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Chapter 1

Minimum Spanning Trees

1.1 Minimum Spanning Trees

Let G = (V,E) be an undirected connected graph with a cost function w mapping edges to positive
real numbers. A spanning tree is an undirected tree connecting all vertices of G. The cost of a
spanning tree is equal to the sum of the costs of the edges in the tree. A minimum spanning tree
(MST) is a spanning tree whose cost is minimum over all possible spanning trees of G. It is easy
to see that a graph may have many MSTs with the same cost (e.g., consider a cycle on 4 vertices
where each edge has a cost of 1; deleting any edge results in a MST, each with a cost of 3).

As in the CLRS book[4], we will describe the two main algorithms for building MSTs, Kruskal’s
and Prim’s. Both of these algorithms are greedy algorithms and are based on the following generic
algorithm (Algorithm 1.1). The algorithm maintains a subset of edges A, which is a subset of some
MST of G.

Algorithm 1.1: Generic-MST
Input: Graph G, cost function w
Output: A minimum spanning tree of G

1 A← 0
2 while A 6= MST do
3 find a safe edge {u, v} for A
4 A← A ∪ {u, v}
5 end
6 return A

Intuitively this algorithm is straight-forward except for two pressing questions: What is a safe
edge, and how do we find one? To answer these questions, we first need a few definitions.

Cut A cut (S, V \ S) of G = (V,E) is a partition of vertices of V .

Edge crossing a cut
An edge (u, v) ∈ E crosses the cut(S, V \ S) if one of its end point is in the set S
and the other one in the set (V \ S).
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Cut respecting A
A cut (S, V \ S) respects the set A if none of the edges of A crosses the cut.

Light edge An edge which crosses the cut and which has the minimum cost of all such edges.

Theorem 1.1. Let A be a subset of the edges of E which is included in some MST, and let (S, V \S)
be a cut which respects A. Let (u, v) be a light edge crossing the cut (S, V \ S), then (u, v) is safe
for A.

Proof. Assume that T is a MST that includes A (similarly, you may think of A as being a subset of
the edges of T , or being “the makings of” a MST). If T includes the edge (u, v) then (u, v) is safe
for A. If T does not include (u, v), then we will show that there is another MST, T ′, that includes
A ∪ {(u, v)}, and this will prove that {(u, v)} is safe for A. Since T is a spanning tree, there is a
path, say PT (u, v), from the vertex u to vertex v in T . By inserting the edge (u, v) in T we create
a cycle. Since u and v are on different sides of the cut, there is at least one edge (x, y) ∈ PT (u, v)
that crosses the cut(S, T \ S). Moreover (x, y) 6∈ A, since the cut respects A. But the cost of
the edge (x, y) is at least the cost of the edge (u, v), since edge (u, v) is a light edge crossing the
cut. Construct a new tree T ′ from T by deleting the edge (x, y) in T and inserting the edge (u, v).
Observe that the cost of the tree T ′ is at most the cost of the tree T since the cost of (x, y) is at
least the cost of (u, v). Moreover A ∪ {(u, v)} ⊂ T ′ and (x, y) 6∈ A, hence edge (u, v) is safe for A.

The above theorem leads to the following corollary, where we fix a particular cut (i.e. the
cut(C, V \ C)).

C
u v

Tree Edges

Graph Edges

Light Edge

Figure 1.1: An example of Corollary 1.1. The edge (u, v) connects C to some other component of GA

and is a light edge; it is therefore safe to add to the MST.

Corollary 1.1. Let A ⊂ E be included in some MST. Consider the forest consisting of GA = (V,A),
i.e., the graph with the same vertex set as G but restricted to the edges in A. Let C = (VC , EC) be a
connected component of GA. Let (u, v) be a light edge connecting C to another connected component
in GA, then (u, v) is safe for A (See Figure 1.1).
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1.2 Kruskal’s Algorithm for MST

Proposed by Kruskal in 1956, this algorithm follows directly from Corollary 1.1. Here are the main
steps. To begin with the set A consists of only isolated vertices, and no edges (so, |V | “connected”
components in all).

1. Sort the edges of E in non-decreasing order with respect to their cost.

2. Examine the edges in order; if the edge joins two components then add that edge (a safe
edge) to A.

To implement Step 2, we do the following. Let ei be the edge under consideration, implying that
all edges with a lesser cost than ei = (a, b) have already been considered. We need to check whether
the endpoints a and b are within the same component or whether they join two different components.
If the endpoints are within the same component, then we discard the edge ei. Otherwise, since
it is the next lightest edge overall, it must be the lightest edge between some pair of connected
components, and so we know from Corollary 1.1 that it is safe to add to A. We will need to merge
these two components to form a bigger component.

To accomplish all of this, we will need some data structure which supports the following oper-
ations:

• Make-Set(v) - create a new set containing only the vertex v.

• Find(v) - Find the set which presently contains the vertex v.

• Merge(Vx, Vy) - Merge the two sets Vx and Vy together such that Find will work correctly
for all vertices in merged set.

We can implement this data structure as follows. For each vertex we keep track of which
component it lies in using a label associated with the vertex. Initially each vertex belongs to its
own component, which is done with Make-Set. During the algorithm the components will be
merged, and the labels of the vertices will be updated. Assume that we need to merge the two
components Va and Vb corresponding to the end points a and b of the edge ei = (a, b). We use
Find(a) and Find(b) to get the sets Va and Vb respectively. We then call Merge which will relabel
all of the vertices in one of the components to have the same labels as the vertices of the other. The
component which we relabel will be the one which is smaller in size. Given such a data structure,
we can implement Kruskal’s algorithm as in Algorithm 1.2.

