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Problem Statement



MWIS in Graphs

Input: An undirected graph G = (V,E) where each vertex has a positive
weight w : V → <+.

Output: A subset S ⊆ V such that
(a) Independent: No two vertices in S are connected by an edge
(b) Maximality: Among all such independent sets, S has the maximum total
weight, where wt(S) =

∑
s∈S

w(s).
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Complexity Results on MWIS Problem

NP-Hardness Results:

• Decision version of MWIS problem is NP-Hard, both for unweighted and
weighted graphs

• NP-Hard for cubic-graphs

• NP-Hard to approximate within a factor of n1−ε, for any 0 < ε < 1,
[Hastad 2001]

• Can be solved in linear time for trees, bounded tree-width graphs, . . .
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A Greedy Randomized Algorithm



Greedy Randomized Algorithm

Consider the following straightforward greedy algorithm for approximating
MWIS of an undirected weighted graph G = (V,E).

Input: Graph G = (V,E) on n vertices with w : V → <+.
Output: A set S that approximates the MWIS.

Step 1: Compute an ordering of vertices in V by using a uniform at
random permutation. WLOG, let the ordering be (v1, . . . , vn).

Step 2: S ← ∅

Step 3: For each vertex vi in order do
If none of its neighbors are in S, S ← S ∪ {vi}

Step 4: Return S
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Observations on Greedy Algorithm

Observation 1
The set of vertices in S forms an independent set of G.

Observation 2
The algorithm is oblivious to weights of vertices.

Observation 3
The algorithm runs in O(|V |+ |E|) time.
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Observations on Greedy Algorithm (contd.)

Observation 4
Let v ∈ V be an arbitrary vertex of G and let its degree be deg(v). Then

Pr(v ∈ S) ≥ 1

deg(v) + 1

where probability is over the random orderings of vertices in V .

Proof: Vertex v is placed in S if none of v’s neighbors come before v in the
ordering.

This occurs with probability = 1
deg(v)+1

Moreover, it is possible that a neighbor w of v comes before v in the ordering,
but it wasn’t placed in S as one of w’s neighbor (other than v) was in S.

Thus, Pr(v ∈ S) ≥ 1
deg(v)+1

2
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Observations on Greedy Algorithm (contd.)

Observation 5

E

[∑
v∈S

w(v)

]
≥
∑
v∈V

w(v)
deg(v)+1

Proof: Set up indicator random variable Xv for each vertex v, where

Xv =

1, if v ∈ S
0, otherwise

Note that E[Xv] = Pr(Xv = 1) = Pr(v ∈ S) ≥ 1
deg(v)+1

Now

E

[∑
v∈S

w(v)

]
= E

[∑
v∈V

Xvw(v)

]
=

∑
v∈V

E [Xvw(v)] =
∑
v∈V

w(v)E [Xv]

≥
∑
v∈V

w(v)

deg(v) + 1
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Remarks on Observation 5

Remark 1

If max degree of any vertex in G is ≤ ∆, E
[∑
v∈S

w(v)

]
≥ 1

∆+1

∑
v∈V

w(v)

Remark 2
Let I be any independent set of G. Then

E

[∑
v∈S

w(v)

]
≥
∑
v∈V

w(v)
deg(v)+1

≥
∑
v∈I

w(v)
deg(v)+1

Remark 3
Let I∗ be a max weight independent set of G. Then

E

[∑
v∈S

w(v)

]
≥
∑
v∈I∗

w(v)
deg(v)+1
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Improvements



Recap

Step 1: Compute an ordering of vertices in V by using a uniform at
random permutation. WLOG, let the ordering be (v1, . . . , vn).

Step 2: S ← ∅

Step 3: For each vertex vi in order do
If none of the neighbors of vi are in S, S ← S ∪ {vi}

Step 4: Return S

Remark 3
Let I∗ be a max weight independent set of G. Then

E

[∑
v∈S

w(v)

]
≥ 1 ·

∑
v∈I∗

w(v)
deg(v)+1

The value 1 is called the recoverable value and we will see a method of Feige
and Reichman [2014] to get a better value.
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Upper Bound on Recoverable Value

Max Recoverable Value

The maximum value of r in the expression E
[∑
v∈S

w(v)

]
≥ r ·

∑
v∈I

w(v)
deg(v)+1

should be strictly less than 4 (unless P=NP).

