Dimensionality Reduction

1

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

Outline

Metric Space

Isometric embedding

Universal Spaces

Distortion

 L_∞ Norm

Corollaries

Normal Distribution

 L_2 Norm - Johnson-Lindenstrauss Theorem

Metric Space

Let X be a set of n-points and let d be a distance measure associated with pairs of elements in X.

We say that $\langle X, d \rangle$ is a finite metric space if the function *d* satisfies metric properties, i.e.

(a) $\forall x \in X, d(x, x) = 0$, (b) $\forall x, y \in X, x \neq y, d(x, y) > 0$, (c) $\forall x, y \in X, d(x, y) = d(y, x)$ (symmetry), and (d) $\forall x, y, z \in X, d(x, y) \le d(x, z) + d(z, y)$ (triangle inequality).

Isometric embedding

Embeddings

Let $\langle X, d \rangle$ and $\langle X', d' \rangle$ be two metric spaces.

Embedding: A map $f : X \to X'$ is called an embedding.

Isometric embedding (i.e., distance preserving) if for all $x, y \in X$, d(x, y) = d'(f(x), f(y)).

<u>3-useful distance measures</u> between a pair of points $p = (p_1, \ldots, p_k)$ and $q = (q_1, \ldots, q_k)$ in \Re^k .

- 1. L₂-norm (Euclidean): $||p q||_2 = \sqrt{\sum_{i=1}^{k} (p_i q_i)^2}$
- 2. L₁-norm (Manhattan): $||p q||_1 = \sum_{i=1}^{k} |p_i q_i|$
- 3. L_{∞} -norm: $||p q||_{\infty} = \max\{|p_1 q_1|, \dots, |p_k q_k|\}$

Motivating Problem

Input: *X*=Set of *n*-points in *k*-dimensional space, where $n >> 2^k$ **Output:** A pair of points that maximize L_1 -distance.

Let
$$p = (p_1, \dots, p_k)$$
 and $q = (q_1, \dots, q_k)$ be two points in \Re^k ,
 $||p - q||_1 = \sum_{i=1}^k |p_i - q_i|.$
For example, $||(3,5) - (2,7)||_1 = |3 - 2| + |5 - 7| = 3.$

Naive Solution: Compute distance between every pair of points and find the pair with largest distance $O(k\binom{n}{2}) = O(kn^2)$ time

Next: An algorithm using isometric embedding of $L_1^k \to L_\infty^{2^k}$ running in $O(2^kn)$ time

Let
$$x = (x_1, \ldots, x_k) \in X$$

Note that $||x||_1 = \sum_{i=1}^k |x_i| = \sum_{i=1}^k \operatorname{sign}(x_i)x_i = \operatorname{sign}(x) \cdot x$, where $\operatorname{sign}(x)$ is the ± 1 vector of length k denoting the sign of each coordinate of x.

Claim 1

For any ± 1 vector $y = (y_1, \dots, y_k)$ of length k $||x||_1 = \operatorname{sign}(x) \cdot x \ge y \cdot x$. Moreover, $||x||_1 = \max\{x \cdot y | y \in \{-1, 1\}^k\}$.

Example:

For x = (-2, -3, 4), $||x||_1 = |-2| + |-3| + |4| = (-1, -1, 1) \cdot (-2, -3, 4) = 9$

$y \cdot x$	$y \cdot x$
$(-1, -1, 1) \cdot (-2, -3, 4) = 9$	$(-1, -1, -1) \cdot (-2, -3, 4) = 1$
$(-1,1,1) \cdot (-2,-3,4) = 3$	$(-1, 1, -1) \cdot (-2, -3, 4) = -5$
$(1, -1, 1) \cdot (-2, -3, 4) = 5$	$(1, -1, -1) \cdot (-2, -3, 4) = -3$
$(1,1,1) \cdot (-2,-3,4) = -1$	$(1, 1, -1) \cdot (-2, -3, 4) = -9$

Isometric embedding $f: L_1^k \to L_{\infty}^{2^k}$ (contd.)

For each ± 1 vector y, define $f_y: X \to \Re$ by $f_y(x) = y \cdot x$ For example, $f_{(1,-1,1)}((-2,-3,4)) = (1,-1,1) \cdot (-2,-3,4) = 5$

Isometric Embedding

Define $f: X \to \Re^{2^k}$ to be the concatenation of f_y 's for all possible $2^k y's$.

For our example, f(x) = (9, 3, 5, -1, 1, -5, -3, -9) corresponding to $2^3 = 8$ possible values for 3-dimensional vector y.

Let
$$x = (-2, -3, 4)$$
 and $x' = (2, 3, -2)$.
 $||x - x'||_1 = |-2 - 2| + |-3 - 3| + |4 - (-2)| = 16$
 $f(x') = (-7, -1, -3, 3, -3, 3, 1, 7).$

Observe

$$||f(x) - f(x')||_{\infty} = \max_{y} \{|f_{y}(x) - f_{y}(x')|\} = \max(|9 - (-7)|, |3 - (-1)|, |5 - (-3)|, |-1 - 3|, |1 - (-3)|, |-5 - 3|, |-3 - 1|, |-9 - 7|) = 16 = ||x - x'||_{1}$$

Isometric Embedding Lemma

Under the mapping $f: X \to \Re^{2^k}$ given by the concatenation of f_y 's for all possible $2^k y's$, where $f_y(x) = y \cdot x$, we have that for any two points $x, x' \in X$, $||f(x) - f(x')||_{\infty} = ||x - x'||_1$

Proof Sketch: $||f(x) - f(x')||_{\infty} = \max_{y}\{|f_{y}(x) - f_{y}(x')|\} = \max_{y}\{|y \cdot x - y \cdot x'|\} = \max_{y}\{|y \cdot (x - x')|\} = ||x - x'||_{1}, \text{ because by Claim 1} ||x||_{1} = \max\{y \cdot x | y \in \{-1, 1\}^{k}\}.$

In place of finding the furthest pair of points in X with respect to L_1 metric we have the following:

New Problem: Given *n* points in 2^k dimensional space X', find the furthest pair in X' with respect to L_{∞} metric.