Let us analyze the complexity of Kruskal’s algorithm. Sorting the edges takes O(|E| log |E|)
time. The test for an edge, whether it joins two connected components or not, can be done in
constant time. (In all O(E) time for all edges.) What remains is to analyze the complexity of
merging the components which can be bounded by the total complexity of relabeling the vertices.
Consider a particular vertex v, and let us estimate the maximum number of times this will be
relabeled. Notice that the vertex gets relabeled only if it is in a smaller component and its com-
ponent is merged with a larger one. Hence after merging, the size of the component containing v
becomes at least double. Since the maximum size of a component is |V |, this implies that v can be
relabeled at most log2 |V | times. Therefore, the total complexity of the Step 2 of the algorithm is
O(|E|+ |V | log |V |) time. These results are summarized in the following theorem.

Theorem 1.2 (Kruskal). A minimum (cost) spanning tree of an undirected connected graph G =
(V,E) can be computed in O(|V | log |V |+ |E| log |E|) time.
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Algorithm 1.2: Kruskal-MST
Input: Graph G = (V,E), cost function w
Output: A minimum spanning tree of G

1 A← ∅
2 foreach v ∈ V do
3 MakeSet(v)
4 end
5 sort the edges of E in non-decreasing order w.r.t. w
6 foreach e = {a, b} ∈ E, where e is taken in sorted order do
7 Va ← Find(a)
8 Vb ← Find(b)
9 if Va 6= Vb then

10 A← A ∪ {e}
11 Merge(Va, Vb)
12 end
13 end
14 return A

1.3 Prim’s MST algorithm

Prim’s algorithm is very similar to Dijkstra’s single source shortest path algorithm[5], and, in fact,
their complexity analysis will be the same. Here the set A at any stage of the algorithm forms a
tree, rather than a forest of connected components as in Kruskal’s. Initially the set A consists of
just one vertex. In each stage, a light edge is added to the tree connecting A to a vertex in V \A.

The key to Prim’s algorithm is in selecting that next light edge efficiently at each iteration. For
each v ∈ V \ A, we keep track of the least cost edge which connects v to A, and the cost of this
edge is used as the “key” value of v. These key values are then used to build a priority queue Q.
See Figure 1.2 for an example of these sort of light edges.

Edges in G

Edges in A

Least cost edge connecting
a vertex in V \A to a vertex
in A

u

v

Figure 1.2: Example of Prim’s Algorithm showing the set A (encircled) and the least cost edges
associated with each vertex in V \A.
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In each step of the algorithm, the vertex v with the least priority is extracted out of Q. Suppose
that corresponds to the edge e = {u, v}, where u ∈ A, then observe that e is a safe edge since it is
the light edge for cut(A, V \A). We update A := A ∪ {e}. Finally, after extracting v out of Q, we
need to update Q. The details are explained in Algorithm 1.3.

Algorithm 1.3: PRIM-MST
Input: Graph G = (V,E), cost function w, root vertex r
Output: A minimum spanning tree of G

1 foreach v ∈ V do
2 key(v)←∞
3 π(v)← nil /* π keeps track of the parent of a vertex in the tree. */

4 end
5 key(r)← 0
6 Q← V /* Priority queue consists of vertices with their key values */
7 while Q 6= ∅ do
8 u← Extract-Min(Q)
9 foreach v adjacent to u do

10 if v ∈ Q and w(u, v) < key(v) then
11 π(v)← u
12 key(v)← w(u, v)
13 end
14 end
15 end

The vertices that are in the set A at any stage of the algorithm are the vertices in V \Q, i.e.,
the ones that are not in Q. kev(v) is the weight of the light edge {v, π(v)} connecting v to some
vertex in the MST A. Notice that the key value for any vertex starts at infinity, when it is not
adjacent to A via any edge, and then keeps decreasing.

Let us analyze the complexity of the algorithm. The main steps are the priority queue oper-
ations, namely decrease-key and extract-min. We perform |V | extract-min operations in all, one
for each vertex. We also perform O(|E|) decrease-key operations, one for each edge. The following
table shows the complexity of these operations depending on the type of priority queue you choose.
These complexities are per operation, although the complexities of Fibonacci Heaps are amortized
(kind of an average over the worst possible scenario! - more on that later).

Binary Heaps Fibonacci Heaps
Extract-min O(log n) O(log n)
Decrease-key O(log n) O(1)

1.4 Randomized Algorithms for Minimum Spanning Trees

Here we discuss some results related to randomized algorithms for computing minimum spanning
trees. These results are based on Section 10.3 of Raghavan and Motwani’s book on Randomized
Algorithms [16] and T. Chan’s simplified analysis from [3]. Assume that all edge weights are distinct
and hence there is a unique MST in the given graph G = (V,E). The randomized algorithm uses
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a few concepts which are discussed in the following subsections followed by the actual algorithm
itself in Section 1.4.3. The first concept is an algorithm due to Boruvka from 1926[1, 2] which helps
us to reduce the number of vertices in the graph. The second is about heavy and light edges with
respect to a spanning tree.

1.4.1 Boruvka’s Algorithm

Observe that for any vertex v ∈ V , the edge, say {v, w}, with the minimum weight incident to that
vertex will be included in the MST, as per Corollary 1.1. This leads to a simple way to compute
the MST as given in Algorithm 1.4.

