Anil MAHESHWARI
Anil@scs.carleton.ca
School of Computer Science
CARLETON U. OTTAWA CANADA

1982-87 BITS (MATH+EEE)
87-93 TIFR (Ph.D CS)
93-95 MPI GERMANY
95- C.U.
Lowest Common Ancestor

(Bader + Farach-Colton 2000)

LCA(a, i) = a
LCA(b, h) = a
LCA(g, j) = f

Problem
Preprocess T in O(n) time so that Queries can be answered in O(1) time.
History

- Fundamental Problem
- Subproblem in several graph algorithms
 - Harel + Tarjan 1984 $O(n), O(1)$ [COMPLEX NOT PRACTICAL]
 - Schieber + Vishkin 1993 $O(n), O(1)$
 - Bader + Farach-Colton 2000 $O(n), O(1)$

 Simple + Easy + Textbook Material.
Basics

- **Depth First Traversal**
 - Visit the root.
 - Search the left tree, recursively.
 - Search the right tree, recursively.

- **Euler Tour**
 "Keeps the history of the dfs traversal.

E = [a b c b d e d b a f g f h i h j h f a]

L = [0 1 2 1 2 3 2 1 0 1 2 1 2 3 2 3 2 1 0]

LCA(c, i) =

LCA(g, j) =

Problem is reduced to finding the minimum element in L-array!
So far the steps are processing

1. Compute Euler Tour \(E \) \(\mathcal{O}(n) \)
2. Compute First Occurrence \(\mathcal{O}(n) \)
3. Compute Level Array \(L \) \(\mathcal{O}(n) \)

Query \(\text{LCA}(\alpha, \beta) \)

1. Locate the first occurrence of nodes \(\alpha \) and \(\beta \) in the \(E \)-array \(\mathcal{O}(1) \)
2. Locate the corresponding entries in \(L \)-array (say \(\alpha', \beta' \)) \(\mathcal{O}(1) \)
3. Answer a RANGE MINIMA Query for \(L[\alpha', \ldots, \beta'] \)
 \(\text{RMQ}(\alpha', \beta') \) ?
Naive RMQ

Precompute answers to all possible queries in a table \(M[i, j] \).

For \(i := 1 \) to \(n \) do
 For \(j := i \) to \(n \) do
 Compute \(M[i, j] = \) index of the minimum element in \(A[i \ldots j] \).

Note that \(M[i, j+1] = \min [M[i, j], A[j+1]] \).

Each value in the table can be computed in \(O(1) \) time \(\Rightarrow \) Overall \(O(n^2) \) time.
Range Minima Queries

Input: An array A of n-numbers.

Query: Two indices (i, j) where $1 \leq i \leq j \leq n$.

Output: $RMQ(i, j) =$ Minimum Element or its index in $A[i...j]$.

<table>
<thead>
<tr>
<th>Preprocessing</th>
<th>Naive</th>
<th>Smart</th>
<th>$i+1$ Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Answering</td>
<td>$O(n^2)$</td>
<td>$O(n \log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td></td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
In place of computing all entries in the table we compute only $\log_2 n$ entries in each row.

Entries computed in a row are

$$M[i, i+0], M[i, i+2], M[i, i+4], M[i, i+8], \ldots, M[i, i+2^{\log_2 n}]$$

How?

```
FOR i := 1 TO n do
  FOR j := 0 TO $\log_2 n$ do
    COMPUTE M[i, j]
```
Each entry in the table can be computed in $O(\log n)$ time. Overall, the time to compute all entries is $O(n \log n)$.

Therefore, $M[i,j+1] = \min \{ M[i,j], M[i+1,j], M[i+2,j] \}$.
How to answer RMQ queries using SMART.

\[\text{RMQ}[i, j] \]

Step 1: Find the largest power \(k \) of 2 that can fit in the interval from \(i \) to \(j \).

Let \(k = \lfloor \log_2 (j - i) \rfloor \)

Then \(2^k \) is the largest interval.

Step 2: \(\text{RMQ}[i, j] = \min \left[\text{M}[i, k], \text{M}[j - 2^k + 1, k] \right] \)
RMQ with \(\pm 1 \) property.

- In Level array entries differ from previous entry by a \(+1 \) or a \(-1 \).

- Partition \(A \) into subarrays of size \(\frac{\log n}{2} \).

\[
A = \begin{bmatrix}
\text{I} & \text{II} & \text{III} & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{bmatrix}
\]

\[
A' = \begin{bmatrix}
\cdot & \cdot
\end{bmatrix}
\]

\(\frac{2n}{\log_2 n} \) entries.
Preprocessing:

1. Compute A' $O(n)$
2. Preprocess A' using SMART-RMQ $O(n)$
3. Normalize each subarray $O(n)$
4. Preprocess all normalized subarrays $O(n \log^2 n)$

What is a normalized subarray?

$S = 2 \ 3 \ 4 \ 3 \ 2 \ 1 \ 0 \ 1 \ 2 \ 3$

$S_n = 0 \ 1 \ 2 \ 1 \ 0 \ -1 \ -2 \ -1 \ 0 \ 1$

$\pm 1 = 0 \ +1 \ +1 \ -1 \ -1 \ -1 \ -1 \ +1 \ +1 \ +1$

Key Property of Subarrays!
How many normalized subarrays of length $\log_2 n$ are there?

$$
0 \pm 1 \pm 1 \pm 1 \ldots \pm 1
$$

$$
= 2^{\frac{\log_2 n}{2}} - 1 \approx O(\sqrt{m})
$$

For each of them we use brute-force algorithm and preprocess them for RMQs. in $O(\sqrt{n} \log^2 n)$ time.
How To Answer \(\pm 1RMQ \) Queries

OPTION 1: \(i \) and \(j \) are within the same subarray

\[\Rightarrow \text{USE NORMALIZED SUBARRAY PREPROCESSING.} \]

OPTION 2: \(i \) and \(j \) are in different subarrays.
CLAIM

LCA queries can be answered in $O(1)$ time after $O(n)$ preprocessing in a rooted binary tree on n nodes. [Bader + Farach-Colton, 2000]