New Problem:

Given n points in 2^k dimensional space X', find the furthest pair in X' with respect to L_∞ metric.

$$\max_{u,v \in X'} ||u - v||_{\infty} = \max_{u,v \in X'} \max_{i=1}^{2^{k}} |u_{i} - v_{i}| = \max_{i=1}^{2^{k}} \max_{u,v \in X'} |u_{i} - v_{i}|$$

Fix a coordinate, find the pair of points that maximize the difference with respect to that coordinate. Among all the coordinates, pick the one that maximizes the difference.

Observe that $\max_{u,v \in X'} |u_i - v_i|$, for a fixed *i*, can be computed in O(n) time $\implies \max_{i=1}^{2^k} \max_{u,v \in X'} |u_i - v_i|$ can be computed in $O(2^k n)$ time.

Theorem

Given a set X of n points in \Re^k , by using the isometric embedding $f: L_1^k \to L_\infty^{2^k}$, we can compute the furthest pair of points in X with respect to L_1 -metric by computing the furthest pair of points in the embedding with respect to L_∞ -metric in $O(2^k n)$ time.

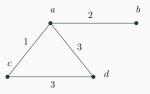
Universal Spaces

Universality of L_{∞} -metric space

Universality of L_{∞} -metric space

Let $\langle X, d \rangle$ be any finite metric space, where n = |X|. X can be isometrically embedded into L_{∞} -metric space of dimension n.

Proof Sketch: Let $X = \{x_1, \dots, x_n\}$. For each point $x \in X$, define $f(x) = (d(x, x_1), \dots, d(x, x_n))$.



For example, let $X = \{a, b, c, d\}$, and we have

$$\begin{split} f(a) &= (d(a,a), d(a,b), d(a,c), d(a,d)) = (0,2,1,2) \\ f(b) &= (d(b,a), d(b,b), d(b,c), d(b,d)) = (2,0,3,5) \\ f(c) &= (d(c,a), d(c,b), d(c,c), d(c,d)) = (1,3,0,3) \\ f(d) &= (d(d,a), d(d,b), d(d,c), d(d,d)) = (3,5,3,0) \end{split}$$

$$d(b, d) = ||f(b) - f(d)||_{\infty} = 5$$

$$d(a, d) = ||f(a) - f(d)||_{\infty} = 3$$

Universality of L_{∞} -metric (contd.)

Claim

For any pair of points $u, v \in X$, we have $d(u, v) = ||f(u) - f(v)||_{\infty}$

Proof of Claim:

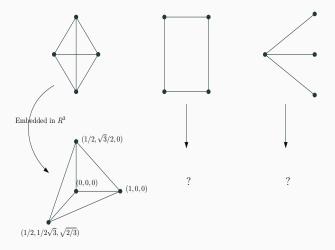
$$\begin{split} ||f(u) - f(v)||_{\infty} &= \max_{x \in X} |d(u, x) - d(v, x)| \\ &\leq d(u, v) \text{ by triangle inequality} \end{split}$$

But,
$$\max_{x \in X} |d(u, x) - d(v, x)| \ge |d(u, u) - d(v, u)| = d(u, v)$$

 $\implies ||f(u) - f(v)||_{\infty} = d(u, v)$

Thus, the mapping of elements of $x \in X$ given by $f(x) = (d(x, x_1), \dots, d(x, x_n))$ under L_{∞} -norm is universal.

Input: Metric Space defined by K_4 , C_4 , and a star w.r.t. unweighted SP. **Question:** Can one embed 4-points in Euclidean space (L_2) in any dimension isometrically?



Distortion

Distortion

Contraction: Is the maximum factor by which the distances shrink and it equals $\max_{x,y \in X} \frac{d(x,y)}{d'(f(x),f(y))}$.

Expansion: Is the maximum factor by which the distances are stretched and it equals $\max_{x,y\in X} \frac{d'(f(x),f(y))}{d(x,y)}$.

Distortion: of an embedding is the product of its expansion and contraction factor.

L_∞ Norm

 $\langle X, d \rangle \stackrel{D}{\hookrightarrow} L_{\infty}^{k=O(Dn^{\frac{2}{D}}\log n)}$

Input: A metric space $\langle X, d \rangle$, where X is a set of *n*-points and let *d* satisfies the metric properties.

Output: An embedding of *X* in a $k = O(Dn^{\frac{2}{D}} \log n)$ dimensional space such that the distances gets distorted (actually contracted) by a factor of at most *D* under L_{∞} norm.