Algorithm 1.4: Boruvka-MST
Input: Graph G, cost function w (all costs distinct)
Output: A minimum spanning tree T of G

1 T ← ∅
// Each iteration of this loop is called a Phase

2 while G contains more than a single vertex do
3 Mark the edges with the minimum weight incident to each vertex. Add these edges to T
4 Identify the connected components of the marked edges
5 Replace each connected component by a vertex
6 Eliminate all self loops. Eliminate all multiple edges between a pair of vertices, except

the edge with the minimum weight
7 end
8 return T

A few observations about this algorithm:

• Let G′ be the graph obtained from G after contracting the edges in a single phase of the
algorithm. Then the MST of G is the union of the contracted edges from that phase and the
edges in the MST of G′.

• In each contraction phase, the number of vertices in the graph is reduced by at least a half.
Hence there will only be O(log |V |) phases in all.

• Each phase can be implemented in O(|V | + |E|) time and so we obtain yet another MST
finding algorithm. Total running time for this algorithm is O(|E| log |V |).

1.4.2 Heavy Edges

We’ve already seen the definition of a light edge. Now we examine edges which are not light.
Let F be any spanning tree of G (in particular, F may or may not be a minimum spanning

tree). Consider any two vertices, say u and v, of G and there is a unique path P (u, v) between
them in F . Let wF (u, v) be the edge with the maximum weight along this path.

We say an edge {u, v} is F -heavy if the weight of this edge is larger than the weight of each of
the edges on the unique path between u and v in F . More formally, we define an edge {u, v} ∈ E
to be F -heavy if w(u, v) > wF (u, v), otherwise it is F -light. Observe that by this definition, all
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edges of F are F -light (every edge of a path in F is at most as heavy as the heaviest edge in that
path of F ).

Lemma 1.1. Let F be a spanning tree of G which is not necessarily minimum. If an edge of G is
F -heavy then it does not lie in the Minimum Spanning Tree of G.

Proof. It is left for you to prove it formally. The proof proceeds by contradiction. Assume that the
edge e = {u, v} ∈ E is F -heavy, that T is an MST of G, and that e ∈ T (so, we are talking about
two trees here, T , which is known to be an MST, and F , which may be one as well). Consider the
edges on the path P (u, v) in F . Add all these edges to T and remove e from T , to obtain a graph
G′ (that is, G′ = T ∪ P (u, v) \ {e}, but since it may have some cycles, we cannot call it a tree).
G′ is still connected. Remove edges from P (u, v) one-by-one from G′ until G′ is once again a tree.
Observe that this new tree is still a spanning tree, but it must have weight lower than that of T ,
contradicting the minimality of T .

It is very important to note that because of the way F -light is defined, an edge which is F -light
may or may not be in the MST. For example, if we construct F such that the heaviest edge of E
is in F , that edge will be counted as F -light, even though it may not be present in any minimum
spanning tree.

1.4.3 Randomized Algorithm

Algorithm 1.5 gives the main steps of the randomized algorithm we have been discussing. The
analysis is based on Timothy Chan’s paper[3].

Algorithm 1.5: Randomized-MST
Input: Connected Graph G = (V,E) with distinct edge weights
Output: A minimum spanning tree T

1 Execute 3 phases of Boruvka’s algorithm (reduces number of vertices). Let the resulting
graph be G1 = (V1, E1), where |V1| ≤ |V |/8 and |E1| ≤ |E|. Let C be the set of contracted
edges. (Running time: O(|V |+ |E|))

2 Random Sampling: Choose each edge in E1 with probability p = 1/2 to form the set E2 and
obtain the sampled graph G2 = (V2 = V1, E2).

3 Compute Recursively the Minimum Spanning Tree of G2, and let it be F2. (T (|V |/8, |E|/2))
4 Verification: Compute the set of F2-light edges in E1, and let this set be E3. (O(|V1|+ |E1|)

time)
5 Final MST: Compute MST, F3, of the graph G3 = (V3 = V1, E3). (T (|V |/8, |V |/4))
6 return MST of G as C ∪ F3.

Theorem 1.3. Algorithm 1.5 correctly computes the MST of G in O(|V |+ |E|) time.

Proof. The correctness of the algorithm is straightforward. To estimate the complexity, the crux
is in estimating the size of the set E3, i.e., the size of the set of F2-light edges in E1. We will prove
in the Sampling Lemma (Lemma 1.3) that for a random subset R ⊂ E, the expected number of
edges that are light with respect to MST(R) is at most (|E| · |V1|)/|R|. In our case, the expected
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value of |R| = |E1|/2 ≤ |E|/2, and hence the expected number of F2-light edges will be at most
2|V1| ≤ |V |/4. Hence the running time of this algorithm is given by the recurrence

T (|V |, |E|) = O(|V |+ |E|) + T (|V |/8, |E|/2) + T (|V |/8, |V |/4),

which magically solves to O(|V |+ |E|).

Before we describe the Sampling Lemma here are some technicalities. Consider that we are
sampling the edges of the graph G = (V,E), and the sampled edges form the subgraph R.

We use the notation R for both the set of edges as well as the sampled graph. Since we are
sampling the edges, it is possible that the sampled graph R of the graph G is not connected, and
hence there will not be any minimum spanning tree. To ensure connectedness, we will fix any
spanning tree T0 of G, consisting of |V | − 1 edges and we will consider the minimum spanning tree
of R ∪ T0, denoted as MST (R).

Lemma 1.2 (Observation about light edges). An edge e ∈ E is light with respect to MST (R) if
and only if e ∈MST (R ∪ {e}).

Proof. If e = (u, v) is light then there is some edge e′ on the unique path between u and v in
MST (R) such that its weight, w(e′) = wMST (R)(u, v), and hence e can be added to MST (R) and
e′ can be removed to obtain MST of R ∪ {e}. Therefore e ∈MST (R ∪ {e}).

Now suppose e ∈ MST (R ∪ {e}). We need to show that e is light with respect to MST (R).
Since e is part of the MST, by definition it is light with respect to that MST.

