Count-Min Sketch

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

Outline

Majority element

Count-Min Sketch

Complexity Analysis

Markov's Inequality

Proof of the claim

Conclusions

Majority element

Problem

Finding the Majority Element

Input: A stream consisting of n elements and it is given that it has a

majority element, i.e. it occurs at least $1 + \lfloor \frac{n}{2} \rfloor$ times

Output: The majority element.

An Example: n = 19

Input Stream = [3 2 4 7 2 2 3 2 2 1 4 2 2 2 1 1 2 3 2]

Straightforward Solutions

Solution 1: Store the stream in an array A.

Sort and pick the middle element.

Complexity: $O(n \log n)$ time and O(n) space

Solution 2: Count frequency of each element.

Input: 3 2 4 7 2 2 3 2 2 1 4 2 2 2 1 1 2 3 2

Element	1	2	3	4	7
Frequency	3	10	3	2	1

Complexity: ?

Do we need that much space?

Finding the Majority Element

Input: A stream consisting of n elements and it is given that it has a

majority element.

Output: The majority element.

Memory required in Solutions 1 & $2 \ge$ Number of distinct elements in the stream.

What if we can only use O(1) space?

Majority Algorithm

```
Input: Array A of size n consisting a majority element
   Output: The majority element
1 c ← 0
2 for i=1 to n do
         if c = 0 then
               current \leftarrow A[i]; c \leftarrow c + 1
         end
 5
         else
               if A[i] = current then
 7
                c \leftarrow c + 1
               end
               else
                    c \leftarrow c - 1
11
12
               end
         end
13
14 end
15 return current
```

A[i]		3	2	4	7	2	2	3	2	
current										
\overline{c}	0									

Analysis of Majority Algorithm

Observations

- 1. Algorithm maintains only two variables: \emph{c} and current.
- 2. Correctness: Each non-majority element can 'kill' at most one majority element.

Claim

By performing a single pass, using only ${\cal O}(1)$ additional space, we can report the majority element of ${\cal A}$ (if it exists).

Misra & Gries [82] Algorithm

Finding Heavy Hitters

Input: A stream consisting of n elements and fixed integer k < n.

Output: Report all heavy hitters, i.e. elements that occur $\geq n/k$ times.

- Initialize k bins, each with null element and a counter with 0.
- 2. For each element x in the stream do

 if $x \in Bin b$ then increment bin b's counter

elseif find a bin whose counter is 0 and

- Assign x to this bin
- Assign 1 to its counter

else decrement the counter of every bin.

Output elements in the bins.

Analysis of Misra and Gries Algorithm

Claim

Let $f_x^*=$ Frequency of x in the stream. Each heavy hitter x is in one of the bins with counter value $\geq f_x^*-n/k$.

Correctness: What can be the minimum value of the counter of a heavy hitter?

Running Time:

Initializing k bins: O(k) time

Processing each element requires looking at O(k) bins.

Total Run Time = O(nk)

Space: O(k)

Reference: J. Misra and D. Gries, "Finding repeated elements" in Science of Computer Programming, Vol. 2 (2): 143 -152, 1982.

Count-Min Sketch

Count-Min Sketch

Problem

For a data stream, using very little space, we are interested to report

- 1. All the elements that occur frequently, e.g at least 2% times.
- 2. For each element, its (approximate) frequency.

Count-Min Sketch Data Structure

```
Input: An array (stream) A consisting of n numbers and r hash functions h_1,\ldots,h_r, where h_i:\mathbb{N}\to\{1,\ldots,b\}

Output: CMS[\cdot,\cdot] table consisting of r rows and b columns

for i=1 for d
```

```
1 for i=1 to r do
2  | for j=1 to b do
3  | CMS[i,j] \leftarrow 0
4  | end
5 end
6 for i=1 to r do
7  | for j=1 to r do
8  | CMS[j,h_j(A[i])] \leftarrow CMS[j,h_j(A[i])] + 1
9  | end
10 end
11 return CMS[\cdot,\cdot]
```

Illustration of Algorithm

Let b = 10 and r = 3.

Assume that stream A = xyy.

Assume the following h-values for x and y:

For
$$x$$
: $h_1(x) = 3$, $h_2(x) = 8$, and $h_3(x) = 5$

For
$$y$$
: $h_1(y) = 6$, $h_2(y) = 8$, and $h_3(y) = 1$

```
\label{eq:cms} \begin{array}{l} \text{for } i = 1 \text{ to } n \text{ do} \\ & \text{for } j = 1 \text{ to } r \text{ do} \\ & | CMS[j, h_j(A[i])] \leftarrow CMS[j, h_j(A[i])] + 1 \\ & \text{end} \end{array} end
```

Complexity Analysis

Observations

Let n = Total number of items in the stream.

