Count-Min Sketch

Anil Maheshwari

anil@scs.carleton.ca

School of Computer Science
Carleton University

Canada

Majority element
Count-Min Sketch
Complexity Analysis
Markov’s Inequality
Proof of the claim

Conclusions

Majority element

Finding the Majority Element

Input: A stream consisting of n elements and it is given that it has a
majority element, i.e. it occurs at least 1 + | 5 | times

Output: The majority element.

An Example: n = 19

Input Stream =[3247223221422211232]

Straightforward Solutions

Solution 1: Store the stream in an array A.
Sort and pick the middle element.
Complexity: O(nlogn) time and O(n) space

Solution 2: Count frequency of each element.
Input: 3247223221422211232

Element 1 ‘ 2 ‘
Frequency 3 ‘ 10 ‘

Complexity: ?

Do we need that much space?

Finding the Majority Element

Input: A stream consisting of n elements and it is given that it has a
majority element.

Output: The majority element.

Memory required in Solutions 1 & 2 > Number of distinct elements in the
stream.

What if we can only use O(1) space?

Majority Algorithm

Input: Array A of size n consisting a majority element
Output: The majority element

1 ¢+ 0

2 fori = 1tondo

3 if c = 0 then

4 ‘ current < Ali];c +— c+ 1
5 end

6 else

7 if A[i] = current then
8 | c+c+1

9 end

10 else

1 | e+c—1

12 end

13 end

14 end

15 return current

Ali] 32|47 22|32
current
c 0

Analysis of Majority Algorithm

Observations
1. Algorithm maintains only two variables: ¢ and current.

2. Correctness: Each non-majority element can ‘kill’ at most one majority
element.

Claim
By performing a single pass, using only O(1) additional space, we can
report the majority element of A (if it exists).

Misra & Gries [82] Algorithm

Finding Heavy Hitters
Input: A stream consisting of n elements and fixed integer k& < n.
Output: Report all heavy hitters, i.e. elements that occur > n/k times.

1. Initialize k bins, each with null element and a counter with 0.

2. For each element z in the stream do
if z € Bin b then increment bin b’s counter

elseif find a bin whose counter is 0 and

e Assign z to this bin
e Assign 1 to its counter

else decrement the counter of every bin.

3. Output elements in the bins.

Analysis of Misra and Gries Algorithm

Claim
Let f7 = Frequency of = in the stream. Each heavy hitter z is in one of the
bins with counter value > f; — n/k.

Correctness: What can be the minimum value of the counter of a heavy
hitter?

Running Time:

Initializing & bins: O(k) time

Processing each element requires looking at O(k) bins.
Total Run Time = O(nk)

Space: O(k)
Reference: J. Misra and D. Gries, Finding repeated elements” in Science of
Computer Programming, Vol. 2 (2): 143 -152, 1982.

Count-Min Sketch

Count-Min Sketch

Problem
For a data stream, using very little space, we are interested to report

1. All the elements that occur frequently, e.g at least 2% times.
2. For each element, its (approximate) frequency.

Count-Min Sketch Data Structure

Input: An array (stream) A consisting of n numbers and r hash functions k1, . .., h,., where
hi :N—{1,...,b}
Output: C M S|, -] table consisting of r rows and b columns

1 fori =1tordo

2 forj =1tobdo

3 CMS[i,j] «+ 0
4 end

5 end

6 for: =1ton do

7 forj = 1tordo

8 | CMS[j, hy(A[i])] < CMS[j, hj(Al])] + 1
9 end

10 end
11 return CM S[., -]

lllustration of Algorithm

Letb=10and r = 3.

Assume that stream A = zyy.

Assume the following h-values for z and y:
For z: hi(z) = 3, ha(z) = 8, and hs(z) =5
Fory: hi(y) = 6,h2(y) = 8,and hs(y) =1

[][t 2 3 4 5 6 7 8 9 10
CMS[*, %] =]

fori = 1 ton do

forj = 1tordo
| CMS[j, hj(A[i])] + CMS[j, hj(A[D] + 1

end

Complexity Analysis

Let n = Total number of items in the stream.
f+ = True frequency of x in the stream.

Let fo = min{CMS[1, hy(z)],...,CMS[r, hy(x)]}.
Report f. as the estimate on the frequency of z.

Observations:

1. The size of CMS table (= br) is independent of n.

2. CMS table can be computed in O(br + nr) time.

3. Foranyz € A,andforany j =1,...,r, CMS[j, h;(x)] > fa
4. f. is an overestimate as f. > f.

Assume - Proof comes later

Claim
Letb = 2. Then Pr[f. — fi > en] < 5

€’ 2r

Corollary
With probability at least 1 — 1/27, fr < fo < fa +en

Reporting Frequent Elements

Suppose we want to report all the elements of A that occur approximately
> n/k times for some integer k.

e Inthe Claim, set e = 1/3k. Then b = 2 = 6k.
Construct CMS table of size br = 6kr
Scan A and compute the entries in the C'M S table

Maintain a set of O(k) items that occur most frequently among all the
elements in A scanned so far.

Heap Data Structure

The items are stored in a HEAP with f.. values as the key.
What is a Heap?
An array that stores n elements and supports:
e Find Max or Min: Report the element with the smallest/largest key value
in Heap in O(1) time.
e Insert(z, k): Insert element = with key % in Heap in O(logn) time.

e Delete(z): Delete element = from Heap in O(logn) time.

Reporting Frequent Elements contd.

Assume we have scanned i — 1 items and have updated the C'M S table and
the heap.

Consider the i-th item (say x = A[i]) and we perform the following:

1. For j = 1to r: update the C'M S table by executing
C]V[S[j, h](I)} & CMS[], hj (17)] + 1.
2. Let fo = min{CMS[1, hi(x)],...,CMS[r, hr(z)]}.
If fz >i/k,do:
2.1 If z € heap, delete = and re-insert it again with the updated f, value.

2.2 If x € heap, then insert it in the heap and remove all the elements whose
count is less than i /k.

Reporting Frequent Elements contd.

Claim [Cormode and Muthukrishnan 2005]

Elements that occur approx. n/k times in a data stream of size n can be
reported in O(kr + nr + nlog k) time using O(kr) space with high
probability.

Proof.
Recall Corollary: f; < fo < fa +en = fi + n/3k.
This implies:

e Heap contains elements whose frequency is at least
n/k —n/3k = 0.667n/k (with high probability).

e Size of heap = O(k)

e Time Complexity: O(br + nr + nlogk) = O(kr + nr + nlogk) as
b=2 =6k

€

e Total Space= O(br + k) = O(kr)

Markov’s Inequality

Markov’s Inequality

Theorem
Let X be a non-negative discrete random variable and s > 0 be a constant.
Then P(X > s) < E[X]/s.

Proof of the claim

Bounding f,

Claim
Letb = 2. Then Pr(f, — fr > en] < o

20

Conclusions

Conclusions

What if we wanted to report exactly?
Do we need Q(n) space?

Simple idea with important applications.

Consider a vector v = (v1,va, ..., vy,). Initially v = 0.
Update at time t is a pair (j, ¢): v; < v; +c.
Using only small space, answer queries of the form
1. Point Query: Report v;
2. Range Query [, 7]: Report >°7_, v;

3. Inner product of two vectors: u - v

Reference: An improved data stream summary: the count-min sketch and its
applications, G. Cormode and S. Muthukrishnan, JI. Algorithms 55(1): 58-75,
2005

21

	Majority element
	Count-Min Sketch
	Complexity Analysis
	Markov's Inequality
	Proof of the claim
	Conclusions

