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Metric Space



Metric Space 〈X, d〉

Let X be a set of n-points and let d be a distance measure associated with
pairs of elements in X.
We say that 〈X, d〉 is a finite metric space if the function d satisfies metric
properties, i.e.
(a) ∀x ∈ X, d(x, x) = 0,
(b) ∀x, y ∈ X,x 6= y, d(x, y) > 0,
(c) ∀x, y ∈ X, d(x, y) = d(y, x) (symmetry), and
(d) ∀x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).
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Isometric embedding



Embeddings

Let 〈X, d〉 and 〈X ′, d′〉 be two metric spaces.

Embedding: A map f : X → X ′ is called an embedding.

Isometric embedding (i.e., distance preserving) if for all x, y ∈ X,
d(x, y) = d′(f(x), f(y)).

3-useful distance measures between a pair of points p = (p1, . . . , pk) and
q = (q1, . . . , qk) in <k.

1. L2-norm (Euclidean): ||p− q||2 =

√
k∑
i=1

(pi − qi)2

2. L1-norm (Manhattan): ||p− q||1 =
k∑
i=1

|pi − qi|

3. L∞-norm: ||p− q||∞ = max{|p1 − q1|, . . . , |pk − qk|}
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Motivating Problem

Input: X=Set of n-points in k-dimensional space, where n >> 2k

Output: A pair of points that maximize L1-distance.

Let p = (p1, . . . , pk) and q = (q1, . . . , qk) be two points in <k,

||p− q||1 =
k∑
i=1

|pi − qi|.

For example, ||(3, 5)− (2, 7)||1 = |3− 2|+ |5− 7| = 3.

Naive Solution: Compute distance between every pair of points and find the
pair with largest distance
O(k

(
n
2

)
) = O(kn2) time

Next: An algorithm using isometric embedding of Lk1 → L2k

∞ running in
O(2kn) time
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Isometric embedding f : Lk1 → L2k

∞

Let x = (x1, . . . , xk) ∈ X

Note that ||x||1 =
k∑
i=1

|xi| =
k∑
i=1

sign(xi)xi = sign(x) · x, where sign(x) is the

±1 vector of length k denoting the sign of each coordinate of x.

Claim 1
For any ±1 vector y = (y1, . . . , yk) of length k
||x||1 = sign(x) · x ≥ y · x. Moreover, ||x||1 = max{x · y|y ∈ {−1, 1}k}.

Example:
For x = (−2,−3, 4), ||x||1 = | − 2|+ | − 3|+ |4| = (−1,−1, 1) · (−2,−3, 4) = 9

y · x y · x
(−1,−1,1) · (−2,−3,4) = 9 (−1,−1,−1) · (−2,−3, 4) = 1

(−1, 1, 1) · (−2,−3, 4) = 3 (−1, 1,−1) · (−2,−3, 4) = −5
(1,−1, 1) · (−2,−3, 4) = 5 (1,−1,−1) · (−2,−3, 4) = −3
(1, 1, 1) · (−2,−3, 4) = −1 (1, 1,−1) · (−2,−3, 4) = −9

6



Isometric embedding f : Lk1 → L2k

∞ (contd.)

For each ±1 vector y, define fy : X → < by fy(x) = y · x
For example, f(1,−1,1)((−2,−3, 4)) = (1,−1, 1) · (−2,−3, 4) = 5

Isometric Embedding

Define f : X → <2k to be the concatenation of fy ’s for all possible 2k y′s.

For our example, f(x) = (9, 3, 5,−1, 1,−5,−3,−9) corresponding to 23 = 8

possible values for 3-dimensional vector y.

Let x = (−2,−3, 4) and x′ = (2, 3,−2).

||x− x′||1 = | − 2− 2|+ | − 3− 3|+ |4− (−2)| = 16

f(x′) = (−7,−1,−3, 3,−3, 3, 1, 7).

Observe
||f(x)− f(x′)||∞ = max

y
{|fy(x)− fy(x′)|} = max(|9− (−7)|, |3− (−1)|, |5−

(−3)|, | − 1− 3|, |1− (−3)|, | − 5− 3|, | − 3− 1|, | − 9− 7|) = 16 = ||x− x′||1
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Isometric embedding f : Lk1 → L2k

∞ (contd.)