Lemma 1.3 (Sampling Lemma). For a graph G = (V,E) and a random subset R ⊂ E, of edges,
the expected number of edges that are light with respect to MST (R) is at most (|E| · |V |)/|R|.

Proof. Pick a random edge e ∈ E (this choice is independent of the edges in R). We will prove
that e is light with respect to MST (R) with probability at most |V |/|R|. From Lemma 1.2 we
see that this is equivalent to finding the bound on the probability that e ∈ MST (R ∪ {e}). Let
R′ = R∪{e}. We will use a technique called backward analysis. First we analyze the probability on
a fixed set R′, and then we will show that the expression obtained is not dependent on the elements
of R′, but just the cardinality, and hence the probability holds unconditionally as well.

Instead of adding a random edge to R, we will think of deleting a random edge from R′. This is
an easier proposition since we know the elements of R′, having just fixed it. MST (R′) has |V | − 1
edges, and e is a random edge of R′, hence the probability that e is an edge from MST (R′), given
a fixed choice of R′, is (|V | − 1)/|R′| ≤ |V |/|R|. This bound is independent upon the choice of the
set R′, and holds unconditionally as well.

1.5 MST Verification

If I give you any tree F derived from a graph G = (V,E), can you identify whether F is a minimum
spanning tree of G?

A trivial method for determining this would be to run a known-correct algorithm such as
Kruskal’s or Prim’s on G and compare the output to F , however there are two main drawbacks to
this approach:
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1. It is too slow

2. The MST may not be unique, making a direct comparison difficult.

What we would like is to be able to calculate this in linear time with respect to the graph. The
following lemma has been shown to be very useful in this respect, and it is used by virtually every
MST verification algorithm.

Lemma 1.4. Let F be a spanning tree of G, then F is a minimum spanning tree of G if and only
if every edge in E \ F is F -heavy.

Proof. Let P (u, v) be the unique tree path between u and v in F , and let wF (u, v) be the weight
of the heaviest edge along that path. w(e) or w(u, v) is the weight of the edge e having endpoints
u and v.

We first show that if F is a MST, then every edge in E \ F is F -heavy. Let e be any edge in
E \F with endpoints u and v and assume that e is F -light. Note that P (u, v)∪ {e} is a cycle. Let
e′ = {x, y} be the edge corresponding to wF (u, v). Since e is F -light, w(e′) > w(e), meaning we
could replace e′ by e in F to obtain a lighter tree overall, contradicting the minimality of F .

For the other half of the proof, we show that if every edge in E \F is F -heavy, then F is a MST
of G. Again, we proceed by contradiction. Suppose that F is not a MST of G, then we should be
able to lower the weight of the tree by replacing some edges in F with those from E \ F . But, for
every einE \ F with endpoints u and v, we have that w(u, v) > wF (u, v), so exchanging e for any
other edge in P (u, v) will increase the weight of F .

Given the above lemma, a natural idea for an algorithm would be to try to classify every edge in
the graph, and then check if each non-tree edge is in fact F -heavy. This turns out to be something
which is possible: given a graph G = (V,E) and a tree F , we can partition the edges of G in two
sets, the set of heavy edges and the set of light edges, with respect to F in O(|V |+ |E|) time.

We will see that many of the algorithms for doing so fairly complex, although there has been
recent progress in simplifying it somewhat.

1.5.1 Overview of verification algorithms

Here we look at a brief history of the literature on MST Verification. As hinted at above, every
single one of the following methods uses Lemma 1.4 as its underpinning. This problem can also be
restated as the following:

Problem 1.1 (The Tree Path Maxima Problem). Let F be a spanning tree of G, then we want to
identify the cost of the heaviest edge along each tree path P (u, v).

Given an answer to Problem 1.1, we can perform a simple linear scan through the the edges of
G \ F . For each edge e ∈ G \ F , we compare the cost of e with the tree path of its endpoints. If
every edge e is heavier than its corresponding tree path maxima, then F is a MST of G. We look
at this sort of translation of the problem in more detail in Section 1.5.6.

Here is a timeline of some results:
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• In 1979, Tarjan introduced a method which uses path compression[21] of trees to achieve a
near-linear time of O(mα(m,n)) where α is the Inverse Ackermann1 function.

• In 1984, Komlós’s provided an algorithm[14, 15] which showed that only a linear number of
comparisons of the edge costs would be sufficient to solve the problem, however the algorithm
itself has significantly more than linear overhead.

• In 1992, Dixon et al.[6] combine methods from Tarjan’s 1979 algorithm and Komlós’s 1984
algorithm to produce the first linear time MST verification algorithm. The problem is divided
into one large problem and several small problems, with the larger being attacked with path
compression, and the smaller with a lookup scheme which is bounded in size by Komlós’s
algorithm.

• In 1994, Karger et al. present an algorithm for computing the MST of a graph in expected
linear time.[10, 13] While not a verification algorithm in itself, its output could be useful to
help verify another tree, or to take the place of the other tree altogether (e.g., why bother
verifying a potential MST in linear time when you can just create one!)

• In 1995, King produced another linear time MST verification method[11, 12] which is a great
deal simpler than that of Dixon et al.. In this method, Boruvka’s algorithm is used to reduce
a general tree down to one which can be handled entirely by the full branching tree base case
of Komlós’s algorithm, which is simpler than his algorithm for general trees.

• In 2010, Hagerup simplifies King’s method[7] even further and provides an implementation in
the D programming language. Like King’s method, Hagerup continues to use Komlós’s full
branching tree case, but eschews complex edge encoding schemes in favour of a richer logical
data type.