We denote this embedding by the following notation:

$$\langle X, d \rangle \stackrel{D}{\hookrightarrow} L_{\infty}^{k=O(Dn^{\frac{2}{D}}\log n)}$$

Note, when $D = O(\log n)$, we have

$$\langle X, d \rangle \stackrel{\log n}{\hookrightarrow} L_{\infty}^{k=O(\log^2 n)}$$

I.e. we can embed any metric space in $O(\log^2 n)$ dimensional L_{∞} -metric space and the distances are distorted by a factor of $O(\log n)$.

Let $x, y \in X$ and let f(x), f(y) be their embedding in the k-dimensional space, respectively.

Property

The distances gets contracted by a factor of at most $D \ge 1$. Formally, $\max_{x,y \in X} \frac{d(x,y)}{||f(x) - f(y)||_{\infty}} \le D$

 $\text{Example: If } D = O(\log n), \, k = O(\log^2 n), \, \text{i.e. } \langle X, d \rangle \stackrel{O(\log n)}{\hookrightarrow} L^{O(\log^2 n)}_{\infty} \\$

Meaning: Any metric space $\langle X, d \rangle$ can be embedded in a $O(\log^2 n)$ -dimensional space and the distances may distort (contract) by a factor of at most $O(\log n)$.

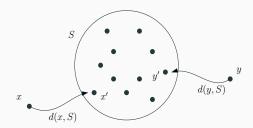
Space Saving Embedding: $\langle X, d \rangle$, where n = |X|, may require $O(n^2)$ space to capture distances between pairs of points. Whereas, in the mapped *k*-dimensional space, we only need to store $k = O(\log^2 n)$ coordinates for each point, thus requiring a total of $O(n \log^2 n)$ space.

Proof of $\langle X, d \rangle \stackrel{D}{\hookrightarrow} L^{k=O(Dn^{\frac{2}{D}} \log n)}_{\infty}$

Constructive proof via a randomized algorithm.

Definition

Let $S \subseteq X$. For $x \in X$, define the distance of x from the set S as $d(x,S) = \min_{z \in S} d(x,z)$



Claim 1

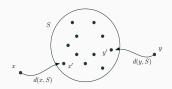
Let $x, y \in X$. For all $S \subseteq X$, $|d(x, S) - d(y, S)| \le d(x, y)$.

Proof of Claim 1

Claim 1

Let $x, y \in X$. For all $S \subseteq X$, $|d(x, S) - d(y, S)| \le d(x, y)$.

Proof:



Let |d(x,S) - d(y,S)| = |d(x,x') - d(y,y')|.

If $d(x, x') \ge d(y, y')$ $d(x, x') - d(y, y') \le d(x, y') - d(y', y) \le d(x, y)$ (by triangle inequality) else $d(y, y') - d(x, x') \le d(y, x') - d(x, x') \le d(x, y)$.

Thus, $|d(x,S) - d(y,S)| = |d(x,x') - d(y,y')| \le d(x,y)$.

 \implies Distance to a subset amounts to contraction.

Proof Contd.

Definition

(**Mapping**) Let $x \in X$. Let $S_1, S_2, \dots, S_k \subseteq X$. The mapping f maps x to the point

$$f(x) = \{ d(x, S_1), d(x, S_2), \cdots, d(x, S_k) \}.$$

Claim 2

Let $S_1, S_2, \dots, S_k \subseteq X$. For any pair of points $x, y \in X$, $||f(x) - f(y)||_{\infty} \leq d(x, y)$.

Proof: Follows from Claim 1, as for each $1 \le i \le k$, $|d(x, S_i) - d(y, S_i)| \le d(x, y)$.

Input: Metric space $\langle X, d \rangle$ and an integer parameter *D*. Output: A set of O(Dm) subsets of *X*.

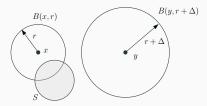
- p ← min(¹/₂, n<sup>-²/_D)
 m ← O(n^{2/_D} log n)
 For j ← 1 to [^D/₂] and For i ← 1 to m: Choose set S_{ij} by sampling each element of X independently with probability p^j
 For each x ∈ X return f(x) = [d(x, S₁₁), ... d(x, S_{m1}),
 </sup>
 - $d(x, S_{12}), \cdots, d(x, S_{m2}), \cdots d(x, S_{1\lceil \frac{D}{2} \rceil}), \cdots, d(x, S_{m\lceil \frac{D}{2} \rceil})]$

Intuition

- Each point x ∈ X is embedded in k = O(Dm) dimensional space via the mapping f(x).
- By Claim 2, for any pair of points $x, y \in X$, $||f(x) f(y)||_{\infty} \le d(x, y)$, i.e. the distance shrinks.
- Fix a pair of points $x, y \in X$. We will prove a key lemma that states the following: There exists an index $j \in \{1, \dots, \lceil \frac{D}{2} \rceil\}$ such that if S_{ij} is as chosen in the Algorithm, than $Pr[||f(x) f(y)||_{\infty} \ge \frac{d(x,y)}{D}] \ge \frac{p}{12}$. In other words, under the L_{∞} -norm in the k-dimensional space, the distance doesn't shrink a lot!
- For index *j* we have *m* trials. So the probability that the above statement doesn't hold for all the *m* trials is $\leq (1 \frac{p}{12})^m \leq e^{-\frac{pm}{12}} \leq \frac{1}{n^2}$. This follows from the choice of *p* and *m* as $p \leftarrow \min(\frac{1}{2}, n^{-\frac{2}{D}})$ and $m \leftarrow O(n^{\frac{2}{D}} \log n)$.
- We will apply the union bound to show that the above statement holds for all pairs of points with probability at least 1/2.