Isometric Embedding Lemma

Under the mapping f : X → <2k given by the concatenation of fy ’s for all
possible 2k y′s, where fy(x) = y · x, we have that for any two points
x, x′ ∈ X, ||f(x)− f(x′)||∞ = ||x− x′||1

Proof Sketch: ||f(x)− f(x′)||∞ = max
y
{|fy(x)− fy(x′)|} =

max
y
{|y · x− y · x′|} = max

y
{|y · (x− x′)|} = ||x− x′||1, because by Claim 1

||x||1 = max{y · x|y ∈ {−1, 1}k}.
2

In place of finding the furthest pair of points in X with respect to L1 metric we
have the following:

New Problem: Given n points in 2k dimensional space X ′, find the furthest
pair in X ′ with respect to L∞ metric.
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Furthest pair using L∞ metric

New Problem:
Given n points in 2k dimensional space X ′, find the furthest pair in X ′ with
respect to L∞ metric.

max
u,v∈X′

||u− v||∞ = max
u,v∈X′

2k

max
i=1
|ui − vi| =

2k

max
i=1

max
u,v∈X′

|ui − vi|

Fix a coordinate, find the pair of points that maximize the difference with
respect to that coordinate. Among all the coordinates, pick the one that
maximizes the difference.

Observe that max
u,v∈X′

|ui − vi|, for a fixed i, can be computed in O(n) time

=⇒ 2k

max
i=1

max
u,v∈X′

|ui − vi| can be computed in O(2kn) time.

Theorem

Given a set X of n points in <k, by using the isometric embedding
f : Lk1 → L2k

∞ , we can compute the furthest pair of points in X with respect
to L1-metric by computing the furthest pair of points in the embedding with
respect to L∞-metric in O(2kn) time.
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Universality of L∞-metric space

Universality of L∞-metric space
Let 〈X, d〉 be any finite metric space, where n = |X|. X can be isometrically
embedded into L∞-metric space of dimension n.

Proof Sketch: Let X = {x1, . . . , xn}. For each point x ∈ X, define
f(x) = (d(x, x1), . . . , d(x, xn)).

a b

c
d

1

2

3

3

For example, let X = {a, b, c, d}, and we have

f(a) = (d(a, a), d(a, b), d(a, c), d(a, d)) = (0, 2, 1, 2)

f(b) = (d(b, a), d(b, b), d(b, c), d(b, d)) = (2, 0, 3, 5) d(b, d) = ||f(b)− f(d)||∞ = 5

f(c) = (d(c, a), d(c, b), d(c, c), d(c, d)) = (1, 3, 0, 3) d(a, d) = ||f(a)− f(d)||∞ = 3

f(d) = (d(d, a), d(d, b), d(d, c), d(d, d)) = (3, 5, 3, 0)

10



Universality of L∞-metric (contd.)

Claim
For any pair of points u, v ∈ X, we have d(u, v) = ||f(u)− f(v)||∞

Proof of Claim:

||f(u)− f(v)||∞ = max
x∈X
|d(u, x)− d(v, x)|

≤ d(u, v) by triangle inequality

But, max
x∈X
|d(u, x)− d(v, x)| ≥ |d(u, u)− d(v, u)| = d(u, v)

=⇒ ||f(u)− f(v)||∞ = d(u, v)

2

Thus, the mapping of elements of x ∈ X given by
f(x) = (d(x, x1), . . . , d(x, xn)) under L∞-norm is universal.

2
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Euclidean Metric

Input: Metric Space defined by K4, C4, and a star w.r.t. unweighted SP.
Question: Can one embed 4-points in Euclidean space (L2) in any
dimension isometrically?

(1, 0, 0)
(0, 0, 0)

(1/2,
√
3/2, 0)

(1/2, 1/2
√
3,
√
2/3)

? ?

Embedded in R3

12



Distortion



Distortion

Contraction: Is the maximum factor by which the distances shrink and it
equals max

x,y∈X
d(x,y)

d′(f(x),f(y))
.

Expansion: Is the maximum factor by which the distances are stretched and
it equals max

x,y∈X
d′(f(x),f(y))

d(x,y)
.

