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Introduction



Problem

Input
Universe U = {0, 1, 2, . . . ,m− 1} of m possible distinct keys.
S = A subset of n records that have keys from U .
Records in S have distinct keys.

Operations on S
INSERT(S, x): S ← S ∪ {x}
DELETE(S, x): S ← S \ {x}
SEARCH(S, k): Returns the record x if key(x) = k, otherwise NIL

Objective
Construct a hash map (a data structure)
h : U → [O(n)], where n = |S|.
For all subset of n keys of U , the number of memory access required for
INSERT, DELETE, and SEARCH is O(1).
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Possible Approaches

BST
Binary Search Tree storing elements of S with respect to their keys.

Time/operation = O(log |S|) with O(|S|) storage.
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Possible Approaches

Direct Access Table T [0, . . . ,m− 1]

Set T [k] =

x if x ∈ S and key[x] = k

NIL, otherwise

INSERT(S, x): T [key(x)]← x

DELETE(S, x): T [key(x)] = NIL

SEARCH(S, k): Return T (k)

All operations cost O(1) time and uses O(|U |) storage.
Effective when |S| ≈ |U |
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Hash Tables



Hashing with Chaining

Hash Table
Hash function h : U → [0, . . . , n− 1] maps keys of U to random slots in
hash table T
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Collisions
When multiple records (i.e. keys) map to the same slot of table T by the
hash function h.

Chaining
Form a link list (chain) of all the records that are mapped to the same slot.
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Analysis of Hashing with Chaining

Worst Case: All keys map to same slot =⇒ SEARCH takes Θ(n) time.

Average Case: Assume that each key is equally likely to hash to any slot.

Load Factor α = |S|
|T | = n

m
= Average # Keys/slot

E[Time to search for an element 6∈ S] = Θ(1 + α)

If n = O(m), α ∈ O(1) and E[Search Time] = Θ(1)

Question: How to find hash functions that can distribute keys uniformly in
slots of the table, irrespective of the distribution of keys?
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Division Method

Assume size of table m is prime. If not, find a prime p ∈ {m, 2m}.

For any key k ∈ U , h(k) = k mod m

Example: For m = 101, h(220) = 220 mod 101 = 18

Issues: Sensitive to distribution of keys.
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Multiplication Method

Let 0 < A < 1.

h(k) = bm(kA mod 1)e = bm(kA− bkAc)c

Let A = (
√

5− 1)/2 = 0.618 (connected to Golden Ratio), m = 28, and
k = 220.

h(220) = b28(kA− bkAc)c

= b28(220 ∗ .618− b220 ∗ 0.618c)c

= b28(135.96− 135)c

= b28(.96)c

= 245

Issue: Sensitive to key distribution

9



Universal Hashing



Universal Hashing

Question: How to find hash functions that can distribute keys uniformly in
slots of the table, irrespective of the distribution of keys?

+
This should hold even if an adversary knows your hash function!

Approach: Choose a hash function h uniformly at random from a family of
hash functions H.

Universal Family H
Let H be a finite collection of hash functions from U → {0, . . . ,m− 1}. The
family H is universal if ∀x, y ∈ U , x 6= y, |h ∈ H : h(x) = h(y)| = |H|

m

Equivalently,

Universal Family H
If h is chosen uniformly at random from H, Pr[h(x) = h(y)] = 1

m
.
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Expected Number of Collisions

Claim
Choose h ∈ H uniformly at random. Use h to hash the records
corresponding to the set of n keys of the universe U into m slots of the
table. For a given record x, expected number of collisions with x in the table
is < α = n

m
= Load Factor

Proof: For each record y corresponding to the set of n keys, define an

indicator r.v. Iy =

1, if h(x) = h(y)

0, otherwise

E[Iy] = Pr(Iy = 1) = 1
m

Define C =
∑

y,y 6=x

Iy = Total number of collisions with x

E[C] = E[
∑

y,y 6=x

Iy] = n−1
m

< α

2

=⇒ Cost per INSERT, SEARCH, DELETE operation ≈ α
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Construction of a Universal Hash Family

A Universal Hash Family
Let m be prime, otherwise replace it by a prime in the range {m, 2m}. Let
a = (a0, a1, a2, . . . , ar) be a (r + 1)-digit base m number, where each
ai ∈ {0, 1, 2, . . . ,m− 1} is chosen uniformly at random. Define mr+1 hash
functions indexed by a as the hash family H

Express a key k as a (r + 1)-digit number in base m, i.e.
k = (k0, k1, k2, . . . , kr), where 0 ≤ ki ≤ m− 1.

