
Count-Min Sketch

Anil Maheshwari

anil@scs.carleton.ca
School of Computer Science
Carleton University
Canada

1



Outline

Majority element

Count-Min Sketch

Complexity Analysis

Markov’s Inequality

Proof of the claim

Conclusions

2



Majority element



Problem

Finding the Majority Element
Input: A stream consisting of n elements and it is given that it has a
majority element, i.e. it occurs at least 1 + bn

2
c times

Output: The majority element.

An Example: n = 19

Input Stream = [3 2 4 7 2 2 3 2 2 1 4 2 2 2 1 1 2 3 2]

3



Straightforward Solutions

Solution 1: Store the stream in an array A.
Sort and pick the middle element.
Complexity: O(n logn) time and O(n) space

Solution 2: Count frequency of each element.
Input: 3 2 4 7 2 2 3 2 2 1 4 2 2 2 1 1 2 3 2

Element 1 2 3 4 7
Frequency 3 10 3 2 1

Complexity: ?

4



Do we need that much space?

Finding the Majority Element
Input: A stream consisting of n elements and it is given that it has a
majority element.
Output: The majority element.

Memory required in Solutions 1 & 2 ≥ Number of distinct elements in the
stream.

What if we can only use O(1) space?

5



Majority Algorithm

Input: Array A of size n consisting a majority element

Output: The majority element

1 c ← 0

2 for i = 1 to n do
3 if c = 0 then
4 current ← A[i]; c ← c + 1

5 end

6 else
7 if A[i] = current then
8 c ← c + 1

9 end

10 else
11 c ← c − 1

12 end

13 end

14 end

15 return current

A[i] 3 2 4 7 2 2 3 2 . . .

current . . .

c 0 . . .

6



Analysis of Majority Algorithm

Observations

1. Algorithm maintains only two variables: c and current.

2. Correctness: Each non-majority element can ‘kill’ at most one majority
element.

Claim
By performing a single pass, using only O(1) additional space, we can
report the majority element of A (if it exists).

7



Misra & Gries [82] Algorithm

Finding Heavy Hitters
Input: A stream consisting of n elements and fixed integer k < n.
Output: Report all heavy hitters, i.e. elements that occur ≥ n/k times.

1. Initialize k bins, each with null element and a counter with 0.

2. For each element x in the stream do
if x ∈ Bin b then increment bin b’s counter

elseif find a bin whose counter is 0 and

• Assign x to this bin
• Assign 1 to its counter

else decrement the counter of every bin.

3. Output elements in the bins.

8



Analysis of Misra and Gries Algorithm

Claim
Let f∗

x = Frequency of x in the stream. Each heavy hitter x is in one of the
bins with counter value ≥ f∗

x − n/k.

Correctness: What can be the minimum value of the counter of a heavy
hitter?

Running Time:
Initializing k bins: O(k) time
Processing each element requires looking at O(k) bins.
Total Run Time = O(nk)

Space: O(k)

Reference: J. Misra and D. Gries,“Finding repeated elements” in Science of
Computer Programming, Vol. 2 (2): 143 -152, 1982.

9



Count-Min Sketch



Count-Min Sketch

Problem
For a data stream, using very little space, we are interested to report

1. All the elements that occur frequently, e.g at least 2% times.

2. For each element, its (approximate) frequency.

10



Count-Min Sketch Data Structure

Input: An array (stream) A consisting of n numbers and r hash functions h1, . . . , hr , where
hi : N→ {1, . . . , b}

Output: CMS[·, ·] table consisting of r rows and b columns
1 for i = 1 to r do
2 for j = 1 to b do
3 CMS[i, j]← 0

4 end

5 end

6 for i = 1 to n do
7 for j = 1 to r do
8 CMS[j, hj(A[i])]← CMS[j, hj(A[i])] + 1

9 end

10 end

11 return CMS[·, ·]

11



Illustration of Algorithm

Let b = 10 and r = 3.
Assume that stream A = xyy.
Assume the following h-values for x and y:
For x: h1(x) = 3, h2(x) = 8, and h3(x) = 5

For y: h1(y) = 6, h2(y) = 8, and h3(y) = 1

CMS[∗, ∗] =

1 2 3 4 5 6 7 8 9 10

1
2
3

for i = 1 to n do
for j = 1 to r do

CMS[j, hj(A[i])] ← CMS[j, hj(A[i])] + 1

end

end

12



Complexity Analysis



Observations

Let n = Total number of items in the stream.
f∗
x = True frequency of x in the stream.