Distortion: of an embedding is the product of its expansion and contraction
factor.
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L∞ Norm



〈X, d〉 D↪→ L
k=O(Dn

2
D logn)

∞

Input: A metric space 〈X, d〉, where X is a set of n-points and let d satisfies
the metric properties.
Output: An embedding of X in a k = O(Dn

2
D logn) dimensional space such

that the distances gets distorted (actually contracted) by a factor of at most D
under L∞ norm.

We denote this embedding by the following notation:

〈X, d〉 D↪→ Lk=O(Dn
2
D logn)

∞

Note, when D = O(logn), we have

〈X, d〉
logn
↪→ Lk=O(log2 n)

∞

I.e. we can embed any metric space in O(log2 n) dimensional L∞-metric
space and the distances are distorted by a factor of O(logn).
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〈X, d〉 D↪→ L
k=O(Dn

2
D logn)

∞ (contd.)

Let x, y ∈ X and let f(x), f(y) be their embedding in the k-dimensional
space, respectively.

Property
The distances gets contracted by a factor of at most D ≥ 1. Formally,
maxx,y∈X

d(x,y)
||f(x)−f(y)||∞ ≤ D

Example: If D = O(logn), k = O(log2 n), i.e. 〈X, d〉
O(logn)
↪→ L

O(log2 n)
∞

Meaning: Any metric space 〈X, d〉 can be embedded in a
O(log2 n)-dimensional space and the distances may distort (contract) by a
factor of at most O(logn).

Space Saving Embedding: 〈X, d〉, where n = |X|, may require O(n2) space
to capture distances between pairs of points. Whereas, in the mapped k-
dimensional space, we only need to store k = O(log2 n) coordinates for each
point, thus requiring a total of O(n log2 n) space.
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Proof of 〈X, d〉 D↪→ L
k=O(Dn

2
D logn)

∞

Constructive proof via a randomized algorithm.

Definition
Let S ⊆ X. For x ∈ X, define the distance of x from the set S as
d(x, S) = min

z∈S
d(x, z)

x′

y′

x

y

S

d(x, S)

d(y, S)

Claim 1
Let x, y ∈ X. For all S ⊆ X, |d(x, S)− d(y, S)| ≤ d(x, y).
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Proof of Claim 1

Claim 1
Let x, y ∈ X. For all S ⊆ X, |d(x, S)− d(y, S)| ≤ d(x, y).

Proof:

x′

y′

x

y

S

d(x, S)

d(y, S)

Let |d(x, S)− d(y, S)| = |d(x, x′)− d(y, y′)|.

If d(x, x′) ≥ d(y, y′)

d(x, x′)− d(y, y′) ≤ d(x, y′)− d(y′, y) ≤ d(x, y) (by triangle inequality)
else d(y, y′)− d(x, x′) ≤ d(y, x′)− d(x, x′) ≤ d(x, y).

Thus, |d(x, S)− d(y, S)| = |d(x, x′)− d(y, y′)| ≤ d(x, y).
2

=⇒ Distance to a subset amounts to contraction.
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Proof Contd.

Definition
(Mapping) Let x ∈ X. Let S1, S2, · · · , Sk ⊆ X. The mapping f maps x to
the point

f(x) = {d(x, S1), d(x, S2), · · · , d(x, Sk)}.

Claim 2
Let S1, S2, · · · , Sk ⊆ X. For any pair of points x, y ∈ X,
||f(x)− f(y)||∞ ≤ d(x, y).

Proof: Follows from Claim 1, as for each 1 ≤ i ≤ k,
|d(x, Si)− d(y, Si)| ≤ d(x, y).

2
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Randomized Algorithm

Input: Metric space 〈X, d〉 and an integer parameter D.
Output: A set of O(Dm) subsets of X.

1. p← min( 1
2
, n−

2
D )

2. m← O(n
2
D logn)

3. For j ← 1 to dD
2
e and

For i← 1 to m:
Choose set Sij by sampling each element of X independently with
probability pj

4. For each x ∈ X return f(x) = [d(x, S11), · · · d(x, Sm1),

d(x, S12), · · · , d(x, Sm2), · · · d(x, S1dD
2
e), · · · , d(x, SmdD

2
e)]
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Intuition

• Each point x ∈ X is embedded in k = O(Dm) dimensional space via
the mapping f(x).

