Balls & Bins

Anil Maheshwari

School of Computer Science Carleton University Canada

1

Outline

Basics

Random Variable

Geometric Distribution

Coupon Collector Problem

Balls & Bins

Collisions

Size of Bins

Basics

Definitions

Sample Space S = Set of Outcomes. Events \mathcal{E} = Subsets of S. Probability is a function from subsets $A \subseteq S$ to positive real numbers between [0, 1] such that:

1. Pr(S) = 1

- 2. For all $A, B \subseteq S$ if $A \cap B = \emptyset$, $Pr(A \cup B) = Pr(A) + Pr(B)$.
- **3**. If $A \subset B \subseteq S$, $Pr(A) \leq Pr(B)$.
- 4. Probability of complement of A, $Pr(\bar{A}) = 1 Pr(A)$.

Examples

1. Flipping a fair coin:

$$\begin{split} S &= \{H,T\};\\ \mathcal{E} &= \{\emptyset,\{H\},\{T\},S=\{H,T\}\} \end{split}$$

2. Flipping fair coin twice:

$$\begin{split} S &= \{HH, HT, TH, TT\};\\ \mathcal{E} &= \{\emptyset, \{HH\}, \{HT\}, \{TH\}, \{TT\}, \\ \{HH, TT\}, \{HH, TH\}, \{HH, HT\}, \\ \{HT, TH\}, \{HT, TT\}, \{TH, TT\}, \\ \{HH, HT, TH\}, \{HH, HT, TT\}, \{HH, TH, TT\}, \\ \{HT, TH, TT\}, S &= \{HH, HT, TH, TT\} \end{split}$$

3. Rolling fair die twice:

$$\begin{split} S &= \{(i,j): 1 \leq i,j \leq 6\}; \\ \mathcal{E} &= \{ \emptyset, \{1,1\}, \{1,2\}, \dots, S \} \end{split}$$

Random Variable

Expectation

Definition

A random variable *X* is a function from sample space *S* to real numbers, $X: S \to \Re$. Expected value of a discrete random variable *X*: $E[X] = \sum_{i=1}^{N} X(q) + Br(X - X(q))$

$$E[X] = \sum_{s \in S} X(s) * Pr(X = X(s)).$$

Example: Flip a fair coin. Let r.v. $X : \{H, T\} \rightarrow \Re$ be

$$X = \begin{cases} 1 & \text{Outcome is Heads} \\ 0 & \text{Outcome is Tails} \end{cases}$$

 $E[X] = \sum_{s \in \{H,T\}} X(s) * Pr(X = X(s)) = 1 * \frac{1}{2} + 0 * \frac{1}{2} = \frac{1}{2}$

Consider two random variables $X, Y : S \to \Re$, then E[X + Y] = E[X] + E[Y].In general, consider *n* random variables X_1, X_2, \ldots, X_n such that $X_i : S \to \Re$, then $E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i].$

Example: Flip a fair coin *n* times and define *n* random variable X_1, \ldots, X_n as

$$X_i = \begin{cases} 1 & \text{Outcome is Heads} \\ 0 & \text{Outcome is Tails} \end{cases}$$

 $E[X_1 + \dots + X_n] = E[X_1] + \dots + E[X_n] = \frac{1}{2} + \dots + \frac{1}{2} = \frac{n}{2}$ (Expected # of Heads in *n* tosses)

Geometric Distribution

Definition

Perform a sequence of independent trials till the first success. Each trial succeeds with probability p (and fails with probability 1 - p). A geometric r.v. X with parameter p is defined to be equal to $n \in N$ if the first n - 1 trials are failures and the n-th trial is success. Probability distribution function of X is $Pr(X = n) = (1 - p)^{n-1}p$.

Let Z to be the r.v. that equals the # failures before the first success, i.e. Z = X - 1.

Problem: Evaluate E[X] and E[Z].