We will walk through parts of Komlós’s algorithm, Dixon et al.’s algorithm, King’s algorithm,
and finally Hagerup’s algorithm as we piece together the tools needed for a reasonably simple
approach to solving this problem.

1.5.2 Komlós’s Algorithm

In 1984, Komlós[14, 15] gives an algorithm of sorts which can solve Problem 1.1 in O(n + m)
comparisons. He does not provide an implementable algorithm, however, and there are other factors
of overhead in his method which would drive up the actual cost of a straight implementation.
Nevertheless, this method of breaking down the problem is built upon by later papers, notably
Dixon et al. in 1992, and King, which we cover in Section 1.5.4.

Komlós begins by considering two special cases of spanning trees. In each case, we consider F
to be a directed tree with edges oriented away from the root. Additionally, we shift the edge costs
down to their lower endpoint vertices, as this simplifies the conceptual model.

The first case occurs when the tree is a path. For the path, we construct a symmetric order
heap, H, which a tree with both the binary search property on the ordering determined by the path,
and the (maximum) heap property determined by the vertex costs. The root of H represents the
heaviest vertex, and the heaviest vertex of any path from u to v is found at LCA(u, v). Determining

1http://en.wikipedia.org/wiki/Ackermann_function#Inverse
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the LCA of two vertices in a tree can be accomplished in several ways and is covered elsewhere in
these notes, but Komlós cites Harel[8] specifically.

The second case is somewhat more interesting and is concerned with processing full branching
trees. Not to be confused with full binary trees, a full branching tree is defined as one where
every leaf is at the same level, and every internal vertex has at least 2 children. Let F be our full
branching tree with root r and all edges directed away from r.

We need to calculate the maximum cost edge of every path through F . Given a vertex y, let
A(y) be the set of all paths through F which contain y. That is A(y) = {P (x, z)|x = y = z} where
u = v denotes that u is a predecessor of v (or, u may equal v). Since F is directed away from the
root, this means that u is at least as close to the root than v. Note that if F was not directed, then
it might be possible for x = y = z to hold even though y 6∈ P (x, y). Given A(y), let A∗(y) be the
set of all paths through y, but restricted to just the interval [r, y]; that is, just the subpath from
the root down to y.

We process F one level at a time, starting from the root, finding the maximum weights of all
paths in the sets A∗(y). To do this, assume that we have calculated the maximum costs in all such
paths up to level i, and that we are now trying to process some vertex y on level i + 1. Let ȳ be
the parent of y. Since ȳ resides on level i, we know the maximum cost of all paths in A∗(ȳ).

The key observation to make here is the following.

Property 1.1. Consider two paths P (x, ȳ) and P (x′, ȳ). If x is a predecessor of x′ then the
maximum cost in P (x, ȳ) is at least as large as the maximum cost in P (x′, ȳ) (since, under these
conditions, P (x′, ȳ) is a subpath of P (x, ȳ)).

In A∗(ȳ), the shortest path is P (ȳ, ȳ) while the longest is P (r, ȳ). By the above property, the
maximum costs form a non-decreasing sequence with respect to the length of the path. That is, we
can order the maximum costs by considering the path length. This observation about the ordering
helps us while building A∗(y), as we can use a binary search insertion of f(y) to compare f(y)
against all path cost maximums in A∗(ȳ) simultaneously.

By now you should be asking “How are all these sets like A(y) and A∗(ȳ) created, copied, and
updated?” As far as Komlós’s paper is concerned, the answer is “slowly”. Essentially what Komlós
shows us is that a linear number of comparisons are sufficient to determine maximum path costs,
however finding those comparisons is left open.

The remainder of Komlós’s paper details how these two primitive cases can be applied to any
general tree, however this method is fairly complex, and as he states, results in too much overhead.
No implementable algorithm is given in this paper.

1.5.3 Dixon et al.’s Technique

This technique has the distinction of being the first to achieve a linear running time, requiring
O(m) time on a graph with n vertices and m edges. The underlying process is fairly complex,
however, and involves first preprocessing the graph into a suitable form.

The preprocessing itself is interesting as it shows a method of massaging a graph into a more
attractive form for the problem at hand without affecting anything about the spanning tree that
we wish to verify. The preprocessing involves the following steps.

For a given graph G = (V,E) and spanning tree F , not necessarily minimum, we choose an
arbitrary vertex r to be the root of F . Now consider any non-tree edge {v, w} with cost c(v, w) and
lowest common ancestor u. If u is not one of v or w, then this implies that v and w are not related ;
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that is, the v is neither ancestor nor descendant of w. In such a case, we replace the edge {v, w} by
{v, u} and {u, w}, each with cost c(v, w). F is unchanged by this process and, more importantly,
the maximum weight along P (v, w) is also unchanged, which preserves the current minimality of
F . There are several linear time algorithms for finding lowest common ancestors in a tree (e.g.,
Harel & Tarjan, 1984[9] or Schieber & Vishkin, 1988[18]).

Taken over the entire graph, this will at most double the number of non-tree edges. When
completed, every non-tree edge in F is a backedge.

In the second stage of preprocessing, we will mark several vertices. We can imagine these marks
as subdividing the tree into edge-disjoint subtrees where a marked vertex represents a “root”, and
any marked descendants are ignored.

marked vertex
u

v

marked subtree

Figure 1.3: An example tree with marked vertices. The marked subtree defined by u is enclosed in
red.