 $f_x^* =$ True frequency of x in the stream.

Let
$$f_x = \min\{CMS[1, h_1(x)], \dots, CMS[r, h_r(x)]\}.$$

Report f_x as the estimate on the frequency of x.

Observations:

- 1. The size of CMS table (=br) is independent of n.
- 2. CMS table can be computed in O(br + nr) time.
- 3. For any $x \in A$, and for any j = 1, ..., r, $CMS[j, h_j(x)] \ge f_x^*$
- 4. f_x is an overestimate as $f_x \geq f_x^*$

Assume - Proof comes later

Claim

Let
$$b = \frac{2}{\epsilon}$$
. Then $Pr[f_x - f_x^* \ge \epsilon n] \le \frac{1}{2^r}$

Corollary

With probability at least $1 - 1/2^r$, $f_x^* \le f_x \le f_x^* + \epsilon n$

Reporting Frequent Elements

Suppose we want to report all the elements of A that occur approximately $\geq n/k$ times for some integer k.

- In the Claim, set $\epsilon=1/3k$. Then $b=\frac{2}{\epsilon}=6k$.
- Construct CMS table of size br = 6kr
- $\bullet\,$ Scan A and compute the entries in the CMS table
- Maintain a set of O(k) items that occur most frequently among all the elements in A scanned so far.

Heap Data Structure

The items are stored in a HEAP with f_x values as the key.

What is a Heap?

An array that stores n elements and supports:

- Find Max or Min: Report the element with the smallest/largest key value in Heap in O(1) time.
- Insert (x, k): Insert element x with key k in Heap in $O(\log n)$ time.
- Delete(x): Delete element x from Heap in $O(\log n)$ time.

• ...

Reporting Frequent Elements contd.

Assume we have scanned i-1 items and have updated the CMS table and the heap.

Consider the *i*-th item (say x = A[i]) and we perform the following:

- 1. For j=1 to r: update the CMS table by executing $CMS[j,h_j(x)] \leftarrow CMS[j,h_j(x)] + 1$.
- 2. Let $f_x = \min\{CMS[1, h_1(x)], \dots, CMS[r, h_r(x)]\}$. If $f_x \ge i/k$, do:
 - 2.1 If $x \in \text{heap}$, delete x and re-insert it again with the updated f_x value.
 - 2.2 If $x \not\in$ heap, then insert it in the heap and remove all the elements whose count is less than i/k.

Reporting Frequent Elements contd.

Claim [Cormode and Muthukrishnan 2005]

Elements that occur approx. n/k times in a data stream of size n can be reported in $O(kr+nr+n\log k)$ time using O(kr) space with high probability.

Proof.

Recall Corollary: $f_x^* \le f_x \le f_x^* + \epsilon n = f_x^* + n/3k$. This implies:

- Heap contains elements whose frequency is at least n/k n/3k = 0.667n/k (with high probability).
- Size of heap = O(k)
- Time Complexity: $O(br + nr + n \log k) = O(kr + nr + n \log k)$ as $b = \frac{2}{\epsilon} = 6k$.
- Total Space= O(br + k) = O(kr)

Markov's Inequality

Markov's Inequality

Theorem

Let X be a non-negative discrete random variable and s>0 be a constant. Then $P(X\geq s)\leq E[X]/s$.

Proof of the claim

Bounding f_x

Claim

Let
$$b=\frac{2}{\epsilon}.$$
 Then $Pr[f_x-f_x^*\geq \epsilon n]\leq \frac{1}{2^r}$

Conclusions

Conclusions

What if we wanted to report exactly? Do we need $\Omega(n)$ space?

Simple idea with important applications.

Consider a vector $v = (v_1, v_2, \ldots, v_n)$. Initially v = 0. Update at time t is a pair (j, c): $v_j \leftarrow v_j + c$. Using only small space, answer queries of the form

- 1. Point Query: Report v_i
- 2. Range Query [l, r]: Report $\sum_{i=l}^{r} v_i$
- 3. Inner product of two vectors: $u \cdot v$

Reference: An improved data stream summary: the count-min sketch and its applications, G. Cormode and S. Muthukrishnan, Jl. Algorithms 55(1): 58-75, 2005