• By Claim 2, for any pair of points x, y ∈ X, ||f(x)− f(y)||∞ ≤ d(x, y),
i.e. the distance shrinks.

• Fix a pair of points x, y ∈ X. We will prove a key lemma that states the
following: There exists an index j ∈ {1, · · · , dD

2
e} such that if Sij is as

chosen in the Algorithm, than Pr
[
||f(x)− f(y)||∞ ≥ d(x,y)

D

]
≥ p

12
.

In other words, under the L∞-norm in the k-dimensional space, the
distance doesn’t shrink a lot!

• For index j we have m trials. So the probability that the above statement
doesn’t hold for all the m trials is ≤ (1− p

12
)m ≤ e−

pm
12 ≤ 1

n2 . This follows
from the choice of p and m as p← min( 1

2
, n−

2
D ) and m← O(n

2
D logn).

• We will apply the union bound to show that the above statement holds
for all pairs of points with probability at least 1/2.
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An Observation

Observation 1
Let x, y be two distinct points of X. Let B(x, r) be the set of points of X that
are within a distance of r from x (think of B(x, r) as a ball of radius r
centred at x). Similarly, let B(y, r + ∆) be the set of points of X that are
within a distance of r + ∆ from y. Consider a subset S ⊂ X such that
S ∩B(x, r) 6= ∅ and S ∩B(y, r + ∆) = ∅. Then |d(x, S)− d(y, S)| ≥ ∆.

B(x, r)
B(y, r + ∆)

r
r + ∆

x
y

S

Proof: d(x, S) ≤ r as S ∩B(x, r) 6= ∅

d(y, S) ≥ r + ∆ as S ∩B(y, r + ∆) = ∅

=⇒ |d(x, S)− d(y, S)| ≥ ∆

2
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Ball Properties

Let x, y ∈ X. Set ∆ = d(x,y)
D

.

Balls centred at x and y
For i = 0, · · · , dD

2
e, define balls of radius i∆ as follows.

Let B0 = {x}.
B1 be the ball of radius ∆ centred at y.
B2 is the ball of radius 2∆ centred at x.
B3 is the ball of radius 3∆ centred at y.
B4 is the ball of radius 4∆ centred at x .
. . .

. . .

x y

B2
B4 B3

B5
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Properties of Balls

Property I
No balls centred at x overlaps with any of the balls centred at y.

Proof: Furthest point balls centred at x can reach is at distance ≤ dD
2
e∆.

Similarly, furthest point balls centred at y can reach is at distance
≤ (dD

2
e − 1)∆.

But dD
2
e∆ + (dD

2
e − 1)∆ = 2dD

2
e∆−∆ < d(x, y), as ∆ = d(x,y)

D

2

x y

B2
B4 B3

B5
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Ball Properties (contd.)

For even (odd) i, let |Bi| denote the number of points of X that are within a
distance of at most i∆ from x (respectively, y).

Property II

There is an index t ∈ {0, · · · , dD
2
e − 1}, such that |Bt| ≥ n

2t
D and

|Bt+1| ≤ n
2(t+1)
D

Proof: Proof by contradiction.

t = 0: Since |B0| = 1 =⇒ |B1| > n
2
D

t = 1: If |B1| > n
2
D =⇒ |B2| > n

4
D

t = 2: If |B2| > n
4
D =⇒ |B3| > n

6
D

. . .

t = dD
2
e − 1: If |Bt| > n

2t
D =⇒ |BdD

2
e| > n

2dD
2
e

D ≥ n

But no ball can contain more than |X| = n points. A contradiction.
2
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Ball Properties (contd.)

Let t be the index such that |Bt| ≥ n
2t
D and |Bt+1| ≤ n

2(t+1)
D

Consider when j = t+ 1 in the Algorithm.

Property III
The set Sij chosen by the algorithm has non-empty intersection with Bt
with probability at least p/3, and it avoids Bt+1 with probability at least 1/4.