The choice of which vertices to mark is based on subtree size. Using a post-order traversal, for
each vertex v we calculate h = 1 +

∑
{s(w)|w is a child of v}. Let g be a small integer, then if

h ≤ g we assign s(v) := h, otherwise s(v) := 1 and v becomes marked. We will look more at the
specific choice of g later. Note the following important properties resulting from this process:

1. The number of marked vertices, and hence the number of subtrees, is at most (n− 1)/g + 1.

2. Considering any subtree, if its root (marked vertex) is deleted, along with incident edges, we
get a collection of disjoint trees, each with size at most g. We call each of these a microtree.

Following that process, r is also marked, although it will probably not have Property 2.
A final phase of edge replacements will ensure that all backedges either span two vertices

belonging to the same microtree, or span between microtrees and marked vertices only (i.e., the
edge {u, v} in Figure 1.3 will be replaced).

To accomplish this, we first build the tree F ′ whose vertex set consists of all of the marked
vertices of F , and where, for two vertices s and t in F ′, s is the parent of t (i.e, there is a tree edge
between them) if s is the first marked vertex that we encounter when walking from t to r. We call
T ′ the macrotree.
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We can now eliminate the “long” edges, like {u, v}, by doing the following. Let p(v) be the
nearest marked vertex to v which is a proper ancestor of v. Note that if v is marked then p(v) 6= v.
We also assume that p(r) is undefined (but it won’t be needed anyway). We can calculate p(v) for
the entire tree using a depth-first search. For every non-tree edge {u, v}, assume w.l.o.g. that u is
an ancestor of v and find p(u) and p(v). If p(u) = p(v), then u and v are part of the same microtree
(recall that the root of a microtree is not marked).

Otherwise, if p(u) 6= p(v), then we know that there is at least one marked vertex between them.
Let r1 = u if u is marked, or r1 = p(u) if u is not marked. Similarly, let r3 = v if v is marked, or
r3 = p(v) if v is not marked. Let r2 be the child of r1 in F ′ (note: F ′, not F ). We then replace
{u, v} by {u, r2}, {r2, r3}, and {r3, v}, skipping any edge that creates either a self-loop or which
duplicates a tree edge. For edges which we did not skip, assign the cost c(u, v). As in the first
phase of edge replacements, assigning this cost preserves the current minimality of F .

With this preprocessing finished, we have now divided the problem into one large tree rooted at
r with several microtrees around the periphery. The authors complete the process by using Tarjan’s
Path Compression on the large tree.

The microtrees are processed in a very different way. Essentially, the authors precalculate all
possible minimum spanning trees on graphs containing at most g vertices. Leveraging Komlós’s
result, they show that for any such input, the corresponding decision tree for comparing edges
and determining minimality is not too big. The choice of g is such that the total size of these
precalculations is only O(n), which places g in the neighbourhood of O(log log n) [12].

1.5.4 King’s Method

Presented by King[11, 12] in 1995, this method is not the first MST verification algorithm to achieve
linear time (that falls to Dixon et al.[6]), however it is quite a bit simpler. King’s method uses
Boruvka’s algorithm in a clever way to change any input tree into a full binary tree, which can then
be entirely processed by the appropriate case presented by Komlós. This method requires linear
time and space in the unit-cost RAM model with Θ(log n) word size.

Boruvka Tree Property

The first step is to take our input tree F and convert it to a full binary tree. This is accomplished
by running Boruvka’s algorithm on the tree F (we usually would run Boruvka’s on an entire graph,
but not in this case). As Boruvka’s runs on F , we can build a new tree B which represents the
execution of the algorithm on F , rather than a modification of F itself.

Algorithm 1.6 details the construction of B. In the first step, a leaf is added to B for each
vertex of F , so we already know that |B| ≥ |F |. In fact, B will have at most twice as many vertices
as F when we are finished. The algorithm proceeds by colouring the vertices and edges to represent
subtrees within F , such that any vertices connected along a coloured (blue) path is considered part
of the same subtree.

Refer to Figure 1.4 for an example of the algorithm’s execution. Note the following important
properties which ensure that B is a full branching tree.

1. In each step of Loop 1, an edge joins two blue trees into one.

2. In each phase of the while loop, every blue tree is combined by some edge with another blue
tree. Thus, from every level of B, every vertex has a parent in the next level.
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Algorithm 1.6: FullBranchingTree
Input: A spanning tree F = (V,E) with distinct edge weights
Output: A full branching tree B satisfying Lemma 1.5

1 Initialize B as an empty tree
2 foreach vertex v of V do
3 Colour v blue, considering it as a singleton tree
4 Add the leaf f(v) to B

5 end

6 while there is more than one blue tree do
// Loop ‘‘1’’, joins blue trees together

7 foreach blue tree a do
8 Select a minimum cost edge e incident to a and colour it blue
9 end

// Loop ‘‘2’’, updates B
10 foreach new blue tree t do
11 Add f(t) to B
12 Let A be the set of trees joined into t in Loop 1
13 Add an edge {f(t), f(a)} for each a ∈ A
14 Set the cost of {f(t), f(a)} to that of edge selected by a in Loop 1 (i.e., e)
15 end
16 end
17 return B
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Figure 1.4: An example of the Full Binary Tree construction given by Algorithm 1.6. F is shown
on the left and B on the right. Edge weights are not shown, so imagine that each tree
chooses its minimum weight edge at each step.

For every v in F there is a vertex f(v) in B, and by construction we also have that for every path
F (x, y) there is a path B(f(x), f(y)). However, to show that there is any meaningful correspondence
between these paths beyond their existence, we need the following lemma, presented as Theorem 1
in King’s paper.

Lemma 1.5. Let F be any spanning tree and let B be the tree constructed by Algorithm 1.6. For
any pair of vertices x, y ∈ F , the cost of the heaviest edge in F (x, y) equals the cost of the heaviest
edge in B(f(x), f(y)).

