
Balls & Bins

Anil Maheshwari

School of Computer Science
Carleton University
Canada

1



Outline

Basics

Random Variable

Geometric Distribution

Coupon Collector Problem

Balls & Bins

Collisions

Size of Bins

2



Basics



Basic Definition

Definitions
Sample Space S = Set of Outcomes.
Events E = Subsets of S.
Probability is a function from subsets A ⊆ S to positive real numbers
between [0, 1] such that:

1. Pr(S) = 1

2. For all A,B ⊆ S if A ∩B = ∅, Pr(A ∪B) = Pr(A) + Pr(B).

3. If A ⊂ B ⊆ S, Pr(A) ≤ Pr(B).

4. Probability of complement of A, Pr(Ā) = 1− Pr(A).
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Examples

1. Flipping a fair coin:
S = {H,T};
E = {∅, {H}, {T}, S = {H,T}}

2. Flipping fair coin twice:
S = {HH,HT, TH, TT};
E = {∅, {HH}, {HT}, {TH}, {TT},
{HH,TT}, {HH,TH}, {HH,HT},
{HT, TH}, {HT, TT}, {TH, TT},
{HH,HT, TH}, {HH,HT, TT}, {HH,TH, TT},
{HT, TH, TT}, S = {HH,HT, TH, TT}}

3. Rolling fair die twice:
S = {(i, j) : 1 ≤ i, j ≤ 6};
E = {∅, {1, 1}, {1, 2}, . . . , S}
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Random Variable



Expectation

Definition
A random variable X is a function from sample space S to real numbers,
X : S → <.
Expected value of a discrete random variable X:
E[X] =

∑
s∈S

X(s) ∗ Pr(X = X(s)).

Example: Flip a fair coin. Let r.v. X : {H,T} → < be

X =

1 Outcome is Heads

0 Outcome is Tails

E[X] =
∑

s∈{H,T}
X(s) ∗ Pr(X = X(s)) = 1 ∗ 1

2
+ 0 ∗ 1

2
= 1

2
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Linearity of Expectation

Consider two random variables X,Y : S → <, then
E[X + Y ] = E[X] + E[Y ].
In general, consider n random variables X1, X2, . . . , Xn such that

Xi : S → <, then E[
n∑

i=1

Xi] =
n∑

i=1

E[Xi].

Example: Flip a fair coin n times and define n random variable X1, . . . , Xn as

Xi =

1 Outcome is Heads

0 Outcome is Tails

E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn] = 1
2

+ · · ·+ 1
2

= n
2

(Expected # of Heads in n tosses)
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Geometric Distribution



Geometric Distribuition

Definition
Perform a sequence of independent trials till the first success. Each trial
succeeds with probability p (and fails with probability 1− p).
A geometric r.v. X with parameter p is defined to be equal to n ∈ N if the
first n− 1 trials are failures and the n-th trial is success. Probability
distribution function of X is Pr(X = n) = (1− p)n−1p.

Let Z to be the r.v. that equals the # failures before the first success, i.e.
Z = X − 1.

Problem: Evaluate E[X] and E[Z].
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Computation of E[Z]

Z = # failures before the first success.
To show: E[Z] = 1−p

p
and E[X] = 1 + E[Z] = 1

p
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Examples

Examples:

1. Flipping a fair coin till we get a Head:
p = 1

2
and E[X] = 1

p
= 2

2. Roll a die till we see a 6:
p = 1

6
and E[X] = 1

p
= 6

3. Keep buying LottoMax tickets till we win (assuming we have 1 in
33294800 chance).
p = 1

33294800
and E[X] = 1

p
= 33, 294, 800.
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Coupon Collector Problem



Coupon’s Collector Problem

Problem Definition
A cereal manufacturer has ensured that each cereal box contains a coupon
among a possible n coupon types. Probability that a box contains any
particular type of coupon is 1

n
. Show that the expected number of boxes

that we need to buy to collect all the n coupons is n lnn.
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Is E[N ] = nHn = n lnn a good estimate?
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Balls & Bins



Balls & Bins

Model
We have m Balls and n Bins. We throw each ball in a bin uniformly at
random.

What is the probability of following events:

1. Balls i and j are in the same bin.

2. Bin #i receives (a) 0 balls, (b) k balls, and (c) ≥ k balls.

3. All bins have ≤ c lnn
ln lnn

balls.

Applications: Birthday Paradox, Load Balancing, Perfect Hashing
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Probability[Balls i and j in the same bin]

Number of Balls = m

Number of Bins = n.

Pr[Balls i and j in same bin] = 1
n
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Expected number of collisions

Number of Balls = m

Number of Bins = n

Show that Expected number of collisions is 1
n

(
m
2

)
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Birthday Paradox

Number of Balls = m = Number of Students
Number of Bins = n = Number of days in a Year.

For two students to have same Birthday:
What value of m will result in E[X] = 1

n

(
m
2

)
≥ 1

Answer: m = 28, since E[X] = 1
365

(
28
2

)
= 1.04 > 1
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Birthday Paradox Contd.

What is minimum value of m so that the probability that two students share
the same birthday is ≥ 1

2
?
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Number of Balls in Bin i

Number of Balls = m; Number of Bins = n.

Problem I
What is the probability that Bin i receives no balls?

(
1− 1

n

)m

≤ e−
m
n

If n = m, (1− 1
n

)n ≤ e−1 = 0.37.

Problem II
What is the probability that Bin i receives exactly k balls?

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
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Number of Balls in Bin i contd.

Number of Balls = m; Number of Bins = n.

Problem III
What is the probability that Bin i receives ≥ k balls?

≤

(
m

k

)(
1

n

)k

If n = m and using Stirling’s approximation (
(
n
k

)
≤
(
en
k

)k), we have(
n
k

) (
1
n

)k ≤ ( e
k

)k
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Expected Number of Balls in a Bin

Number of Balls = m; Number of Bins = n.

Problem IV
Show that the Expected # of Balls in a Bin is m

n
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Expected Number of Empty Bins

Number of Balls = m; Number of Bins = n.

Problem V
What is Expected # of Empty Bins?

Define a r.v. Xi such that

Xi =

1 if Bin i is empty

0 Otherwise

From Problem I, Pr(Xi = 1) ≤ e−
m
n and E[Xi] ≤ e−

m
n

Thus, E[# of Empty Bins] =
n∑

i=1

E[Xi] ≤ ne−
m
n

When n = m, E[# of Empty Bins] ≤ n
e
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Max # Balls in Bins

Number of Balls = Number of Bins = n.

Max # of Balls in Bins

With probability ≥ 1− 1
n

all bins receive fewer than 3 lnn
ln lnn

balls.
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