
Hashing

Anil Maheshwari

anil@scs.carleton.ca
School of Computer Science
Carleton University
Canada

1

Outline

Introduction

Hash Tables

Universal Hashing

Perfect Hashing

References

2

Introduction

Problem

Input
Universe U = {0, 1, 2, . . . ,m− 1} of m possible distinct keys.
S = A subset of n records that have keys from U .
Records in S have distinct keys.

Operations on S
INSERT(S, x): S ← S ∪ {x}
DELETE(S, x): S ← S \ {x}
SEARCH(S, k): Returns the record x if key(x) = k, otherwise NIL

Objective
Construct a hash map (a data structure)
h : U → [O(n)], where n = |S|.
For all subset of n keys of U , the number of memory access required for
INSERT, DELETE, and SEARCH is O(1).

3

Possible Approaches

BST
Binary Search Tree storing elements of S with respect to their keys.

Time/operation = O(log |S|) with O(|S|) storage.

4

Possible Approaches

Direct Access Table T [0, . . . ,m− 1]

Set T [k] =

x if x ∈ S and key[x] = k

NIL, otherwise

INSERT(S, x): T [key(x)]← x

DELETE(S, x): T [key(x)] = NIL

SEARCH(S, k): Return T (k)

All operations cost O(1) time and uses O(|U |) storage.
Effective when |S| ≈ |U |

5

Hash Tables

Hashing with Chaining

Hash Table
Hash function h : U → [0, . . . , n− 1] maps keys of U to random slots in
hash table T

7 12
3

7 12 3 −

T

S

U

−

−

Collisions
When multiple records (i.e. keys) map to the same slot of table T by the
hash function h.

Chaining
Form a link list (chain) of all the records that are mapped to the same slot.

6

Analysis of Hashing with Chaining

Worst Case: All keys map to same slot =⇒ SEARCH takes Θ(n) time.

Average Case: Assume that each key is equally likely to hash to any slot.

Load Factor α = |S|
|T | = n

m
= Average # Keys/slot

E[Time to search for an element 6∈ S] = Θ(1 + α)

If n = O(m), α ∈ O(1) and E[Search Time] = Θ(1)

Question: How to find hash functions that can distribute keys uniformly in
slots of the table, irrespective of the distribution of keys?

7

Division Method

Assume size of table m is prime. If not, find a prime p ∈ {m, 2m}.

For any key k ∈ U , h(k) = k mod m

Example: For m = 101, h(220) = 220 mod 101 = 18

Issues: Sensitive to distribution of keys.

8

Multiplication Method

Let 0 < A < 1.

h(k) = bm(kA mod 1)e = bm(kA− bkAc)c

Let A = (
√

5− 1)/2 = 0.618 (connected to Golden Ratio), m = 28, and
k = 220.

h(220) = b28(kA− bkAc)c

= b28(220 ∗ .618− b220 ∗ 0.618c)c

= b28(135.96− 135)c

= b28(.96)c

= 245

Issue: Sensitive to key distribution

9

Universal Hashing

Universal Hashing

Question: How to find hash functions that can distribute keys uniformly in
slots of the table, irrespective of the distribution of keys?

+
This should hold even if an adversary knows your hash function!

Approach: Choose a hash function h uniformly at random from a family of
hash functions H.

Universal Family H
Let H be a finite collection of hash functions from U → {0, . . . ,m− 1}. The
family H is universal if ∀x, y ∈ U , x 6= y, |h ∈ H : h(x) = h(y)| = |H|

m

Equivalently,

Universal Family H
If h is chosen uniformly at random from H, Pr[h(x) = h(y)] = 1

m
.

10

Expected Number of Collisions

Claim
Choose h ∈ H uniformly at random. Use h to hash the records
corresponding to the set of n keys of the universe U into m slots of the
table. For a given record x, expected number of collisions with x in the table
is < α = n

m
= Load Factor

Proof: For each record y corresponding to the set of n keys, define an

indicator r.v. Iy =

1, if h(x) = h(y)

0, otherwise

E[Iy] = Pr(Iy = 1) = 1
m

Define C =
∑

y,y 6=x

Iy = Total number of collisions with x

E[C] = E[
∑

y,y 6=x

Iy] = n−1
m

< α

2

=⇒ Cost per INSERT, SEARCH, DELETE operation ≈ α

11

Construction of a Universal Hash Family

A Universal Hash Family
Let m be prime, otherwise replace it by a prime in the range {m, 2m}. Let
a = (a0, a1, a2, . . . , ar) be a (r + 1)-digit base m number, where each
ai ∈ {0, 1, 2, . . . ,m− 1} is chosen uniformly at random. Define mr+1 hash
functions indexed by a as the hash family H

Express a key k as a (r + 1)-digit number in base m, i.e.
k = (k0, k1, k2, . . . , kr), where 0 ≤ ki ≤ m− 1.