Let fx = min{CMS[1, h1(x)], . . . , CMS[r, hr(x)]}.
Report fx as the estimate on the frequency of x.

Observations:

1. The size of CMS table (= br) is independent of n.

2. CMS table can be computed in O(br + nr) time.

3. For any x ∈ A, and for any j = 1, . . . , r, CMS[j, hj(x)] ≥ f∗
x

4. fx is an overestimate as fx ≥ f∗
x

13



Assume - Proof comes later

Claim

Let b = 2
ε
. Then Pr[fx − f∗

x ≥ εn] ≤ 1
2r

Corollary
With probability at least 1− 1/2r, f∗

x ≤ fx ≤ f∗
x + εn

14



Reporting Frequent Elements

Suppose we want to report all the elements of A that occur approximately
≥ n/k times for some integer k.

• In the Claim, set ε = 1/3k. Then b = 2
ε

= 6k.

• Construct CMS table of size br = 6kr

• Scan A and compute the entries in the CMS table

• Maintain a set of O(k) items that occur most frequently among all the
elements in A scanned so far.

15



Heap Data Structure

The items are stored in a HEAP with fx values as the key.

What is a Heap?

An array that stores n elements and supports:

• Find Max or Min: Report the element with the smallest/largest key value
in Heap in O(1) time.

• Insert(x, k): Insert element x with key k in Heap in O(logn) time.

• Delete(x): Delete element x from Heap in O(logn) time.

• . . .

16



Reporting Frequent Elements contd.

Assume we have scanned i− 1 items and have updated the CMS table and
the heap.
Consider the i-th item (say x = A[i]) and we perform the following:

1. For j = 1 to r: update the CMS table by executing
CMS[j, hj(x)]← CMS[j, hj(x)] + 1.

2. Let fx = min{CMS[1, h1(x)], . . . , CMS[r, hr(x)]}.
If fx ≥ i/k, do:
2.1 If x ∈ heap, delete x and re-insert it again with the updated fx value.
2.2 If x 6∈ heap, then insert it in the heap and remove all the elements whose

count is less than i/k.

17



Reporting Frequent Elements contd.

Claim [Cormode and Muthukrishnan 2005]
Elements that occur approx. n/k times in a data stream of size n can be
reported in O(kr + nr + n log k) time using O(kr) space with high
probability.

Proof.
Recall Corollary: f∗

x ≤ fx ≤ f∗
x + εn = f∗

x + n/3k.
This implies:

• Heap contains elements whose frequency is at least
n/k − n/3k = 0.667n/k (with high probability).

• Size of heap = O(k)

• Time Complexity: O(br + nr + n log k) = O(kr + nr + n log k) as
b = 2

ε
= 6k.

• Total Space= O(br + k) = O(kr)

18



Markov’s Inequality



Markov’s Inequality

Theorem
Let X be a non-negative discrete random variable and s > 0 be a constant.
Then P (X ≥ s) ≤ E[X]/s.

19



Proof of the claim



Bounding fx

Claim

Let b = 2
ε
. Then Pr[fx − f∗

x ≥ εn] ≤ 1
2r

20



Conclusions



Conclusions

What if we wanted to report exactly?
Do we need Ω(n) space?

Simple idea with important applications.

Consider a vector v = (v1, v2, . . . , vn). Initially v = 0.
Update at time t is a pair (j, c): vj ← vj + c.
Using only small space, answer queries of the form

1. Point Query: Report vi

2. Range Query [l, r]: Report
∑r
i=l vi

3. Inner product of two vectors: u · v

Reference: An improved data stream summary: the count-min sketch and its
applications, G. Cormode and S. Muthukrishnan, Jl. Algorithms 55(1): 58-75,
2005

21


	Majority element
	Count-Min Sketch
	Complexity Analysis
	Markov's Inequality
	Proof of the claim
	Conclusions