Proof. Let the cost of an edge e be denoted by w(e). For every edge e ∈ B(f(x), f(y)), we will
show that there is an edge e′ ∈ F (x, y) such that w(e′) ≥ w(e).

Suppose that e = {a, b} such that a is the endpoint of e which is farthest from the root. As a
is in B, a = f(t) for some blue tree t, and t must contain either x or y, but not both. Similarly,
b = f(t′) which is new blue tree consisting of f(t) and others from the previous phase of the
algorithm. Since e ∈ B, e was selected by t.

Let e′ be the edge in F (x, y) with exactly one endpoint in t. Since e′ is adjacent to t, t would
have considered e′. Since t ultimately chose e, it must be that w(e′) ≥ w(e) since t chooses the
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edge with minimum cost.
To finish the proof we also need to show the following: The cost of the heaviest edge in F (x, y) is

the cost of the heaviest edge in B(f(x), f(y)). Let e be the heaviest edge in F (x, y) (for simplicity,
assume that there is a unique such edge). If e is ever selected by a blue tree which contains either
x or y, then B(f(x), f(y)) contains an edge with the same weight.

Otherwise, assume that e is selected by some other blue tree t′ not containing x or y. We know
that e is on the path from x to y in F , so t′ contained at least one intermediate vertex on that
path. But since F is a tree, if it contains an intermediate vertex of F (x, y), it must be incident to
at least two edges of F (x, y). By our assumption, e is the heaviest edge on this path, so t′ would
have selected the other edge, giving a contradiction.

The intuition with the last part of the above proof is that, since e is the heaviest edge along
F (x, y), any blue tree which includes part of that path, but which does not yet include x or y
always has another edge to select which brings it “closer” to x or y.

King’s algorithm now continues with B rather than F , which maintains the path maximum
cost property for each path in F , implying that if Lemma 1.4 holds for B it will also hold for F .

The remainder of King’s paper shows a bit-wise labeling scheme from for the vertices and edges
of B which exploits Property 1.1 of the full binary tree case presented by Komlós. We will now
jump to Hagerup’s method to conclude our verification method, which he wrote specifically to
simplify away from this labeling scheme, but which otherwise picks up at exactly this point of the
algorithm.

1.5.5 Hagerup’s Method

Hagerup presents an algorithm for solving the Tree Path Maxima problem (TPM) rather than
MST Verification, per se, but as we have mentioned, a solution to TPM implies a solution to MST
Verification. A sketch of such a translation is given in the next section.

The input to Hagerup’s method assumes that we are given a tree on n vertices and a list of
pairs (u1, v1), . . . , (um, vm) such that in each pair ui is a proper ancestor of vi. At most, this list
would describe the endpoints of every root to leaf path in B, and every subpath of such a root to
leaf path. Any subset is also permissible. In practice, we choose a subset equivalent to the non-tree
edges of G, the graph containing the spanning tree F we are trying to verify.

The basic algorithm involves collecting several types of information about each vertex. For
every vertex u in B, we store the depth d(u), and, if u is not the root r, we let w(u) represent the
cost of the edge from u to its parent. For each u we also build the following set:

Du = {d(ui)|ui is a proper ancestor of u and vi is a descendant of u}

Simply put, Du stores the set of depths corresponding to proper ancestors of u such that u is
in the subpath represented by some pair (ui, vi) from the input.

We would also like to create the set Mu for each u, which stores a subset of the ancestors of u
indicated by Du. The choice of which ones are stored again exploits Property 1.1.

Consider any two successive ancestors d and d′ of u which are indicated by Du such that d is
closer to the root, and d′ is closer to u. Then d ∈Mu if the path maximum cost of the path d→ u
is greater than that of d′ → u. Put another way, we store only those ancestors of u where there is
an actual increase in path maximum cost between it and the previous (closer) ancestor.
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This can still work out to be a lot of entries, however, and a lot of copying between vertices,
which breaks linear time. Fortunately, Hagerup was able to find an alternate, yet equivalent set
representation which does satisfy our needs, and our desired running time, using the set infix
operator. The details of this operator and its equivalence to Mu take a few pages to discuss and
can be found in his paper.

1.5.6 Putting it all together

One way of applying all of the tools we have seen so far to build a complete MST Verification
algorithm is as follows.

Taking a graph G = (V,E) with spanning tree F , let U = E\F be the set of non-tree edges. We
use King’s method of using Boruvka’s method to convert F to the full branching tree B. Translate
U onto B so that ∀e = {x, y} ∈ U we create e′ = {f(x), f(y)} and call the resulting graph G′. We
next apply Dixon et al.’s first preprocessing step to G′ to replace all cross edges with back edges.
Let U ′ be the set of non-tree edges in G′ after all of this.

The set U ′ corresponds to the pairs (ui, vi) that we need to input into Hagerup’s algorithm.
After that algorithm has run, MST Verification is completed by examining every non-tree edge in
G, translating it to the equivalent one or two edges in U ′, querying B, and determining whether
the non-tree edge is costlier than the tree path maximum.

The extra steps required to find U , translate it to B, and then find U ′ all take time linear in
the number of edges.

1.6 Bibliographic Notes

Kruskal’s algorithm, presented in Section 1.2 makes use of a data structure known as Union-Find
or Disjoint-Set. A near-linear time implementation was first described by Tarjan[20].

Boruvka’s algorithm is quite old[1, 2], and not originally published in English. Nešetřil et al.
published a translation from the original Czech in 2001 along with some comments.[17]

Komlós mentions that his method of using symmetric order heaps for processing paths is some-
thing of a well-known method by the time he covers it in his own paper. However, he was unable
to find a reference to it in any other literature, which is why he took the time to write about it.

