Z-curves for 2x2, 4x4, and 8x8 grids (image
from [1])

ple, if we divide a unit square into a grid whose cells
are all equal-sized squares, a space-filling curve passes
through all the cells once. Of particular interest for us
is the Morton curve, also known as the z-order curve
[8]. There are a few variations of this curve, but we will
be using it as outlined by Morton. For a 2x2 square, the
z-order is South-West (SW), North-West (NW), South-
East (SE), and North-East (NE).2 The 4x4 square’s z-
order curve has the 2x2 square’s curve copied into each
of its 2x2 quadrants, and they are connected in the same
z-order. The 2k ⇥ 2k square’s curve is similarly created
by four copies of the 2k�1 ⇥ 2k�1 curve (see Figure 1).

The z-order defines a total order on the cells of any
subdivision of a quadtree. Furthermore, mapping from
cell coordinates to the cell’s rank in the z-order is rather
simple and relatively quick. Consider a grid where the
origin of each cell is the bottom-left corner. to con-
vert from the coordinate of the cell to the rank, we take
the binary representation of the x and y coordinates
(x1x2 . . . xk and y1y2 . . . yk respectively), then interleave
the binary numbers (x1y1x2y2 . . . xkyk). The decimal
representation of that number is the cell’s rank. Map-
ping back to coordinates is done similarly.

2 Image Processing

Quadtrees have lent themselves well to image processing
applications. In this section we will introduce the region
quadtree, followed by descriptions of its use in the oper-
ations of image union and intersection, and connected

component labelling.

2
The curve starts in the bottom-left corner of the square and

finishes in the top-right.
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2.1 Region Quadtrees

Region quadtrees follow the general scheme outlined in
the introduction (recursive subdivisions into squares).
For region quadtrees, the data stored in a leaf node is
some information about the space of the cell it repre-
sents (e.g. average height value for the cell).

We will limit our discussion of region quadtrees to bi-
nary image data, though region quadtrees and the im-
age processing operations performed on them are just
as suitable for colour images [1, 14]. Note the potential
savings in terms of space when these trees are used for
storing images; images often have many regions of con-
siderable size that have the same colour/value through-
out. Rather than store a big 2-D array of every pixel in
the image, a quadtree can capture the same information
potentially many divisive levels higher than the pixel-
resolution sized cells that we would otherwise require.
The tree resolution and overall size is bounded by the
pixel and image sizes.

2.2 Image Union/Intersection

One of the advantages of using quadtrees for image ma-
nipulation is that the set operations of union and inter-
section can be done simply and quickly [1, 6, 7, 16].

Given two binary images, the image union (also called
overlay) produces an image wherein a pixel is black if
either of the input images has a black pixel in the same
location. That is, a pixel in the output image is white
only when the corresponding pixel in both input images
is white, otherwise the output pixel is black. Rather
than do the operation pixel by pixel, we can compute
the union more e�ciently by leveraging the quadtree’s
ability to represent multiple pixels with a single node.

The algorithm works by traversing the two in-
put quadtrees (T1 and T2) while building the output
quadtree. Informally, the algorithm is as follows. Con-
sider the nodes v1 2 T1 and v2 2 T2 corresponding to
the same region in the images.

• If v1 is black, we make the corresponding position
in the output quadtree a black leaf.

• If v1 is white, we copy the subtree rooted at v2 into
the corresponding position in the output quadtree.

• If v1 and v2 are both grey, we insert a grey node in
the corresponding position of the output quadtree
and fill in its subtree by considering the correspond-
ing children of v1 and v2.

While this algorithm works, it does not by itself guar-
antee a minimally sized quadtree. For example, consider
the result if we were to union a checkerboard (where ev-
ery tile is a pixel) of size 2k ⇥ 2k with its complement.
The result is a giant black square which should be repre-
sented by a quadtree with just the root node (coloured

black), but instead the algorithm produces a full 4-ary
tree of depth k. To fix this, we perform a bottom-up
traversal of the resulting quadtree where we check if the
four children nodes have the same colour, in which case
we replace their parent with a leaf of the same colour
[1].

The intersection of two images is almost the same
algorithm. One way to think about the intersection of
the two images is that we are doing a union with respect
to the white pixels. As such, to perform the intersection
we swap the mentions of black and white in the union
algorithm.