How does a hash function ha ∈ H map key k to an index the table?

ha(k) = a · k mod m =
r∑

i=0

aiki mod m

12

Universality of H

H is Universal
The set of hash functions H = {ha(k)} is universal.

Proof: To show universality, we need to show that the number of hash
functions in H that map any two distinct keys k and l to same slot is ≤ |H|

m

Let k = (k0, . . . , kr) and l = (l0, . . . , lr) be the base m representation of k
and l.

Since k 6= l, ∃ and index i such that ki 6= li

WLOG, let i = 0, i.e. k0 6= l0

Let us estimate for how many hash functions ha ∈ H, ha(k) = ha(l).

For that to happen,
r∑

i=0

aiki ≡
r∑

i=0

aili (mod m)

=⇒
r∑

i=0

ai(ki − li) ≡ 0 mod m,

⇔ a0(k0 − l0) +
r∑

i=1

ai(ki − li) ≡ 0 mod m

13

Proof contd.

⇔ a0(k0 − l0) +
r∑

i=1

ai(ki − li) ≡ 0 mod m

⇔ a0(k0 − l0) ≡ −
r∑

i=1

ai(ki − li) mod m

⇔ a0 ≡
(
−

r∑
i=1

ai(ki − li)
)

(k0 − l0)−1 mod m

Number Theory Fact

Let m be prime. For any non-zero x ∈ Zm, ∃ a unique z−1 ∈ Zm such that
zz−1 ≡ 1 mod m

=⇒ For k and l to hash to same slot,

a0 ≡
(
−

r∑
i=1

ai(ki − li)
)

(k0 − l0)−1 mod m.

How many choices of a′s can satisfy the above?

We have m choices for each of a1, . . . , ar, and only one choice for a0.

=⇒ #a′s satisfying (ha(k) = ha(l)) = mr = |H|
m

2
14

Perfect Hashing

Membership Queries for a Static Set

Given n-keys, construct a static hash table of size m = O(n) such that
SEARCH takes O(1) time in the worst case.

7 12
3

7 12 3 −

T

S

U

−

−

2-Level Scheme
1st Level: Use a random hash function from universal family to map keys
into a table of size n.

2nd Level: If si elements are mapped to slot i of 1st level table, create a
secondary Hash Table for these elements of size s2i using another random
hash function from universal family.

15

Analysis

E[# Collisions]
Expected number of collisions when n items are hashed to a table of size
m = n2 by a random hash function h from a universal family of hash
functions is < 1

2
.

Proof: For any pair of keys x and y, Pr[h(x) = h(y)] = 1
m

.

We have
(
n
2

)
pairs.

E[#Collisions] = 1
m

(
n
2

)
= n(n−1)

2m
< 1

2

2

Pr(No Collisions)

Probability that there no collisions is > 1
2

Proof: Consider complementary event. By Markov’s inequality
(Pr(X ≥ t) ≤ E[X]

t
), we have that Pr(#Collisions ≥ 1) ≤ E[#Collisions]

1
< 1

2
.
2

16

An Identity

An Identity
Let si be the number of elements hashed into the slot i of 1st level table.
Then E[s2i] = 2− 1

n

Proof: Let xk =

1, if key k is placed in slot i in level 1 table

0, otherwise

Observe that si =
∑

k∈key
xk

E[s2i] = E

[(
n−1∑
k=0

xk

)(
n−1∑
j=0

xj

)]
= E

[
n−1∑
k=0

n−1∑
j=0

xkxj

]
=

E

[
n−1∑
k=0

x2k +
∑ ∑

k 6=j

xkxj

]
Note E[x2k] = 1

n
, and for j 6= k, E[xkxj] = E[xk]E[xj] = 1

n2

Therefore, E[s2i] =
n−1∑
k=0

1
n

+
∑ ∑

j 6=k

1
n2 = 2− 1

n

2

17

Analysis of Table Size

Size of 1st level Table = n.

E[Size of 2nd Level Table] = E
[

n∑
i=1

s2i

]

E

[
n∑

i=1

s2i

]
=

n∑
i=1

E[s2i]

=

n∑
i=1

(
2− 1

n

)
= O(n)

18

2-level Hash Table Contd.

Expected Lookup Time:

E[Time for 1st Level + Time for 2nd Level]
= 1 +O(1) = O(1)

Expected Space Used:

E[Hash functions + 1st Level + 2nd Level]

= (n+ 1) + n+
n∑

i=1

E[s2i] = O(n)

Suppose E[Space Used] ≤ 6n.
By Markov’s inequality, Pr(Actual Space Used > 12n) ≤ 6n

12n
= 1

2

19

References

References

1. Probability and Computing (Chapter 13) by Mitzenmacher and Upfal,
Cambridge Univ. Press 2005.

2. Introduction to Algorithms (Chapter 11), Cormen, Leiserson, Rivest and
Stein, MIT Press 2009.

20

	Introduction
	Hash Tables
	Universal Hashing
	Perfect Hashing
	References