The way that King uses Boruvka’s algorithm is first described by Tarjan in 1983[19].

1.7 Exercises

1.1. Let S=(V,T) be a minimum cost spanning tree, where |V | = n + 1. Let c1 ≤ c2 ≤ ... ≤ cn be
the costs of the edges in T. Let S’ be an arbitrary spanning tree with edge costs d1 ≤ d2 ≤ .... ≤ dn.
Show that ci ≤ di, for 1 ≤ i ≤ n.

1.2. Assume all edges in a graph G have distinct cost. Show that the edge with the maximum cost
in any cycle in G cannot be in the Minimum Spanning Tree of G. Can you use this to design an
algorithm for computing MST of G by deletion of edges, and what will be its complexity?

1.3. Recall that Dijkstra’s SSSP algorithm was for directed (or undirected) graphs where the weights
of the edges are positive and we need to compute shortest paths from the source vertex to all other
vertices in the graph. What happens when some of the edges have negative weights. Try to consider
the cases where the algorithm will fail and where the algorithm will still work.

17



1.4. Design an efficient algorithm to find a spanning tree of a connected, (positive) weighted,
undirected graph G = (V,E), such that the weight of the maximum-weight edge in the spanning
tree is minimized (Justify your answer).

1.5. Let G = (V,E) be a weighted directed graph, where the weight of each edge is a positive
integer and is bounded by a number X. Show how shortest paths from a given source vertex s to
all vertices of G can be computed in O(X|V |+ |E|) time (Justify your answer).

1.6. Prove that if all edge weights are distinct then the minimum spanning tree of a simple undi-
rected graph is unique.

1.7. Provide a formal proof of Lemma 1.1.

1.8. Suppose all edge weights are positive integers in the range 1..|V | in a connected graph G =
(V,E). Devise an algorithm for computing Minimum Spanning Tree of G whose running time is
better than that of Kruskal’s or Prim’s algorithm.

1.9. Consider a connected graph G = (V,E) where each edge has a non-zero weight. Furthermore
assume that all edge weights are distinct. Show that for each vertex v ∈ V , the edge incident to v
with minimum weight belongs to a Minimum Spanning Tree.

(Bonus Problem: Can you use this to devise an algorithm for MST - the above step identifies
at least |V |/2 edges in MST - you can collapse these edges (by identifying the vertices and then
recursively apply the same technique - the graph in the next step has at most half of the vertices
that you started with - and so on!)

1.10. Prove that the distance values extracted from the priority queue over the entire execution of
Dijkstra’s single source shortest path algorithm, in a directed connected graph with positive edge
weights, is a NON-Decreasing sequence. Where is this fact used in the correctness of the algorithm?

1.11. Can you devise a faster algorithm for computing single source shortest path distances when all
edge weights are 1? (Think of an algorithm that runs in O(|V |+ |E|) time on a graph G = (V,E).)

1.12. Execute Dijkstra’s SSSP algorithm on the following graph on 7 vertices and 18 edges starting
at the source vertex s. The edges and their weights are listed in the following (the entry (xy, 10)
means the edge directed from the vertex x to the vertex y with edge weight 10):

(sb, 5), (sa, 10), (sf, 5), (bf, 6), (ba, 3), (be, 5), (bc, 5), (fs, 2), (fe, 4), (ca, 3), (ce, 2), (cd, 5),
(df, 1), (de, 1), (ef, 1), (ec, 1), (af, 1), (ae, 2).

1.13. Recall that Dijkstra’s SSSP algorithm only computes distances from source vertex to all the
vertices. What modifications we should make to the algorithm so that it reports the shortest paths
as well (in fact the collection of all these paths can be represented in a directed tree rooted at the
source vertex).

1.14. Suppose in place of computing shortest path distance from a vertex to every other vertex, we
are interested in finding the shortest path distances between every pair of vertices. Then one way
to do this is to run Dijkstra’s algorithm |V | times, where each vertex in the graph G = (V,E) is
considered as a source vertex once. Can you devise an algorithm that is asymptotically faster than
just running Dijkstra’s algorithm O(|V |) times?

1.15. Which of the following algorithms result in a minimum spanning tree? Justify your answer.
Assume that the graph G = (V,E) is connected.

1. Sort the edges with respect to decreasing weight.
Set T := E.
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For each edge e taken in the order of decreasing weight do, if T − {e} is connected, then
discard e from T .
Set MST (G) = T .

2. Set T := ∅.
For each edge e, taken in arbitrary order do, if T ∪ {e} has no cycles then
T := T ∪ {e}.
Set MST (G) = T .

3. Set T := ∅.
For each edge e, taken in arbitrary order do
begin
T := T ∪ {e}.
If T has a cycle c then let e′ be a maximum weight edge on c.
Set T := T − {e′}.
end
Set MST (G) = T .

1.16. A spanning tree T of a undirected (positively) weighted graph G is called a minimum bot-
tleneck spanning tree (MBST) if the edge with the maximum cost is minimum among all possible
spanning trees. Show that a MST is always a MBST. What about the converse?

1.17. Design a linear time algorithm to compute MBST. (Note that an edge with medium weight
can be found in linear time. Consider the set of edges whose weight is smaller than the weight of
the ‘median edge’. What happens if this graph is connected? disconnected?

1.18. Consider an undirected (positively) weighted graph G = (V,E) with a MST T and a shortest
path π(s, t) between two vertices s, t ∈ V . Will T still be an MST and π(s, t) be a shortest path if
a) Weight of each edge is multiplied by a fixed constant c > 0.
b) Weight of each edge is incremented by a fixed constant c > 0.
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