2.3 Connected Component Labelling

Consider two neighbouring black pixels in a binary im-
age. They are adjacent if they share a bounding hor-
izontal or vertical edge. In general, two black pixels
are connected if one can be reached from the other by
moving only to adjacent pixels (i.e. there is a path
of black pixels between them where each consecutive
pair is adjacent). Each maximal set of connected black
pixels is a connected component. Using the quadtree-
representation of images, Samet [11] showed we can find
and label these connected components in time propor-
tional to the size of the quadtree [1, 13]. This algorithm
can also be used for polygon colouring [13].

The algorithm works in three steps: establish the ad-
jacency relationships between black pixels; process the
equivalence relations from the first step to obtain one
unique label for each connected component; label the
black pixels with the label associated with their con-
nected component.

To simplify the discussion, let us assume the children
of a node in the quadtree follow the z-order (SW, NW,
SE, NE). Since we can count on this structure, for any
cell we know how to navigate the quadtree to find the
adjacent cells in the di↵erent levels of the hierarchy.
Step one is accomplished with a post-order traversal of
the quadtree. For each black leaf v we look at the node
or nodes representing cells that are Northern neighbours
and Eastern neighbours (i.e. the Northern and Eastern
cells that share edges with the cell of v). Since the
tree is organized in z-order, we have the invariant that
the Southern and Western neighbours have already been
taken care of and accounted for. Let the Northern or
Eastern neighbour currently under consideration be u.
If u represents black pixels:

• If only one of u or v has a label, assign that label
to the other cell.

• If neither of them have labels, create one and assign
it to both of them.

• If u and v have di↵erent labels, record this label
equivalence and move on.
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Figure 2: A binary image and the region quadtree rep-
resenting it. A potential outcome of the first step of the
connected component labelling algorithm (if the cell of
b has further subdivisions). There has been a noted
equivalence between a and b.

Figure 2 shows a hypothetical result at the end of the
first step assuming the node labelled b has further sub-
divisions.
Step two can be accomplished using the union-find

data structure [18]. We start with each unique label as a
separate set. For every equivalence relation noted in the
first step, we union the corresponding sets. Afterwards,
each distinct remaining set will be associated with a
distinct connected component in the image.
Step three performs another post-order traversal.

This time, for each black node v we use the union-find’s
find operation (with the old label of v) to find and assign
v its new label (associated with the connected compo-
nent of which v is part).

3 Spatial Queries

Being a data structure that subdivides spaces and rep-
resents spatial points, it is no surprise that quadtrees
can answer spatial queries e�ciently. We begin by in-
troducing the point and point-region quadtrees used for
point data as well as some queries we can perform on
them, followed by the edge and polygonal map quadtrees
used for representing polygons and their application in
point location queries.

3.1 Point and Point-Region (PR) Quadtrees

Point quadtrees are a generalization of the binary tree
for multi-dimensional point data [4]. The manner in
which the plane is divided up for use with the point
quadtree is markedly di↵erent than the most commonly
used method of dividing each cell into four equal-sized
squares whose side length is a power of two. Point
quadtrees are worth mentioning for completeness, but
they have been surpassed by k-d trees [2] as tools for
generalized binary search [1].
Point quadtrees are constructed as follows. Given the

next point to insert, we find the cell in which it lies and
add it to the tree. The new point is added such that
the cell that contains it is divided into quadrants by the

vertical and horizontal lines that run through the point.
Consequently, cells are rectangular but not necessarily
square. In these trees, each node contains one of the
input points.

Since the division of the plane is decided by the order
of point-insertion, the tree’s height is sensitive to and
dependent on insertion order. Inserting in a “bad” order
can lead to a tree of height linear in the number of input
points (at which point it becomes a linked-list). If the
point-set is static, pre-processing can be done to create
a tree of balanced height.

Point-region (PR) quadtrees [10, 12] are very similar
to region quadtrees. The di↵erence is the type of infor-
mation stored about the cells. In a region quadtree, a
uniform value was stored that applied to the entire area
of the cell of a leaf. The cells of a PR quadtree, how-
ever, store a list of points that exist within the cell of a
leaf.3 As mentioned previously, for trees following this
decomposition strategy the height depends on the spa-
tial distribution of the points. Like the point quadtree,
the PR quadtree may also have a linear height when
given a “bad” set.