Observation 1

Let x, y be two distinct points of X. Let B(x, r) be the set of points of X that are within a distance of r from x (think of B(x, r) as a ball of radius rcentred at x). Similarly, let $B(y, r + \Delta)$ be the set of points of X that are within a distance of $r + \Delta$ from y. Consider a subset $S \subset X$ such that $S \cap B(x, r) \neq \emptyset$ and $S \cap B(y, r + \Delta) = \emptyset$. Then $|d(x, S) - d(y, S)| \ge \Delta$.

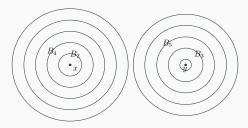


Proof: $d(x, S) \le r$ as $S \cap B(x, r) \ne \emptyset$ $d(y, S) \ge r + \Delta$ as $S \cap B(y, r + \Delta) = \emptyset$ $\implies |d(x, S) - d(y, S)| \ge \Delta$

Ball Properties

Let $x, y \in X$. Set $\Delta = \frac{d(x,y)}{D}$.

Balls centred at x and yFor $i = 0, \dots, \lceil \frac{D}{2} \rceil$, define balls of radius $i\Delta$ as follows. Let $B_0 = \{x\}$. B_1 be the ball of radius Δ centred at y. B_2 is the ball of radius 2Δ centred at x. B_3 is the ball of radius 3Δ centred at y. B_4 is the ball of radius 4Δ centred at x. \dots

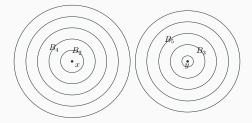


Properties of Balls

Property I

No balls centred at x overlaps with any of the balls centred at y.

Proof: Furthest point balls centred at *x* can reach is at distance $\leq \lceil \frac{D}{2} \rceil \Delta$. Similarly, furthest point balls centred at *y* can reach is at distance $\leq (\lceil \frac{D}{2} \rceil - 1)\Delta$. But $\lceil \frac{D}{2} \rceil \Delta + (\lceil \frac{D}{2} \rceil - 1)\Delta = 2\lceil \frac{D}{2} \rceil \Delta - \Delta < d(x, y)$, as $\Delta = \frac{d(x, y)}{D}$



Ball Properties (contd.)

For even (odd) *i*, let $|B_i|$ denote the number of points of *X* that are within a distance of at most $i\Delta$ from *x* (respectively, *y*).

Property II

There is an index $t \in \{0, \dots, \lceil \frac{D}{2} \rceil - 1\}$, such that $|B_t| \ge n^{\frac{2t}{D}}$ and $|B_{t+1}| \le n^{\frac{2(t+1)}{D}}$

Proof: Proof by contradiction.

$$\begin{split} t &= 0: \text{ Since } |B_0| = 1 \implies |B_1| > n^{\frac{2}{D}} \\ t &= 1: \text{ If } |B_1| > n^{\frac{2}{D}} \implies |B_2| > n^{\frac{4}{D}} \\ t &= 2: \text{ If } |B_2| > n^{\frac{4}{D}} \implies |B_3| > n^{\frac{6}{D}} \end{split}$$

• • •

 $t = \lceil \frac{D}{2} \rceil - 1 \text{: If } |B_t| > n^{\frac{2t}{D}} \implies |B_{\lceil \frac{D}{2} \rceil}| > n^{\frac{2\lceil \frac{D}{2} \rceil}{D}} \ge n$

But no ball can contain more than |X| = n points. A contradiction.

Let t be the index such that $|B_t| \ge n^{\frac{2t}{D}}$ and $|B_{t+1}| \le n^{\frac{2(t+1)}{D}}$ Consider when j = t + 1 in the Algorithm.

Property III

The set S_{ij} chosen by the algorithm has non-empty intersection with B_t with probability at least p/3, and it avoids B_{t+1} with probability at least 1/4.

Define two events:

Event $E_1: S_{ij} \cap B_t \neq \emptyset$. Event $E_2: S_{ij} \cap B_{t+1} = \emptyset$. We will show that $Pr(E_1) \ge p/3$ and $Pr(E_2) \ge 1/4$.

By Property I, the balls B_t and B_{t+1} are disjoint. Thus, $Pr(E_1 \wedge E_2) = Pr(E_1)Pr(E_2)$. $\implies Pr(E_1 \wedge E_2) \ge \frac{p}{12}$.

Event E_1

Event E_1 $Pr(S_{ij} \cap B_t \neq \emptyset) \ge p/3$

Proof:

$$Pr(E_{1}) = 1 - Pr(S_{ij} \cap B_{t} = \emptyset)$$

$$= 1 - (1 - p^{j})^{|B_{t}|} \text{ (No element of } B_{t} \text{ is chosen in } S_{ij}\text{)}$$

$$= 1 - (1 - p^{j})^{n^{\frac{2(j-1)}{D}}}$$

$$\geq 1 - e^{-p^{j}n^{\frac{2(j-1)}{D}}}$$

$$= 1 - e^{-p^{j}n^{\frac{2}{D}j}n^{-\frac{2}{D}}}$$

$$= 1 - e^{-n^{-\frac{2}{D}}} \text{ (As } p = n^{-\frac{2}{D}}\text{)}$$

$$= 1 - e^{-p}$$

If $p < \frac{1}{2}$, $1 - e^{-p} \ge p/3$.