Computation of E[Z]

Z =# failures before the first success. To show: $E[Z] = \frac{1-p}{p}$ and $E[X] = 1 + E[Z] = \frac{1}{p}$

Examples

Examples:

1. Flipping a fair coin till we get a Head:

 $p=\frac{1}{2}$ and $E[X]=\frac{1}{p}=2$

2. Roll a die till we see a 6:

$$p = \frac{1}{6}$$
 and $E[X] = \frac{1}{p} = 6$

3. Keep buying LottoMax tickets till we win (assuming we have 1 in 33294800 chance).

$$p = \frac{1}{33294800}$$
 and $E[X] = \frac{1}{p} = 33,294,800.$

Coupon Collector Problem

Problem Definition

A cereal manufacturer has ensured that each cereal box contains a coupon among a possible *n* coupon types. Probability that a box contains any particular type of coupon is $\frac{1}{n}$. Show that the expected number of boxes that we need to buy to collect all the *n* coupons is $n \ln n$.

Balls & Bins

Balls & Bins

Model

We have m Balls and n Bins. We throw each ball in a bin uniformly at random.

What is the probability of following events:

- 1. Balls i and j are in the same bin.
- 2. Bin #i receives (a) 0 balls, (b) k balls, and (c) $\ge k$ balls.
- 3. All bins have $\leq \frac{c \ln n}{\ln \ln n}$ balls.

Applications: Birthday Paradox, Load Balancing, Perfect Hashing

Number of Balls = mNumber of Bins = n.

 $Pr[Balls i and j in same bin] = \frac{1}{n}$

Number of Balls = mNumber of Bins = nShow that Expected number of collisions is $\frac{1}{n} {m \choose 2}$

Birthday Paradox

Number of Balls = m = Number of Students Number of Bins = n = Number of days in a Year.

For two students to have same Birthday: What value of m will result in $E[X] = \frac{1}{n} {m \choose 2} \ge 1$

Answer: m = 28, since $E[X] = \frac{1}{365} {\binom{28}{2}} = 1.04 > 1$

What is minimum value of m so that the probability that two students share the same birthday is $\geq \frac{1}{2}$?

Number of Balls = m; Number of Bins = n.

Problem I

What is the probability that Bin *i* receives no balls?

$$\left(1 - \frac{1}{n}\right)^m \le e^{-\frac{m}{n}}$$

If
$$n = m$$
, $(1 - \frac{1}{n})^n \le e^{-1} = 0.37$.

Problem II

What is the probability that Bin *i* receives exactly *k* balls?

$$\binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k}$$

Number of Balls = m; Number of Bins = n.

Problem III

What is the probability that Bin *i* receives $\geq k$ balls?

$$\leq \binom{m}{k} \left(\frac{1}{n}\right)^k$$

If n = m and using Stirling's approximation $\binom{n}{k} \leq \left(\frac{en}{k}\right)^k$, we have $\binom{n}{k} \left(\frac{1}{n}\right)^k \leq \left(\frac{e}{k}\right)^k$

Expected Number of Balls in a Bin

Number of Balls = m; Number of Bins = n.

Problem IV Show that the Expected # of Balls in a Bin is $\frac{m}{n}$ Number of Balls = m; Number of Bins = n.

Problem V What is Expected # of Empty Bins?

Define a r.v. X_i such that

$$X_i = \begin{cases} 1 & \text{if Bin } i \text{ is empty} \\ 0 & \text{Otherwise} \end{cases}$$

From Problem I, $Pr(X_i = 1) \leq e^{-\frac{m}{n}}$ and $E[X_i] \leq e^{-\frac{m}{n}}$ Thus, $E[\texttt{# of Empty Bins}] = \sum_{i=1}^{n} E[X_i] \leq ne^{-\frac{m}{n}}$ When n = m, $E[\texttt{# of Empty Bins}] \leq \frac{n}{e}$ Number of Balls = Number of Bins = n.

Max # of Balls in Bins

With probability $\geq 1 - \frac{1}{n}$ all bins receive fewer than $3 \frac{\ln n}{\ln \ln n}$ balls.

References

- 1. Probability and Computing by Mitzenmacher and Upfal, Cambridge Univ. Press 2005.
- 2. Introduction to Probability by Blitzstein and Hwang, CRC Press 2015.
- 3. Courses Notes of COMP 2804 by Michiel Smid.
- 4. My Notes on Algorithm Design.
- 5. Introduction to Probability by Blitzstein and Hwang, CRC Press 2015.