Define two events:
Event E1: Sij ∩Bt 6= ∅.
Event E2: Sij ∩Bt+1 = ∅.
We will show that Pr(E1) ≥ p/3 and Pr(E2) ≥ 1/4.

By Property I, the balls Bt and Bt+1 are disjoint.
Thus, Pr(E1 ∧ E2) = Pr(E1)Pr(E2).
=⇒ Pr(E1 ∧ E2) ≥ p

12
.
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Event E1

Event E1

Pr(Sij ∩Bt 6= ∅) ≥ p/3

Proof:

Pr(E1) = 1− Pr(Sij ∩Bt = ∅)

= 1− (1− pj)|Bt| (No element of Bt is chosen in Sij)

= 1− (1− pj)n
2(j−1)
D

≥ 1− e−p
jn

2(j−1)
D

= 1− e−p
jn

2
D
j
n
− 2
D

= 1− e−n
− 2
D (As p = n−

2
D )

= 1− e−p

If p < 1
2
, 1− e−p ≥ p/3.

2
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Event E2

Event E2

Pr(Sij ∩Bt+1 = ∅) ≥ 1/4

Proof:

Pr(E2) = Pr(Sij ∩Bt+1 = ∅)

= 1− (1− pj)|Bt+1|

≥ 1− (1− pj)n
2j
D

= (1− pj)
1
pj

If pj < 1
2
, (1− pj)

1
pj ≥ 1

4
.

The function (1− pj)
1
pj achieves minimum at pj = 0 or pj = 1

2
, and in both

the cases it is ≥ 1
4
.

2
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Key Lemma

Lemma

Let x, y be two distinct points of X. There exists an index j ∈ {1, · · · , dD
2
e}

such that if Sij is as chosen in the Algorithm, than
Pr
[
||f(x)− f(y)||∞ ≥ d(x,y)

D

]
≥ p

12

1. p← min( 1
2
, n−

2
D )

2. m← O(n
2
D logn)

3. For j ← 1 to dD
2
e and

For i← 1 to m:
Choose set Sij by sampling each element of X independently with
probability pj

4. For each x ∈ X return f(x) = [d(x, S11), · · · d(x, Sm1),

d(x, S12), · · · , d(x, Sm2), · · · d(x, S1dD
2
e), · · · , d(x, SmdD

2
e)]
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Proof of Key Lemma

Fix x, y ∈ X. We know that ∆ = d(x,y)
D

.

By Property II, there is a value of t ∈ {0, . . . , dD
2
e − 1}, such that |Bt| is

sufficiently large and |Bt+1| is not too big. Choose j = t+ 1.

By Property III, the probability that Sij chosen by the algorithm overlaps with
Bt and avoids Bt+1 completely is at least p/12.

What is the probability that none of the m trials are good for that value of j?

≤ (1− p

12
)m ≤ e−

pm
12 ≤ 1

n2

as p = min( 1
2
, n−

2
D ) and m = O(n

2
D logn).

2
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Main Theorem

〈X, d〉 D↪→ L
k=O(Dn

2
D logn)

∞

Proof: For a fix pair of points x, y ∈ X, by the key lemma ,we have that there
exists an index j ∈ {1, · · · , dD

2
e} such that if Sij is as chosen in the

Algorithm, than Pr
[
||f(x)− f(y)||∞ ≥ d(x,y)

D

]
≥ p

12
.

Moreover, as stated above, that this doesn’t hold for all the m choices of Sij
is with probability at most 1

n2 .

Since in all we have
(
n
2

)
pairs of points in X, the probability of failure by the

union bound is at most 1
2
.

=⇒ probability of succeeding is ≥ 1
2

2
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Corollaries



Corollary 1: 〈X, d〉
Θ(logn)
↪→ L

O(log2 n)
∞

Corollary 1

〈X, d〉
Θ(logn)
↪→ L

O(log2 n)
∞

Proof: Set D = Θ(logn), in the Theorem 〈X, d〉 D↪→ L
k=O(Dn

2
D logn)

∞ and we

obtain 〈X, d〉
Θ(logn)
↪→ L

O(log2 n)
∞ .