26

Event E_2

Event E_2 $Pr(S_{ij} \cap B_{t+1} = \emptyset) \ge 1/4$

Proof:

$$Pr(E_{2}) = Pr(S_{ij} \cap B_{t+1} = \emptyset)$$

= $1 - (1 - p^{j})^{|B_{t+1}|}$
 $\geq 1 - (1 - p^{j})^{n^{\frac{2j}{D}}}$
= $(1 - p^{j})^{\frac{1}{p^{j}}}$

If $p^j < \frac{1}{2}$, $(1-p^j)^{\frac{1}{p^j}} \ge \frac{1}{4}$. The function $(1-p^j)^{\frac{1}{p^j}}$ achieves minimum at $p^j = 0$ or $p^j = \frac{1}{2}$, and in both the cases it is $\ge \frac{1}{4}$.

Key Lemma

Lemma

Let x, y be two distinct points of X. There exists an index $j \in \{1, \dots, \lceil \frac{D}{2} \rceil\}$ such that if S_{ij} is as chosen in the Algorithm, than $Pr[||f(x) - f(y)||_{\infty} \ge \frac{d(x,y)}{D}] \ge \frac{p}{12}$

1. $p \leftarrow \min(\frac{1}{2}, n^{-\frac{2}{D}})$

2.
$$m \leftarrow O(n^{\frac{2}{D}} \log n)$$

3. For
$$j \leftarrow 1$$
 to $\lceil \frac{D}{2} \rceil$ and

For $i \leftarrow 1$ to m:

Choose set S_{ij} by sampling each element of X independently with probability p^j

4. For each
$$x \in X$$
 return $f(x) = [d(x, S_{11}), \cdots , d(x, S_{m1}),$

$$d(x, S_{12}), \cdots, d(x, S_{m2}), \cdots d(x, S_{1\lceil \frac{D}{2} \rceil}), \cdots, d(x, S_{m\lceil \frac{D}{2} \rceil})]$$

Fix $x, y \in X$. We know that $\Delta = \frac{d(x,y)}{D}$.

By Property II, there is a value of $t \in \{0, \dots, \lceil \frac{D}{2} \rceil - 1\}$, such that $|B_t|$ is sufficiently large and $|B_{t+1}|$ is not too big. Choose j = t + 1.

By Property III, the probability that S_{ij} chosen by the algorithm overlaps with B_t and avoids B_{t+1} completely is at least p/12.

What is the probability that none of the m trials are good for that value of j?

$$\leq (1 - \frac{p}{12})^m \leq e^{-\frac{pm}{12}} \leq \frac{1}{n^2}$$
 as $p = \min(\frac{1}{2}, n^{-\frac{2}{D}})$ and $m = O(n^{\frac{2}{D}} \log n)$.

Main Theorem

$$\langle X, d \rangle \stackrel{D}{\hookrightarrow} L_{\infty}^{k=O(Dn^{\frac{2}{D}}\log n)}$$

Proof: For a fix pair of points $x, y \in X$, by the key lemma ,we have that there exists an index $j \in \{1, \dots, \lceil \frac{D}{2} \rceil\}$ such that if S_{ij} is as chosen in the Algorithm, than $Pr[||f(x) - f(y)||_{\infty} \geq \frac{d(x,y)}{D}] \geq \frac{p}{12}$.

Moreover, as stated above, that this doesn't hold for all the *m* choices of S_{ij} is with probability at most $\frac{1}{n^2}$.

Since in all we have $\binom{n}{2}$ pairs of points in *X*, the probability of failure by the union bound is at most $\frac{1}{2}$.

 \implies probability of succeeding is $\geq \frac{1}{2}$

Corollaries

Corollary 1: $\langle X, d \rangle \stackrel{\Theta(\log n)}{\hookrightarrow} L_{\infty}^{O(\log^2 n)}$

Corollary 1

$$\langle X,d\rangle \stackrel{\Theta(\log n)}{\hookrightarrow} L^{O(\log^2 n)}_\infty$$

Proof: Set $D = \Theta(\log n)$, in the Theorem $\langle X, d \rangle \stackrel{D}{\hookrightarrow} L_{\infty}^{k=O(Dn^{\frac{2}{D}} \log n)}$ and we obtain $\langle X, d \rangle \stackrel{\Theta(\log n)}{\hookrightarrow} L_{\infty}^{O(\log^2 n)}$.

Corollary 2: $\langle X, d \rangle \stackrel{\log^2 n}{\hookrightarrow} L_1^{O(\log^2 n)}$

Corollary 2

$$\langle X,d\rangle \stackrel{\log^2 n}{\hookrightarrow} L_1^{O(\log^2 n)}$$

Proof: Let $k = O(\log^2 n)$ be the dimension of embedding. For a pair of points $x, y \in X$, we have $||f(x) - f(y)||_1 \le kd(x, y)$ (it holds for each coordinate).

In the Theorem, for a pair $x, y \in X$, we know that there is at least one set which is good, i.e., with probability $\geq 1 - 1/n^2$, $||f(x) - f(y)||_{\infty} \geq \frac{d(x,y)}{\Theta(\log n)}$.