3.2 Range Query

Given a PR quadtree and a query region R (which is
possibly open-ended), the result of a range query is all
of the stored points in the PR quadtree that lie within
R. This operation may correspond to finding records in
a database that meet a certain criteria. To do the range
query, first we find the smallest node/cell u in the tree
that completely contains R. For each child cell v of u:

• If v lies completely within R, add the points of v’s
subtree to the query result and continue the query.

• If v and R do not intersect, discard v and continue
with the other children.

• If v and R intersect, process the children of v sim-
ilarly in turn (brute-force check leaves).

3.3 Spherical Region Query

Given a PR quadtree, a query point q, and a distance
r > 0, the result of a spherical region query is all of the
stored points in the tree that lie in the circle centred at
q with radius r. An example query may be a request for
all hospitals within 10 km of someone’s current location.
The query is answered by walking down the tree from
the root to the cell containing q while exploring and
ruling out cells on the way. For each cell v we have not
yet ruled out:

3
The number of points used as a stopping criterion for further

subdivision varies by application, but let us assume a leaf stores

at most one point.
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Figure 3: On the left is the subdivided plane for an edge
quadtree, whereas on the right we have the subdivision
for a PM quadtree. Note the PM quadtree saves space
by not always subdividing areas with corners. (Images
from [14])

• If the farthest spatial point4 in v is less than r from
q, add all stored points in v to the query result, re-
move v from consideration, and continue the query.

• If the closest spatial point in v is more than r from
q, remove v from consideration, and continue the
query.

• Otherwise, remove v and add its children for con-
sideration (brute-force check the data points of a
leaf’s cell).

3.4 Edge and Polygonal Map (PM) Quadtrees

Quadtrees can also be used to capture polygonal data
in the form of linear features. The edge [17, 19] and
polygonal map (PM) [9, 15] quadtrees work almost the
same way, approximating polygons by straight line seg-
ments. Both trees generally work by subdividing the
space until there is a single line segment per cell. Near
corners/vertices, edge quadtrees will continue dividing
until they reach their maximum level of decomposition.
The big di↵erence with PM quadtrees is that the cell
under consideration is not subdivided if the segments
meet at a vertex in the cell (see Figure 3 to see the
di↵erence in subdivision).

3.5 Point Location

Given a quadtree for a polygonal map and a query point
q, the result of a point location query is the polygon in
which q lies. An example of such a query is a traveller
asking a map service which city they are currently in.
The quadtree we will consider here is a slight variation
of the ones seen above. The di↵erence is that the stop-
ping criterion for the subdivision is when a cell is inter-
sected by a constant number of polygons [5]. With such
a quadtree, the point location query is rather simple:
find the leaf in the quadtree that contains q, then check

4
Not the location of a data point from our point set that lies

in v, rather the farthest point in the cell to q.

which of the O(1) polygons contain q (in other words,
brute-force check against the polygons in the leaf of q).

4 Compressed Quadtrees

In this section we will look at the use of compressed
quadtrees [5]. If we were to store every node corre-
sponding to a subdivided cell, we may end up storing
a lot of empty nodes. We can cut down on the size of
such sparse trees by only storing subtrees whose leaves
have interesting data (i.e. “important subtrees”). We
can actually cut down on the size even further. When
we only keep important subtrees, the pruning process
may leave long paths in the tree where the intermedi-
ate nodes have degree two (a link to one parent and
one child). It turns out that we only need to store the
node u at the beginning of this path (and associate some
meta-data with it to represent the removed nodes) and
attach the subtree rooted at its end to u. It is still pos-
sible for these compressed trees to have a linear height
when given “bad” input points.

Although we trim a lot of the tree when we per-
form this compression, it is still possible to achieve
logarithmic-time search, insert, and delete. Recall the
previously-mentioned z-order. It maps in O(1) time
each cell of the full quadtree (and hence even the com-
pressed quadtree) to a one-dimensional line (and maps
it back in O(1) time too), creating a total order on the
elements. Therefore, we can store the quadtree in a data
structure for ordered sets (in which we store the nodes
of the tree). We must state a reasonable assumption [5]
before we continue: we assume that given two real num-
bers ↵,� 2 [0, 1) expressed as binary, we can compute
in O(1) time the index of the first bit in which they
di↵er. We also assume that we can compute in O(1)
time the lowest common ancestor of two points/cells
in the quadtree and establish their relative z-ordering,
and we can compute the floor function in O(1) time.
With these assumptions, point location of a given point
q (i.e. determining the cell that would contain q), in-
sertion, and deletion operations can all be performed in
O(log n) time (i.e. the time it takes to do a search in
the underlying ordered set data structure).