How does a hash function ha ∈ H map key k to an index the table?

ha(k) = a · k mod m =
r∑

i=0

aiki mod m
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Universality of H

H is Universal
The set of hash functions H = {ha(k)} is universal.

Proof: To show universality, we need to show that the number of hash
functions in H that map any two distinct keys k and l to same slot is ≤ |H|

m

Let k = (k0, . . . , kr) and l = (l0, . . . , lr) be the base m representation of k
and l.

Since k 6= l, ∃ and index i such that ki 6= li

WLOG, let i = 0, i.e. k0 6= l0

Let us estimate for how many hash functions ha ∈ H, ha(k) = ha(l).

For that to happen,
r∑

i=0

aiki ≡
r∑

i=0

aili ( mod m)

=⇒
r∑

i=0

ai(ki − li) ≡ 0 mod m,

⇔ a0(k0 − l0) +
r∑

i=1

ai(ki − li) ≡ 0 mod m
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Proof contd.

⇔ a0(k0 − l0) +
r∑

i=1

ai(ki − li) ≡ 0 mod m

⇔ a0(k0 − l0) ≡ −
r∑

i=1

ai(ki − li) mod m

⇔ a0 ≡
(
−

r∑
i=1

ai(ki − li)
)

(k0 − l0)−1 mod m

Number Theory Fact

Let m be prime. For any non-zero x ∈ Zm, ∃ a unique z−1 ∈ Zm such that
zz−1 ≡ 1 mod m

=⇒ For k and l to hash to same slot,

a0 ≡
(
−

r∑
i=1

ai(ki − li)
)

(k0 − l0)−1 mod m.

How many choices of a′s can satisfy the above?

We have m choices for each of a1, . . . , ar, and only one choice for a0.

=⇒ #a′s satisfying (ha(k) = ha(l)) = mr = |H|
m

2
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Perfect Hashing



Membership Queries for a Static Set

Given n-keys, construct a static hash table of size m = O(n) such that
SEARCH takes O(1) time in the worst case.
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2-Level Scheme
1st Level: Use a random hash function from universal family to map keys
into a table of size n.

2nd Level: If si elements are mapped to slot i of 1st level table, create a
secondary Hash Table for these elements of size s2i using another random
hash function from universal family.
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Analysis

E[# Collisions]
Expected number of collisions when n items are hashed to a table of size
m = n2 by a random hash function h from a universal family of hash
functions is < 1

2
.

Proof: For any pair of keys x and y, Pr[h(x) = h(y)] = 1
m

.

We have
(
n
2

)
pairs.

E[#Collisions] = 1
m

(
n
2

)
= n(n−1)

2m
< 1

2

2

Pr(No Collisions)

Probability that there no collisions is > 1
2

Proof: Consider complementary event. By Markov’s inequality
(Pr(X ≥ t) ≤ E[X]

t
), we have that Pr(#Collisions ≥ 1) ≤ E[#Collisions]

1
< 1

2
.
2
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An Identity

An Identity
Let si be the number of elements hashed into the slot i of 1st level table.
Then E[s2i ] = 2− 1

n

Proof: Let xk =

1, if key k is placed in slot i in level 1 table

0, otherwise

Observe that si =
∑

k∈key
xk

E[s2i ] = E

[(
n−1∑
k=0

xk

)(
n−1∑
j=0

xj

)]
= E

[
n−1∑
k=0

n−1∑
j=0

xkxj

]
=

E

[
n−1∑
k=0

x2k +
∑ ∑

k 6=j

xkxj

]
Note E[x2k] = 1

n
, and for j 6= k, E[xkxj ] = E[xk]E[xj ] = 1

n2

Therefore, E[s2i ] =
n−1∑
k=0

1
n

+
∑ ∑

j 6=k

1
n2 = 2− 1

n

2
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Analysis of Table Size

Size of 1st level Table = n.

E[Size of 2nd Level Table] = E
[

n∑
i=1

s2i

]

E

[
n∑

i=1

s2i

]
=

n∑
i=1

E[s2i ]

=

n∑
i=1

(
2− 1

n

)
= O(n)
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2-level Hash Table Contd.

Expected Lookup Time:

E[Time for 1st Level + Time for 2nd Level]
= 1 +O(1) = O(1)

Expected Space Used:

E[Hash functions + 1st Level + 2nd Level]

= (n+ 1) + n+
n∑

i=1

E[s2i ] = O(n)

Suppose E[Space Used] ≤ 6n.
By Markov’s inequality, Pr(Actual Space Used > 12n) ≤ 6n

12n
= 1

2
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