2
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Corollary 2: 〈X, d〉
log2 n
↪→ L

O(log2 n)
1

Corollary 2

〈X, d〉
log2 n
↪→ L

O(log2 n)
1

Proof: Let k = O(log2 n) be the dimension of embedding.
For a pair of points x, y ∈ X, we have ||f(x)− f(y)||1 ≤ kd(x, y) (it holds for
each coordinate).

In the Theorem, for a pair x, y ∈ X, we know that there is at least one set
which is good, i.e., with probability ≥ 1− 1/n2, ||f(x)− f(y)||∞ ≥ d(x,y)

Θ(logn)
.

Extend the machinery in the Theorem to show that with high probability there
are logn sets that are good by choosing slightly larger value for m (but still of
order of O(logn)). If this is the case, then
||f(x)− f(y)||1 ≥ logn d(x,y)

Θ(logn)
= Θ(d(x, y))

Thus we have Θ(d(x, y)) ≤ ||f(x)− f(y)||1 ≤ kd(x, y), and hence we have a
mapping with distortion O(log2 n).

2
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Corollary 3: 〈X, d〉
log1.5 n
↪→ L

O(log2 n)
2

Corollary 3

〈X, d〉
log1.5 n
↪→ L

O(log2 n)
2

Proof: Let k = O(log2 n) be the dimension of embedding. Observe that for
the same embedding as in Corollary 1, for a pair of points x, y ∈ X, we have

||f(x)− f(y)||2 =
√∑

(d(x, Sij)− d(y, Sij))2 ≤
√
kd(x, y)

We can show,

||f(x)− f(y)||2 =
√∑

(d(x, Sij)− d(y, Sij))2

≥

√
logn(

d(x, y)

Θ(logn)
)2

≥ d(x, y)

Θ(
√

logn)

This results in a total distortion of O(log1.5 n).
2
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Normal Distribution

Normal Distribution

Random variable X has a Normal Distribution N (µ, σ2), with mean µ and
standard deviation σ > 0, if its probability density function is of the form
f(x) = 1√

2πσ
e−

1
2

( x−µ
σ

)
2

,−∞ < x <∞

Example: Plot of N (0, 1) and N (1, 0.75)

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5
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Normal Distribution (contd.)

If X has a Normal distribution N (µ, σ2), than aX + b has a Normal
distribution N (aµ+ b, a2σ2), for constants a, b.

The distribution N (0, 1), with pdf 1√
2π
e−

x2

2 , is referred to as the standardized
normal distribution.

Sum of Normal Distributions

Let X and Y be independent r.v. with Normal distributions N (µ1, σ
2
1) and

N (µ2, σ
2
2). Let r.v. Z = X + Y .

Z has a Normal distribution N (µ1 + µ2, σ
2
1 + σ2

2).
The sum of two independent Normal distributions is a Normal distribution.
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L2 Norm - Johnson-Lindenstrauss
Theorem



Johnson-Lindenstrauss Theorem

Johnson-Lindenstrauss Theorem

Let V be a set of n points in d-dimensions. A mapping f : Rd → Rk can be
computed, in randomized polynomial time, so that for all pairs of points
u, v ∈ V ,

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2,

where 0 < ε < 1 and n, d, and k ≥ 4( ε
2

2
− ε3

3
)−1 lnn are positive integers.

Comments:

• The function f maps points of V to a O( lnn
ε2

)-dimensional space from a
d-dimensional space such that the distortion is within a factor of 1± ε.
• || · || is with respect to Euclidean distance

• Function f is defined in terms of a matrix Ak×d with entries from Normal
distribution N (0, 1

k
).

• A point v ∈ <d is mapped to the point v′ = Av. Note that v′ ∈ <k.
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Matrix with entries from Normal distribution

- Let A be k × d dimensional matrix, where its entries are chosen
independently from N (0, 1

k
).

- Let x be a vector in Rd.

- Consider the k-dimensional vector Ax

- Next we show that the expected squared length of the vector ||Ax||2 is ||x||2.

Expected squared length

Lemma 1: E[||Ax||2] = ||x||2

Proof: Assume z = Ax, where z = (z1, . . . , zk) ∈ <k. We want to show that
E[||z||2] = ||x||2.