Extend the machinery in the Theorem to show that with high probability there are $\log n$ sets that are good by choosing slightly larger value for m (but still of order of $O(\log n)$). If this is the case, then

$$||f(x) - f(y)||_1 \ge \log n \frac{d(x,y)}{\Theta(\log n)} = \Theta(d(x,y))$$

Thus we have $\Theta(d(x, y)) \leq ||f(x) - f(y)||_1 \leq kd(x, y)$, and hence we have a mapping with distortion $O(\log^2 n)$.

$\boxed{\text{Corollary } 3: \langle X, d \rangle} \stackrel{\log^{1.5}{n}}{\hookrightarrow} L_2^{O(\log^2 n)}$

Corollary 3

$$\langle X,d\rangle \stackrel{\log^{1.5}n}{\hookrightarrow} L_2^{O(\log^2n)}$$

Proof: Let $k = O(\log^2 n)$ be the dimension of embedding. Observe that for the same embedding as in Corollary 1, for a pair of points $x, y \in X$, we have

$$||f(x) - f(y)||_2 = \sqrt{\sum (d(x, S_{ij}) - d(y, S_{ij}))^2} \le \sqrt{k} d(x, y)$$

We can show,

$$||f(x) - f(y)||_{2} = \sqrt{\sum (d(x, S_{ij}) - d(y, S_{ij}))^{2}}$$

$$\geq \sqrt{\log n (\frac{d(x, y)}{\Theta(\log n)})^{2}}$$

$$\geq \frac{d(x, y)}{\Theta(\sqrt{\log n})}$$

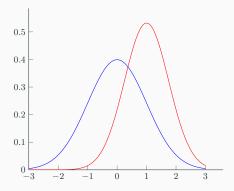
This results in a total distortion of $O(\log^{1.5} n)$.

Normal Distribution

Normal Distribution

Random variable *X* has a *Normal Distribution* $\mathcal{N}(\mu, \sigma^2)$, with mean μ and standard deviation $\sigma > 0$, if its probability density function is of the form $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}, -\infty < x < \infty$

Example: Plot of $\mathcal{N}(0,1)$ and $\mathcal{N}(1,0.75)$



If X has a Normal distribution $\mathcal{N}(\mu, \sigma^2)$, than aX + b has a Normal distribution $\mathcal{N}(a\mu + b, a^2\sigma^2)$, for constants a, b.

The distribution $\mathcal{N}(0,1)$, with pdf $\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, is referred to as the *standardized* normal distribution.

Sum of Normal Distributions

Let X and Y be independent r.v. with Normal distributions $\mathcal{N}(\mu_1, \sigma_1^2)$ and $\mathcal{N}(\mu_2, \sigma_2^2)$. Let r.v. Z = X + Y.

Z has a Normal distribution $\mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

The sum of two independent Normal distributions is a Normal distribution.

L_2 Norm - Johnson-Lindenstrauss Theorem

Johnson-Lindenstrauss Theorem

Let V be a set of n points in d-dimensions. A mapping $f : \mathbb{R}^d \to \mathbb{R}^k$ can be computed, in randomized polynomial time, so that for all pairs of points $u, v \in V$,

$$(1-\epsilon)||u-v||^2 \le ||f(u)-f(v)||^2 \le (1+\epsilon)||u-v||^2,$$

where $0 < \epsilon < 1$ and n, d, and $k \ge 4(\frac{\epsilon^2}{2} - \frac{\epsilon^3}{3})^{-1} \ln n$ are positive integers.

Comments:

- The function f maps points of V to a $O(\frac{\ln n}{\epsilon^2})$ -dimensional space from a d-dimensional space such that the distortion is within a factor of $1 \pm \epsilon$.
- $\bullet ~|| \cdot ||$ is with respect to Euclidean distance
- Function *f* is defined in terms of a matrix A_{k×d} with entries from Normal distribution N(0, ¹/_k).
- A point $v \in \Re^d$ is mapped to the point v' = Av. Note that $v' \in \Re^k$.

Matrix with entries from Normal distribution

- Let A be $k\times d$ dimensional matrix, where its entries are chosen independently from $\mathcal{N}(0,\frac{1}{k}).$

- Let x be a vector in \mathbb{R}^d .
- Consider the k-dimensional vector Ax
- Next we show that the expected squared length of the vector $||Ax||^2$ is $||x||^2$.

Expected squared length Lemma 1: $E[||Ax||^2] = ||x||^2$

Proof: Assume z = Ax, where $z = (z_1, \ldots, z_k) \in \Re^k$. We want to show that $E[||z||^2] = ||x||^2$.

Note that $||z||^2 = \sum_{i=1}^k z_i^2$.

Consider the first coordinate z_1 of z.

Note that
$$z_1 = \sum_{i=1}^{d} A_{1i}x_i$$
. What is the distribution of r.v. z_1 ?

Proof of $E[||Ax||^2] = ||x||^2$ (contd.)