To perform a point location for q (i.e. find its cell in
the compressed tree):

1. Find the existing cell in the compressed tree that
comes before q in the z-order. Call this cell v.

2. If q 2 v, return v.

3. Else, find what would have been the lowest com-
mon ancestor of the point q and the cell v in an
uncompressed quadtree. Call this ancestor cell u.

4. Find the existing cell in the compressed tree that
comes before u in the z-order and return it.
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Figure 4: A balanced leaf has at most one corner in a
side

Without going into detail, to perform insertions and
deletions we first do a point location for the thing we
want to insert/delete, and then insert/delete it. Care
must be taken to reshape the tree as appropriate, cre-
ating and removing nodes as needed.

5 Mesh Generation

Mesh generation is essentially the triangulation of a
point set for which further processing may be per-
formed. As such, it is desirable for the resulting trian-
gulation to have certain properties (like non-uniformity,
triangles that are not “too skinny”, large triangles in
sparse areas and small triangles in dense ones, etc.)
to make further processing quicker and less error-prone
[3, 5]. Quadtrees built on the point set can be used to
create meshes with these desired properties.
Consider a leaf of the quadtree and its corresponding

cell v. We say v is balanced if the cell’s sides are in-
tersected by the corner points of neighbouring cells at
most once on each side (see Figure 4). This means that
the quadtree levels of leaves adjacent to v di↵er by at
most one from the level of v. When this is true for all
leaves, we say the quadtree is balanced.
Consider the cell v and the 5 ⇥ 5 neighbourhood of

same-sized cells centred at v. We call this neighbour-
hood the extended cluster. We say the quadtree is well-
balanced if it is balanced, and for every leaf u that con-
tains a point of the point set, its extended cluster is
also in the quadtree and the extended cluster contains
no other point of the point set.
Creating the mesh is done as follows:

1. Build a quadtree on the input points.

2. Ensure the quadtree is balanced. For every leaf,
if there is a neighbour that is too large, subdivide
the neighbour. This is repeated until the tree is
balanced. We also make sure that for a leaf with
a point in it, the nodes for each leaf’s extended
cluster are in the tree.

3. For every leaf node v that contains a point, if the
extended cluster contains another point, we further
subdivide the tree and rebalance as necessary. If
we needed to subdivide, for each child u of v we

p

Figure 5: Warp the closest corner of p’s cell and trian-
gulate (image from [5])

Figure 6: Other squares triangulated depending on their
intersected sides (image from [5])

ensure the nodes of u’s extended cluster are in the
tree (and re-balance as required).

4. Repeat the previous step until the tree is well-
balanced.

5. Transform the quadtree into a triangulation.

We consider the corner points of the tree cells as ver-
tices in our triangulation. Before the transformation
step we have a bunch of boxes with points in some of
them. The transformation step is done in the following
manner: for each point, warp the closest corner of its
cell to meet it and triangulate the resulting four quad-
rangles to make “nice” triangles5 (see Figure 5).

Figure 6 illustrates the manner in which the remain-
ing squares are triangulated. For each regular square
(no points within and no corner points in its sides), in-
troduce the diagonal. Note that due to the way in which
we separated points with the well-balancing property,
no square with a corner intersecting a side is one that
was warped. As such, we can triangulate them as fol-
lows. If there is one intersected side, the square becomes
three triangles by adding the long diagonals connecting
the intersection with opposite corners. If there are four
intersected sides, we split the square in half by adding
an edge between two of the four intersections, and then
connect these two endpoints to the remaining two in-
tersection points. For the other squares, we introduce a
point in the middle and connect it to all four corners of
the square and each intersection point.

At the end of it all, we have a nice triangulated mesh
of our point set built from a quadtree.

5
The interested reader is referred to chapter 12 of [5] for more

details on “nice” triangles.
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