Note that ||z||2 =
k∑
i=1

z2
i .

Consider the first coordinate z1 of z.

Note that z1 =
d∑
i=1

A1ixi. What is the distribution of r.v. z1?
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Proof of E[||Ax||2] = ||x||2 (contd.)

1. Recall that if X has a Normal distribution N (0, σ2), aX has a Normal
distribution N (0, a2σ2), for a constant a. Moreover, the sum of two
independent r.v. with Normal distributions N (0, σ2

1) and N (0, σ2
2) has a

Normal distribution N (0, σ2
1 + σ2

2).

2. Since each A1i is distributed independently by N (0, 1
k

). The distribution

of z1 =
d∑
i=1

A1ixi is the same as the sum of d independent Normal

distributions (where each of them have an associated scalar xi).

3. Thus, z1 has N (0,

d∑
i=1

x2i

k
) = N (0, ||x||

2

k
) distribution.

4. Consider ||z||2 = ||Ax||2 = z2
1 + . . .+ z2

k, where zi has N (0, ||x||
2

k
)

distribution.

5. What is E[||z2||]?
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Proof of E[||Ax||2] = ||x||2

1. E[||z2||] = E[z2
1 + . . .+ z2

k] = kE[z2
1 ]

2. By definition: V ar[z1] = E[z2
1 ]− E[z1]2.

But z1 has N (0, ||x||
2

k
) distribution

=⇒ V ar[z1] = ||x||2
k

and E[z1] = 0.

=⇒ E[z2
1 ] = V ar[z1] = ||x||2

k

3. Therefore, E[||z2] = E[z2
1 + . . .+ z2

k] = kE[z2
1 ] = ||x||2

2
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How good is the estimate E[||Ax||2] = ||x||2?

Is E[||Ax||2] = ||x||2 a good bound

Estimate Pr(||Ax||2 ≥ (1 + ε)||x||2) and Pr(||Ax||2 ≤ (1− ε)||x||2), for
ε ∈ (0, 1).

We know that Pr(||Ax||2 ≥ (1 + ε)||x||2) = Pr(
k∑
i=1

z2
i ≥ (1 + ε)||x||2), where

zi is a random variable with distribution N (0, ||x||
2

k
).

Set Yi =
√
k

||x||zi.

Since zi has distribution N (0, ||x||
2

k
), Yi has distribution N (0, 1)

In the expression Pr(
k∑
i=1

z2
i ≥ (1 + ε)||x||2), divide by ||x||

2

k
, and we obtain

Pr(
k∑
i=1

Y 2
i ≥ (1 + ε)k).

New Problem

Estimate Pr(
k∑
i=1

Y 2
i ≥ (1 + ε)k), where Yi has a N (0, 1) distribution.
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Estimating Pr(
k∑
i=1

Y 2
i )

Lemma 2

1. Pr(
k∑
i=1

Y 2
i ≥ (1 + ε)k) ≤ e−

k
4

(ε2−ε3)

2. Pr(
k∑
i=1

Y 2
i ≤ (1− ε)k) ≤ e−

k
4

(ε2−ε3)

Proof of 1:

Pr(

k∑
i=1

Y 2
i ≥ (1 + ε)k) = Pr(e

λ
k∑
i=1

Y 2
i ≥ e(1+ε)λk) (for λ > 0)

≤

E

eλ k∑
i=1

Y 2
i


e(1+ε)λk

(applying Markov’s Inequality)

=
E
[
eλY

2
1

]k
e(1+ε)λk

(Independence of Yi’s)
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A useful identity

An Identity

Let X be a random variable distributed N (0, 1) and λ < 1
2

be a constant.

Then, E
[
eλX

2
]

= 1√
1−2λ

Proof: PDF of standard normal distribution is f(x) = 1√
2π
e−

x2

2 .

By definition, E[H(x)] =
+∞∫
−∞

H(x)f(x)dx

Thus, E
[
eλX

2
]

= 1√
2π

+∞∫
−∞

eλx
2

e−
x2

2 dx = 1√
2π

+∞∫
−∞

e−(1−2λ) x
2

2 dx

Substitute y = x
√

1− 2λ, and we obtain

E
[
eλX

2
]

= 1√
1−2λ

[
1√
2π

+∞∫
−∞

e−
y2

2 dy

]

But, 1√
2π

+∞∫
−∞

e−
y2

2 dy = 1, as this is the area under the Normal distribution

curve.
2
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Proof of Pr(
k∑
i=1

Y 2
i ≥ (1 + ε)k) ≤ e− k4 (ε2−ε3) (contd.)