Proof: Note that for the cubic graphs (i.e. graphs where each vertex has
degree 3), the MWIS problem is NP-Hard. This also holds for unweighted
cubic graphs.

If r = 4 in E
[∑
v∈S

w(v)

]
≥ r ·

∑
v∈I∗

w(v)
deg(v)+1

, then we have that

E

[∑
v∈S

w(v)

]
≥ r ·

∑
v∈I∗

w(v)
4

=
∑
v∈I∗

w(v).

Thus we may obtain an optimal MWIS in polynomial time for cubic graphs.

This is only feasible if P=NP.
2
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FR14 Algorithm

Input: Graph G = (V,E) on n vertices with w : V → <+.
Output: A set S that approximates the MWIS.

Step 1: Compute an ordering of vertices in V by using a uniform at
random permutation. WLOG, let the ordering be (v1, . . . , vn).

Step 2: F ← ∅

Step 3: For each vertex vi in order do
If at most one of the neighbors of vi has been seen so far,
F ← F ∪ {vi}

Step 4: Compute a MWIS S of the induced graph on F .

Step 5: Return S
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Observations on FR14 Algorithm

Observation 1
The induced graph on F obtained at the end of Step 3 in the
FR14-Algorithm is a forest.

Proof: Consider any cycle C in G.

Let v be the last vertex in C in the ordering in Step 1.

Note that v 6∈ F as both neighbors of v have been seen before v.

Thus, the induced graph of F is acyclic.
2

13



Observations on FR14 Algorithm (contd.)

Observation 2
MWIS of the induced graph on F obtained in Step 3 in the FR14-Algorithm
can be computed in linear time.

Proof: Think of dynamic programming on a rooted tree.

Consider a vertex v and let I(v) represents the weight of the MWIS of the
subtree rooted at v.

MWIS for the subtree rooted at v is one of the following two types:

Case 1: v ∈ MWIS: I(v) = wt(v) +
∑

x∈{grandchild of v}
I(x)

Case 2: v 6∈ MWIS: I(v) =
∑

x∈{child of v}
I(x)

2
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Analysis of FR14 Algorithm

Claim
The weight of the independent S returned by the FR14-Algorithm satisfies

E

[∑
v∈S

w(v)

]
≥ 2 ·

∑
v∈I∗

w(v)
deg(v)+1

, where I∗ is a maximum weight

independent set of G.

Proof: Let I be an independent set of G.

Observe that I ∩ F is an independent set of induced graph of F .

Since S is a MWIS of the induced graph of F (see Step 4), we have

E

[∑
v∈S

w(v)

]
≥ E

[ ∑
v∈I∩F

w(v)

]

Consider a vertex v ∈ I.

When does v makes contribution to the sum E

[ ∑
v∈I∩F

w(v)

]
?
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Analysis of FR14 Algorithm (contd.)

When does v makes contribution to the sum E

[ ∑
v∈I∩F

w(v)

]
?

Only if, it is included in F .

Pr(v ∈ F ) = 2
deg(v)+1

(it has to be either the 1st or the 2nd vertex among its
neighbors in the permutation ordering to be included in F )

We have E
[ ∑
v∈I∩F

w(v)

]
= E

[∑
v∈I

w(v)Xv

]
, where Xv is indicator r.v.

stating whether v ∈ F or v 6∈ F .

Thus, E
[∑
v∈S

w(v)

]
≥ E

[∑
v∈I

w(v)Xv

]
=
∑
v∈I

w(v)E [Xv] =
∑
v∈I

w(v) 2
deg(v)+1

Observe that we can replace the independent set I by the MWIS I∗ of G, and

we have E
[∑
v∈S

w(v)

]
≥ 2 ·

∑
v∈I∗

w(v)
deg(v)+1

2
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