- 1. Recall that if *X* has a Normal distribution $\mathcal{N}(0, \sigma^2)$, aX has a Normal distribution $\mathcal{N}(0, a^2\sigma^2)$, for a constant *a*. Moreover, the sum of two independent r.v. with Normal distributions $\mathcal{N}(0, \sigma_1^2)$ and $\mathcal{N}(0, \sigma_2^2)$ has a Normal distribution $\mathcal{N}(0, \sigma_1^2 + \sigma_2^2)$.
- 2. Since each A_{1i} is distributed independently by $\mathcal{N}(0, \frac{1}{k})$. The distribution of $z_1 = \sum_{i=1}^{d} A_{1i}x_i$ is the same as the sum of *d* independent Normal distributions (where each of them have an associated scalar x_i).
- 3. Thus, z_1 has $\mathcal{N}(0, \frac{\sum\limits_{i=1}^{d} x_i^2}{k}) = \mathcal{N}(0, \frac{||x||^2}{k})$ distribution.
- 4. Consider $||z||^2 = ||Ax||^2 = z_1^2 + \ldots + z_k^2$, where z_i has $\mathcal{N}(0, \frac{||x||^2}{k})$ distribution.
- 5. What is $E[||z^2||]$?

Proof of $E[||Ax||^2] = ||x||^2$

1. $E[||z^2||] = E[z_1^2 + \ldots + z_k^2] = kE[z_1^2]$

2. By definition:
$$Var[z_1] = E[z_1^2] - E[z_1]^2$$
.
But z_1 has $\mathcal{N}(0, \frac{||x||^2}{k})$ distribution
 $\implies Var[z_1] = \frac{||x||^2}{k}$ and $E[z_1] = 0$.
 $\implies E[z_1^2] = Var[z_1] = \frac{||x||^2}{k}$

3. Therefore, $E[||z^2] = E[z_1^2 + \ldots + z_k^2] = kE[z_1^2] = ||x||^2$

How good is the estimate $E[||Ax||^2] = ||x||^2$?

Is $E[||Ax||^2] = ||x||^2$ a good bound Estimate $Pr(||Ax||^2 \ge (1 + \epsilon)||x||^2)$ and $Pr(||Ax||^2 \le (1 - \epsilon)||x||^2)$, for $\epsilon \in (0, 1)$.

We know that $Pr(||Ax||^2 \ge (1+\epsilon)||x||^2) = Pr(\sum_{i=1}^k z_i^2 \ge (1+\epsilon)||x||^2)$, where z_i is a random variable with distribution $\mathcal{N}(0, \frac{||x||^2}{k})$.

Set $Y_i = \frac{\sqrt{k}}{||x||} z_i$. Since z_i has distribution $\mathcal{N}(0, \frac{||x||^2}{k})$, Y_i has distribution $\mathcal{N}(0, 1)$ In the expression $Pr(\sum_{i=1}^k z_i^2 \ge (1+\epsilon)||x||^2)$, divide by $\frac{||x||^2}{k}$, and we obtain $Pr(\sum_{i=1}^k Y_i^2 \ge (1+\epsilon)k)$.

New Problem

Estimate
$$Pr(\sum_{i=1}^{k} Y_i^2 \ge (1+\epsilon)k)$$
, where Y_i has a $\mathcal{N}(0,1)$ distribution.

Estimating $Pr(\sum_{i=1}^{k} Y_i^2)$

Lemma 2

1.
$$Pr(\sum_{i=1}^{k} Y_i^2 \ge (1+\epsilon)k) \le e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}$$

2. $Pr(\sum_{i=1}^{k} Y_i^2 \le (1-\epsilon)k) \le e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}$

Proof of 1:

$$\begin{aligned} Pr(\sum_{i=1}^{k} Y_{i}^{2} \geq (1+\epsilon)k) &= Pr(e^{\lambda \sum_{i=1}^{k} Y_{i}^{2}} \geq e^{(1+\epsilon)\lambda k}) \text{ (for } \lambda > 0) \\ &\leq \frac{E\left[e^{\lambda \sum_{i=1}^{k} Y_{i}^{2}}\right]}{e^{(1+\epsilon)\lambda k}} \text{ (applying Markov's Inequality)} \\ &= \frac{E\left[e^{\lambda Y_{1}^{2}}\right]^{k}}{e^{(1+\epsilon)\lambda k}} \text{ (Independence of } Y_{i}\text{'s}) \end{aligned}$$

A useful identity

An Identity

Let X be a random variable distributed $\mathcal{N}(0,1)$ and $\lambda<\frac{1}{2}$ be a constant. Then, $E\left[e^{\lambda X^2}\right]=\frac{1}{\sqrt{1-2\lambda}}$

Proof: PDF of standard normal distribution is $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$.

By definition,
$$E[H(x)] = \int_{-\infty}^{+\infty} H(x)f(x)dx$$

Thus, $E\left[e^{\lambda X^2}\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{\lambda x^2} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-(1-2\lambda)\frac{x^2}{2}} dx$

Substitute $y = x\sqrt{1-2\lambda}$, and we obtain

$$E\left[e^{\lambda X^{2}}\right] = \frac{1}{\sqrt{1-2\lambda}} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{y^{2}}{2}} dy\right]$$

But, $\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{+\infty}e^{-\frac{y^2}{2}}dy=1,$ as this is the area under the Normal distribution curve.

Proof of $Pr(\sum_{i=1}^{k} Y_i^2 \ge (1+\epsilon)k) \le e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}$ (contd.)