We have

Pr(
k∑
i=1

Y 2
i ≥ (1 + ε)k) ≤

E

[
eλY

2
1

]k
e(1+ε)λk

= e−(1+ε)kλ
(

1√
1−2λ

)k
(using the identity)

Set λ = ε
2(1+ε)

and we have

Pr(

k∑
i=1

Y 2
i ≥ (1 + ε)k) ≤ e−(1+ε)kλ

(
1√

1− 2λ

)k
= e−

ε
2
k (1 + ε)

k
2

=
(
(1 + ε)e−ε

) k
2

≤ e−
k
4

(ε2−ε3) (as 1 + ε ≤ eε−
ε2−ε3

2 )

This finishes the proof of the 1st part of Lemma 2. The proof of 2nd part is
similar and is left as an exercise.

2
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Estimating Pr(
k∑
i=1

Y 2
i )

Corollary 1

If k = c lnn
ε2

, for some constant c > 4,

Pr((1− ε)k ≤
k∑
i=1

Y 2
i ≤ (1 + ε)k) ≥ 1− 1

n3

Proof: From Lemma 2 we have that

Pr(
k∑
i=1

Y 2
i ≥ (1 + ε)k) ≤ e−

k
4

(ε2−ε3) and Pr(
k∑
i=1

Y 2
i ≤ (1− ε)k) ≤ e−

k
4

(ε2−ε3).

Hence Pr
(

(
k∑
i=1

Y 2
i ≥ (1 + ε)k) ∨ (

k∑
i=1

Y 2
i ≤ (1− ε)k)

)
≤ 2e−

k
4

(ε2−ε3) (by

Union Bound)

Thus, Pr((1− ε)k ≤
k∑
i=1

Y 2
i ≤ (1 + ε)k) ≥ 1− 2e−

k
4

(ε2−ε3)

Substituting, k = c lnn
ε2

we have that

Pr((1− ε)k ≤
k∑
i=1

Y 2
i ≤ (1 + ε)k) ≥ 1− 1

n3 (bit sloppy computation)

2
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Back to J-L Theorem

J-L Theorem

Let V be a set of n points in d-dimensions. A mapping f : Rd → Rk can be
computed, in randomized polynomial time, so that for all pairs of points
u, v ∈ V ,

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2,

where 0 < ε < 1 and n, d, and k ≥ 4( ε
2

2
− ε3

3
)−1 lnn are positive integers.

By choosing matrix Ak×d consisting of independent values from N (0, 1
k

), we
show that ∀u, v ∈ V
Pr((1− ε)||u− v||2 ≤ ||Au−Av||2 ≤ (1 + ε)||u− v||2) ≥ 1− 1

n
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Proof of J-L Theorem

Proof: By Corollary 1, we know that for any vector x ∈ Rd,
Pr((1− ε)||x||2 ≤ ||Ax||2 ≤ (1 + ε)||x||2) ≥ 1− 1

n3

Consider any pair of points u, v ∈ V . Set x = u− v. Then
Pr((1− ε)||u− v||2 ≤ ||A(u− v)||2 ≤ (1 + ε)||u− v||2) ≥ 1− 1

n3

There are in all
(
n
2

)
pairs of points in V .

By union bound, we have that ∀u, v ∈ V
Pr((1− ε)||u− v||2 ≤ ||Au−Av||2 ≤ (1 + ε)||u− v||2) ≥ 1− 1

n

2
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Comments

1. Choice of matrix A doesn’t depend on points in V

2. What properties A needed to satisfy?

3. E[||Ax||2] = ||x||2

4. A is dense =⇒ Av takes more computation time

5. Can we find sparse matrix A?
Choose entries of A from {−1, 1, 0} with probabilities 1/6,1/6, and 2/3,
respectively and normalize.

6. . . .
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