We have

$$\begin{aligned} \Pr(\sum_{i=1}^{k} Y_i^2 \ge (1+\epsilon)k) &\leq \frac{E\left[e^{\lambda Y_1^2}\right]^k}{e^{(1+\epsilon)\lambda k}} = e^{-(1+\epsilon)k\lambda} \left(\frac{1}{\sqrt{1-2\lambda}}\right)^k \text{ (using the identity)} \\ \text{Set } \lambda &= \frac{\epsilon}{2(1+\epsilon)} \text{ and we have} \\ \Pr(\sum_{i=1}^{k} Y_i^2 \ge (1+\epsilon)k) &\leq e^{-(1+\epsilon)k\lambda} \left(\frac{1}{\sqrt{1-2\lambda}}\right)^k \\ &= e^{-\frac{\epsilon}{2}k} \left(1+\epsilon\right)^{\frac{k}{2}} \\ &= \left((1+\epsilon)e^{-\epsilon}\right)^{\frac{k}{2}} \\ &\leq e^{-\frac{k}{4}(\epsilon^2-\epsilon^3)} \left(\text{as } 1+\epsilon \le e^{\epsilon-\frac{\epsilon^2-\epsilon^3}{2}}\right) \end{aligned}$$

This finishes the proof of the 1st part of Lemma 2. The proof of 2nd part is similar and is left as an exercise.

Estimating $Pr(\sum_{i=1}^{k} Y_i^2)$

Corollary 1

If
$$k = c \frac{\ln n}{\epsilon^2}$$
, for some constant $c > 4$,
 $Pr((1-\epsilon)k \le \sum_{i=1}^k Y_i^2 \le (1+\epsilon)k) \ge 1 - \frac{1}{n^3}$

Proof: From Lemma 2 we have that

$$\begin{split} ⪻(\sum_{i=1}^{k}Y_{i}^{2}\geq(1+\epsilon)k)\leq e^{-\frac{k}{4}(\epsilon^{2}-\epsilon^{3})} \text{ and } Pr(\sum_{i=1}^{k}Y_{i}^{2}\leq(1-\epsilon)k)\leq e^{-\frac{k}{4}(\epsilon^{2}-\epsilon^{3})}.\\ &\text{Hence } Pr\left((\sum_{i=1}^{k}Y_{i}^{2}\geq(1+\epsilon)k)\vee(\sum_{i=1}^{k}Y_{i}^{2}\leq(1-\epsilon)k)\right)\leq 2e^{-\frac{k}{4}(\epsilon^{2}-\epsilon^{3})} \text{ (by Union Bound)} \end{split}$$

Thus,
$$Pr((1-\epsilon)k \le \sum_{i=1}^{k} Y_i^2 \le (1+\epsilon)k) \ge 1 - 2e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}$$

Substituting, $k=c\frac{\ln n}{\epsilon^2}$ we have that

$$Pr((1-\epsilon)k \le \sum_{i=1}^{k} Y_i^2 \le (1+\epsilon)k) \ge 1 - \frac{1}{n^3}$$
 (bit sloppy computation)

J-L Theorem

Let V be a set of n points in d-dimensions. A mapping $f : \mathbb{R}^d \to \mathbb{R}^k$ can be computed, in randomized polynomial time, so that for all pairs of points $u, v \in V$,

$$(1-\epsilon)||u-v||^{2} \leq ||f(u) - f(v)||^{2} \leq (1+\epsilon)||u-v||^{2},$$

where $0 < \epsilon < 1$ and n, d, and $k \ge 4(\frac{\epsilon^2}{2} - \frac{\epsilon^3}{3})^{-1} \ln n$ are positive integers.

By choosing matrix $A_{k\times d}$ consisting of independent values from $\mathcal{N}(0, \frac{1}{k})$, we show that $\forall u, v \in V$ $Pr((1-\epsilon)||u-v||^2 \leq ||Au - Av||^2 \leq (1+\epsilon)||u-v||^2) \geq 1 - \frac{1}{n}$ **Proof:** By Corollary 1, we know that for any vector $x \in \mathbb{R}^d$, $Pr((1-\epsilon)||x||^2 \le ||Ax||^2 \le (1+\epsilon)||x||^2) \ge 1 - \frac{1}{n^3}$

Consider any pair of points $u, v \in V$. Set x = u - v. Then $Pr((1 - \epsilon)||u - v||^2 \le ||A(u - v)||^2 \le (1 + \epsilon)||u - v||^2) \ge 1 - \frac{1}{n^3}$

There are in all $\binom{n}{2}$ pairs of points in V. By union bound, we have that $\forall u, v \in V$ $Pr((1-\epsilon)||u-v||^2 \le ||Au - Av||^2 \le (1+\epsilon)||u-v||^2) \ge 1 - \frac{1}{n}$

Comments

- 1. Choice of matrix A doesn't depend on points in V
- 2. What properties A needed to satisfy?
- **3.** $E[||Ax||^2] = ||x||^2$
- 4. A is dense \implies Av takes more computation time
- 5. Can we find sparse matrix A? Choose entries of A from $\{-1, 1, 0\}$ with probabilities 1/6, 1/6, and 2/3, respectively and normalize.

6. . . .

References

- 1. Johnson and Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Contemporary Mathematics 26:189-206, 1984.
- Achlioptas, Database-friendly random projections, JCSS 66(4): 671-687, 2003.
- 3. Dasgupta, and Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss" Random Structures & Algorithms, 22 (1): 60-65, 2003.
- 4. Dubhashi and Panconesi, Concentration of Measure for the Analysis of Randomized Algorithms, Cambridge University Press, 2009.
- 5. Matousek, Lectures on Discrete Geometry, Volume 212 of Graduate Texts in Mathematics. Springer, New York, 2002.
- 6. Ankush Moitra Notes